JP2003335920A - Epoxy resin composition and semiconductor device using the same - Google Patents

Epoxy resin composition and semiconductor device using the same

Info

Publication number
JP2003335920A
JP2003335920A JP2002142873A JP2002142873A JP2003335920A JP 2003335920 A JP2003335920 A JP 2003335920A JP 2002142873 A JP2002142873 A JP 2002142873A JP 2002142873 A JP2002142873 A JP 2002142873A JP 2003335920 A JP2003335920 A JP 2003335920A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor device
silica
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002142873A
Other languages
Japanese (ja)
Inventor
Koji Tsuzukiyama
浩二 續山
Yasuyuki Kono
恭幸 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002142873A priority Critical patent/JP2003335920A/en
Publication of JP2003335920A publication Critical patent/JP2003335920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for packaging material for a semiconductor device, stabilizing operation of the semiconductor device by effectively absorbing unnecessary electromagnetic wave, and excellent in moisture resistance, and to provide a semiconductor device using the same. <P>SOLUTION: The epoxy resin composition contains 5-70 vol.% based on the epoxy resin composition, of a planular metal magnetic powder and 1-80 mass.% based on the total composition, of silica having density ≤2.10 g/cm<SP>3</SP>measured by using 1-butanol as medium, ≥3 mass.% of coefficient of moisture absorption and 0.1-3 μm of average particle diameter. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エポキシ樹脂組成
物、並びにそれを用いた電磁波遮蔽もしくは電磁波吸収
機能を有する半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition and a semiconductor device using the same which has an electromagnetic wave shielding or electromagnetic wave absorbing function.

【0002】[0002]

【従来の技術】近年、電子機器における不要電磁波放射
により電子機器の誤動作、無線通信における通信障害、
人体の健康への影響等が問題になり、高性能の電磁波遮
蔽材料及び電磁波吸収材料が望まれている。
2. Description of the Related Art In recent years, electronic devices malfunction due to unwanted electromagnetic radiation, communication failures in wireless communication,
Since the influence on human health becomes a problem, high-performance electromagnetic wave shielding materials and electromagnetic wave absorbing materials are desired.

【0003】特に、高周波素子を用いる半導体装置で
は、高周波素子から放出される電磁波により高周波素子
自身の動作が不安定になりやすい。この様な不要電磁波
の影響を防ぎ、半導体装置を安定に動作させるために半
導体装置を金属板等でシールドする対策がとられてい
る。しかしながら、近年、高周波素子動作周波数の高周
波化に伴い、半導体装置での電磁波の影響が顕著とな
り、従来の様に半導体素子をシールド板等で覆う対策の
みでは、半導体装置の動作の安定化が図れなくなってき
た。そのため、半導体装置のパッケージで不要電磁波を
吸収することによって半導体素子の動作を安定させるた
めに用いることのできる電波吸収材料が求められてい
る。
In particular, in a semiconductor device using a high frequency element, the operation of the high frequency element itself tends to become unstable due to the electromagnetic waves emitted from the high frequency element. In order to prevent the influence of such unnecessary electromagnetic waves and operate the semiconductor device stably, measures are taken to shield the semiconductor device with a metal plate or the like. However, in recent years, as the operating frequency of high frequency elements has become higher, the influence of electromagnetic waves on the semiconductor device has become remarkable, and the operation of the semiconductor device can be stabilized only by covering the semiconductor element with a shield plate as in the past. It's gone. Therefore, there is a demand for an electromagnetic wave absorbing material that can be used to stabilize the operation of a semiconductor element by absorbing unnecessary electromagnetic waves in a semiconductor device package.

【0004】このような半導体装置の中に収められる高
周波素子は周囲の湿度により劣化してしまうという特性
を持つため、高周波半導体装置のパッケージで用いるこ
とのできる電波吸収材料としては耐湿性が要求される。
Since the high frequency element housed in such a semiconductor device has a characteristic of being deteriorated by ambient humidity, moisture resistance is required as an electromagnetic wave absorbing material which can be used in a package of the high frequency semiconductor device. It

【0005】絶縁性の基材にゴムやプラスチックを用い
た高周波電磁波吸収体が特開平11−87117号公報
に開示されている。しかしながら、本公報で使用される
基材はゴムやプラスチックであり、気密性や耐湿性を要
求される個所で用いることができないということから、
電磁波遮蔽や電磁波吸収の対策が必要な電子機器内での
使用に問題があった。
A high frequency electromagnetic wave absorber using rubber or plastic as an insulating base material is disclosed in JP-A-11-87117. However, since the base material used in this publication is rubber or plastic, it cannot be used in a place where airtightness and moisture resistance are required,
There was a problem in using it in an electronic device that requires measures for electromagnetic wave shielding and electromagnetic wave absorption.

【0006】有機結着剤としてエポキシ樹脂を使用した
複合磁性体で構成されたEMI対策部品が特開平10−
64714号公報に開示されているが、例示された複合
磁性体はトランスファー成形または射出成形等の生産性
の高い方法により任意形状に成形することが難しいとい
う問題があった。さらに、高度の耐湿性を要求される半
導体装置用パッケージ素材としては耐湿性能が不足する
という問題があった。
An EMI countermeasure component composed of a composite magnetic body using an epoxy resin as an organic binder is disclosed in Japanese Patent Laid-Open No.
Although disclosed in Japanese Patent No. 64714, there is a problem that it is difficult to mold the exemplified composite magnetic body into an arbitrary shape by a highly productive method such as transfer molding or injection molding. Further, there has been a problem that the moisture resistance performance is insufficient as a package material for semiconductor devices that requires a high degree of moisture resistance.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、半導
体装置のパッケージ用材料であって、不要電磁波を効率
良く吸収することによって半導体装置の動作を安定化さ
せ、かつ耐湿性に優れたエポキシ樹脂組成物、ならびに
該組成物を用いた半導体装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a packaging material for a semiconductor device, which is an epoxy which stabilizes the operation of the semiconductor device by efficiently absorbing unnecessary electromagnetic waves and is excellent in moisture resistance. A resin composition and a semiconductor device using the composition are provided.

【0008】[0008]

【課題を解決するための手段】本発明によれば、エポキ
シ樹脂組成物中に、偏平状金属磁性粉を全組成物基準で
5体積%以上70体積%以下含み、かつ、1−ブタノー
ルを媒体として測定した密度が2.10g/cm3未満
で、吸湿率が3質量%以上かつ平均粒径が0.1μm以
上、3μm未満のシリカを、全組成物基準で1質量%以
上80質量%以下含有することを特徴とするエポキシ樹
脂組成物が提供される。さらに、本発明では、前記エポ
キシ樹脂組成物から成形された半導体装置が提供され
る。
According to the present invention, an epoxy resin composition contains 5% by volume or more and 70% by volume or less of flat metal magnetic powder based on the total composition, and 1-butanol as a medium. Silica having a density of less than 2.10 g / cm 3 , a moisture absorption rate of 3% by mass or more and an average particle size of 0.1 μm or more and less than 3 μm is 1% by mass or more and 80% by mass or less based on the total composition There is provided an epoxy resin composition containing the same. Furthermore, the present invention provides a semiconductor device molded from the epoxy resin composition.

【0009】[0009]

【発明の実施の形態】本発明は、エポキシ樹脂中に偏平
状の金属磁性粉を全組成物基準で5体積%以上70体積
%以下配合することで、電磁波遮蔽能及び/または電磁
波吸収能を持ち成形性に優れたエポキシ樹脂組成物が得
られ、さらに加えて、1−ブタノールを媒体として測定
した密度が2.10g/cm3未満で、吸湿率が3質量
%以上かつ平均粒径が0.1μm以上、3μm未満のシ
リカを全組成物基準で1質量%以上80質量%以下含有
させることで、耐湿性に優れたエポキシ樹脂組成物を得
られるという、本発明者らの新たな知見に基づくもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an electromagnetic wave shielding ability and / or an electromagnetic wave absorbing ability are obtained by compounding flat metal magnetic powder in an epoxy resin in an amount of 5% by volume or more and 70% by volume or less based on the total composition. An epoxy resin composition having excellent moldability is obtained, and in addition, the density measured using 1-butanol as a medium is less than 2.10 g / cm 3 , the moisture absorption rate is 3% by mass or more, and the average particle size is 0. Incorporating a silica having a particle size of 1 μm or more and less than 3 μm in an amount of 1% by mass or more and 80% by mass or less on the basis of the total composition provides a new finding of the present inventors that an epoxy resin composition having excellent moisture resistance can be obtained. It is based.

【0010】本発明のエポキシ樹脂組成物を構成するエ
ポキシ樹脂としては、1分子中に2個以上のエポキシ基
を有するエポキシ樹脂が好ましく、なかでもオルソクレ
ゾールノボラックエポキシ樹脂、ナフタレン骨格含有エ
ポキシ樹脂またはビフェニル骨格含有エポキシ樹脂が好
適に用いられ、これらのいずれか1種類を単独で使用し
ても、あるいは、2種類以上を適当な比率で併用しても
良い。なお、エポキシ樹脂組成物の耐熱性または機械強
度の観点から、エポキシ当量は100乃至300[g/
eq]のものが好適に用いられる。
As the epoxy resin constituting the epoxy resin composition of the present invention, an epoxy resin having two or more epoxy groups in one molecule is preferable, and an orthocresol novolac epoxy resin, a naphthalene skeleton-containing epoxy resin or biphenyl is particularly preferable. A skeleton-containing epoxy resin is preferably used, and any one of these may be used alone, or two or more of them may be used in combination at an appropriate ratio. From the viewpoint of heat resistance or mechanical strength of the epoxy resin composition, the epoxy equivalent is 100 to 300 [g /
eq] is preferably used.

【0011】本発明においては、上記エポキシ樹脂およ
び後述する配合剤からなる組成物中に、1−ブタノール
を媒体として測定した密度が2.10g/cm3未満
で、吸湿率が3質量%以上、かつ、平均粒径が0.1μ
m以上、3μm未満の吸水性シリカを配合することが重
要な技術的特徴である。吸水性シリカの平均粒径は、最
大粒径100μm以下、平均粒径3μm未満、好ましく
は平均粒径1ないし2μmのものが使用される。
In the present invention, in the composition comprising the epoxy resin and the compounding agent described below, the density measured using 1-butanol as a medium is less than 2.10 g / cm 3 , and the moisture absorption rate is 3% by mass or more, And the average particle size is 0.1μ
It is an important technical feature to mix water-absorbing silica having a particle size of m or more and less than 3 μm. The average particle size of the water-absorbing silica is 100 μm or less and the average particle size is less than 3 μm, preferably 1 to 2 μm.

【0012】吸水性シリカの平均粒径が前記の範囲にあ
ることにより、金型への充填性および流動性に優れ、ま
た、成形体の耐湿性にも優れたものとなる。また、前記
吸水性シリカは、粒径範囲0.1μm以上3μm内に5
0%以上、好ましくは70%以上、さらに好ましくは8
0%以上含まれることにより、著しく優れた効果を発揮
する。
When the average particle size of the water-absorbent silica is within the above range, the moldability and the fluidity of the mold are excellent, and the moisture resistance of the molded product is excellent. Further, the water-absorbing silica has a particle size range of 0.1 μm to 3 μm.
0% or more, preferably 70% or more, more preferably 8
By containing 0% or more, a remarkably excellent effect is exhibited.

【0013】従来、エポキシ樹脂をはじめとする樹脂に
充填剤としてシリカを配合することは良く知られている
が、これらのシリカは、密度が2.20g/cm3以上
のものがほとんどで、このようなシリカを配合した樹脂
組成物は、ある程度の耐湿性は得られるが、よりすぐれ
た耐湿性が求められる半導体装置用の成形素材として使
用できるほどに十分な耐湿性を付与することはできない
ものであった。
Conventionally, it is well known that silica as a filler is blended with a resin such as an epoxy resin, but most of these silicas have a density of 2.20 g / cm 3 or more. A resin composition containing such silica can obtain a certain degree of moisture resistance, but cannot impart sufficient moisture resistance enough to be used as a molding material for a semiconductor device that requires better moisture resistance. Met.

【0014】ところが、本発明者らの実験によれば、エ
ポキシ樹脂に配合する充填剤として、前記特定の密度を
有する吸水性シリカを使用することによって、組成物の
耐湿性が著しく向上するという知見が得られ、本発明は
この知見をもとに完成されたものである。
However, according to the experiments by the present inventors, it was found that the moisture resistance of the composition is remarkably improved by using the water-absorbing silica having the above-mentioned specific density as the filler to be mixed with the epoxy resin. The present invention has been completed based on this finding.

【0015】すなわち、本発明において用いる吸水性シ
リカは、1−ブタノールを媒体として測定した密度が
2.10g/cm3未満、好ましくは1.55ないし
2.05g/cm3、より好ましくは1.60ないし
1.95g/cm3のものである。このような密度を有
するシリカを使用することによって、エポキシ樹脂組成
物の耐湿性は著しく改良される。なお、密度測定におい
て、水を媒体として測定すると、測定値にバラツキを生
じる虞があることから、本発明では1−ブタノールを媒
体とし、後述する方法によって求めた。
That is, the water-absorbent silica used in the present invention has a density of less than 2.10 g / cm 3 , preferably 1.55 to 2.05 g / cm 3 , more preferably 1. 60 to 1.95 g / cm 3 . By using silica having such a density, the moisture resistance of the epoxy resin composition is significantly improved. In the density measurement, when water is used as a medium, the measured value may vary. Therefore, in the present invention, 1-butanol was used as a medium and the value was determined by the method described later.

【0016】また、本発明において使用する吸水性シリ
カは、吸湿率が3質量%以上であることが重要であり、
これによって、驚くべきことに、エポキシ樹脂組成物の
耐湿性が改良される。吸湿率の測定方法は後述する。
It is important that the water-absorbent silica used in the present invention has a moisture absorption rate of 3% by mass or more,
This surprisingly improves the moisture resistance of the epoxy resin composition. The method for measuring the moisture absorption rate will be described later.

【0017】上述したように、吸水性シリカは、密度、
吸湿率、及び平均粒径が共に前記規定を満たされた場合
に、後述する実施例及び比較例で示したように、本発明
が目的とするエポキシ樹脂組成物の耐湿性が著しく向上
したものとなる。
As described above, the water-absorbing silica has a density,
When both the moisture absorption rate and the average particle size satisfy the above requirements, the epoxy resin composition of the present invention has significantly improved moisture resistance, as shown in Examples and Comparative Examples described later. Become.

【0018】前記特定の吸水性シリカは、エポキシ樹脂
と後述する各種配合剤からなるエポキシ樹脂組成物中に
1ないし80質量%、好ましくは、5ないし65質量%
の割合で配合される。シリカの配合量の全体を、前記特
定した吸水性シリカとすることが最も好ましいものであ
るが、通常使用される密度2.20g/cm3程度のグ
レードを混合して使用することも可能である。吸水性シ
リカの配合割合が、エポキシ樹脂組成物に対して前記の
配合割合の場合に、耐湿性、とくに高温高湿という過酷
な条件下でも優れた性能を発揮すると共に、流動性に優
れ、効率的な成形性が得られる。
The specific water-absorbing silica is contained in an epoxy resin composition comprising an epoxy resin and various compounding agents described below in an amount of 1 to 80% by mass, preferably 5 to 65% by mass.
It is mixed in the ratio of. It is most preferable to use the specified water-absorbing silica as the whole amount of silica compounded, but it is also possible to mix and use a commonly used grade having a density of about 2.20 g / cm 3. . When the blending ratio of the water-absorbing silica is the above-mentioned blending ratio with respect to the epoxy resin composition, moisture resistance, particularly excellent performance even under severe conditions of high temperature and high humidity, excellent fluidity, and efficiency. Formability is obtained.

【0019】本発明において使用される偏平状金属磁性
粉としてはFeを主成分とする合金粉、より好ましくは
その構成元素として少なくともFe及びCrを含む合金
粉であり、レーザー回折法により測定した平均粒子径が
1〜100μm、ASTMD4567により測定した比
表面積が1m2/g以上、さらには、1〜100m2/g
であることが好ましい。本発明の偏平状金属磁性粉が、
構成元素として少なくともCrを含むことにより粉塵爆
発の危険性が大幅に改善されて取り扱いが安全となる。
The flat metal magnetic powder used in the present invention is an alloy powder containing Fe as a main component, more preferably an alloy powder containing at least Fe and Cr as its constituent elements, and the average measured by a laser diffraction method. Particle size is 1 to 100 μm, specific surface area measured by ASTM D4567 is 1 m 2 / g or more, and further 1 to 100 m 2 / g
Is preferred. Flat metal magnetic powder of the present invention,
By including at least Cr as a constituent element, the danger of dust explosion is greatly improved and the handling becomes safe.

【0020】本発明の好ましい偏平状金属磁性粉の具体
例としては、偏平状のFeCrSi、FeCrAl、F
eSiAl、FeNi、FeSiBなどを、より好まし
くはFeCrSi、FeCrAlを挙げることができ
る。
Specific examples of preferable flat metal magnetic powders of the present invention include flat FeCrSi, FeCrAl and F.
eSiAl, FeNi, FeSiB, etc. can be mentioned, more preferably FeCrSi, FeCrAl.

【0021】本発明の偏平形状とは、走査型電子顕微鏡
(SEM)による断面写真で測定した平均厚さをd、レ
ーザー回折法により測定した平均粒径をD50としたと
き、D50/dで定義されるアスペクト比が好ましくは
2以上、より好ましくは2〜100、さらに好ましくは
5〜50である形状をいう。
The flat shape of the present invention is defined as D50 / d, where d is the average thickness measured by a scanning electron microscope (SEM) cross-sectional photograph and D50 is the average particle size measured by the laser diffraction method. The aspect ratio is preferably 2 or more, more preferably 2 to 100, further preferably 5 to 50.

【0022】偏平形状の度合いが小さすぎると、電磁波
遮蔽能及び/または電磁波吸収能が小さくなり、さら
に、偏平形状の度合いが大きすぎると成形時の流動性が
低下するために成形できなくなるという問題がある。
If the degree of flattened shape is too small, the electromagnetic wave shielding ability and / or the electromagnetic wave absorbing ability will be low, and if the degree of flattened shape is too large, the fluidity at the time of molding will be lowered and molding will not be possible. There is.

【0023】偏平形状の度合いを表す他の指標として、
上記のレーザー回折法により測定した平均粒子径とAS
TM D4567により測定した比表面積の積として定
義される偏平度がある。このように定義される偏平度
が、5×10-63/g〜100×10-63/g、より
好ましくは10×10-63/g〜100×10-63
gである偏平状金属磁性粉は、本発明において好ましく
使用することができる。
As another index showing the degree of flat shape,
Average particle size and AS measured by the above laser diffraction method
There is a flatness defined as the product of the specific surface areas measured by TM D4567. Such flatness is defined is, 5 × 10 -6 m 3 / g~100 × 10 -6 m 3 / g, more preferably 10 × 10 -6 m 3 / g~100 × 10 -6 m 3 /
The flat metal magnetic powder of g can be preferably used in the present invention.

【0024】本発明における硬化剤としては、上記エポ
キシ樹脂と硬化反応するものであれば特に制限無く使用
することができる。中でもフェノール樹脂が好ましく、
具体的にはフェノールノボラック樹脂、アラルキルフェ
ノール樹脂が好ましい。硬化剤の配合量は、エポキシ樹
脂100質量部に対して、通常20乃至120質量部、
好ましくは35乃至95質量部の割合で配合されるが、
この配合割合は、十分な硬化の進行と、成形物の物性の
観点から、エポキシ樹脂中に含まれるエポキシ基1個当
たり、フェノール性水酸基が0.5乃至2.0個、好ま
しくは約1個となるような割合が好ましい。
As the curing agent in the present invention, any curing agent that can undergo a curing reaction with the epoxy resin can be used without particular limitation. Among them, phenol resin is preferable,
Specifically, phenol novolac resin and aralkylphenol resin are preferable. The compounding amount of the curing agent is usually 20 to 120 parts by mass with respect to 100 parts by mass of the epoxy resin,
It is preferably blended in a proportion of 35 to 95 parts by mass,
This compounding ratio is 0.5 to 2.0, preferably about 1 phenolic hydroxyl group per epoxy group contained in the epoxy resin from the viewpoint of sufficient curing progress and physical properties of the molded product. The following ratio is preferable.

【0025】本発明においては、必要に応じて、自体公
知のエポキシ樹脂用配合剤を添加することができる。こ
れらの配合剤としては、例えば、前記特定のシリカ以外
のシリカ、アルミナ、ガラス繊維、カーボン繊維、マイ
カ、クレー、酸化チタン、炭酸カルシウム等の無機充填
材、酸化アンチモン、リン化合物などの難燃化剤、ワッ
クス類、ステアリン酸などの脂肪酸、及び金属塩などの
離型剤、シランカップリング剤、顔料、硬化促進剤など
を例示できる。
In the present invention, a known compounding agent for epoxy resin can be added, if necessary. Examples of these compounding agents include silica other than the specific silica, alumina, glass fiber, carbon fiber, mica, clay, titanium oxide, inorganic fillers such as calcium carbonate, antimony oxide, and flame retardant of phosphorus compounds. Examples thereof include agents, waxes, fatty acids such as stearic acid, release agents such as metal salts, silane coupling agents, pigments, and curing accelerators.

【0026】本発明のエポキシ樹脂組成物を得るには、
エポキシ樹脂組成物を構成する材料を、二軸押出機や熱
ロールで加熱混合し、続いて冷却、粉砕することにより
得られる。
To obtain the epoxy resin composition of the present invention,
It is obtained by heating and mixing the materials constituting the epoxy resin composition with a twin-screw extruder or a hot roll, followed by cooling and pulverizing.

【0027】また、本発明の半導体装置は、通常、図1
に示すように、本発明のエポキシ樹脂組成物によって成
形される、下方が開口した箱形の形状1bと、その下面
に高周波素子1eを搭載したセラミックやプラスチック
などからなる基材1hと、シール剤1cを介して密封さ
れる。このような半導体素子を構成する箱状の形状1b
は、上記エポキシ樹脂組成物をトランスファー成形によ
って、10ないし500kg/cm2の加圧下に、温度
150ないし200℃で、1ないし5分間の成形条件に
よって成形することができる。また、本発明のエポキシ
樹脂からなる箱状成形体1bの外側面は導電性の金属1
aで覆われていると外部からの電磁ノイズへの耐性が高
まり好ましい。
Further, the semiconductor device of the present invention is generally shown in FIG.
As shown in FIG. 3, a box-shaped shape 1b having an opening at the bottom, which is molded by the epoxy resin composition of the present invention, a base material 1h made of ceramic or plastic having a high frequency element 1e mounted on its lower surface, and a sealant. Sealed via 1c. Box-like shape 1b constituting such a semiconductor device
Can be molded by transfer molding of the epoxy resin composition under a pressure of 10 to 500 kg / cm 2 at a temperature of 150 to 200 ° C. for 1 to 5 minutes. Further, the outer surface of the box-shaped molded body 1b made of the epoxy resin of the present invention has a conductive metal 1
Covering with a increases resistance to electromagnetic noise from the outside, which is preferable.

【0028】[0028]

【実施例】以下、本発明の優れた効果を実施例により説
明するが、本発明は実施例に限定されるものでは無い。
なお、実施例中、シリカの密度は、次の方法で測定し
た。JIS R3503 で規定された容量50mlのワードン型
比重瓶(質量m0)に、十分に粉砕し乾燥したシリカ約
5gを入れ精秤した。この時の(比重瓶)+(シリカ)
の質量をmSとした。予め脱気した1−ブタノール約1
0mlを入れ、超音波撹拌を30分間行った。次いで、
この比重瓶を減圧デシケーターに移し、少なくとも30
mmHgの真空度中に15分間置き、シリカに1−ブタ
ノールを十分に浸透させた。次に1−ブタノールを比重
瓶に満たし、蓋をし、25℃の恒温水槽に15分間浸漬
放置させた後、質量を測定した。この時の(比重瓶)+
(シリカ)+(1−ブタノール)の質量をmSlとした。
EXAMPLES The excellent effects of the present invention will be described below with reference to examples, but the present invention is not limited to the examples.
In the examples, the density of silica was measured by the following method. About 5 g of sufficiently crushed and dried silica was placed in a Wardung specific gravity bottle (mass m 0 ) having a capacity of 50 ml specified by JIS R3503 and weighed precisely. At this time (specific gravity bottle) + (silica)
Was taken as m S. Pre-degassed 1-butanol about 1
0 ml was added and ultrasonic stirring was performed for 30 minutes. Then
Transfer the pycnometer to a vacuum desiccator and remove at least 30
The silica was thoroughly impregnated with 1-butanol by placing it in a vacuum of mmHg for 15 minutes. Next, 1-butanol was filled in the pycnometer, the lid was closed, the container was immersed in a constant temperature water bath at 25 ° C. for 15 minutes, and then the mass was measured. At this time (specific gravity bottle) +
The mass of (silica) + (1-butanol) was defined as m Sl .

【0029】また、これとは別に、比重瓶の体積を測定
する目的で次の操作を行った。比重瓶に予め脱気処理し
た水を満たし、蓋をし、25℃の恒温水槽に15分間浸
漬放置させた後、質量を測定した。この時の(比重瓶)
+(水)の質量をmlとした。次の計算法により、密度
ρSを算出した。
Separately from this, the following operation was performed for the purpose of measuring the volume of the pycnometer. The pycnometer was filled with water that had been degassed in advance, the lid was capped, the sample was left to immerse in a constant temperature water bath at 25 ° C. for 15 minutes, and then the mass was measured. At this time (specific gravity bottle)
The mass of + (water) was defined as ml . The density ρ S was calculated by the following calculation method.

【0030】[0030]

【数1】 [Equation 1]

【0031】ここで、mO :(比重瓶)の質量(g) mS :(比重瓶)+(シリカ)の質量(g) mSl:(比重瓶)+(シリカ)+(1−ブタノール)の
質量(g) ml :(比重瓶)+(水)の質量(g) ρS :25℃におけるシリカ密度(g/cm3) ρB :25℃における1−ブタノール密度、0.8060(g
/cm3) ρW :25℃における水密度、0.997047(g/cm3) V :比重瓶の体積(cm3) とする。なお、測定は2回繰り返し、その平均値を算出
した。
Here, m O : (mass of specific gravity bottle) (g) m S : (mass of specific gravity bottle) + (silica) (g) m Sl : (specific gravity bottle) + (silica) + (1-butanol) mass) (g) m l :( pycnometer) + (mass of water) (g) [rho S: silica density at 25 ℃ (g / cm 3) ρ B: 1- butanol density at 25 ° C., 0.8060 (g
/ Cm 3 ) ρ W : water density at 25 ° C., 0.997047 (g / cm 3 ) V: volume of specific gravity bottle (cm 3 ). The measurement was repeated twice and the average value was calculated.

【0032】吸湿率は、次の方法で測定した。十分に乾
燥したシリカ約5gを容器に入れ、精秤し、この時の重
量をWO とする。次いで、この容器を60℃、湿度90
%RHの恒温恒湿槽に入れ、24時間放置した時の重量
をWI とする。このWO ,W I から次の式で吸湿率を計
算した。
The moisture absorption rate was measured by the following method. Dry enough
Put about 5g of dried silica in a container and weigh it accurately.
Amount WO And Then, the container is kept at 60 ° C. and humidity of 90.
Weight when placed in a thermo-hygrostat of% RH and left for 24 hours
WI And This WO , W I The moisture absorption rate is calculated from
I calculated.

【0033】[0033]

【数2】 [Equation 2]

【0034】平均粒径は下記の方法によって測定した。
シリカ5ないし50mgを、分散媒10ないし20ml
に超音波攪拌機を用いて分散させた。分散媒としては、
粒径に応じて、水またはポリエチレングリコールを使用
した。分散液をセルに移し、気泡を除いて蓋をし、遠心
沈降法粒度分布測定機(堀場製作所製 CAPA−70
0型)にかけた。測定機の回転速度は、粒径に応じて5
00ないし5000rpmとした。測定機により算出さ
れたD(MEDIAN)値を平均粒径とした。また、本測定法
においては、粒径に応じてこの他に電子顕微鏡法、レー
ザー回折法でも測定した。
The average particle size was measured by the following method.
5 to 50 mg of silica, 10 to 20 ml of dispersion medium
Was dispersed using an ultrasonic stirrer. As the dispersion medium,
Water or polyethylene glycol was used depending on the particle size. The dispersion was transferred to a cell, the air bubble was removed and the lid was closed, and a centrifugal sedimentation method particle size distribution analyzer (CAPA-70 manufactured by Horiba, Ltd.) was used.
Type 0). The rotation speed of the measuring machine is 5 depending on the particle size.
It was set to 00 to 5000 rpm. The D (MEDIAN) value calculated by the measuring machine was defined as the average particle size. In addition, in the present measuring method, the electron microscopic method and the laser diffraction method were also used according to the particle size.

【0035】使用したシリカは、表1のとおりである。The silica used is shown in Table 1.

【表1】 [Table 1]

【0036】(実施例1)表2(数値はすべて質量部)
に示す全原料を、ヘンシェルミキサーにより混合した
後、温度95℃のロールで加熱混合し、続いて冷却、粉
砕することにより、目的とするエポキシ樹脂組成物を得
た。
Example 1 Table 2 (all numerical values are parts by mass)
All the raw materials shown in (1) were mixed by a Henschel mixer, and then heated and mixed by a roll at a temperature of 95 ° C., followed by cooling and pulverizing to obtain an intended epoxy resin composition.

【0037】表2において、シリカ以外の配合材料は以
下のものを用いた。 ・オルソクレゾールノボラックエポキシ樹脂 日本化薬製、EOCN−103S、エポキシ当量=21
4[g/eq] ・ブロム化エポキシ樹脂 日本化薬製、BREN−S、エポキシ当量=285[g
/eq] ・フェノールノボラック樹脂 明和化成製、HF−3M ・硬化促進剤 サンアプロ製、U−CAT 3502T ・偏平状FeCr系合金 三菱マテリアル製、DEM粉、比表面積=2.80m2
g、平均粒径=9.7μm、偏平度=27.2[10-62/g] ・カルナバワックス 加藤洋行製、カルナバワックス1号 ・三酸化アンチモン 日本精鉱製、PATOX−M ・シランカップリング剤 信越化学製、KBM−403
In Table 2, the following materials were used other than silica. -Orthocresol novolac epoxy resin manufactured by Nippon Kayaku, EOCN-103S, epoxy equivalent = 21
4 [g / eq] ・ Brominated epoxy resin manufactured by Nippon Kayaku, BREN-S, epoxy equivalent = 285 [g
/ Eq] -Phenol novolac resin Meiwa Kasei, HF-3M-Curing accelerator San-Apro, U-CAT 3502T-Flat-shaped FeCr alloy Mitsubishi Materials, DEM powder, specific surface area = 2.80 m 2 /
g, average particle size = 9.7 μm, flatness = 27.2 [10 -6 m 2 / g] -Carnauba wax Kato Hiroyuki, Carnauba wax No. 1-antimony trioxide Nihon concentrate, PATOX-M-Silane coupling agent Shin-Etsu Chemical, KBM-403

【0038】この樹脂組成物を用いて、トランスファー
成形機にて、180℃、70kgf/cm2、2分間の
条件で成形を行い、180℃のオーブン中に2時間放置
することでポストキュアを行い、図1に示した形状の箱
型樹脂成形体1bを得た。この箱型樹脂成形体の内側に
ネガ型フォトレジストを塗布し、乾燥、露光、現像する
ことでめっき用のマスクを形成し、次いで、100℃の
無電解Ni液に10分間浸すことで箱型樹脂成形体の外
側面にNiめっきを施し、さらに、レジストを剥離する
ことで、図1に示した半導体素子用の箱型樹脂成形体
(1bおよび1a)を得た。
This resin composition was molded by a transfer molding machine under the conditions of 180 ° C., 70 kgf / cm 2 and 2 minutes, and left in an oven at 180 ° C. for 2 hours for post cure. A box-shaped resin molded body 1b having the shape shown in FIG. 1 was obtained. A negative photoresist is applied to the inside of this box-shaped resin molded product, and a mask for plating is formed by drying, exposing, and developing, and then a box-shaped resin mold is immersed in an electroless Ni solution at 100 ° C. for 10 minutes. The outer surface of the resin molded body was plated with Ni, and the resist was peeled off to obtain the box-shaped resin molded bodies (1b and 1a) for the semiconductor element shown in FIG.

【0039】この様にしてして得た箱型樹脂成形体を、
シール剤を介してガラス基板に接着し、気密シールする
ことで耐湿性評価用試料を作製した。こうして気密シー
ルした箱体の中空部に浸入する水分量を測定することに
よって組成物の耐湿性を評価した。測定は、箱体を市販
のプレッシャークッカー試験機(PCT)に入れ、温度
121℃、湿度100%RHの湿熱環境で20時間曝露
した。次に、ガラス面を一定条件で強制冷却し、中空部
内の水分が結露するかどうかを調べた。結露が認められ
ないものを良品とした結果、良品率は100%であっ
た。
The box-shaped resin molded body thus obtained is
A sample for moisture resistance evaluation was prepared by adhering to a glass substrate via a sealant and hermetically sealing. The moisture resistance of the composition was evaluated by measuring the amount of water entering the hollow portion of the airtightly sealed box body. For the measurement, the box was put in a commercially available pressure cooker tester (PCT) and exposed in a moist heat environment at a temperature of 121 ° C. and a humidity of 100% RH for 20 hours. Next, the glass surface was forcibly cooled under a constant condition, and it was examined whether or not water in the hollow portion was condensed. As a result of making a product in which no dew condensation was recognized as a non-defective product, the non-defective product rate was 100%.

【0040】さらに、次の方法により、不要電磁波吸収
特性を評価した。すなわち、前記の様にして得たエポキ
シ樹脂組成物を、圧縮成形機を用いて150℃、5分間
の条件により、金属板上に0.5mmの厚みで成形し、
10mm角に切断し不要電磁波吸収特性用試験片とし
た。この試験片をリッドとして用いたときの効果を図2
に示す方法にて測定した。すなわち、まず、伝送インピ
ーダンス50Ωのコプレーナ線路の一部を4mmの長さ
で切断することで入力信号が出力側に伝わらないように
し、次に試験片が切断部を覆うようにコプレーナ線路上
に絶縁体(テフロン(登録商標)シート、0.5mm厚
み)を介して設置し、この状態でベクトルネットワーク
アナライザーを用いてSパラメータの内のS21を測定
することによって入力と出力の電気的カップリングを評
価した。結果を図3(b)に示す。10GHzでの入出
力カップリングは−13.5dBであった。
Further, the unnecessary electromagnetic wave absorption characteristics were evaluated by the following method. That is, the epoxy resin composition obtained as described above is molded on a metal plate with a thickness of 0.5 mm under the conditions of 150 ° C. for 5 minutes using a compression molding machine,
It was cut into a 10 mm square to obtain a test piece for unnecessary electromagnetic wave absorption characteristics. The effect of using this test piece as a lid is shown in FIG.
It measured by the method shown in. That is, first, a part of the coplanar line with a transmission impedance of 50Ω is cut to a length of 4 mm so that the input signal is not transmitted to the output side, and then the test piece is insulated on the coplanar line so as to cover the cut part. It is installed through the body (Teflon (registered trademark) sheet, 0.5 mm thickness), and in this state, the electrical coupling of the input and the output is evaluated by measuring S21 of the S parameters using a vector network analyzer. did. The results are shown in Fig. 3 (b). The input / output coupling at 10 GHz was -13.5 dB.

【0041】(実施例2)実施例1において、吸湿性シ
リカをシリカ2に変更した以外は、実施例1と同様にエ
ポキシ樹脂組成物を作製し耐湿性能の評価を行った結
果、良品率は100%であった。
(Example 2) An epoxy resin composition was prepared in the same manner as in Example 1 except that the hygroscopic silica was changed to silica 2, and the moisture resistance performance was evaluated. It was 100%.

【0042】(実施例3)実施例1において、吸湿性シ
リカをシリカ3に変更した以外は、実施例1と同様にエ
ポキシ樹脂組成物を作製し耐湿性能の評価を行った結
果、良品率は100%であった。
Example 3 An epoxy resin composition was prepared in the same manner as in Example 1 except that the hygroscopic silica was changed to silica 3, and the moisture resistance performance was evaluated. It was 100%.

【0043】(比較例1)実施例1において、吸湿性シ
リカを全量非吸湿性シリカに置き換えた以外は、実施例
1と同様にエポキシ樹脂組成物を作製し耐湿性能の評価
を行った結果、良品率は5%であった。
Comparative Example 1 An epoxy resin composition was prepared in the same manner as in Example 1 except that all the hygroscopic silica was replaced with non-hygroscopic silica, and the moisture resistance was evaluated. The non-defective rate was 5%.

【0044】(比較例2)実施例1において、偏平状金
属磁性粉の配合量を0質量部とし、非吸湿性シリカの配
合量を615質量部とした以外は、実施例1と同様にエ
ポキシ樹脂組成物を作製し、不要電磁波吸収特性を評価
した。結果を図3(a)に示す。10GHz近傍に共振
に起因するピークが観察され、また10GHzでの入出
力カップリングは−2.5dBであり、不要電磁波吸収
特性が小さいことが確認された。
COMPARATIVE EXAMPLE 2 An epoxy resin was prepared in the same manner as in Example 1 except that the amount of the flat metal magnetic powder was 0 part by mass and the amount of the non-hygroscopic silica was 615 parts by mass. A resin composition was prepared and the unwanted electromagnetic wave absorption characteristics were evaluated. The results are shown in Fig. 3 (a). A peak due to resonance was observed in the vicinity of 10 GHz, and the input / output coupling at 10 GHz was −2.5 dB, which confirmed that the unnecessary electromagnetic wave absorption characteristics were small.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】本発明によれば、半導体装置のパッケー
ジ用材料であり、不要電磁波を効率良く吸収することに
よって半導体装置の動作を安定化させる、耐湿性に優れ
たエポキシ樹脂組成物が提供される。さらに、該成形材
料を用いることによって動作の安定した半導体装置が提
供される。
According to the present invention, there is provided an epoxy resin composition having excellent moisture resistance, which is a packaging material for a semiconductor device and stabilizes the operation of the semiconductor device by efficiently absorbing unnecessary electromagnetic waves. It Furthermore, a semiconductor device with stable operation is provided by using the molding material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる半導体装置の概略断面図であ
る。
FIG. 1 is a schematic cross-sectional view of a semiconductor device according to the present invention.

【図2】本発明に係わる実施例の入出力カップリング測
定法を示した図である。
FIG. 2 is a diagram showing an input / output coupling measurement method of an example according to the present invention.

【図3】本発明に係わる実施例及び比較例の入出力カッ
プリング測定結果示した図である。
FIG. 3 is a diagram showing measurement results of input / output coupling of an example and a comparative example according to the present invention.

【符号の説明】[Explanation of symbols]

1a・・・金属製リッド 1b・・・電波吸収材料 1c・・・シール層 1d・・・半導体素子と半導体装置に形成された配線と
を電気的接続をする接続部 1e・・・半導体素子 1f・・・半導体素子と外部回路との電気的接続をする
半導体装置に形成された配線 1g・・・半導体素子と外部回路との電気的接続をする
半導体装置に形成された配線 1h・・・半導体装置本体 6a・・・入力信号 6b・・・出力信号 6c・・・一部を切断したコプレーナ線路 6d・・・金属板 6e・・・電波吸収体 6f・・・絶縁体 (a)・・・比較例2の測定結果 (b)・・・実施例1の測定結果
1a ... Metal lid 1b ... Radio wave absorbing material 1c ... Seal layer 1d ... Connecting portion 1e for electrically connecting a semiconductor element and a wiring formed in a semiconductor device ... Semiconductor element 1f ... Wiring 1g formed in a semiconductor device for electrically connecting a semiconductor element and an external circuit ... Wiring 1h formed in a semiconductor device for electrically connecting a semiconductor element and an external circuit ... Semiconductor Device main body 6a ... Input signal 6b ... Output signal 6c ... Partially cut coplanar line 6d ... Metal plate 6e ... Radio wave absorber 6f ... Insulator (a) ... Measurement result of Comparative Example 2 (b) ... Measurement result of Example 1

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂組成物中に、偏平状金属磁
性粉を全組成物基準で5体積%以上70体積%以下含有
し、かつ、1−ブタノールを媒体として測定した密度が
2.10g/cm3未満で、吸湿率が3質量%以上かつ
平均粒径が0.1μm以上、3μm未満のシリカを、全
組成物基準で1質量%以上80質量%以下含有すること
を特徴とするエポキシ樹脂組成物。
1. An epoxy resin composition containing 5% by volume or more and 70% by volume or less of flat metal magnetic powder based on the total composition, and a density measured with 1-butanol as a medium is 2.10 g / Epoxy resin characterized by containing 1% by mass or more and 80% by mass or less of silica having a moisture absorption rate of less than 3 cm 3 and an average particle size of 0.1 μm or more and less than 3 μm, based on the total composition. Composition.
【請求項2】 請求項1に記載のエポキシ樹脂組成物か
ら成形された半導体装置。
2. A semiconductor device molded from the epoxy resin composition according to claim 1.
JP2002142873A 2002-05-17 2002-05-17 Epoxy resin composition and semiconductor device using the same Pending JP2003335920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142873A JP2003335920A (en) 2002-05-17 2002-05-17 Epoxy resin composition and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142873A JP2003335920A (en) 2002-05-17 2002-05-17 Epoxy resin composition and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2003335920A true JP2003335920A (en) 2003-11-28

Family

ID=29703036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142873A Pending JP2003335920A (en) 2002-05-17 2002-05-17 Epoxy resin composition and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2003335920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116348516A (en) * 2020-10-05 2023-06-27 住友电木株式会社 Resin molding material, molded article, and method for producing the molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116348516A (en) * 2020-10-05 2023-06-27 住友电木株式会社 Resin molding material, molded article, and method for producing the molded article

Similar Documents

Publication Publication Date Title
KR101090743B1 (en) Electromagnetic wave absorber
JP5453477B2 (en) Composite filler for resin mixing
EP3950588B1 (en) Spherical silica powder
JP4306951B2 (en) Surface-treated fine spherical silica powder and resin composition
KR101344644B1 (en) Spherical sintered ferrite particle, semiconductor sealing resin composition making use of the same and semiconductor device obtained therewith
EP1266936A1 (en) Epoxy resin composition used for encapsulating semiconductor and semiconductor device using the composition
JP4849220B2 (en) Electromagnetic interference suppression sheet and manufacturing method thereof, flat cable for high-frequency signal, and flexible printed circuit board
TWI734552B (en) Manufacturing method of silicon dioxide-coated boron nitride particles and manufacturing method of heat-dissipating resin composition
Goyal et al. Study on phenyltrimethoxysilane treated nano-silica filled high performance poly (etheretherketone) nanocomposites
US6383660B2 (en) Epoxy resin composition for encapsulating semiconductor and semiconductor device using the same
JP2003218249A (en) Semiconductor hollow package
JP4746803B2 (en) Thermally conductive electromagnetic shielding sheet
JP4237182B2 (en) Highly filled coated magnesium oxide powder and resin composition containing the powder
JP2002198684A (en) Electromagnetic wave absorber
JP2004022685A (en) Radio wave absorption cap
JP2008001757A (en) Resin composition for semiconductor sealing use and resin-sealed type semiconductor device
JP2012162650A (en) Thermoconductive resin composition, and semiconductor package
CN111479773B (en) Glass-coated aluminum nitride particles, process for producing the same, and heat-radiating resin composition containing the same
JP2003335920A (en) Epoxy resin composition and semiconductor device using the same
JP2004315761A (en) Heat radiator
JPH062799B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3458196B2 (en) High thermal conductive resin composition
JP2002252314A (en) Spherical inorganic powder and its use
JP7348847B2 (en) Resin composition for semiconductor encapsulation and semiconductor device using the same
JP2003273568A (en) Capsule type electromagnetic wave absorption material