JP2003335818A - Proton conductive material - Google Patents

Proton conductive material

Info

Publication number
JP2003335818A
JP2003335818A JP2002143106A JP2002143106A JP2003335818A JP 2003335818 A JP2003335818 A JP 2003335818A JP 2002143106 A JP2002143106 A JP 2002143106A JP 2002143106 A JP2002143106 A JP 2002143106A JP 2003335818 A JP2003335818 A JP 2003335818A
Authority
JP
Japan
Prior art keywords
main chain
conductive material
proton conductive
side chain
oxygen permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002143106A
Other languages
Japanese (ja)
Other versions
JP4099699B2 (en
Inventor
Takuichi Arai
卓一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002143106A priority Critical patent/JP4099699B2/en
Publication of JP2003335818A publication Critical patent/JP2003335818A/en
Application granted granted Critical
Publication of JP4099699B2 publication Critical patent/JP4099699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a proton conductive material having high proton conductivity and high oxygen permeability. <P>SOLUTION: The proton conductive material is composed of a polymer material having a chemical structure having a main chain and a side chain grafted to the main chain, and at least one of the main chain and the side chain has a partial structure to be represented by formula (1) (wherein n>0; and R1 and R2 are each independently a 1-4C alkyl group) and a strongly acidic functional group. In other words, the possession of a nonpolar dialkylsiloxane structure in the molecular structure increases the oxygen solubility, and simultaneously renders the diffusion of oxygen superior due to its high mobility. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池、水電
解、水素センサ、濃淡電池、除湿機等に好適に使用でき
るプロトン伝導材料に関し、特に燃料電池の電極触媒層
に適用することが好ましいプロトン伝導材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a proton conductive material which can be suitably used in fuel cells, water electrolysis, hydrogen sensors, concentration cells, dehumidifiers, etc., and in particular, protons which are preferably applied to an electrode catalyst layer of a fuel cell. Regarding conductive materials.

【0002】[0002]

【従来の技術】固体高分子型燃料電池用として実用に耐
えるプロトン伝導材料としては、ナフィオン(商標)を
代表とするパーフルオロカーボンスルホン酸系高分子材
料が主流である。
2. Description of the Related Art Perfluorocarbon sulfonic acid-based polymer materials represented by Nafion (trademark) are the mainstream as a proton conductive material that can be practically used for polymer electrolyte fuel cells.

【0003】[0003]

【発明が解決しようとする課題】ナフィオンの欠点とし
ては、フッ素樹脂なので高価であることが挙げられる。
また、燃料電池の主要構成要素であるMEAにおいては
プロトン伝導材料は電解質膜部分だけでなく電極触媒層
にも用いられている。電極触媒層においてプロトン伝導
材料に求められる性能は高いプロトン伝導性のほか、高
い酸素透過性が要求される。プロトン伝導材料の酸素透
過性が低いと、反応点(三相界面)の形成に難がある。
ナフィオンは水分の存在下で酸素透過性を発揮するの
で、酸素透過性を制御するには常に含水率を調節する必
要がある。含水率は高すぎてもフッラディング等の不具
合を生じる。
A drawback of Nafion is that it is a fluororesin, so it is expensive.
In the MEA which is a main constituent element of the fuel cell, the proton conductive material is used not only in the electrolyte membrane portion but also in the electrode catalyst layer. In addition to high proton conductivity, the performance required for a proton conductive material in the electrode catalyst layer is required to have high oxygen permeability. When the oxygen permeability of the proton conductive material is low, it is difficult to form reaction points (three-phase interface).
Since Nafion exhibits oxygen permeability in the presence of water, it is always necessary to adjust the water content in order to control oxygen permeability. If the water content is too high, problems such as flooding will occur.

【0004】そこで本発明では、高いプロトン伝導性を
有すると共に、含水率に関わらず高い酸素透過性を示す
プロトン伝導材料を提供することを解決すべき課題とす
る。
Therefore, it is an object of the present invention to provide a proton conductive material having a high proton conductivity and a high oxygen permeability regardless of the water content.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する目的
で本発明者は鋭意研究を行った結果、主鎖と、該主鎖に
グラフト化された側鎖とをもつ化学構造を有する高分子
材料からなり、該主鎖及び該側鎖の少なくとも一方は、
一般式(1)で表される部分構造と、強酸性官能基とを
有することを特徴とするプロトン伝導材料を発明した
(請求項1)。
Means for Solving the Problems As a result of intensive studies by the present inventors for the purpose of solving the above problems, a polymer having a chemical structure having a main chain and side chains grafted to the main chain. At least one of the main chain and the side chain,
A proton conductive material having a partial structure represented by the general formula (1) and a strongly acidic functional group was invented (Claim 1).

【0006】[0006]

【化3】 [Chemical 3]

【0007】(式(1)中、n>0且つR1及びR2は
それぞれ独立して炭素数1〜4のアルキル基である。)
なお、式中“*”で表すのは、本部分構造が導入・結合
される主鎖及び/又は側鎖の部分を示しており、不特定
の、元素、官能基、高分子鎖が結合することを表す(一
般式(2)において同じ)。
(In the formula (1), n> 0 and R1 and R2 are each independently an alkyl group having 1 to 4 carbon atoms.)
In addition, "*" in the formula represents a portion of the main chain and / or side chain into which this partial structure is introduced / bonded, and an unspecified element, a functional group, or a polymer chain is bonded. (The same applies to general formula (2)).

【0008】つまり、非極性のジアルキルシロキサン構
造を分子構造中にもつことで酸素溶解性が増すと共にジ
アルキルシロキサン構造の運動性の高さから酸素の拡散
性にも優れ、高い酸素透過性を達成できる。そして、前
記側鎖の末端部のうちの少なくとも一部が一般式(2)
で表される構造をもつ(請求項2)ことで、ジアルキル
シロキサン構造部分の運動性が向上して、より高い酸素
透過性を示すことができる。
That is, by having a non-polar dialkyl siloxane structure in the molecular structure, oxygen solubility is increased and at the same time, the high mobility of the dialkyl siloxane structure provides excellent oxygen diffusivity, and high oxygen permeability can be achieved. . And, at least a part of the terminal portion of the side chain is represented by the general formula (2)
By having a structure represented by (Claim 2), the mobility of the dialkylsiloxane structure portion is improved, and higher oxygen permeability can be exhibited.

【0009】[0009]

【化4】 [Chemical 4]

【0010】(式(2)中、m>0且つR3及びR4は
それぞれ独立して炭素数1〜4のアルキル基である。) ここで一般式(1)及び(2)のジアルキルシロキサン
構造が有するアルキル基はメチル基であることが酸素透
過性向上の観点から好ましい(請求項3)。また、前記
高分子材料は線状高分子からなることがプロトン伝導材
料の柔軟性の観点から好ましい(請求項4)。
(In the formula (2), m> 0 and R3 and R4 are each independently an alkyl group having 1 to 4 carbon atoms.) Here, the dialkylsiloxane structures of the general formulas (1) and (2) are It is preferable that the alkyl group has a methyl group from the viewpoint of improving oxygen permeability (claim 3). Further, it is preferable that the polymer material is a linear polymer from the viewpoint of flexibility of the proton conductive material (claim 4).

【0011】[0011]

【発明の実施の形態】本発明のプロトン伝導材料は、主
鎖と、その主鎖にグラフト化された側鎖とをもつ化学構
造を有する高分子材料からなる。本明細書において、
「主鎖」とは高分子材料を構成する高分子化合物分子の
うちで相対的に最も長い鎖を意味し、「側鎖」は主鎖の
途中で主鎖に結合する鎖を意味する。ここで、本発明の
プロトン伝導材料を構成する高分子材料は、線状高分子
であっても三次元網目状構造をもつ高分子であってもよ
いが、柔軟性の観点から線状分子からなることが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The proton conducting material of the present invention comprises a polymer material having a chemical structure having a main chain and side chains grafted to the main chain. In this specification,
The “main chain” means the relatively longest chain among the polymer compound molecules constituting the polymer material, and the “side chain” means the chain which is bonded to the main chain in the middle of the main chain. Here, the polymer material constituting the proton conductive material of the present invention may be a linear polymer or a polymer having a three-dimensional network structure, but from the viewpoint of flexibility, a linear molecule is used. It is preferable that

【0012】本発明のプロトン伝導材料は前述の高分子
材料のほかに、他の高分子化合物を混合して用いること
ができる。混合できる高分子化合物としては特に限定し
ないが、ナフィオン、ポリエチレンオキサイド、ポリビ
ニルアルコール、ポリアクリル酸、ポリスルホン酸、シ
リカゲル、エンジニアリングプラスチック等が例示でき
る。他の高分子化合物を混合する場合には、前述の本発
明のプロトン伝導材料の高分子材料をプロトン伝導材料
全体に対して、50%以上、より好ましくは60%以上
含有することが好ましい。
The proton-conducting material of the present invention can be used by mixing other polymer compounds in addition to the above-mentioned polymer material. The polymer compound that can be mixed is not particularly limited, but examples include Nafion, polyethylene oxide, polyvinyl alcohol, polyacrylic acid, polysulfonic acid, silica gel, and engineering plastics. When another polymer compound is mixed, it is preferable that the above-described polymer material of the proton conductive material of the present invention is contained in 50% or more, more preferably 60% or more, based on the entire proton conductive material.

【0013】主鎖及び側鎖の構造は特に限定されない。
例えば炭素−炭素結合を主体とする構造や、ケイ素−酸
素結合を主体とする構造を例示できる。具体的には、炭
素−炭素結合を主体とする構造としては、ポリオレフィ
ン及びその水素の一部乃至全部をフッ素で置換したフッ
素置換オレフィン、ポリスチレン、ポリアミド、ポリイ
ミド等が例示できる。ケイ素−酸素結合を主体とする構
造としては、ポリシロキサンが挙げられる。主鎖上に存
在する側鎖の数は特に限定しないが、主鎖の炭素−炭素
結合(ケイ素−酸素結合)が2個〜10個程度に1つの
割合で側鎖をもつことが、高いプロトン伝導度、強度、
酸素透過性のバランスの観点から好ましい。
The structures of the main chain and side chains are not particularly limited.
For example, a structure mainly composed of carbon-carbon bonds and a structure mainly composed of silicon-oxygen bonds can be exemplified. Specifically, examples of the structure mainly composed of carbon-carbon bonds include polyolefin and fluorine-substituted olefins obtained by substituting part or all of hydrogens with fluorine, polystyrene, polyamide, polyimide and the like. Examples of the structure mainly composed of silicon-oxygen bond include polysiloxane. The number of side chains existing on the main chain is not particularly limited, but it is highly probable that the main chain has a side chain at a ratio of 1 to 2 to 10 carbon-carbon bonds (silicon-oxygen bonds). Conductivity, strength,
It is preferable from the viewpoint of balance of oxygen permeability.

【0014】更に、本プロトン伝導材料は、主鎖及び側
鎖の少なくとも一方が、一般式(1)で表される部分構
造(ジアルキルシロキサン構造)と、強酸性官能基とを
有することを特徴とする。一般式(1)中のR1及びR
2はアルキル基を示す。酸素透過性向上の観点からは、
双方とも特にメチル基であることが好ましい。
Further, the present proton conductive material is characterized in that at least one of the main chain and the side chain has a partial structure (dialkylsiloxane structure) represented by the general formula (1) and a strongly acidic functional group. To do. R1 and R in the general formula (1)
2 represents an alkyl group. From the perspective of improving oxygen permeability,
Both are particularly preferably methyl groups.

【0015】ジアルキルシロキサン構造はケイ素原子に
2つのアルキル基が結合するほかは特に限定しない。ア
ルキル基が2つ結合することで高い酸素透過性を発揮す
る。ジアルキルシロキサン構造はシロキサン単位(Si
−O)の繰り返し数が1つ以上存在すればよい。特にシ
ロキサン単位の繰り返し数が大きいこと(例えば、シロ
キサン単位が10個以上)が酸素透過性向上の観点から
好ましい。
The dialkylsiloxane structure is not particularly limited except that two alkyl groups are bonded to the silicon atom. High oxygen permeability is achieved by combining two alkyl groups. The dialkylsiloxane structure has a siloxane unit (Si
It is sufficient that the number of repetitions of -O) is 1 or more. In particular, a large number of repeating siloxane units (for example, 10 or more siloxane units) is preferable from the viewpoint of improving oxygen permeability.

【0016】強酸性官能基としては特に限定しない。ス
ルホン酸官能基、リン酸、アクリル酸、シラノール、カ
ルビノール等が例示できる。強酸性官能基としては特に
スルホン酸官能基が好ましい。
The strongly acidic functional group is not particularly limited. Examples thereof include sulfonic acid functional group, phosphoric acid, acrylic acid, silanol, carbinol and the like. As the strongly acidic functional group, a sulfonic acid functional group is particularly preferable.

【0017】ここで、一般式(1)で表されるシロキサ
ン構造は、一般式(2)で表される構造(ジアルキルシ
ロキサン構造及び強酸性官能基)として、側鎖の末端部
に導入されることが特に好ましい。側鎖にジアルキルシ
ロキサン構造を有する場合には、ジアルキルシロキサン
構造のシロキサン単位は一般式(2)におけるmの値が
1〜4で有ることが好ましい。シロキサン単位の繰り返
し数は機械強度、耐熱性の安定性向上及びEW(Equ
ivalent Weight:強酸性官能基1つ当た
りの分子量)値向上の観点からは小さいことが好ましく
2個以下が好ましい。
Here, the siloxane structure represented by the general formula (1) is introduced at the end of the side chain as the structure represented by the general formula (2) (dialkylsiloxane structure and strongly acidic functional group). Is particularly preferred. When the side chain has a dialkylsiloxane structure, the siloxane unit of the dialkylsiloxane structure preferably has a value of m in the general formula (2) of 1 to 4. The number of repeating siloxane units is used to improve mechanical strength, stability of heat resistance, and EW (Equ).
ivalent Weight: Molecular weight per strongly acidic functional group) From the viewpoint of improving the value, it is preferably small and preferably 2 or less.

【0018】本発明のプロトン伝導材料を製造する方法
は特に限定されない。例えば主鎖に相当する分子鎖に側
鎖をグラフト化することにより製造できる。主鎖に側鎖
をグラフト化する方法としては、例えば主鎖上に高エネ
ルギー線照射等の何らかの方法でラジカルを生成し、そ
のラジカルを基点にして側鎖を構成するモノマーを重合
成長させたり、主鎖上に反応性の官能基を導入して、そ
の官能基に側鎖を結合させることで達成できる。また、
側鎖の端部にビニル基等の重合性の官能基を付与し、主
鎖を構成するモノマーと共に重合させて、主鎖を合成す
ると同時に側鎖を導入することもできる。
The method for producing the proton conductive material of the present invention is not particularly limited. For example, it can be produced by grafting a side chain onto a molecular chain corresponding to the main chain. As a method of grafting a side chain to the main chain, for example, a radical is generated on the main chain by some method such as irradiation with high energy rays, and a monomer constituting a side chain is polymerized and grown with the radical as a starting point. This can be achieved by introducing a reactive functional group onto the main chain and attaching a side chain to the functional group. Also,
It is also possible to add a polymerizable functional group such as a vinyl group to the end of the side chain and polymerize it with the monomer constituting the main chain to synthesize the main chain and at the same time introduce the side chain.

【0019】一般式(1)で表されるジアルキルシロキ
サン構造は、例えば、対応するジアルキルジクロロシラ
ンを適正な条件で重合させることで得られる。また、一
般式(2)のように、側鎖の末端部にスルホン化したフ
ェニル基を導入するにはフェニル基が結合されたシラン
化合物を用いてフェニル基をジアルキルシロキサン構造
に導入した後に発煙硫酸等によりスルホン化することで
得られる。
The dialkylsiloxane structure represented by the general formula (1) can be obtained, for example, by polymerizing a corresponding dialkyldichlorosilane under appropriate conditions. Further, as shown in the general formula (2), in order to introduce a sulfonated phenyl group at the end of a side chain, a silane compound having a phenyl group bonded is used to introduce the phenyl group into a dialkylsiloxane structure, and then fuming sulfuric acid. It can be obtained by sulfonation with the like.

【0020】[0020]

【実施例】(試験例1) (a)室温、窒素雰囲気下にて、ポリHメチルシロキサ
ン(分子量2000)と、末端ビニルポリジメチルシロ
キサン(分子量2000)とを化学量論比にてH:ビニ
ル=100:1で混合し、充分に攪拌した。その後、ビ
ニル基に対して白金換算100ppmの白金錯体(白金
−シクロビニルメチルシロキサン錯体)を添加して、ホ
モジナイザーで充分に攪拌して溶液とした。そして、炉
にて溶液を150℃24時間加熱処理を行い、徐冷して
室温に戻した。
(Test Example 1) (a) At room temperature and in a nitrogen atmosphere, poly H-methyl siloxane (molecular weight 2000) and terminal vinyl polydimethyl siloxane (molecular weight 2000) were used in a stoichiometric ratio of H: vinyl = 100: 1 and mixed well. Then, a platinum complex (platinum-cyclovinylmethylsiloxane complex) of 100 ppm in terms of platinum was added to the vinyl group, and the mixture was sufficiently stirred with a homogenizer to obtain a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature.

【0021】(b)室温、窒素雰囲気下にて、ビニルテ
トラメチルジシロキサンと、スルホン化トリフェニルシ
ラノール−メチレンクロライド30%溶液とを化学量論
比H:OH=1:1で混合し、充分に攪拌した。その
後、Hに対してスズ換算で150ppmのスズ触媒(ビ
ス(2−エチルへキシル)スズ)を添加してホモジナイ
ザーで充分に攪拌して溶液とした。そして、炉にて溶液
を150℃24時間加熱処理を行い、徐冷して室温に戻
した。
(B) At room temperature under a nitrogen atmosphere, vinyl tetramethyldisiloxane and a 30% sulfonated triphenylsilanol-methylene chloride solution were mixed at a stoichiometric ratio H: OH = 1: 1 and mixed sufficiently. It was stirred. Then, 150 ppm of tin catalyst (bis (2-ethylhexyl) tin) in terms of tin was added to H, and the mixture was sufficiently stirred with a homogenizer to obtain a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature.

【0022】(c)(a)で調製した溶液のH量と
(b)で調製した溶液のビニル基の量とが化学量論比で
H:ビニル=1:1.5となるように混合し、ビニル基
に対して白金換算100ppmの白金錯体(白金−シク
ロビニルメチルシロキサン錯体)を添加した。ホモジナ
イザーで充分に攪拌して溶液とした。これをPTFE製
の平板上にキャスティングして製膜した後に、炉にて1
50℃24時間加熱処理を行い試験例1の試験試料であ
る薄膜を得た。この薄膜は主鎖、側鎖共にジメチルシロ
キサン構造を有する。
(C) The amount of H in the solution prepared in (a) and the amount of vinyl groups in the solution prepared in (b) are mixed in a stoichiometric ratio of H: vinyl = 1: 1.5. Then, a platinum complex (platinum-cyclovinylmethylsiloxane complex) of 100 ppm in terms of platinum was added to the vinyl group. The solution was thoroughly stirred with a homogenizer. After casting this on a flat plate made of PTFE to form a film, 1 in a furnace
Heat treatment was performed at 50 ° C. for 24 hours to obtain a thin film as a test sample of Test Example 1. This thin film has a dimethylsiloxane structure in both the main chain and side chains.

【0023】(試験例2)室温、窒素雰囲気下にて、ビ
ニルテトラメチルジシロキサンと、トリフェニルシラノ
ール−メチレンクロライド30%溶液とを化学量論比
H:OH=1:1で混合し充分に撹拌した。その後、H
に対してスズ換算で150ppmのスズ触媒(ビス(2
−エチルへキシル)スズ)を添加してホモジナイザーで
充分に攪拌して溶液とした。そして、炉にて溶液を15
0℃24時間加熱処理を行い、徐冷して室温に戻した。
これにスチレンモノマーを加えて、よく混合し、さらに
AIBNを加え70℃12時間加熱して薄膜を得た。こ
れを60%発煙硫酸に24時間浸漬してフェニル基のス
ルホン化を行った後に、純水、エタノールで順に洗浄・
乾燥して試験例2の試験試料である薄膜を得た。この薄
膜は側鎖にジメチルシロキサン構造を有する。
Test Example 2 Vinyl tetramethyldisiloxane and a 30% solution of triphenylsilanol-methylene chloride were mixed at a stoichiometric ratio H: OH = 1: 1 at room temperature under a nitrogen atmosphere and thoroughly mixed. It was stirred. Then H
On the other hand, 150 ppm of tin catalyst (bis (2
-Ethylhexyl) tin) was added, and the mixture was thoroughly stirred with a homogenizer to give a solution. Then, in a furnace,
The mixture was heat-treated at 0 ° C. for 24 hours, gradually cooled and returned to room temperature.
A styrene monomer was added to this and mixed well, AIBN was further added, and the mixture was heated at 70 ° C. for 12 hours to obtain a thin film. This was immersed in 60% fuming sulfuric acid for 24 hours to sulfonate the phenyl group, and then washed with pure water and ethanol in that order.
A thin film as a test sample of Test Example 2 was obtained by drying. This thin film has a dimethylsiloxane structure in the side chain.

【0024】(試験例3)室温、窒素雰囲気下にて、ポ
リHメチルシロキサン(分子量2000)と、末端ビニ
ルポリジメチルシロキサン(分子量2000)とを化学
量論比にてH:ビニル=100:1で混合し、充分に攪
拌した。その後、ビニル基に対して白金換算100pp
mの白金錯体(白金−シクロビニルメチルシロキサン錯
体)を添加して、ホモジナイザーで充分に攪拌して溶液
とした。そして、炉にて溶液を150℃24時間加熱処
理を行い、徐冷して室温に戻した。さらに、窒素雰囲気
下でスルホン化トリフェニルビニルシラン−メチレンク
ロライド30%溶液を加えた(化学量論比H:ビニル=
1:1.5)。充分に撹拌した後に、白金錯体(白金−
シクロビニルメチルシロキサン錯体)をHに対して10
0ppm添加した。これをPTFE製の平板上にキャス
ティングして製膜した後に、炉にて150℃24時間加
熱処理を行い試験例3の試験試料である薄膜を得た。こ
の薄膜は主鎖にジメチルシロキサン構造を有する。
(Test Example 3) At room temperature under a nitrogen atmosphere, poly H-methyl siloxane (molecular weight 2000) and terminal vinyl polydimethyl siloxane (molecular weight 2000) in stoichiometric ratio H: vinyl = 100: 1. And mixed well. After that, 100pp in terms of platinum for vinyl groups
m platinum complex (platinum-cyclovinylmethylsiloxane complex) was added, and the mixture was thoroughly stirred with a homogenizer to give a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature. Further, a 30% solution of sulfonated triphenylvinylsilane-methylene chloride was added under a nitrogen atmosphere (stoichiometric ratio H: vinyl =
1: 1.5). After sufficiently stirring, the platinum complex (platinum-
Cyclovinylmethylsiloxane complex) for H to 10
0 ppm was added. This was cast on a PTFE flat plate to form a film, and then heat-treated in a furnace at 150 ° C. for 24 hours to obtain a thin film as a test sample of Test Example 3. This thin film has a dimethylsiloxane structure in the main chain.

【0025】(試験例4)室温、窒素雰囲気下にて、ジ
アリルジフェニルシラン、ビニルトリフェニルシラン、
スチレンをメチレンクロライドを溶媒としてモル比4:
5:1で混合した。これに重合開始剤としてAIBNを
0.02モル添加し、70℃で12時間加熱して薄膜を
得た。これを60%発煙硫酸に24時間浸漬し、フェニ
ル基のスルホン化を行い、純水、エタノールで順に洗浄
・乾燥して試験例4の試験試料である薄膜を得た。この
薄膜は主鎖、側鎖共にジメチルシロキサン構造を有さな
い。
(Test Example 4) At room temperature under a nitrogen atmosphere, diallyldiphenylsilane, vinyltriphenylsilane,
The molar ratio of styrene to methylene chloride is 4:
Mixed 5: 1. AIBN as a polymerization initiator was added in an amount of 0.02 mol and heated at 70 ° C. for 12 hours to obtain a thin film. This was immersed in 60% fuming sulfuric acid for 24 hours to sulfonate the phenyl group, and then washed and dried with pure water and ethanol in that order to obtain a thin film as a test sample of Test Example 4. This thin film has neither a main chain nor a side chain having a dimethylsiloxane structure.

【0026】(試験例5)市販のプロトン伝導材料製薄
膜(ナフィオン)を試験例5の試験試料とした (試験例6)室温、窒素雰囲気下にて、ポリHメチルシ
ロキサン(分子量2000)と、末端ビニルポリジメチ
ルシロキサン(分子量2000)とを化学量論比にて
H:ビニル=100:1で混合し、充分に攪拌した。そ
の後、ビニル基に対して白金換算100ppmの白金錯
体(白金−シクロビニルメチルシロキサン錯体)を添加
して、ホモジナイザーで充分に攪拌して溶液とした。そ
して、炉にて溶液を150℃24時間加熱処理を行い、
徐冷して室温に戻した。次に調製した溶液に室温、窒素
雰囲気下でスルホン化トリフェニルビニルシラン−メチ
レンクロライド30%溶液を加えた(混合比はH:ビニ
ル=1:1.5)。充分に撹拌した後に、Hに対して白
金換算100ppmの白金錯体(白金−シクロビニルメ
チルシロキサン錯体)を添加して、ホモジナイザーで充
分に攪拌して溶液とした。これを膜状にキャストして、
炉にて150℃2時間加熱乾燥処理を行い、薄膜を得
た。
(Test Example 5) A commercially available thin film made of a proton conductive material (Nafion) was used as a test sample of Test Example 5 (Test Example 6) at room temperature and under a nitrogen atmosphere, and poly (H-methylsiloxane) (molecular weight 2000) was added. Vinyl-terminated polydimethylsiloxane (molecular weight 2000) was mixed at a stoichiometric ratio of H: vinyl = 100: 1 and stirred sufficiently. Then, a platinum complex (platinum-cyclovinylmethylsiloxane complex) of 100 ppm in terms of platinum was added to the vinyl group, and the mixture was sufficiently stirred with a homogenizer to obtain a solution. Then, the solution is heated in a furnace at 150 ° C. for 24 hours,
It was gradually cooled to room temperature. Next, a 30% sulfonated triphenylvinylsilane-methylene chloride solution was added to the prepared solution at room temperature under a nitrogen atmosphere (mixing ratio H: vinyl = 1: 1.5). After sufficiently stirring, 100 ppm of platinum-based platinum complex (platinum-cyclovinylmethylsiloxane complex) was added to H and sufficiently stirred with a homogenizer to prepare a solution. Cast this into a film,
A thin film was obtained by heating and drying at 150 ° C. for 2 hours in a furnace.

【0027】(試験例7) 1.室温、窒素雰囲気下にて、ポリHメチルシロキサン
(分子量2000)と、末端ビニルポリジメチルシロキ
サン(分子量2000)とを化学量論比にてH:ビニル
=100:1で混合し、充分に攪拌した。その後、ビニ
ル基に対して白金換算100ppmの白金錯体(白金−
シクロビニルメチルシロキサン錯体)を添加して、ホモ
ジナイザーで充分に攪拌して溶液とした。そして、炉に
て溶液を150℃24時間加熱処理を行い、徐冷して室
温に戻した。
(Test Example 7) 1. At room temperature under a nitrogen atmosphere, poly-H-methyl siloxane (molecular weight 2000) and terminal vinyl polydimethyl siloxane (molecular weight 2000) were mixed at a stoichiometric ratio of H: vinyl = 100: 1 and stirred sufficiently. . Then, a platinum complex of 100 ppm in terms of platinum based on the vinyl group (platinum-
Cyclovinylmethylsiloxane complex) was added, and the mixture was thoroughly stirred with a homogenizer to give a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature.

【0028】2.次に、室温、窒素雰囲気下でビニルジ
メチルシランとスルホン化トリフェニルシラノール−メ
チレンクロライド30%溶液とを化学量論比H:OH=
1:1で混合し充分に撹拌した後に、Hに対してスズ換
算で150ppmのスズ触媒(ビス(2−エチルへキシ
ル)スズ)を添加しホモジナイザーで充分に撹拌して溶
液とした。その後、炉にて溶液を150℃24時間加熱
処理を行い、徐冷して室温に戻した。
2. Next, at room temperature under a nitrogen atmosphere, vinyl dimethyl silane and a sulfonated triphenylsilanol-methylene chloride 30% solution were added to a stoichiometric ratio H: OH =.
After mixing 1: 1 and sufficiently stirring, 150 ppm of tin catalyst (bis (2-ethylhexyl) tin) in terms of tin with respect to H was added and sufficiently stirred with a homogenizer to obtain a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature.

【0029】3.1.で調製した溶液のH量と2.で調
製した溶液のビニル基との化学量論比がH:ビニル=
1:1.5となるように混合し、ビニル基に対して白金
換算100ppmの白金錯体(白金−シクロビニルメチ
ルシロキサン錯体)を添加して、ホモジナイザーで充分
に攪拌して溶液とした。これを膜状にキャストして、炉
にて150℃2時間加熱乾燥処理を行い、薄膜を得た。
なお、試験例1〜7における説明中で「ppm」とある
のは、対応するH又はビニル基のモル数に対する添加す
る化合物中の白金又はスズのモル数の大きさをあらわ
す。
3.1. H amount of the solution prepared in 2. The stoichiometric ratio with the vinyl group of the solution prepared in H: vinyl =
The mixture was mixed at a ratio of 1: 1.5, 100 ppm of platinum-based platinum complex (platinum-cyclovinylmethylsiloxane complex) was added to the vinyl group, and the mixture was sufficiently stirred with a homogenizer to obtain a solution. This was cast into a film, and heat-dried at 150 ° C. for 2 hours in a furnace to obtain a thin film.
In the description of Test Examples 1 to 7, “ppm” represents the number of moles of platinum or tin in the compound to be added with respect to the number of moles of the corresponding H or vinyl group.

【0030】(試験) (プロトン伝導性の測定)各試験試料1〜5について、
それぞれプロトン伝導度を測定した。プロトン伝導度の
測定は雰囲気温度を80℃とし、相対湿度を30%、6
0%、90%の3条件に変動して交流インピーダンス法
にて測定を行った。各試験試料はそれぞれの雰囲気下で
2時間保持して薄膜の含水量を平衡状態とした後にプロ
トン伝導性を測定した。
(Test) (Measurement of Proton Conductivity) For each test sample 1 to 5,
The proton conductivity of each was measured. The proton conductivity was measured at an ambient temperature of 80 ° C. and a relative humidity of 30%, 6
The measurement was carried out by the AC impedance method while changing to three conditions of 0% and 90%. Each test sample was kept in each atmosphere for 2 hours to equilibrate the water content of the thin film, and then the proton conductivity was measured.

【0031】(酸素透過係数の測定)各試験試料1〜5
について、酸素透過係数を測定した。各試験試料の薄膜
を隔壁とした2つの領域をもつ試験装置を用意した。2
つの領域はそれぞれガスの流入路と流出路とをもつ。2
つの領域の一方の流入路からArガスを500mL/分
で流通させ、他方の領域の流入路から空気を500mL
/分で流通させた。Arガスを流した側の領域について
ガスの成分分析をガスクロマトグラフで行い、空気中の
各成分が薄膜を透過する量を評価した。
(Measurement of Oxygen Permeability Coefficient) Test Samples 1 to 5
The oxygen permeability coefficient was measured. A test apparatus having two regions with the thin film of each test sample as a partition was prepared. Two
Each of the two regions has a gas inflow path and a gas outflow path. Two
Ar gas is circulated at a flow rate of 500 mL / min from one of the inflow passages in one of the two regions, and 500 mL of air is in the inflow passage of the other region
It was circulated at the rate of / minute. A gas component analysis was performed on a region on the side where Ar gas was flown by a gas chromatograph to evaluate the amount of each component in the air passing through the thin film.

【0032】供給する空気には断続的に水蒸気を全体量
に対して30%添加した。水蒸気の添加、非添加により
薄膜をウェット状態及びドライ状態の間で変化させた。
そして、ウェット状態及び乾燥状態の間で、酸素等が各
試験試料の薄膜を透過する量の変化を測定した。測定し
た酸素透過性の結果から各試験試料の薄膜の酸素透過係
数を算出した。
30% of the total amount of water vapor was intermittently added to the supplied air. The thin film was changed between a wet state and a dry state by adding or not adding water vapor.
Then, a change in the amount of oxygen or the like permeating the thin film of each test sample was measured between the wet state and the dry state. The oxygen permeability coefficient of the thin film of each test sample was calculated from the measured oxygen permeability results.

【0033】(結果)各試験例の試験試料のプロトン伝
導性を表1に、酸素透過係数を表2にそれぞれ示す。
(Results) The proton conductivity of the test sample of each test example is shown in Table 1, and the oxygen permeability coefficient thereof is shown in Table 2.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】表1から明らかなように、試験例1〜4の
試験試料は代表的な従来のプロトン伝導材料である試験
例5のナフィオンと遜色のないプロトン伝導性を示して
いる。
As is clear from Table 1, the test samples of Test Examples 1 to 4 show proton conductivity comparable to that of Nafion of Test Example 5 which is a typical conventional proton conductive material.

【0037】表2から明らかなように、側鎖にジメチル
シロキサン構造を導入した試験例1及び2の試験試料は
ウェット状態においては勿論のこと、ドライ状態におい
ても試験例5のナフィオンよりも1桁以上高い酸素透過
係数を示した。また、主鎖のみにジメチルシロキサン構
造を導入した試験例3の試験試料は試験例5のナフィオ
ンよりは劣るもののジメチルシロキサン構造を導入して
いない試験例4の試験試料よりも高い酸素透過係数を示
しており、ジメチルシロキサン構造の導入による酸素透
過係数の向上効果を裏付ける結果となった。
As is clear from Table 2, the test samples of Test Examples 1 and 2 in which the dimethylsiloxane structure was introduced into the side chain were one digit more than Nafion of Test Example 5 not only in the wet state but also in the dry state. The high oxygen permeability coefficient was shown above. Further, the test sample of Test Example 3 in which the dimethylsiloxane structure was introduced only into the main chain showed a higher oxygen permeability coefficient than the test sample of Test Example 4 in which the dimethylsiloxane structure was not introduced, though inferior to Nafion of Test Example 5. Therefore, the result confirms the effect of improving the oxygen permeability coefficient by introducing the dimethylsiloxane structure.

【0038】また、試験例1及び5について、酸素透過
係数測定の実測値を図1(試験例1)及び2(試験例
5)に示す。試験例5のナフィオン薄膜は水蒸気の添加
時においては或る程度の酸素透過性を示すが、水蒸気の
供給を中断すると酸素の透過性がほぼなくなった。それ
に対して、本発明のプロトン伝導材料である試験例1の
薄膜は水蒸気の供給を行った方が水蒸気を供給しないよ
りも高い酸素透過性を示すものの、水蒸気の供給を中断
しても有る程度の酸素透過性が認められ加湿による酸素
透過性の変動が少ないことが明らかとなった。したがっ
て、本プロトン伝導材料を燃料電池の電極触媒層に用い
ることで、低加湿状態から触媒層に充分なプロトンの供
給を行うことができるという効果が発揮される。
Further, the actual measurement values of the oxygen permeation coefficient of Test Examples 1 and 5 are shown in FIGS. 1 (Test Example 1) and 2 (Test Example 5). The Nafion thin film of Test Example 5 showed a certain degree of oxygen permeability when water vapor was added, but when the supply of water vapor was stopped, the oxygen permeability almost disappeared. On the other hand, the thin film of Test Example 1, which is the proton conductive material of the present invention, exhibits higher oxygen permeability when water vapor is supplied than when water vapor is not supplied, but to some extent even when water vapor supply is interrupted. Oxygen permeability was observed, and it was revealed that there was little change in oxygen permeability due to humidification. Therefore, by using the present proton conductive material in the electrode catalyst layer of a fuel cell, it is possible to sufficiently supply protons to the catalyst layer from a low humidification state.

【0039】(側鎖のジメチルシロキサン構造のシロキ
サン単位の数とEW値との関係について)試験例1、6
及び7について、EW値を測定した。試験例1、6及び
7の試験試料は下式に示す構造において、それぞれm=
0(試験例6)、m=1(試験例7)及びm=2(試験
例1)である。
(Relationship Between Number of Siloxane Units of Side Chain Dimethylsiloxane Structure and EW Value) Test Examples 1 and 6
EW values were measured for Sample Nos. 7 and 7. The test samples of Test Examples 1, 6 and 7 have m =
0 (Test Example 6), m = 1 (Test Example 7) and m = 2 (Test Example 1).

【0040】[0040]

【化5】 [Chemical 5]

【0041】なお、式中“*”で表されるのは延長され
た主鎖が結合されることを示す。
The symbol "*" in the formula indicates that the extended main chain is bound.

【0042】EW値の測定は塩化ナトリウム滴定法にて
行った。具体的には塩化ナトリウムを加え、発生した塩
酸の量からpH値を測定し、活性なスルホン酸基を定量
するものである。(*−SO3H+NaCl→*−SO3
Na+HCl)その結果、EW値は、m=0の試験試料
(試験例6)では850、m=1の試験試料(試験例
7)では800、m=2の試験試料(試験例1)では6
20と側鎖の長さが短いほど高い値を示し、プロトン伝
導性に関与するスルホン酸基の量が相対的に多いことが
明らかとなった。詳細は示さないが、mの値が大きくな
るにつれて、酸素透過係数の測定値が大きくなることが
明らかとなった。
The EW value was measured by the sodium chloride titration method. Specifically, sodium chloride is added, the pH value is measured from the amount of hydrochloric acid generated, and the active sulfonic acid group is quantified. (* -SO 3 H + NaCl → * -SO 3
As a result, the EW value was 850 for the test sample of m = 0 (Test Example 6), 800 for the test sample of m = 1 (Test Example 7), and 6 for the test sample of m = 2 (Test Example 1).
20 and the shorter the length of the side chain, the higher the value, and it was revealed that the amount of the sulfonic acid group involved in the proton conductivity was relatively large. Although details are not shown, it became clear that the measured value of the oxygen permeability coefficient increases as the value of m increases.

【0043】[0043]

【発明の効果】本発明のプロトン伝導材料は、分子構造
中にジメチルシロキサン構造を有することで、高いプロ
トン伝導性を保ちながら、高い酸素透過係数を発揮でき
る。したがって、燃料電池の電極触媒層等のように、高
い酸素透過係数が要求される用途に好適に適用できる。
EFFECTS OF THE INVENTION The proton conducting material of the present invention has a dimethylsiloxane structure in its molecular structure, so that it can exhibit a high oxygen permeability coefficient while maintaining high proton conductivity. Therefore, it can be suitably applied to applications where a high oxygen permeability coefficient is required, such as an electrode catalyst layer of a fuel cell.

【0044】本発明のプロトン伝導材料の酸素透過性は
含水率が低くても発揮できる。したがって、本発明のプ
ロトン伝導材料を燃料電池に適用したときに含水率を制
御する必要がなくなるので、含水率を制御するための装
置を簡略化できコストの低下が達成できる。
The oxygen permeability of the proton conductive material of the present invention can be exhibited even if the water content is low. Therefore, when the proton conductive material of the present invention is applied to a fuel cell, it is not necessary to control the water content, so that the device for controlling the water content can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例において酸素透過性を測定した試験例1
の実測値を示したグラフである。
FIG. 1 is a test example 1 in which oxygen permeability is measured in Examples.
It is a graph showing the measured value of.

【図2】実施例において酸素透過性を測定した試験例5
の実測値を示したグラフである。
FIG. 2 is a test example 5 in which oxygen permeability is measured in Examples.
It is a graph showing the measured value of.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 Fターム(参考) 4J035 BA02 CA02U CA022 CA14U CA142 CA25M CA26M CA26N CA261 FB01 HA01 HB05 LA05 LB20 4J100 AB02Q AP16P BA56H BA56P BA56Q BA80P CA04 CA31 DA56 HA61 HB52 5G301 CA30 CD01 5H026 AA06 CX05 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/10 H01M 8/10 F term (reference) 4J035 BA02 CA02U CA022 CA14U CA142 CA25M CA26M CA26N CA261 FB01 HA01 HB05 LA05 LB20 4J100 AB02Q AP16P BA56H BA56P BA56Q BA80P CA04 CA31 DA56 HA61 HB52 5G301 CA30 CD01 5H026 AA06 CX05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 主鎖と、該主鎖にグラフト化された側鎖
とをもつ化学構造を有する高分子材料からなり、 該主鎖及び該側鎖の少なくとも一方は、 一般式(1)で表される部分構造と、強酸性官能基とを
有することを特徴とするプロトン伝導材料。 【化1】 (式(1)中、n>0且つR1及びR2はそれぞれ独立
して炭素数1〜4のアルキル基である。)
1. A polymer material having a chemical structure having a main chain and a side chain grafted to the main chain, wherein at least one of the main chain and the side chain is represented by the general formula (1): A proton conducting material having a partial structure represented and a strongly acidic functional group. [Chemical 1] (In the formula (1), n> 0 and R1 and R2 are each independently an alkyl group having 1 to 4 carbon atoms.)
【請求項2】 前記側鎖の末端部のうちの少なくとも一
部が一般式(2)で表される構造をもつ請求項1に記載
のプロトン伝導材料。 【化2】 (式(2)中、m≧0且つR3及びR4はそれぞれ独立
して炭素数1〜4のアルキル基である。)
2. The proton conducting material according to claim 1, wherein at least a part of the end portion of the side chain has a structure represented by the general formula (2). [Chemical 2] (In the formula (2), m ≧ 0 and R3 and R4 are each independently an alkyl group having 1 to 4 carbon atoms.)
【請求項3】 前記アルキル基はメチル基である請求項
1又は2に記載のプロトン伝導材料。
3. The proton conductive material according to claim 1, wherein the alkyl group is a methyl group.
【請求項4】 前記高分子材料は線状高分子からなる請
求項1〜3のいずれかに記載のプロトン伝導材料。
4. The proton conductive material according to claim 1, wherein the polymer material is a linear polymer.
JP2002143106A 2002-05-17 2002-05-17 Proton conducting material Expired - Fee Related JP4099699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143106A JP4099699B2 (en) 2002-05-17 2002-05-17 Proton conducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143106A JP4099699B2 (en) 2002-05-17 2002-05-17 Proton conducting material

Publications (2)

Publication Number Publication Date
JP2003335818A true JP2003335818A (en) 2003-11-28
JP4099699B2 JP4099699B2 (en) 2008-06-11

Family

ID=29703210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143106A Expired - Fee Related JP4099699B2 (en) 2002-05-17 2002-05-17 Proton conducting material

Country Status (1)

Country Link
JP (1) JP4099699B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331645A (en) * 2002-05-17 2003-11-21 Toyota Motor Corp Proton-conductive material
JP2005190813A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Electrolyte material for fuel cell electrode
JP2005314531A (en) * 2004-04-28 2005-11-10 Sony Corp Hybrid silica polymer, method for producing the same and proton-conductive material
JP2007224299A (en) * 2006-02-21 2007-09-06 Samsung Sdi Co Ltd Polysiloxane compound, its preparation process, polymer electrolyte membrane, membrane electrode assembly and fuel cell
JP2007305315A (en) * 2006-05-08 2007-11-22 Fujitsu Ltd Catalyst electrode, membrane electrode assembly, and solid polymer electrolyte fuel cell

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920325A (en) * 1982-07-13 1984-02-02 デグツサ・アクチエンゲゼルシヤフト Sulfonate group-containing organopolysiloxane, manufacture and cation exchanger therefrom
JPS62235330A (en) * 1986-04-03 1987-10-15 Nippon Telegr & Teleph Corp <Ntt> Polysiloxane compound
JPS63136409A (en) * 1986-11-27 1988-06-08 日立マクセル株式会社 Lithium ion conducting polymer electrolyte
JPS63243088A (en) * 1987-03-14 1988-10-07 ダウ・コーニング・リミテッド Manufacture of sulfonated organosilicone compound
JPH02132124A (en) * 1988-07-04 1990-05-21 Mitsui Petrochem Ind Ltd Fluorine-containing sulfonated polyphenylsiloxane, its use, production and usage thereof
JPH02215836A (en) * 1989-02-17 1990-08-28 Fuji Photo Film Co Ltd Polyelectrolyte
JPH0625420A (en) * 1992-05-15 1994-02-01 Tonen Chem Corp Sulfonated silicone
JPH0625369A (en) * 1992-05-15 1994-02-01 Nippon Paint Co Ltd Aqueous silicone-modified resin
JPH11502543A (en) * 1995-01-13 1999-03-02 エスアールアイ インターナショナル Single ion conductive solid polymer electrolyte
JPH11209472A (en) * 1998-01-22 1999-08-03 Mitsui Chem Inc Preparation of sulfonic group-containing organic macromolecular siloxane
JP2001011219A (en) * 1999-06-28 2001-01-16 Toyota Central Res & Dev Lab Inc Polyelectrolyte composite film
JP2002097272A (en) * 2000-09-22 2002-04-02 Tsutomu Minami Polysiloxane, method of producing the same and proton- carrying material
JP2002184427A (en) * 2000-12-12 2002-06-28 Japan Science & Technology Corp Proton conductive substance
JP2002298913A (en) * 2001-03-29 2002-10-11 Fuji Photo Film Co Ltd Polysiloxane salt, electrolyte composition, electrochemical battery, nonaqueous secondary battery and photoelectrochemical battery
JP2003137527A (en) * 2001-10-26 2003-05-14 Tsutomu Minami Phosphosilicate gel, proton conductive material and its production method
JP2003331644A (en) * 2002-05-09 2003-11-21 Sekisui Chem Co Ltd Proton-conductive membrane, its manufacturing method and fuel cell using same
JP2003331645A (en) * 2002-05-17 2003-11-21 Toyota Motor Corp Proton-conductive material

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920325A (en) * 1982-07-13 1984-02-02 デグツサ・アクチエンゲゼルシヤフト Sulfonate group-containing organopolysiloxane, manufacture and cation exchanger therefrom
JPS62235330A (en) * 1986-04-03 1987-10-15 Nippon Telegr & Teleph Corp <Ntt> Polysiloxane compound
JPS63136409A (en) * 1986-11-27 1988-06-08 日立マクセル株式会社 Lithium ion conducting polymer electrolyte
JPS63243088A (en) * 1987-03-14 1988-10-07 ダウ・コーニング・リミテッド Manufacture of sulfonated organosilicone compound
JPH02132124A (en) * 1988-07-04 1990-05-21 Mitsui Petrochem Ind Ltd Fluorine-containing sulfonated polyphenylsiloxane, its use, production and usage thereof
JPH02215836A (en) * 1989-02-17 1990-08-28 Fuji Photo Film Co Ltd Polyelectrolyte
JPH0625420A (en) * 1992-05-15 1994-02-01 Tonen Chem Corp Sulfonated silicone
JPH0625369A (en) * 1992-05-15 1994-02-01 Nippon Paint Co Ltd Aqueous silicone-modified resin
JPH11502543A (en) * 1995-01-13 1999-03-02 エスアールアイ インターナショナル Single ion conductive solid polymer electrolyte
JPH11209472A (en) * 1998-01-22 1999-08-03 Mitsui Chem Inc Preparation of sulfonic group-containing organic macromolecular siloxane
JP2001011219A (en) * 1999-06-28 2001-01-16 Toyota Central Res & Dev Lab Inc Polyelectrolyte composite film
JP2002097272A (en) * 2000-09-22 2002-04-02 Tsutomu Minami Polysiloxane, method of producing the same and proton- carrying material
JP2002184427A (en) * 2000-12-12 2002-06-28 Japan Science & Technology Corp Proton conductive substance
JP2002298913A (en) * 2001-03-29 2002-10-11 Fuji Photo Film Co Ltd Polysiloxane salt, electrolyte composition, electrochemical battery, nonaqueous secondary battery and photoelectrochemical battery
JP2003137527A (en) * 2001-10-26 2003-05-14 Tsutomu Minami Phosphosilicate gel, proton conductive material and its production method
JP2003331644A (en) * 2002-05-09 2003-11-21 Sekisui Chem Co Ltd Proton-conductive membrane, its manufacturing method and fuel cell using same
JP2003331645A (en) * 2002-05-17 2003-11-21 Toyota Motor Corp Proton-conductive material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331645A (en) * 2002-05-17 2003-11-21 Toyota Motor Corp Proton-conductive material
JP2005190813A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Electrolyte material for fuel cell electrode
JP2005314531A (en) * 2004-04-28 2005-11-10 Sony Corp Hybrid silica polymer, method for producing the same and proton-conductive material
JP2007224299A (en) * 2006-02-21 2007-09-06 Samsung Sdi Co Ltd Polysiloxane compound, its preparation process, polymer electrolyte membrane, membrane electrode assembly and fuel cell
US7833665B2 (en) 2006-02-21 2010-11-16 Samsung Sdi Co., Ltd. Polysiloxane compound containing sulfonic acid groups, method of preparing the same and fuel cell including the same
JP2007305315A (en) * 2006-05-08 2007-11-22 Fujitsu Ltd Catalyst electrode, membrane electrode assembly, and solid polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP4099699B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP3729735B2 (en) Production method of ion exchange membrane
JP5107511B2 (en) Solid-state proton conduction system derived from inorganic-organic hybrid composite multicomponent materials
Yang et al. Strengthening phosphoric acid doped polybenzimidazole membranes with siloxane networks for using as high temperature proton exchange membranes
JP4990624B2 (en) Hybrid inorganic-organic polymer electrolyte membrane (PEM) based on alkyloxysilane grafted thermoplastic polymer
JP5475941B2 (en) Hybrid inorganic organic proton electrolyte membrane (PEM) grafted with phosphonic acid
ES2672982T3 (en) Composite material for fuel cell membrane based on organomodified inorganic particles and method of preparation thereof
CN1748265B (en) Proton conducting membrane, method for producing the same and fuel cell using the same
KR101073261B1 (en) Hydrophilic adjuvant
CN101113207B (en) Preparation method of sol-gel ultraviolet/heat cross-linking of hybridized anion exchange membrane
CN105742677B (en) Nafion/ phosphorylation graphene oxide hybridized film and preparation and application
Khabibullin et al. The effect of sulfonic acid group content in pore-filled silica colloidal membranes on their proton conductivity and direct methanol fuel cell performance
JP4582740B2 (en) Proton conductive material
JP2006147165A (en) Solid polymer electrolyte membrane, its manufacturing method, and fuel cell using it
JP2003335818A (en) Proton conductive material
CN101622745B (en) Proton conductive film, membrane-electrode assembly, and solid polymer electrolyte fuel cell
JP3922162B2 (en) Proton conducting material
JP2003331645A (en) Proton-conductive material
Zhang et al. In situ implantation of PolyPOSS blocks in Nafion® matrix to promote its performance in direct methanol fuel cell
WO2012046889A1 (en) Complex electrolyte membrane for a fuel cell, method for manufacturing same, and fuel cell including same
JP5480578B2 (en) Proton conductive material, proton conductive electrolyte membrane, proton conductive electrolyte membrane with proton conductive electrolyte layer, membrane-electrode assembly, and polymer electrolyte fuel cell
Di Noto et al. Two new siloxanic proton-conducting membranes: part I. synthesis and structural characterization
JP2010195987A (en) Silane-treated electrolyte membrane and method for producing the same
Chen et al. A flexible phosphosilicate-based intermediate temperature composite electrolyte membrane with proton conductivity at temperatures of up to 250° C
JP4407106B2 (en) Ion-conducting membrane by organic-inorganic hybrid
Uma et al. High proton conductivity of poly (methyl methacrylate)-based hybrid membrane for PEMFCs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees