JP2003329082A - Seismic damping mechanism - Google Patents

Seismic damping mechanism

Info

Publication number
JP2003329082A
JP2003329082A JP2002134802A JP2002134802A JP2003329082A JP 2003329082 A JP2003329082 A JP 2003329082A JP 2002134802 A JP2002134802 A JP 2002134802A JP 2002134802 A JP2002134802 A JP 2002134802A JP 2003329082 A JP2003329082 A JP 2003329082A
Authority
JP
Japan
Prior art keywords
damper
seismic
vibration control
control mechanism
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002134802A
Other languages
Japanese (ja)
Other versions
JP3811854B2 (en
Inventor
Kenji Yoshitake
謙二 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2002134802A priority Critical patent/JP3811854B2/en
Publication of JP2003329082A publication Critical patent/JP2003329082A/en
Application granted granted Critical
Publication of JP3811854B2 publication Critical patent/JP3811854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic damping mechanism which improves the energy absorbing efficiency of a seismic damper by positively forming a plastic hinge by partially changing materials at a portion of a supporting pier to which the seismic damper is fixed. <P>SOLUTION: The seismic damping mechanism 1 has a seismic damper 30 fixed to the supporting pier 2 of a structure, which seismic damper has viscoelastic body layers sandwiched between a plurality of alternately arranged steel strips or rectangular steel strips. The steel strips are projected from the viscoelastic body layers in the longitudinal direction. In the seismic damping mechanism 1, a portion between a capital 4 and a pedestal portion 5 of the supporting pier 2 is composed of steel having a very low yield point. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は制震機構に関し、特
に構造物の支持脚部の材質を部分的に変えることによっ
て地震や風による振動を少なくする制震機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration control mechanism, and more particularly to a vibration control mechanism which reduces vibrations due to an earthquake or wind by partially changing the material of the supporting legs of a structure.

【0002】[0002]

【従来の技術】近年、地震や風に対する構造物の応答を
低減することを目的として、構造物に種々のタイプのダ
ンパー(エネルギー吸収機構)を付加する制震工法が採
用されつつあり、その中でも粘弾性系の制震ダンパー
は、アクリル系ゴム、ゴムアスファルト系ゴム及び高減
衰ゴムを粘弾性材料として用いられ、粘弾性体の剪断変
形に対する粘性抵抗力を利用することで、小変形時から
エネルギー吸収による付加減衰効果を発揮することで知
られている。しかるに、粘弾性系の制震ダンパーは構造
物の曲げ変形に対しては制震効果が発揮されにくいとい
う問題点が提起されている。
2. Description of the Related Art In recent years, seismic control methods for adding various types of dampers (energy absorbing mechanisms) to structures have been adopted for the purpose of reducing the response of structures to earthquakes and winds. A viscoelastic damping damper uses acrylic rubber, rubber asphalt rubber, and high damping rubber as viscoelastic materials.By utilizing the viscous resistance of the viscoelastic body against shear deformation, energy can be saved even when small deformation occurs. It is known to exert an additional damping effect by absorption. However, the problem that the viscoelastic damping damper is difficult to exert the damping effect against the bending deformation of the structure has been raised.

【0003】即ち、外部構造物に粘弾性系の制震ダンパ
ーを適用する例として、図7(a)の鉄道高架構造物2
0が知られているが、本例では、粘弾性系の制震ダンパ
ーの特性を生かすためにその柱脚21にブレース22と
結合されたダンパー23を適用していることから、柱脚
の開口部を塞ぐことになって高架下の空間を有効に利用
できないと共に、これらのダンパー23は、柱脚の曲げ
変形に対して制震効果を発揮できないことから、鉄道高
架構造物の柱脚に所定の強度を備えさせる地中梁24を
設置する必要があり、工期の長期化と建設コストの高騰
を余儀なくさせていた。
That is, as an example of applying a viscoelastic damping damper to an external structure, a railway elevated structure 2 shown in FIG.
Although 0 is known, in this example, since the damper 23 connected to the brace 22 is applied to the column base 21 in order to make the best use of the characteristics of the viscoelastic damping damper, the opening of the column base is applied. Since the space under the viaduct cannot be effectively used due to blocking the portion, and since these dampers 23 cannot exert the vibration control effect against the bending deformation of the column base, they can be used for the column base of the railway elevated structure. Therefore, it is necessary to install the underground beam 24 having the above strength, which inevitably prolongs the construction period and raises the construction cost.

【0004】又、上記の問題点を解決することで、構造
物の層間の開口部分を塞がずに空間の有効利用が図ると
共に構造物の曲げ変形に対しても制震効果を発揮できる
制震機構が提案されている。
Further, by solving the above problems, the space can be effectively utilized without blocking the openings between the layers of the structure, and the damping effect can be exerted against the bending deformation of the structure. A seismic mechanism has been proposed.

【0005】図7(b)に示す鉄道高架構造物の例で
は、制震ダンパー30を、並列に向かい合う複数枚の細
長状鋼板31と矩形状鋼板32とを交互に交差する状態
に重層配置し、粘弾性体33の層を細長状鋼板と矩形状
鋼板との重層部分に挟み込んで構成しながら、細長状鋼
板に粘弾性体33の層から突出させる長い先端部34を
形成しており、この先端部34を構造物の支持脚部35
に沿わせて柱頭36に結合させると共に、矩形状鋼板3
2を柱頭36から柱長の1/3〜1/2に相当する範囲
の柱脚部37に結合させることで、鉄道高架構造物の支
持脚部35に制震ダンパー30を設置している。
In the example of the elevated railway structure shown in FIG. 7 (b), the damping dampers 30 are arranged in multiple layers such that a plurality of elongated steel plates 31 and rectangular steel plates 32 that face each other are alternately crossed. While the layer of the viscoelastic body 33 is sandwiched between the laminated portions of the elongated steel plate and the rectangular steel sheet, the elongated steel plate is formed with the long tip portion 34 protruding from the layer of the viscoelastic body 33. The tip 34 is used as a support leg 35 for the structure.
The rectangular steel plate 3
The seismic damper 30 is installed on the supporting leg portion 35 of the elevated railway structure by connecting 2 to the column base portion 37 in a range corresponding to 1/3 to 1/2 of the column length from the stake 36.

【0006】これによって、制震ダンパー30が装備さ
れた柱脚部37は、図8に示すように地震等の揺れによ
って柱の中間部分での曲げ変形が小さく納まっているの
に比較して、柱頭に近い部分における曲率はかなり大き
くなることから、各鋼板間に挟まれている粘弾性体33
の層には充分な剪断変形が生じることになり、その剪断
変形に対する粘性抵抗力によってエネルギーを吸収して
目標の付加減衰効果を発揮させて、図9に示すように付
加減衰効果を発揮させながら変形することになる。
As a result, the column base 37 equipped with the vibration damping damper 30 has a small bending deformation in the middle portion of the column due to shaking such as an earthquake as shown in FIG. Since the curvature in the portion close to the stigma becomes considerably large, the viscoelastic body 33 sandwiched between the steel plates is
In this layer, sufficient shear deformation occurs, and the viscous resistance to the shear deformation absorbs energy to exert the target additional damping effect, while exerting the additional damping effect as shown in FIG. It will be transformed.

【0007】即ち、図9に示す曲線38は、地中梁があ
って制震ダンパーを設けていない従来の構造物における
解析結果であり、曲線39は、地中梁が無くて制震ダン
パーを設けていない構造物における解析結果であるが、
曲線40は、地中梁が無くて制震ダンパー30を設けた
場合の構造物における解析結果であって、上記2例と比
較して極めて有効な付加減衰効果が発揮されることを明
示している。
That is, a curve 38 shown in FIG. 9 is an analysis result of a conventional structure having an underground beam and no damping damper, and a curve 39 shows a damping damper without the underground beam. Analysis results for structures not provided,
The curve 40 is the analysis result of the structure in the case where the seismic damper 30 is provided without the underground beam, and clearly shows that the extremely effective additional damping effect is exhibited as compared with the above two examples. There is.

【0008】以上の構成によって、本例では従来型のダ
ンパーのように開口部を塞ぐこともないことから、高架
下の空間を自由かつ有効に利用することで軌道の重層化
も可能になると共に、高架構造物の地中梁を無くするこ
とも可能になって、既設の地上軌道に対する高架工事も
各段に容易にして工期短縮と建設コストの削減も向上さ
せている。
With the above construction, in this example, unlike the conventional damper, the opening is not closed. Therefore, by freely and effectively utilizing the space under the viaduct, it is possible to form a multi-layered track. It is also possible to eliminate the underground beams of the elevated structure, making it possible to easily perform the elevated work for the existing ground track at each stage, thus shortening the construction period and reducing the construction cost.

【0009】しかしながら、本例は、支持脚部の柱頭3
6と柱頭36から柱長の1/3〜1/2に相当する範囲
の柱脚部37に制震ダンパー30を結合させていること
から、細長状鋼板が短くなるために曲げ曲率を小さく制
限される場合も出現することになって、制震効果面で付
加する減衰効果が場合によっては不足するという状態も
発生しており、より確実で効率的な免震機構の提案が嘱
望されていた。
However, in this example, the stigma 3 of the supporting leg portion is used.
Since the vibration damper 30 is connected to the column base 37 in the range corresponding to 1/3 to 1/2 of the column length from 6 and the stigma 36, the bending curvature is limited to be small because the elongated steel plate becomes short. In some cases, the damping effect added in terms of the damping effect will be insufficient in some cases, and there was a desire for a more reliable and efficient seismic isolation mechanism. .

【0010】[0010]

【発明が解決しようとする課題】本発明は、以上の状況
に鑑みて提案するものであり、制震ダンパーが固定され
る支持脚部の部位における材質を部分的に変えて塑性ヒ
ンジを積極的に形成することで、制震ダンパーのエネル
ギー吸収効率を向上させる制震機構を提供している。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above situation, and the plastic hinge is positively changed by partially changing the material of the supporting leg portion to which the vibration damping damper is fixed. By providing a vibration control mechanism, the vibration control mechanism improves the energy absorption efficiency of the vibration control damper.

【0011】[0011]

【課題を解決するための手段】本発明による制震機構
は、基本的に、交互に配置させた複数の細長状鋼板と細
長状鋼板もしくは矩形状鋼板との間に粘弾性体の層を挟
み込み、該細長状鋼板を粘弾性体の層から長さ方向に突
出させて成る制震ダンパーが構造物の支持脚部に固定さ
れて成る制震機構において、制震ダンパーが固定される
支持脚部の部位を極低降伏点鋼で構成しており、具体的
に、支持脚部の部位を制震ダンパーが固定される柱頭と
柱脚部との間にしたり、制震ダンパーが固定される構造
物の上層横梁と柱脚部との間や制震ダンパーを固定する
構造物の上層に増設された横梁と柱脚部との間にするこ
とを特徴にしている。
A vibration control mechanism according to the present invention basically comprises a layer of viscoelastic material sandwiched between a plurality of elongated steel plates and elongated steel plates or rectangular steel plates which are alternately arranged. In a vibration control mechanism in which a vibration damper formed by projecting the elongated steel plate in a length direction from a layer of a viscoelastic body is fixed to a support leg of a structure, a support leg to which the vibration damper is fixed Is made of ultra-low yield point steel. Specifically, the structure of the support leg is located between the stigma and the column base where the damping damper is fixed, or the damping damper is fixed. It is characterized in that it is between the upper beam of the object and the column base, and between the horizontal beam and the column base added to the upper layer of the structure that fixes the damping damper.

【0012】これによって、本発明による制震機構は、
制震ダンパーが固定される支持脚部の部位に塑性ヒンジ
を形成することになるので、制震ダンパーのエネルギー
吸収効率を向上させている。
Accordingly, the vibration control mechanism according to the present invention is
Since the plastic hinge is formed in the part of the supporting leg where the vibration damper is fixed, the energy absorption efficiency of the vibration damper is improved.

【0013】[0013]

【発明の実施の形態】本発明による制震機構は、基本的
に、交互に配置させた複数の細長状鋼板と細長状鋼板も
しくは矩形状鋼板との間に粘弾性体の層を挟み込み、該
細長状鋼板を粘弾性体の層から長さ方向に突出させて成
る制震ダンパーが構造物の支持脚部に固定されて成る制
震機構において、制震ダンパーが固定される支持脚部の
部位を極低降伏点鋼で構成して塑性ヒンジを形成してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The vibration control mechanism according to the present invention basically comprises a viscoelastic material layer sandwiched between a plurality of elongated elongated steel plates and elongated steel plates or rectangular steel plates, A part of a support leg to which a vibration damper is fixed in a vibration control mechanism in which a vibration damper formed by projecting an elongated steel plate in a length direction from a layer of viscoelastic material is fixed to a support leg of a structure. Is made of extremely low yield point steel to form a plastic hinge.

【0014】以下、図面に基づいて本発明の実施の形態
を詳細に説明するが、理解を容易にするために、従来と
同様の部位については同一の符号で表現している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. For ease of understanding, the same parts as those in the conventional art are represented by the same reference numerals.

【0015】図1は、本発明による制震機構の実施の形
態を示す斜視図である。本実施の形態で示す鉄道高架構
造物の制震機構1は、制震ダンパー30を装備した支持
脚部2によって構成されている。
FIG. 1 is a perspective view showing an embodiment of a vibration control mechanism according to the present invention. The seismic control mechanism 1 for an elevated railway structure shown in the present embodiment is composed of support legs 2 equipped with a seismic control damper 30.

【0016】制震ダンパー30は、従来と同様に並列に
向かい合う複数枚の細長状鋼板31と矩形状鋼板32と
を交互に交差する状態に重層配置し、粘弾性体33の層
を細長状鋼板と矩形状鋼板との重層部分に挟み込んで構
成しながら、細長状鋼板に粘弾性体33の層から突出さ
せる長い先端部34を形成している。
The seismic damper 30 has a plurality of elongated steel plates 31 and rectangular steel plates 32 facing each other arranged in parallel, which are alternately stacked in a multi-layered manner, and the layers of the viscoelastic body 33 are elongated steel plates. A long tip portion 34 is formed on the elongated steel plate so as to project from the layer of the viscoelastic body 33 while being sandwiched between the overlapping portions of the rectangular steel plate and the rectangular steel plate.

【0017】支持脚部2は、下方の柱脚部3をコンクリ
ート充填鋼管(以下、CFT構造と称する)で構成し、
柱頭4から柱長の1/3〜1/2に相当する範囲の柱脚
部5を極低降伏点鋼で構成している。
In the supporting leg portion 2, the lower column base portion 3 is constituted by a concrete-filled steel pipe (hereinafter referred to as a CFT structure),
The column base portion 5 in a range corresponding to 1/3 to 1/2 of the column length from the stigma 4 is made of ultra-low yield point steel.

【0018】本発明に用いる極低降伏点鋼は、図2に示
す鋼材の応力−歪み関係のように、普通鋼であるSM4
90やSS400に比較して、降伏点が1/4〜1/3
と低い性状を示すと同時に、20%程度の大きな伸び性
能を有しており、早期の降伏と高い靭性を発揮してい
る。
The ultra-low yield point steel used in the present invention is SM4 which is ordinary steel as shown in the stress-strain relationship of steel materials shown in FIG.
Yield point is 1/4 to 1/3 compared to 90 or SS400
While exhibiting low properties, it has a large elongation performance of about 20% and exhibits early yielding and high toughness.

【0019】従って、上記制震ダンパー30が、その先
端部34を柱頭4に結合させると共に、構造物の支持脚
部2に沿わせながら柱頭4から柱長の1/3〜1/2に
相当する範囲の柱脚部5に矩形状鋼板32を結合させる
ことで、支持脚部2に付設されていることから、制震ダ
ンパー30が付設されている支持脚部2の柱脚部5に
は、極低降伏点鋼による塑性ヒンジが積極的に形成され
ることになる。
Therefore, the vibration damping damper 30 has its tip end portion 34 connected to the stigma 4, and is along the supporting leg 2 of the structure, and corresponds to 1/3 to 1/2 of the stake length. By connecting the rectangular steel plate 32 to the column base portion 5 in the range to be attached, since it is attached to the support leg portion 2, the column leg portion 5 of the support leg portion 2 to which the vibration damping damper 30 is attached Therefore, a plastic hinge made of extremely low yield point steel is positively formed.

【0020】これによって、鉄道高架構造物が地震等の
揺れによって変形する場合には、図3に示すように柱の
中間部分での曲げ変形が小さく納まっているのに比較し
て、柱頭に近い部分では塑性ヒンジの作用によって柱脚
部5の曲げ曲率を大幅に増大させていることになって、
細長状鋼板31と矩形状鋼板32との間に挟まれている
粘弾性体33の層には、充分な剪断変形を生じさせてお
り、これによって、図4に示す解析結果の如く、地中梁
があって制震ダンパーを設けていない従来構造物の曲線
6、地中梁が無くて制震ダンパー30を設けた場合の構
造物における曲線7に対して、曲線8は、地中梁が無く
て制震ダンパー30を設けると共に塑性ヒンジを設けた
構造物における解析結果であって、上記2例と比較して
極めて有効な付加減衰効果が発揮されることを明示して
いる。
As a result, when the elevated railway structure is deformed due to shaking such as an earthquake, the bending deformation in the middle portion of the column is small as shown in FIG. At the part, the bending curvature of the column base 5 is greatly increased by the action of the plastic hinge,
The layer of the viscoelastic body 33 sandwiched between the elongated steel plate 31 and the rectangular steel plate 32 is subjected to sufficient shear deformation, which results in the underground analysis as shown in the analysis result of FIG. In contrast to the curve 6 of a conventional structure having a beam and no seismic damper, and the curve 7 of a structure having no seismic damper 30 without an underground girder, curve 8 is It is an analysis result of a structure in which the seismic damper 30 is provided and the plastic hinge is provided, and it is clearly shown that an extremely effective additional damping effect is exhibited as compared with the above two examples.

【0021】図5に示す実施の形態は、制震ダンパーの
機能を有効に発揮させるための例であり、鋼板の曲げ変
形を抑えながら細長状鋼板と矩形状鋼板との相対移動を
できるだけ大きくして粘弾性体に伝達することによっ
て、その剪断変形に対する粘性抵抗力によるエネルギー
吸収を大にしている。
The embodiment shown in FIG. 5 is an example for effectively exhibiting the function of the seismic damper, and the relative movement between the elongated steel plate and the rectangular steel plate is made as large as possible while suppressing the bending deformation of the steel plate. Energy is absorbed by the viscous resistance to the shear deformation by transmitting the energy to the viscoelastic body.

【0022】図5(a)に示す実施の形態は、制震ダン
パーを鉄道高架構造物の上層横梁と柱の柱脚部との間
に、火打ち形式に配備する例である。
The embodiment shown in FIG. 5 (a) is an example in which a seismic control damper is arranged in a fired manner between the upper cross beam of a railway elevated structure and the column base of a column.

【0023】本実施の形態では、制震ダンパー30の細
長状鋼板群31を火打ち形式に適合できるように加工し
ており、これによって、粘弾性体の層から突出した細長
状鋼板31の先端部を鉄道高架構造物の上層横梁9に固
定している。
In the present embodiment, the elongated steel plate group 31 of the vibration damping damper 30 is processed so that it can be adapted to the fire striking type, whereby the tip end portion of the elongated steel plate 31 protruding from the viscoelastic body layer is processed. Is fixed to the upper cross beam 9 of the elevated railway structure.

【0024】一方、支持脚部2は柱頭4から柱長の1/
3〜1/2に相当する範囲の柱脚部5に極低降伏点鋼に
よる塑性ヒンジを設けており、制震ダンパー30を構成
している矩形状鋼板群32を上下と外側の外周部におい
て、支持脚部2の柱頭から柱長の1/3〜1/2に相当
する範囲の柱脚部5に結合しているので、制震ダンパー
30の固定点が図1で説明した上記実施の形態の場合よ
りも長くなっている。
On the other hand, the supporting leg portion 2 has a length from the stigma 4 to 1 / th of the column length.
A plastic hinge made of extremely low yield point steel is provided in the column base portion 5 in a range corresponding to 3 to 1/2, and the rectangular steel plate group 32 constituting the vibration damping damper 30 is provided at the upper and lower and outer peripheral portions. Since the pedestal of the support leg 2 is connected to the column base 5 in a range corresponding to 1/3 to 1/2 of the column length, the fixing point of the vibration damping damper 30 is the same as that of the above-described embodiment described in FIG. It is longer than the form.

【0025】以上の構成によって、本実施の形態に地震
等の横揺れが加えられた場合には、細長状鋼板31と矩
形状鋼板32との相対移動が、上記実施の形態の例より
も大きくなることから、細長状鋼板の先端部に曲げ変形
も発生しないことと相俟って、粘弾性体に形成される剪
断変形も拡大されることになり、この剪断変形による粘
性抵抗力によってエネルギーの吸収を増長して制震効果
を向上させている。
With the above configuration, when a rolling motion such as an earthquake is applied to this embodiment, the relative movement between the elongated steel plate 31 and the rectangular steel plate 32 is larger than that in the above-mentioned embodiment. Therefore, in combination with the fact that no bending deformation occurs at the tip of the elongated steel sheet, the shear deformation formed in the viscoelastic body is also expanded, and the viscous resistance force due to this shear deformation causes energy The absorption is increased and the damping effect is improved.

【0026】図5(b)に示す他の実施の形態は、制震
ダンパーを鉄道高架構造物の上層に増設された横梁と柱
の柱脚部との間に、火打ち形式に配備する例である。
Another embodiment shown in FIG. 5 (b) is an example in which a seismic control damper is arranged between the horizontal beam and the column base of the column, which are added to the upper layer of the elevated railway structure, in a fired form. is there.

【0027】本実施の形態も、図5(a)の例と同様に
制震ダンパー30の細長状鋼板31を火打ち形式に適合
できるように加工して制震ダンパー30を構成している
が、粘弾性体の層から突出させた細長状鋼板31の各先
端部を高架構造物の上層両側に増設された横梁10、1
0に固定している点が同例と異なっている。
In this embodiment as well, as in the example of FIG. 5 (a), the vibration damping damper 30 is constructed by processing the elongated steel plate 31 of the vibration damping damper 30 so that it can be adapted to the fire striking type. Horizontal beams 10, 1 each having an end portion of an elongated steel plate 31 protruding from a layer of viscoelastic body added on both sides of the upper layer of an elevated structure
It is different from the example in that it is fixed at 0.

【0028】そして、支持脚部2は柱頭4から柱長の1
/3〜1/2に相当する範囲の柱脚部5に極低降伏点鋼
による塑性ヒンジを設けており、制震ダンパー30の矩
形状鋼板31は、支持脚部2の柱頭から柱長の1/3〜
1/2に相当する範囲の柱脚部5に上下と内側の外周部
において結合されており、制震ダンパー30の固定点
は、図1で説明した上記実施の形態の場合よりも長くな
っている。
The supporting leg portion 2 has a length of 1 from the stigma 4
A plastic hinge made of extremely low yield point steel is provided in the column base portion 5 in a range corresponding to / 3 to 1/2, and the rectangular steel plate 31 of the vibration damping damper 30 extends from the column head of the support leg portion 2 to the column length. 1/3 ~
The upper and lower and inner peripheral portions are connected to the column base portion 5 in a range corresponding to ½, and the fixing point of the vibration damping damper 30 is longer than in the case of the above-described embodiment described in FIG. There is.

【0029】従って、本実施の形態においても地震等の
横揺れが加えられた場合には、細長状鋼板31と矩形状
鋼板群32との相対移動が大きくなることから、図5
(a)の例と同様に拡大される剪断変形による粘性抵抗
力によって、エネルギーの吸収を増長することによって
制震効果を向上させている。
Therefore, also in the present embodiment, when rolling such as an earthquake is applied, the relative movement between the elongated steel plate 31 and the rectangular steel plate group 32 becomes large, and therefore, as shown in FIG.
As in the case of (a), the viscous resistance due to the expanded shear deformation increases the absorption of energy, thereby improving the damping effect.

【0030】又、図6に示す他の実施の形態では、鉄道
高架構造物の支持脚部2に制震ダンパー11を設置して
おり、高架構造物の制震に有効に機能することを可能に
している。
Further, in another embodiment shown in FIG. 6, a damping damper 11 is installed on the supporting leg portion 2 of the elevated railway structure so that it can effectively function for damping the elevated structure. I have to.

【0031】本実施の形態における支持脚部2は、下方
の柱脚部3と柱頭4とをCFT構造で構成し、柱脚部3
と柱頭4との間を構成している柱脚部5を極低降伏点鋼
で構成して塑性ヒンジを設けると共に、制震ダンパー1
1は、全体的に細長状であって、支持脚部2に沿わせて
上下の細長状鋼板を支持脚部2に対して放射状に配置す
る状態に設置されている。
In the support leg portion 2 in this embodiment, the lower column base portion 3 and the stigma 4 are formed in a CFT structure, and the column base portion 3 is formed.
The column base 5 which is formed between the column and the stilt 4 is made of ultra-low yield point steel to provide a plastic hinge, and the vibration damper 1
1 is an elongated shape as a whole, and is installed in a state in which upper and lower elongated steel plates are radially arranged with respect to the support leg 2 along the support leg 2.

【0032】制震ダンパー11は、向かい合う3枚の細
長状鋼板12、13、14の間にそれぞれ粘弾性体1
5、16の層を挟み込んでおり、真中の鋼板13が一方
に突出するとともに、両側の鋼板12、14が他方に突
出している。真中に配置される鋼板13の突出部分の先
端部は、柱頭36に取付け具17を介して固定され、両
側の鋼板12、14の突出部分の先端部は柱脚部18に
取付け具17を介して固定されている。
The seismic damper 11 has a viscoelastic body 1 between three elongated steel plates 12, 13 and 14 facing each other.
The layers 5 and 16 are sandwiched, and the steel plate 13 in the middle projects to one side, and the steel plates 12 and 14 on both sides project to the other. The tip of the projecting portion of the steel plate 13 arranged in the middle is fixed to the stigma 36 via the fixture 17, and the tips of the projecting portions of the steel plates 12 and 14 on both sides are attached to the column base 18 via the fixture 17. It is fixed.

【0033】そして、鋼板の間に挟み込む粘弾性体は、
上記実施の形態と同様にアクリル系ゴム、ゴムアスファ
ルト系ゴム、高減衰ゴム等の公知の粘弾性材料を薄板状
にしたものが用いられ、接着剤により鋼板の間に挟持さ
れている。
The viscoelastic body sandwiched between the steel plates is
Similar to the above-described embodiment, a thin plate of a known viscoelastic material such as acrylic rubber, rubber asphalt rubber, and high damping rubber is used, and is sandwiched between steel plates by an adhesive.

【0034】従って、制震ダンパー11は、構造物の支
持脚部2に沿わせるように配置されているので、支持脚
部2が地震等によって変形すると、鋼板間に挟まれた粘
弾性体に剪断変形が生じ、その剪断変形に対する粘性抵
抗力によってエネルギーが吸収されて付加減衰効果が発
揮される。
Therefore, since the seismic damper 11 is arranged along the supporting leg 2 of the structure, when the supporting leg 2 is deformed due to an earthquake or the like, it becomes a viscoelastic body sandwiched between the steel plates. Shear deformation occurs, and the viscous resistance force against the shear deformation absorbs energy to exert an additional damping effect.

【0035】以上の実施の形態で詳細に説明したよう
に、本発明による制震機構は、柱を有する構造物であれ
ば、土木構造物、建築構造物を含めどのような構造物に
も適用することができるものであり、従来型のダンパー
のように開口部を塞ぐことがないので、高架下の空間を
有効に利用することができると共に、高架構造物の地中
梁を無くすることが可能になり、工期短縮と建設コスト
の削減を向上できる。
[0035] As described in detail in the above embodiment, vibration control mechanism according to the present invention, as long as the structure having a pillar, civil engineering structures, to any structure, including the building structure applied Since it does not close the opening unlike the conventional damper, it is possible to effectively use the space under the elevated structure and eliminate the underground beam of the elevated structure. As a result, it is possible to shorten the construction period and reduce the construction cost.

【0036】以上、本発明を実施の形態に基づいて詳細
に説明してきたが、本発明による制震機構は、上記実施
の形態に何ら限定されるものでなく、その適用範囲や適
用形態は自由であり、本発明の趣旨を逸脱しない範囲に
おいて種々の変更が可能であることは当然のことであ
る。
The present invention has been described in detail above based on the embodiments. However, the vibration control mechanism according to the present invention is not limited to the above-mentioned embodiments, and its application range and application form are free. Of course, various modifications can be made without departing from the spirit of the present invention.

【0037】[0037]

【発明の効果】本発明による制震機構は、交互に配置さ
せた複数の細長状鋼板と細長状鋼板もしくは矩形状鋼板
との間に粘弾性体の層を挟み込み、該細長状鋼板を粘弾
性体の層から長さ方向に突出させて成る制震ダンパーが
構造物の支持脚部に固定されて成る制震機構において、
制震ダンパーが固定される支持脚部の部位を極低降伏点
鋼で構成し、支持脚部の部位を制震ダンパーが固定され
る柱頭と柱脚部との間にしたり、制震ダンパーが固定さ
れる構造物の上層横梁と柱脚部との間や制震ダンパーを
固定する構造物の上層に増設された横梁と柱脚部との間
にすることを特徴にしているので、制震ダンパーが固定
される支持脚部の部位に塑性ヒンジを形成することで、
制震ダンパーのエネルギー吸収効率を向上させる効果を
発揮している。
According to the vibration control mechanism of the present invention, a layer of viscoelastic material is sandwiched between a plurality of elongated steel plates and elongated steel plates or rectangular steel plates that are alternately arranged, and the elongated steel plates are viscoelastic. In a vibration control mechanism in which a vibration control damper formed by projecting in the length direction from a body layer is fixed to a support leg of a structure,
The part of the support leg to which the vibration control damper is fixed is made of ultra-low yield point steel, and the part of the support leg is placed between the stigma and the column base where the vibration control damper is fixed, or the vibration control damper is Since it is characterized in that it is between the upper beam and the column base of the structure to be fixed, and between the horizontal beam and the column base added to the upper layer of the structure to which the damping damper is fixed, By forming a plastic hinge at the part of the support leg where the damper is fixed,
It has the effect of improving the energy absorption efficiency of the seismic damper.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による制震機構の実施形態を示す斜視図FIG. 1 is a perspective view showing an embodiment of a vibration control mechanism according to the present invention.

【図2】極低降伏点鋼の応力−歪み関係図[Fig.2] Stress-strain relationship diagram of ultra-low yield point steel

【図3】柱が変形した際の本発明による制震機構の動き
を示す側面図
FIG. 3 is a side view showing the movement of the vibration control mechanism according to the present invention when the pillar is deformed.

【図4】本発明による制震機構の地震応答解析結果図FIG. 4 is a diagram showing the seismic response analysis result of the vibration control mechanism according to the present invention.

【図5】本発明による制震機構を適用する他の実施形態
FIG. 5 is a diagram of another embodiment to which the vibration control mechanism according to the present invention is applied.

【図6】本発明による制震機構に他の制震ダンパーを適
用した実施形態を示す斜視図
FIG. 6 is a perspective view showing an embodiment in which another damping damper is applied to the damping mechanism according to the present invention.

【図7】従来におけるブレース形式制震ダンパーの装備
斜視図
FIG. 7 is a perspective view of equipment of a conventional brace type vibration damper.

【図8】従来の制震機構で柱が変形した際の動きを示す
側面図
FIG. 8 is a side view showing the movement when the column is deformed by the conventional vibration control mechanism.

【図9】従来における制震機構の地震応答解析結果図[Fig. 9] Result diagram of seismic response analysis of conventional seismic control mechanism

【符号の説明】[Explanation of symbols]

1 制震機構、 2 支持脚部、 3 下方の柱脚部、
4 柱頭、5 柱脚部、 6〜8 曲線、 9 上層
横梁、 10 横梁、11 制震ダンパー板、 12〜
14 細長状鋼板、15、16 粘弾性体、 17 取
付け具、 18 柱脚部、20 鉄道高架構造物、 2
1 柱脚、 22 ブレース、23 ダンパー、 24
地中梁、 30 制震ダンパー、31 細長状鋼板、
32 矩形状鋼板、 33 粘弾性体、34 先端
部、 35 支持脚部、 36 柱頭、 37 柱脚
部、38〜40 曲線、
1 vibration control mechanism, 2 support legs, 3 lower column base,
4 pillar heads, 5 pillar legs, 6 to 8 curves, 9 upper cross beams, 10 cross beams, 11 seismic damper plates, 12 to
14 elongated steel plate, 15, 16 viscoelastic body, 17 mounting tool, 18 column base, 20 railway elevated structure, 2
1 column base, 22 brace, 23 damper, 24
Underground beam, 30 damping damper, 31 elongated steel plate,
32 rectangular steel plate, 33 viscoelastic body, 34 tip part, 35 support leg part, 36 stigma, 37 column base part, 38-40 curve,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交互に配置させた複数の細長状鋼板と細
長状鋼板もしくは矩形状鋼板との間に粘弾性体の層を挟
み込み、該細長状鋼板を粘弾性体の層から長さ方向に突
出させて成る制震ダンパーが構造物の支持脚部に固定さ
れて成る制震機構であって、制震ダンパーが固定される
支持脚部の部位を極低降伏点鋼で構成することを特徴と
する制震機構。
1. A layer of a viscoelastic body is sandwiched between a plurality of elongated steel plates and an elongated steel plate or a rectangular steel plate which are alternately arranged, and the elongated steel plates are lengthwise from the layers of the viscoelastic body. A damping mechanism in which a protruding damping damper is fixed to a supporting leg of a structure, and the supporting leg to which the damping damper is fixed is made of ultra-low yield point steel. Vibration control mechanism.
【請求項2】 支持脚部の部位が、制震ダンパーを固定
する柱頭と柱脚部との間であることを特徴とする請求項
1に記載の制震機構。
2. The vibration control mechanism according to claim 1, wherein the portion of the support leg is between the stigma and the pedestal for fixing the vibration control damper.
【請求項3】 支持脚部の部位が、制震ダンパーを固定
する構造物の上層横梁と柱脚部との間であることを特徴
とする請求項1に記載の制震機構。
3. The vibration control mechanism according to claim 1, wherein the portion of the support leg is between the upper beam and the column leg of the structure for fixing the vibration damper.
【請求項4】 支持脚部の部位が、制震ダンパーを固定
する構造物の上層に増設された横梁と柱脚部との間であ
ることを特徴とする請求項1に記載の制震機構。
4. The vibration control mechanism according to claim 1, wherein the support leg portion is located between the horizontal beam and the column base portion which are added to the upper layer of the structure for fixing the vibration control damper. .
JP2002134802A 2002-05-10 2002-05-10 Vibration control mechanism Expired - Fee Related JP3811854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134802A JP3811854B2 (en) 2002-05-10 2002-05-10 Vibration control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134802A JP3811854B2 (en) 2002-05-10 2002-05-10 Vibration control mechanism

Publications (2)

Publication Number Publication Date
JP2003329082A true JP2003329082A (en) 2003-11-19
JP3811854B2 JP3811854B2 (en) 2006-08-23

Family

ID=29697301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134802A Expired - Fee Related JP3811854B2 (en) 2002-05-10 2002-05-10 Vibration control mechanism

Country Status (1)

Country Link
JP (1) JP3811854B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1942191A1 (en) 2004-02-20 2008-07-09 Tokyo Metropolitan Organization for Medical Research Nucleic acid construct containing full-length genome of human hepatitis C virus, recombinant full-length virus genome-replicating cells having the nucleic acid construct transferred thereinto and method of producing hepatitis C virus particle
CN110886197A (en) * 2019-12-24 2020-03-17 深圳市市政设计研究院有限公司 Expansion joint-free bridge and construction method
CN114703727A (en) * 2022-03-15 2022-07-05 聊城市交通发展有限公司 Road and bridge transition section construction device and construction method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1942191A1 (en) 2004-02-20 2008-07-09 Tokyo Metropolitan Organization for Medical Research Nucleic acid construct containing full-length genome of human hepatitis C virus, recombinant full-length virus genome-replicating cells having the nucleic acid construct transferred thereinto and method of producing hepatitis C virus particle
CN110886197A (en) * 2019-12-24 2020-03-17 深圳市市政设计研究院有限公司 Expansion joint-free bridge and construction method
CN114703727A (en) * 2022-03-15 2022-07-05 聊城市交通发展有限公司 Road and bridge transition section construction device and construction method thereof
CN114703727B (en) * 2022-03-15 2024-01-30 聊城市交通发展有限公司 Road bridge transition section construction device and construction method thereof

Also Published As

Publication number Publication date
JP3811854B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US8516753B2 (en) Fork configuration dampers and method of using same
JP2004019361A (en) Brace damper
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
JP2008088641A (en) Reinforcing member of building or structure
JP5176855B2 (en) Folded panel structure and building structure
KR20130075452A (en) Steel damper using cantilever behavior
JP2005207111A (en) Seismic response controlled bridge pier
JP3664611B2 (en) Seismic structure of wooden buildings
JP2015078498A (en) Bridge vibration control structure
JP2001323964A (en) Vibration control damper and vibration control bridge
JP2003049557A (en) Vibration control device for building
JP4771136B2 (en) Anti-seismic brace
JP2003329082A (en) Seismic damping mechanism
JP2007255128A (en) Wall face structure of building and earthquake control panel used in wall face structure
JP3205311U (en) Damping structure and damping panel
JP2010018951A (en) Vibration control stud concurrently using viscoelastic damper and buckling restraining brace
JP2007016918A (en) Impact absorbing plate
JP2008144362A (en) Vibration control structure and vibration control method for building
JP2008075314A (en) Aseismic control structure of connected buildings
JP2017160652A (en) Buckling restraint type damper for bridge
JP3209800U (en) Damping structure and damping panel
JPH10280727A (en) Damping frame by composite type damper and damping method
JP3209800U7 (en)
JP4956340B2 (en) Building or building reinforcement
JP4066019B2 (en) Seismic viaduct

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees