JP2003328039A - Continuous annealing process for steel plate - Google Patents

Continuous annealing process for steel plate

Info

Publication number
JP2003328039A
JP2003328039A JP2002133631A JP2002133631A JP2003328039A JP 2003328039 A JP2003328039 A JP 2003328039A JP 2002133631 A JP2002133631 A JP 2002133631A JP 2002133631 A JP2002133631 A JP 2002133631A JP 2003328039 A JP2003328039 A JP 2003328039A
Authority
JP
Japan
Prior art keywords
furnace
continuous annealing
temperature
steel sheet
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002133631A
Other languages
Japanese (ja)
Inventor
Masahiro Yui
正弘 油井
Fusahiro Sekimoto
総裕 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002133631A priority Critical patent/JP2003328039A/en
Publication of JP2003328039A publication Critical patent/JP2003328039A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for continuous annealing of steel plates which can minimize yield reduction accompanying a shift from an upstream material into a downstream material requiring a different annealing condition. <P>SOLUTION: Induction heating units 6 and 7 are established at an inlet, or the like, of a gas-heating continuous annealing furnace 5 placed before a plating apparatus 1. When material and thickness of the downstream material differ from those of the upstream material, and when a boundary between them where the condition is changed passes through the furnace, the temperature of the downstream material is rapidly changed to regulate the plate temperature at an outlet without changing a line speed of the steel plate. Due to a poor temperature response of the gas-heating continuous annealing furnace 5, conventional processes resulted in a 'plate temperature deviation' extending over a few hundred m, is reduced to ≤10 m in the present process. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は鋼板の連続焼鈍方法
に関するものであり、更に詳細には先行材から焼鈍条件
の異なる後行材への変更を円滑に行なえるようにした鋼
板の連続焼鈍方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously annealing a steel sheet, and more particularly to a method for continuously annealing a steel sheet which enables smooth change from a preceding material to a following material having different annealing conditions. It is about.

【0002】[0002]

【従来の技術】例えば溶融亜鉛めっきラインにおいて
は、図5に示すようにめっき装置1の前段に無酸化炉2
と還元炉3と冷却炉4とを直列に配置したガス加熱式の
連続焼鈍炉5が配置されている。鋼板は無酸化炉2の内
部で例えば600℃まで加熱されたうえ、還元炉3の内
部で鋼板の種類に応じた温度まで更に加熱され、冷却炉
4を通過する間に500℃前後まで徐冷され、めっき装
置1に送られる。
2. Description of the Related Art For example, in a hot dip galvanizing line, as shown in FIG.
A gas heating type continuous annealing furnace 5 in which a reducing furnace 3 and a cooling furnace 4 are arranged in series is arranged. The steel sheet is heated to, for example, 600 ° C. inside the non-oxidizing furnace 2 and further heated to a temperature according to the type of the steel sheet inside the reducing furnace 3 and gradually cooled to around 500 ° C. while passing through the cooling furnace 4. And sent to the plating apparatus 1.

【0003】無酸化炉2の出口の板温は鋼板の種類に関
係なく一定に管理されているが、図6に示すように還元
炉3出口の板温は、高温サイクル品は800℃、中温サ
イクル品は750℃、低温サイクル品は700℃という
ように鋼板の種類により様々に設定されている。また鋼
板の板厚も様々である。このため先行材と後行材との鋼
種や板厚が異なる場合には、その境界部(条件変更部)
で焼鈍条件を急速に変化させる必要がある。しかしガス
加熱炉は温度変化に対する応答性が悪く、条件変更に迅
速に対応できない。このため、先行材から焼鈍条件の異
なる後行材への切り替えを行なう場合には、条件変更に
伴う欠陥が発生する。
The sheet temperature at the outlet of the non-oxidizing furnace 2 is controlled to be constant regardless of the type of steel sheet, but as shown in FIG. 6, the sheet temperature at the outlet of the reducing furnace 3 is 800 ° C. for medium-temperature cycle products and medium temperature. The cycle product is set to 750 ° C, the low temperature cycle product is set to 700 ° C, and various settings are made according to the type of steel sheet. Further, the thickness of the steel plate also varies. Therefore, when the steel type and plate thickness of the preceding material and the following material are different, the boundary part (condition change part)
Therefore, it is necessary to rapidly change the annealing conditions. However, the gas heating furnace has poor responsiveness to changes in temperature and cannot respond quickly to changes in conditions. For this reason, when switching from the preceding material to the following material with different annealing conditions, a defect occurs due to the condition change.

【0004】例えば図7は、板厚が1.2mmの先行材か
ら板厚が1.6mmの後行材に鋼板の種類が変化するとき
の無酸化炉2の状態を示したグラフである。後行材は先
行材よりも板厚が厚いので、板温を600℃の一定温度
に維持するためにはガス量を増加させねばならず、先行
材の終端部から徐々にガス量を増加させている。しかし
先行材の品質に影響を及ぼすために昇温には限界があ
る。そのため板厚が1.6mmの後行材への条件変更点が
無酸化炉2内を通過する際に、図示のように板温が急激
に低下して管理限界である570℃を下回ってしまう。
For example, FIG. 7 is a graph showing the state of the non-oxidizing furnace 2 when the type of steel sheet changes from a preceding material having a thickness of 1.2 mm to a trailing material having a thickness of 1.6 mm. Since the trailing material is thicker than the preceding material, the amount of gas must be increased in order to maintain the plate temperature at a constant temperature of 600 ° C, and the amount of gas is gradually increased from the end of the preceding material. ing. However, there is a limit to the temperature rise because it affects the quality of the preceding material. Therefore, when the condition change point for the trailing material with a plate thickness of 1.6 mm passes through the non-oxidizing furnace 2, the plate temperature sharply drops as shown in the figure and falls below the control limit of 570 ° C. .

【0005】そこで図7に示すようにラインスピードを
落とすとともにガス量を増加させることにより、板温を
上昇させて管理限界内に戻しているが、それまでに後行
材の頭の部分でかなりの長さにわたり「板温外れ」とな
る。また図8は板厚が1.2mmで設定温度の低い先行材
から、板厚が1.6mmで設定温度の高い後行材に鋼板の
種類が変化するときの還元炉3の状態を示したグラフで
ある。ここでも同様に、ラインスピードを落としている
にもかかわらず、後行材の頭の部分を急速に昇温させる
ことができず、かなりの長さにわたり「板温外れ」とな
る。
Therefore, as shown in FIG. 7, the line speed is reduced and the gas amount is increased to raise the plate temperature to return it to the control limit, but by that time, the head portion of the trailing material has been considerably damaged. It is "out of plate temperature" over the length of. FIG. 8 shows the state of the reduction furnace 3 when the type of the steel sheet changes from a preceding material having a plate thickness of 1.2 mm and a low set temperature to a trailing material having a plate thickness of 1.6 mm and a high set temperature. It is a graph. In this case as well, even though the line speed is reduced, the head portion of the trailing material cannot be rapidly heated, resulting in "plate temperature deviation" over a considerable length.

【0006】例えばラインスピードを100m/分とし
た場合、図7の無酸化炉2の「板温外れ」は150mに
達し、図8の還元炉3の「板温外れ」は300mに達す
る。無酸化炉2の板温が低温側に外れるとカーボン残り
による不めっきを招き、高温側に外れるとめっきの密着
性の低下を招く。また還元炉3の板温が低温側に外れる
と未結晶による材質不良を招き、高温側に外れると粗大
粒による材質不良を招く。これらにより直接的な歩留ま
りの低下を生ずる。また、ラインスピードを落とすこと
によって後工程のめっき装置1などにも悪影響が生じ、
外観不良等の欠陥発生を招く。これらを総合すると、先
行材から焼鈍条件の異なる後行材への変更に伴う歩留ま
りの低下は大きい。
For example, when the line speed is 100 m / min, the "plate temperature deviation" of the non-oxidizing furnace 2 of FIG. 7 reaches 150 m, and the "plate temperature deviation" of the reduction furnace 3 of FIG. 8 reaches 300 m. When the plate temperature of the non-oxidizing furnace 2 deviates to the low temperature side, non-plating due to carbon residue is caused, and when it deviates to the high temperature side, the adhesion of the plating deteriorates. Further, if the plate temperature of the reduction furnace 3 deviates to the low temperature side, material defects due to uncrystallized will occur, and if it deviates to the high temperature side, material defects due to coarse grains will occur. These cause a direct decrease in yield. In addition, reducing the line speed also has an adverse effect on the plating apparatus 1 in the subsequent process,
This causes defects such as poor appearance. When all of these are taken together, the yield decreases greatly when changing from the preceding material to the following material with different annealing conditions.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、先行材から焼鈍条件の異なる後行
材への変更に伴う歩留まりの低下を最小限に抑制するこ
とができる鋼板の連続焼鈍方法を提供するためになされ
たものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and can minimize the decrease in yield due to the change from the preceding material to the following material having different annealing conditions. It was made to provide a continuous annealing method for steel sheets.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、ガス加熱式の連続焼鈍炉による
鋼板の連続焼鈍方法において、先行材と後行材との境界
の条件変更部を、ラインスピードを変更させることなく
炉内に通板させるとともに、連続焼鈍炉に設置した誘導
加熱装置により、条件変更部の板温を迅速に変更するこ
とを特徴とするものである。なおガス加熱式の連続焼鈍
炉が、無酸化炉と還元炉と冷却炉とを直列に配置した連
続焼鈍炉であり、無酸化炉の入口と還元炉の入口とにそ
れぞれ設置した誘導加熱装置により、条件変更部の板温
を変更することが好ましい。
DISCLOSURE OF THE INVENTION The present invention, which has been made to solve the above problems, is to change the condition of the boundary between the preceding material and the following material in the continuous annealing method for the steel sheet by the gas heating type continuous annealing furnace. The parts are passed through the furnace without changing the line speed, and the plate temperature of the condition changing part is rapidly changed by the induction heating device installed in the continuous annealing furnace. Note that the gas heating type continuous annealing furnace is a continuous annealing furnace in which a non-oxidizing furnace, a reducing furnace, and a cooling furnace are arranged in series, and the induction heating device is installed at the inlet of the non-oxidizing furnace and the inlet of the reducing furnace, respectively. It is preferable to change the plate temperature of the condition changing unit.

【0009】本発明によれば、応答性に優れた誘導加熱
装置をガス加熱式の連続焼鈍炉の入口等に設置し、後行
材の板温を変更しておくことによって、先行材と後行材
との境界の条件変更部が炉内を通過することに伴う板温
変動を最小限に抑制し、「板温外れ」を大幅に短縮でき
る。またラインスピードを一定とするため、前後の工程
に悪影響を及ぼすことがない。
According to the present invention, an induction heating device having excellent responsiveness is installed at the entrance of a gas-heating type continuous annealing furnace, and the plate temperature of the following material is changed, whereby The plate temperature fluctuation caused by the condition changing part at the boundary with the row material passing through the furnace can be minimized, and the "plate temperature deviation" can be greatly shortened. Further, since the line speed is constant, there is no adverse effect on the front and rear processes.

【0010】[0010]

【発明の実施の形態】以下に本発明の好ましい実施形態
を示す。図1において、1は溶融亜鉛めっきを行うめっ
き装置であり、その前段に無酸化炉2と還元炉3と冷却
炉4とを直列に配置したガス加熱式の連続焼鈍炉5が配
置されていることは従来と同様である。しかし本発明で
は従来とは異なり、連続焼鈍炉5に誘導加熱装置6、7
が設置されている。この実施形態では、誘導加熱装置6
は無酸化炉2の入口に設置されており、誘導加熱装置7
は還元炉3の入口に設置されている。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention are shown below. In FIG. 1, reference numeral 1 is a plating apparatus for hot dip galvanizing, and a gas heating type continuous annealing furnace 5 in which a non-oxidizing furnace 2, a reducing furnace 3 and a cooling furnace 4 are arranged in series is arranged in the preceding stage. This is the same as the conventional one. However, in the present invention, unlike the prior art, the continuous annealing furnace 5 is provided with the induction heating devices 6 and 7.
Is installed. In this embodiment, the induction heating device 6
Is installed at the entrance of the non-oxidizing furnace 2, and the induction heating device 7
Is installed at the inlet of the reduction furnace 3.

【0011】誘導加熱装置6,7は電磁誘導により鋼板
を直接加熱することができるものであり、ガス加熱とは
異なり電力調整によって鋼板の加熱温度を迅速に変化さ
せることができる特性を持っている。この特性を利用し
て、本発明では以下に述べるように、先行材と後行材と
の境界の条件変更部が炉内を通過することに伴う板温変
動を、ラインスピードを一定に保ったままで最小限に抑
制する。
The induction heating devices 6 and 7 are capable of directly heating the steel sheet by electromagnetic induction, and have a characteristic that, unlike gas heating, the heating temperature of the steel sheet can be rapidly changed by adjusting the electric power. . By utilizing this characteristic, in the present invention, as described below, the plate temperature fluctuation caused by the condition changing part at the boundary between the preceding material and the following material passing through the furnace is kept constant at the line speed. To a minimum.

【0012】前記したと同様に板厚が1.2mmの先行材
から板厚が1.6mmの後行材に鋼板の種類が変化する場
合を例として説明する。図2は無酸化炉2を通過する際
の鋼板温度の変化を示すグラフであり、先行材は無酸化
炉2の出口で板温管理範囲内にまで加熱されているが、
板厚が厚い後行材は熱容量が大きいために、そのままで
は板温管理下限以下にまで温度ドロップしてしまう。そ
のドロップ幅は例えば60℃である。
Similar to the above, the case where the type of the steel plate changes from the preceding material having a plate thickness of 1.2 mm to the following material having a plate thickness of 1.6 mm will be described as an example. FIG. 2 is a graph showing a change in the steel plate temperature when passing through the non-oxidizing furnace 2. The preceding material is heated to the plate temperature control range at the outlet of the non-oxidizing furnace 2,
Since the succeeding material with a large plate thickness has a large heat capacity, the temperature will drop below the plate temperature control lower limit as it is. The drop width is, for example, 60 ° C.

【0013】そこで本発明では、無酸化炉2の入口に設
置されている誘導加熱装置6を後行材に切り替わった瞬
間から作動させ、無酸化炉2の入口における後行材を加
熱して昇温させる。これにより後行材は図2に示すよう
に加熱されて行き、無酸化炉2の出口温度が板温管理範
囲内に入るようになる。なお入口温度により昇温勾配は
変化するので、無酸化炉2の入口における誘導加熱装置
6による昇温幅は、例えば100℃程度となる。
Therefore, in the present invention, the induction heating device 6 installed at the inlet of the non-oxidizing furnace 2 is activated from the moment when the material is switched to the trailing material, and the trailing material at the inlet of the non-oxidizing furnace 2 is heated to rise. Let it warm. As a result, the following material is heated as shown in FIG. 2, and the outlet temperature of the non-oxidizing furnace 2 comes to fall within the plate temperature control range. Since the temperature rise gradient changes depending on the inlet temperature, the temperature rise range by the induction heating device 6 at the inlet of the non-oxidizing furnace 2 is, for example, about 100 ° C.

【0014】このようにして、無酸化炉2の入口に設置
されている誘導加熱装置6を用いて、板厚が1.2mmの
先行材から板厚が1.6mmの後行材に鋼板の種類が変化
した場合にも、ラインスピードを一定に保ったままで無
酸化炉2の出口温度を一定に保つことができる。同様
に、還元炉3の入口に設置された誘導加熱装置7を用い
て、還元炉3の出口温度を後行材に適した温度に調整す
ることができる。さらに、上記とは逆に先行材よりも後
行材の板厚が薄い場合にも、誘導加熱装置6、7を後行
材に切り替わった瞬間から停止させることにより、ライ
ンスピードを一定に保ったままで同様に板温制御を行う
ことができる。
In this way, the induction heating device 6 installed at the inlet of the non-oxidizing furnace 2 is used to change a steel sheet from a preceding material having a thickness of 1.2 mm to a succeeding material having a thickness of 1.6 mm. Even when the type changes, the outlet temperature of the non-oxidizing furnace 2 can be kept constant while the line speed is kept constant. Similarly, the outlet temperature of the reducing furnace 3 can be adjusted to a temperature suitable for the succeeding material by using the induction heating device 7 installed at the inlet of the reducing furnace 3. Further, conversely to the above, even when the trailing material is thinner than the leading material, the line speed is kept constant by stopping the induction heating devices 6 and 7 from the moment of switching to the trailing material. Similarly, the plate temperature control can be performed.

【0015】図3は本発明の効果を示すグラフであり、
図7に示した場合と同様に、板厚が1.2mmの先行材か
ら板厚が1.6mmの後行材に鋼板の種類が変化するとき
の無酸化炉2の状態を示したグラフである。図示のよう
に、条件変更点において誘導加熱装置6を動作させるこ
とにより、ラインスピードを一定に保ったままで板温を
一定に保つことができ、「板温外れ」を防止できる。な
お、後行材に移行した後はガス量を増加させるととも
に、誘導加熱装置6の出力を次第に絞って行けばよい。
FIG. 3 is a graph showing the effect of the present invention.
Similar to the case shown in FIG. 7, a graph showing the state of the non-oxidizing furnace 2 when the type of the steel sheet changes from a preceding material having a thickness of 1.2 mm to a trailing material having a thickness of 1.6 mm. is there. As shown in the figure, by operating the induction heating device 6 at the condition change point, the plate temperature can be kept constant while the line speed is kept constant, and “plate temperature deviation” can be prevented. It should be noted that after the transition to the subsequent material, the gas amount may be increased and the output of the induction heating device 6 may be gradually reduced.

【0016】また図4は図8と同様に、板厚が1.2mm
で設定温度の低い先行材から、板厚が1.6mmで設定温
度の高い後行材に鋼板の種類が変化するときの還元炉3
の状態を示したグラフである。本発明によれば条件変更
点において誘導加熱装置7を動作させることにより、ラ
インスピードを一定に保ったままで板温を急速に後行材
の設定温度まで昇温させることができ、「板温外れ」を
防止できる。
Further, in FIG. 4, the plate thickness is 1.2 mm, as in FIG.
In the reduction furnace 3 when the type of steel plate changes from a preceding material with a low set temperature to a trailing material with a plate thickness of 1.6 mm and a high set temperature.
It is a graph showing the state of. According to the present invention, by operating the induction heating device 7 at the condition change point, the plate temperature can be rapidly raised to the set temperature of the following material while keeping the line speed constant. Can be prevented.

【0017】前記したように、ラインスピードを100
m/分とした場合、従来は無酸化炉2の「板温外れ」は
150mに達し、還元炉3の「板温外れ」は300mに
達していたのであるが、本発明によれば無酸化炉2の
「板温外れ」も還元炉3の「板温外れ」も、10m以下
にまで大幅に短縮することができた。
As described above, the line speed is 100
In the case of m / min, conventionally, the “plate temperature deviation” of the non-oxidizing furnace 2 reached 150 m, and the “plate temperature deviation” of the reducing furnace 3 reached 300 m, but according to the present invention, no oxidation occurs. Both the "plate temperature deviation" of the furnace 2 and the "plate temperature deviation" of the reduction furnace 3 could be significantly shortened to 10 m or less.

【0018】[0018]

【発明の効果】以上に説明したように、本発明の鋼板の
連続焼鈍方法は、応答性に優れた誘導加熱装置をガス加
熱式の連続焼鈍炉の入口等に設置し、条件変更部の通過
と同時に後行材の板温を急速に変更するようにしたもの
である。これによって炉出口における後行材の板温変動
を最小限に抑制し、「板温外れ」を大幅に短縮できる。
また従来のように板温調整のためにラインスピードを変
化させる必要がないため、前後工程に悪影響を及ぼすこ
ともない。この結果、本発明によれば連続焼鈍ラインの
総合的な歩留まりを1.2%程度向上させることが可能
となった。
As described above, according to the continuous annealing method for a steel sheet of the present invention, an induction heating device having excellent responsiveness is installed at the inlet of a gas heating type continuous annealing furnace, and the condition changing portion is passed through. At the same time, the plate temperature of the subsequent material is changed rapidly. As a result, the plate temperature fluctuation of the following material at the furnace outlet can be suppressed to the minimum, and the "plate temperature deviation" can be greatly shortened.
Further, since it is not necessary to change the line speed for adjusting the plate temperature as in the conventional case, it does not adversely affect the front and rear processes. As a result, according to the present invention, it is possible to improve the overall yield of the continuous annealing line by about 1.2%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示す断面図である。FIG. 1 is a cross-sectional view showing an embodiment of the present invention.

【図2】本発明の作用を説明するグラフである。FIG. 2 is a graph illustrating the operation of the present invention.

【図3】鋼板の種類が変化するときの無酸化炉の状態を
示したグラフである。
FIG. 3 is a graph showing the state of the non-oxidizing furnace when the type of steel sheet changes.

【図4】鋼板の種類が変化するときの還元炉の状態を示
したグラフである。
FIG. 4 is a graph showing the state of the reduction furnace when the type of steel sheet changes.

【図5】従来例を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional example.

【図6】鋼板の連続焼鈍の温度変化を説明するグラフで
ある。
FIG. 6 is a graph illustrating a temperature change in continuous annealing of a steel sheet.

【図7】鋼板の種類が変化するときの従来の無酸化炉の
状態を示したグラフである。
FIG. 7 is a graph showing the state of a conventional non-oxidizing furnace when the type of steel sheet changes.

【図8】鋼板の種類が変化するときの従来の還元炉の状
態を示したグラフである。
FIG. 8 is a graph showing the state of a conventional reduction furnace when the type of steel sheet changes.

【符号の説明】[Explanation of symbols]

1 めっき装置 2 無酸化炉 3 還元炉 4 冷却炉 5 ガス加熱式の連続焼鈍炉 6 誘導加熱装置 7 誘導加熱装置 1 Plating equipment 2 non-oxidizing furnace 3 reduction furnace 4 cooling furnace 5 Gas heating type continuous annealing furnace 6 induction heating device 7 Induction heating device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス加熱式の連続焼鈍炉による鋼板の連
続焼鈍方法において、先行材と後行材との境界の条件変
更部を、ラインスピードを変更させることなく炉内に通
板させるとともに、連続焼鈍炉に設置した誘導加熱装置
により、条件変更部の板温を迅速に変更することを特徴
とする鋼板の連続焼鈍方法。
1. A method for continuously annealing a steel sheet in a gas heating type continuous annealing furnace, wherein a condition changing part at a boundary between a preceding material and a following material is passed through the furnace without changing a line speed, A continuous annealing method for a steel sheet, characterized in that an induction heating device installed in a continuous annealing furnace is used to rapidly change the sheet temperature in a condition changing section.
【請求項2】 ガス加熱式の連続焼鈍炉が、無酸化炉と
還元炉と冷却炉とを直列に配置した連続焼鈍炉であり、
無酸化炉の入口と還元炉の入口とにそれぞれ設置した誘
導加熱装置により、条件変更部の板温を変更することを
特徴とする請求項1記載の鋼板の連続焼鈍方法。
2. A gas heating type continuous annealing furnace is a continuous annealing furnace in which a non-oxidizing furnace, a reducing furnace and a cooling furnace are arranged in series,
The continuous annealing method for a steel sheet according to claim 1, wherein the sheet temperature of the condition changing section is changed by induction heating devices respectively installed at the inlet of the non-oxidizing furnace and the inlet of the reducing furnace.
JP2002133631A 2002-05-09 2002-05-09 Continuous annealing process for steel plate Pending JP2003328039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133631A JP2003328039A (en) 2002-05-09 2002-05-09 Continuous annealing process for steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133631A JP2003328039A (en) 2002-05-09 2002-05-09 Continuous annealing process for steel plate

Publications (1)

Publication Number Publication Date
JP2003328039A true JP2003328039A (en) 2003-11-19

Family

ID=29696538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133631A Pending JP2003328039A (en) 2002-05-09 2002-05-09 Continuous annealing process for steel plate

Country Status (1)

Country Link
JP (1) JP2003328039A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126911A1 (en) 2007-04-05 2008-10-23 Nippon Steel Corporation Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
CN104342547A (en) * 2013-07-31 2015-02-11 宝山钢铁股份有限公司 Grading type hot blowing method of continuous annealing furnace
JP2015030891A (en) * 2013-08-05 2015-02-16 Jfeスチール株式会社 Method and apparatus for control of continuous annealing line
WO2015099402A1 (en) 2013-12-25 2015-07-02 주식회사 포스코 Continuous annealing apparatus for strip and continuous annealing method for same
RU2617085C2 (en) * 2012-09-03 2017-04-19 ДжФЕ СТИЛ КОРПОРЕЙШН Device for quick heating of continuous oxyging line
KR20210030030A (en) 2019-09-09 2021-03-17 주식회사 포스코 Method for manufacturing a high strength steel sheet having good bending-formability by using slloy steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126911A1 (en) 2007-04-05 2008-10-23 Nippon Steel Corporation Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
RU2617085C2 (en) * 2012-09-03 2017-04-19 ДжФЕ СТИЛ КОРПОРЕЙШН Device for quick heating of continuous oxyging line
US10072318B2 (en) 2012-09-03 2018-09-11 Jfe Steel Corporation Rapid heating apparatus of continuous annealing line
CN104342547A (en) * 2013-07-31 2015-02-11 宝山钢铁股份有限公司 Grading type hot blowing method of continuous annealing furnace
CN104342547B (en) * 2013-07-31 2017-03-01 宝山钢铁股份有限公司 A kind of stagewise thermal purging method of continuous annealing furnace
JP2015030891A (en) * 2013-08-05 2015-02-16 Jfeスチール株式会社 Method and apparatus for control of continuous annealing line
WO2015099402A1 (en) 2013-12-25 2015-07-02 주식회사 포스코 Continuous annealing apparatus for strip and continuous annealing method for same
US10358691B2 (en) 2013-12-25 2019-07-23 Posco Apparatus for continuous annealing of strip and method for continuous annealing of same
US10604820B2 (en) 2013-12-25 2020-03-31 Posco Method of continuously annealing a strip
KR20210030030A (en) 2019-09-09 2021-03-17 주식회사 포스코 Method for manufacturing a high strength steel sheet having good bending-formability by using slloy steel

Similar Documents

Publication Publication Date Title
RU2386505C1 (en) Method for cooldown of steel plate
WO1996032507A1 (en) Equipment for manufacturing stainless steel strip
JP2003328039A (en) Continuous annealing process for steel plate
JP5000116B2 (en) Soaking furnace operation method in steel strip continuous treatment equipment
CN110616311B (en) Method for reducing cold buckling risk of strip steel
JPS6056406B2 (en) Continuous annealing furnace with induction heating section
US4725321A (en) Method for cooling a steel strip in a continuous annealing furnace
EP0128734B1 (en) Method for cooling a steel strip in a continuous-annealing furnace
US4724014A (en) Method for cooling a steel strip in a continuous annealing furnace
JPS60221533A (en) Device for cooling metallic strip
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JPS6254373B2 (en)
JP2006124817A (en) Cooling device with gas jet into steel sheet continuous annealing facility and its cooling control method
JP2006239777A (en) Method for manufacturing hot-rolled steel sheet
JP3787320B2 (en) Method and apparatus for controlling alloying in hot dip galvanizing line
JP2005298941A (en) Sheet temperature control method in continuous still sheet annealing
JP5226965B2 (en) Steel plate cooling method and steel plate continuous heat treatment equipment
JPH046224A (en) Method for controlling temperature of continuous annealing furnace
JP4064253B2 (en) Steel strip continuous heat treatment equipment and combustion method thereof
JPH02153023A (en) Roll cooling method for steel strip
JP4380183B2 (en) Steel strip cooling method
JPS6070127A (en) Method for controlling temperature of strip with continuous annealing furnace
JP4150222B2 (en) Manufacturing method of thin steel sheet
JPH0813042A (en) Method for controlling strip temperature in continuous annealing furnace
JP2006130540A (en) Method for manufacturing hot rolled long coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080321