JP2003327423A - Method for manufacturing different element-introduced tubular substance - Google Patents

Method for manufacturing different element-introduced tubular substance

Info

Publication number
JP2003327423A
JP2003327423A JP2002137897A JP2002137897A JP2003327423A JP 2003327423 A JP2003327423 A JP 2003327423A JP 2002137897 A JP2002137897 A JP 2002137897A JP 2002137897 A JP2002137897 A JP 2002137897A JP 2003327423 A JP2003327423 A JP 2003327423A
Authority
JP
Japan
Prior art keywords
ion
inorganic substance
ions
tubular
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002137897A
Other languages
Japanese (ja)
Other versions
JP3627021B2 (en
Inventor
Kazuhiro Yamamoto
和弘 山本
Sumio Iijima
澄男 飯島
Kazutomo Suenaga
和知 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002137897A priority Critical patent/JP3627021B2/en
Publication of JP2003327423A publication Critical patent/JP2003327423A/en
Application granted granted Critical
Publication of JP3627021B2 publication Critical patent/JP3627021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a different element-introduced tubular inorganic substance, by which a wide variety of different elements can be introduced into the tubular inorganic substance without damaging the tubular inorganic substance and the amounts of the respective ions of the different elements to be injected can be controlled properly and which is extremely advantageous in industry. <P>SOLUTION: The respective ions of the different elements are injected into the tubular inorganic substance in the vacuum of ≤1×10<SP>-5</SP>Pa by using 20-200 eV irradiation energy. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、優れた電気伝導特
性を有し電子材料として有用な、異種元素が導入された
チューブ状物質の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tubular substance into which a different element has been introduced, which has excellent electric conductivity and is useful as an electronic material.

【0002】[0002]

【従来の技術】1991年に発見されたカーボンナノチュー
ブ(ネイチャー、354巻56-58、1991年)はグラファイト
シートがチューブ上に丸まった物質であり、その電気的
特性は構造によって金属的にも半導体的にも成りうると
予測されている。またカーボンナノチューブは直径が1
〜数十ナノメートルであるのに対して長さが数十マイク
ロメートルであるため、典型的な1次元電気伝導を示す
ものと期待される物質でもある。
2. Description of the Related Art Carbon nanotubes (Nature, 354, 56-58, 1991) discovered in 1991 are substances in which graphite sheets are rolled up on a tube. It is predicted that it will also be possible. Carbon nanotubes have a diameter of 1
It is a substance expected to exhibit typical one-dimensional electric conduction because it has a length of several tens of nanometers to several tens of nanometers.

【0003】ところで、このようなチューブ状物質はそ
の電気伝導特性を制御することが極めて重要であり、そ
のためには異種元素をチューブ状物質に導入して価電子
状態を制御することが必要であるとされている。
By the way, it is extremely important to control the electric conduction characteristics of such a tubular material, and for that purpose, it is necessary to introduce a different element into the tubular material to control the valence electron state. It is said that.

【0004】従来、このような異種元素が導入されたチ
ューブ状物質は、チューブ状物質を導入したい異種元素
が含まれる気相もしくは液相中におくことにより、侵入
置換反応もしくは表面吸着などにより異種元素を導入す
る方法がとられている。しかしながら、このような従来
の侵入置換反応もしくは表面吸着より異種元素を導入す
る方法は、平衡プロセスであるために異種元素の導入量
に限界があり、また導入する異種元素の固溶限界以上の
濃度の元素を導入することは理論的に不可能であり、更
には注入濃度の制御に困難性があった。
Conventionally, such a tube-shaped substance into which a heterogeneous element has been introduced is placed in a gas phase or a liquid phase containing a heterogeneous element into which the tube-shaped substance is desired to be introduced, so as to be heterogeneous by an invasion substitution reaction or surface adsorption. The method of introducing the element is taken. However, such a conventional method of introducing a different element by an invasion substitution reaction or surface adsorption has a limit in the amount of the different element to be introduced because it is an equilibrium process, and the concentration of the different element to be introduced is higher than the solid solution limit. It was theoretically impossible to introduce the above element, and it was difficult to control the implantation concentration.

【0005】一方、異種元素導入技術として、例えばシ
リコン半導体技術においては、シリコンウェハーの製造
過程において所望の異種元素を所望量だけ導入する方法
の他に、イオン注入技術が用いられている。このイオン
注入技術は、キロエレクトロンボルト〜メガエレクトロ
ンボルトのエネルギーに加速されたイオンを固体の表面
から深さ数ナノメートルから数マイクロメートルの表層
部に打ち込み、その物性を制御する技術である。このイ
オン注入技術は、(1)室温で試料に元素導入できる、
(2)イオンの数をカウントして低濃度から高濃度で濃
度を制御して元素導入できる、(3)任意の領域に選択
的に元素導入できる、(4)非平衡プロセスであるため
固溶限界以上に元素導入できる、などの特徴を有する。
On the other hand, as a technique for introducing a different element, for example, in the silicon semiconductor technique, an ion implantation technique is used in addition to a method of introducing a desired amount of a desired different element in the process of manufacturing a silicon wafer. This ion implantation technique is a technique for implanting ions accelerated to energy of kiloelectron volt to megaelectron volt from the surface of a solid into a surface layer portion having a depth of several nanometers to several micrometers to control the physical properties thereof. This ion implantation technique (1) can introduce elements into a sample at room temperature,
(2) Counting the number of ions and controlling the concentration from low to high concentration to introduce elements, (3) Introducing elements selectively into any region, (4) Solid solution due to non-equilibrium process It has the feature that elements can be introduced beyond the limit.

【0006】しかし、このような従来のイオン注入法を
用いてチューブ状物質に異種元素を導入する場合、イオ
ンエネルギーが大きすぎて注入イオンがチューブ状物質
をすり抜けてしまい、チューブ状物質中に所望の異種元
素を導入できないという問題があり、また、イオン照射
によりチューブ状物質が損傷を受けて内部に欠陥が導入
されてしまうという難点があった。このためチューブ状
物質に損傷を与える事なく異種元素の濃度を制御して導
入する方法が強く要請されていた。
However, when a different element is introduced into a tubular material by using such a conventional ion implantation method, the ion energy is so large that the implanted ions pass through the tubular material, and the desired ion content in the tubular material occurs. However, there is a problem in that the tubular material is damaged by the ion irradiation and defects are introduced into the inside. Therefore, there has been a strong demand for a method of controlling and introducing the concentration of a different element without damaging the tubular material.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような従
来技術の問題点を解消するためになされたものであっ
て、チューブ状物質に損傷を与えることなく多種多様の
異種元素の導入が可能となり、かつ当該異種元素のイオ
ン注入量も適正に制御することができる工業的に極めて
有用な、異種元素が導入されたチューブ状無機物質の製
造方法を提供することを目的とする。
The present invention has been made in order to solve the problems of the prior art, and it is possible to introduce a wide variety of different elements without damaging the tubular material. It is an object of the present invention to provide a method for industrially extremely useful production of a tubular inorganic substance into which a heterogeneous element is introduced, which is capable of appropriately controlling the ion implantation amount of the heterogeneous element.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記課題を
解決するために、鋭意検討した結果、異種イオンを注入
する際の真空度と照射エネルギーを特定な条件に設定す
ると上記課題が解消できることを知見し本発明を完成す
るに至った。すなわち、本発明によれば、以下の発明が
提供される。 (1)チューブ状無機物質に異種元素のイオンを真空度
1×10−5Pa以下、20〜200eVの照射エネルギー
下で注入することを特徴とする異種元素が注入されたチ
ューブ状無機物質の製造方法。 (2)チューブ状無機物質がカーボンナノチューブであ
ることを特徴とする上記(1)に記載の異種元素が注入
されたチューブ状無機物質の製造方法。 (3)上記(1)又は(2)に記載の製造方法で得られ
る異種元素が注入されたチューブ状無機物質。 (4)チューブ状無機物質がカーボンナノチューブであ
ることを特徴とする上記(3)に記載の異種元素が注入
されたチューブ状無機物質。 (5)上記(4)に記載のカーボンナノチューブからな
る電子伝導体。
Means for Solving the Problems The inventors of the present invention have made extensive studies in order to solve the above problems. As a result, the above problems can be solved by setting the degree of vacuum and the irradiation energy when implanting different kinds of ions to specific conditions. They have found that they can do so and have completed the present invention. That is, according to the present invention, the following inventions are provided. (1) Manufacture of a tubular inorganic substance into which a heterogeneous element is injected, characterized in that ions of a heterogeneous element are injected into the tubular inorganic substance under a vacuum degree of 1 × 10 −5 Pa or less under irradiation energy of 20 to 200 eV. Method. (2) The method for producing a tubular inorganic substance into which a different element is injected according to the above (1), wherein the tubular inorganic substance is a carbon nanotube. (3) A tubular inorganic substance into which a different element is injected, which is obtained by the production method described in (1) or (2) above. (4) The tubular inorganic substance into which the different element is injected according to the above (3), wherein the tubular inorganic substance is a carbon nanotube. (5) An electron conductor comprising the carbon nanotube according to (4) above.

【0009】[0009]

【発明の実施の形態】本発明の異種元素が注入されたチ
ューブ状無機物質の製造方法は、チューブ状無機物質に
異種元素のイオンを真空度1×10−5Pa以下、20〜
200eVの照射エネルギー下で注入することを特徴とし
ている。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a tubular inorganic material into which a heterogeneous element has been implanted according to the present invention is a method in which ions of a heterogeneous element are added to a tubular inorganic material at a vacuum degree of 1 × 10 −5 Pa or less, 20 to
The feature is that the implantation is performed under irradiation energy of 200 eV.

【0010】本発明者らは、従来のイオンビーム装置で
はイオンビーム照射中の真空度が充分でないために、イ
オンビームと残留ガスの衝突により電荷交換が生じて、
高速の中性粒子が生成して、照射標的に損傷を与えるこ
とを見出した。更に検討を進めた結果、イオン源からイ
オンを引き出し,質量分離装置によりイオンのみを選別
し,イオン収束機構により空間電荷によるイオンの発散
を防ぎ,イオン偏向機構により電荷交換作用により生じ
た高速の中性粒子を除去し、超真空下、イオン減速機構
により照射エネルギーを低エネルギーに制御した場合に
は、カーボンナノチューブの構造に損傷を与えることな
く窒素イオンなどの異種元素イオンがカーボンナノチュ
ーブ中へ所望量正確に導入できることを知見した。本発
明はこのような知見に基づいてなされたものである。
In the conventional ion beam apparatus, the present inventors have found that the degree of vacuum during ion beam irradiation is not sufficient, so that charge exchange occurs due to collision between the ion beam and residual gas.
It has been found that high-speed neutral particles are generated and damage the irradiation target. As a result of further study, the ions were extracted from the ion source, only the ions were selected by the mass separator, the ion focusing mechanism prevented the divergence of the ions due to the space charge, and the ion deflection mechanism caused the high-speed If the irradiation energy is controlled to a low energy by the ion deceleration mechanism in the ultra-vacuum after removing the volatile particles, the desired amount of different elemental ions such as nitrogen ions is introduced into the carbon nanotubes without damaging the structure of the carbon nanotubes. We have found that it can be introduced accurately. The present invention has been made based on such findings.

【0011】本発明の異種元素が導入されたチューブ状
無機物質は、チューブ状無機物質にこれを構成する元素
とは異種元素のイオンビームを真空度1×10−5Pa以
下、20〜200eVの照射エネルギー下で注入すること
により得られる。
The tubular inorganic substance in which the heterogeneous element of the present invention is introduced is such that an ion beam of an element different from the constituent elements of the tubular inorganic substance is applied at a vacuum degree of 1 × 10 −5 Pa or less and 20 to 200 eV. Obtained by injection under irradiation energy.

【0012】本明細書でいうチューブ状無機物質とは、
直径が5nm-500nmで直径と長さのアスペクト比が1
0以上の中空構造をもつ物質を意味し、代表例としてカ
ーボンナノチューブや窒化ホウ素ナノチューブなどを挙
げることができる。異種元素のイオンビームとしては、
窒素のイオンビーム、ホウ素、フッ素、リン、ガリウ
ム、リチウム、カルシウム、カリウムのイオンビーム、
などを用いることができる。
The tubular inorganic substance as used in the present specification means
Diameter 5nm-500nm, diameter and length aspect ratio is 1
It means a substance having a hollow structure of 0 or more, and typical examples thereof include carbon nanotubes and boron nitride nanotubes. As an ion beam of different elements,
Ion beam of nitrogen, Ion beam of boron, fluorine, phosphorus, gallium, lithium, calcium, potassium,
Etc. can be used.

【0013】本発明においては、これらのイオンビーム
を照射する際に少なくとも真空容器内の真空度を1×1
−5Pa以下とすることが重要である。真空容器内の真
空度が1×10−5Pa超えるとイオンビームと残留ガス
との衝突により電荷交換が生じて、高速の中性粒子が生
成して、チューブ状無機物質に損傷を与えることとなる
ので、本発明の所期の目的を達成することができない。
また、本発明においては、上記圧力条件(真空度)と共
にイオン照射エネルギーを20〜200eVエネルギーに
設定することが必要である。イオン照射エネルギーが2
0eV未満であると、チューブ状無機物質中にイオン元素
が導入されない事となり、また200eVを超えるとイオ
ンエネルギーによりチューブ状無機物質が損傷を受ける
事となるので好ましくない。
In the present invention, at the time of irradiating these ion beams, at least the degree of vacuum in the vacuum container is 1 × 1.
It is important to 0 -5 Pa or less. When the degree of vacuum in the vacuum container exceeds 1 × 10 −5 Pa, charge exchange occurs due to collision between the ion beam and residual gas, high-speed neutral particles are generated, and the tubular inorganic substance is damaged. Therefore, the intended purpose of the present invention cannot be achieved.
Further, in the present invention, it is necessary to set the ion irradiation energy to 20 to 200 eV energy together with the above pressure condition (vacuum degree). Ion irradiation energy is 2
If it is less than 0 eV, the ionic element will not be introduced into the tubular inorganic substance, and if it exceeds 200 eV, the tubular inorganic substance will be damaged by ion energy, which is not preferable.

【0014】本発明のイオン照射条件は上記二つの要件
を満たせば充分であり、他の条件は必要に応じ適宜選定
すればよいが、通常、イオン注入量は1×10−12io
ns/cm2〜1×10−17ions/cm2、好ましくは1×10
−13ions/cm2〜1×10 15ions/cm2、である。
The ion irradiation conditions of the present invention are sufficient if they satisfy the above two requirements, and other conditions may be appropriately selected as necessary, but the ion implantation amount is usually 1 × 10 −12 io.
ns / cm 2 to 1 × 10 −17 ions / cm 2 , preferably 1 × 10
-13 ions / cm 2 ~1 × 10 - 15 ions / cm 2, a.

【0015】本発明方法により異種元素が導入された中
空状無機物質を製造するには、たとえば、イオン源から
イオンを引き出し,質量分離装置によりイオンのみを選
別し,イオン収束機構により空間電荷によるイオンの発
散を防ぎ,イオン偏向機構により電荷交換作用により生
じた高速の中性粒子を除去し、超真空下、イオン減速機
構により照射エネルギーを低エネルギーに制御し得るイ
オン注入装置の真空容器内に、カーボンナノチューブを
導入しておき、ついで該カーボンナノチューブに窒素イ
オンを真空度1×10−5Pa以下、20〜200eVの照
射エネルギー下で照射し、カーボンナノチューブに窒素
イオンを注入すればよい。
To produce a hollow inorganic substance into which a different element is introduced by the method of the present invention, for example, ions are extracted from an ion source, only ions are selected by a mass separation device, and ions are generated by space charge by an ion focusing mechanism. In the vacuum container of the ion implanter that can control the irradiation energy to a low energy by the ion deceleration mechanism under ultra-vacuum by removing the high-speed neutral particles generated by the charge exchange action by the ion deflection mechanism. The carbon nanotubes may be introduced in advance, and then the carbon nanotubes may be irradiated with nitrogen ions at a vacuum degree of 1 × 10 −5 Pa or less under irradiation energy of 20 to 200 eV to implant the nitrogen ions into the carbon nanotubes.

【0016】本発明方法により得られる異種元素が導入
されたチューブ状無機物質は、異種元素が導入されてい
ないチューブ状無機物質に比し、半導体電子伝導特性が
著しく向上するので、トランジスター素子などの半導体
素子の電子伝導体として応用することが可能である。
The tube-shaped inorganic substance into which a different element is introduced, which is obtained by the method of the present invention, has significantly improved semiconductor electron conduction characteristics as compared with a tube-shaped inorganic substance into which a different element is not introduced. It can be applied as an electronic conductor of a semiconductor device.

【0017】[0017]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will now be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

【0018】実施例1 イオン注入装置としては、イオンを生成するイオン源、
イオンをイオン源から引き出す機構、イオンの質量分離
機構、イオン収束機構、イオン偏向機構、イオン減速機
構、及びイオンを基材に堆積させる真空容器からなる製
造装置を用いた。イオンの質量分離機構としてセクター
型の電磁石を、イオン収束機構として4重極電磁石3つ
からなる電磁レンズを、イオン偏向機構としてセクター
型の電磁石を、イオン減速機構としては静電場を形成す
る電極を用いた。イオン源部分に2台、質量分離機構と
イオン収束機構の間に1台、イオン収束機構とイオン偏
向機構の間に1台、及び真空容器部分に1台クライオポ
ンプを取り付け、さらにクライオポンプの前段ポンプと
してロータリーポンプとターボ分子ポンプからなる排気
機構を取り付け、真空排気を行った。これらの真空排気
機構により、到達真空後は真空容器部分で3×10−8P
a、イオン偏向機構部分で8×10−7Pa、質量分離機構部
分で5×10−5Paとなった。上記装置を用いてカーボン
ナノチューブに窒素イオンを以下のように照射した。装
置内にカーボンナノチューブを分散、塗布したシリコン
単結晶(100)基板を設置した後、装置内を3×10
−8Pa以下まで真空排気した。注入ガスとして窒素ガス
を用いた。イオン源内で窒素ガスのプラズマを生成した
後、イオンを接地電位に対して-35kVで引き出した。こ
の時、イオンをイオン源から引き出す機構、イオンの質
量分離機構、イオン収束機構、イオン偏向機構は全て-3
5kVとなっている。イオン源は接地電位に対して正電位
にし、この電位により最終的に真空容器内のカーボンナ
ノチューブに到達するイオンエネルギーを決めている。
引き出したイオン束から質量分離電磁石により原子量1
4の窒素イオンのみを選別し、イオン収束機構である4
重極電磁石レンズによりイオン電流が最大となるように
収束した。さらにイオン偏向電磁石により炭素イオンを
真空容器内曲げて真空容器内に導入し、イオンを減速し
てシリコン基板に照射した。イオン照射中の真空容器内
の真空度は4×10−7Pa、であった。窒素イオン電流密
度は0.01mA/cm となるように調整した。窒素イオンエ
ネルギーを100eV に固定して、上記記載の4×10−7Pa
の真空中でカーボンナノチューブに照射して窒素を導入
した。
Example 1 As the ion implanter, an ion source that generates ions,
Mechanism to extract ions from ion source, mass separation of ions
Mechanism, ion focusing mechanism, ion deflection mechanism, ion reducer
And a vacuum container for depositing ions on the substrate.
A manufacturing device was used. Sector as a mass separation mechanism for ions
Type electromagnet, three quadrupole electromagnets as ion focusing mechanism
The electromagnetic lens consisting of
-Type electromagnet forms an electrostatic field as an ion deceleration mechanism
Electrodes were used. 2 units in the ion source part, with a mass separation mechanism
One between the ion focusing mechanism, the ion focusing mechanism and the ion bias
1 between the directional mechanism and 1 in the vacuum container
Pump, and the front pump of the cryopump
Exhaust consisting of rotary pump and turbo molecular pump
A mechanism was attached, and vacuum evacuation was performed. Evacuate these
By the mechanism, after the ultimate vacuum is reached, 3 × 10 in the vacuum container-8P
a, 8 × 10 in the ion deflection mechanism part-7Pa, mass separation mechanism
5 × 10 in minutes-5It became Pa. Carbon using the above equipment
The nanotubes were irradiated with nitrogen ions as follows. Dress
Silicon with carbon nanotubes dispersed and applied inside
After installing the single crystal (100) substrate, 3 × 10
-8It was evacuated to below Pa. Nitrogen gas as injection gas
Was used. Generated plasma of nitrogen gas in the ion source
After that, the ions were extracted at -35 kV with respect to the ground potential. This
The mechanism of extracting ions from the ion source at the time of
-3 for quantity separation mechanism, ion focusing mechanism, and ion deflection mechanism
It is 5kV. Ion source is positive with respect to ground potential
This potential eventually causes the carbon
It determines the ion energy that reaches the tube.
Atomic weight of 1 from the extracted ion flux by mass separation electromagnet
4 is the ion focusing mechanism by selecting only the 4 nitrogen ions
Ion current is maximized by the dipole magnet lens
It converged. Furthermore, carbon ions are
Bend in the vacuum container and introduce it into the vacuum container to decelerate the ions.
And irradiate the silicon substrate. Inside the vacuum container during ion irradiation
The degree of vacuum is 4 × 10-7It was Pa. Nitrogen ion current density
Degree 0.01mA / cm TwoWas adjusted so that Nitrogen ion d
With the energy fixed at 100 eV, the above 4 × 10-7Pa
Introduces nitrogen by irradiating carbon nanotubes in vacuum
did.

【0019】比較例1 さらに真空容器とクライオポンプ間のバルブを半開にす
ることにより、イオン照射中の真空度4×10−5Paとし
てカーボンナノチューブに窒素イオンを照射した。後者
は従来技術のイオン注入におけるイオン照射時の真空条
件であり、本発明の優位性を明らかにするために、比較
するために行ったものである。
Comparative Example 1 Further, by opening the valve between the vacuum container and the cryopump halfway, the carbon nanotubes were irradiated with nitrogen ions at a vacuum degree of 4 × 10 −5 Pa during ion irradiation. The latter is a vacuum condition at the time of ion irradiation in the ion implantation of the prior art, and was carried out for comparison in order to clarify the superiority of the present invention.

【0020】上記実施例1及び比較例1で得た、窒素イ
オンが導入されたカーボンナノチューブの構造を透過型
電子顕微鏡(TEM)を用いて調べた。また電子線エネルギ
ー損失分光法によりカーボンナノチューブ中の窒素の分
析を行った。実施例1で得たカーボンナノチューブは中
空構造で黒鉛シート構造が明瞭に観察され、損傷は見ら
れなかった。またカーボンナノチューブ中には1.5原子
%の窒素原子が含まれる事が分かった。これに対して、
比較例1で得たカーボンナノチューブは中空構造であっ
たが黒鉛シート構造が観察されずに非晶質構造であっ
た。これは4×10−5Paの真空中で作製した場合、窒素
イオンがカーボンナノチューブまでの輸送中に残留ガス
と衝突して電荷交換効果により中性粒子となり、減速さ
れずにカーボンナノチューブに照射されたために損傷を
受けたためと考えられる。
The structures of the carbon nanotubes introduced with nitrogen ions obtained in Example 1 and Comparative Example 1 were examined by using a transmission electron microscope (TEM). In addition, nitrogen in carbon nanotubes was analyzed by electron beam energy loss spectroscopy. The carbon nanotube obtained in Example 1 had a hollow structure and a graphite sheet structure was clearly observed, and no damage was observed. It was also found that the carbon nanotubes contained 1.5 atom% of nitrogen atoms. On the contrary,
The carbon nanotubes obtained in Comparative Example 1 had a hollow structure, but no graphite sheet structure was observed and had an amorphous structure. This is because when produced in a vacuum of 4 × 10 −5 Pa, nitrogen ions collide with the residual gas during transport to the carbon nanotubes, become neutral particles due to the charge exchange effect, and are irradiated onto the carbon nanotubes without deceleration. It is thought that it was damaged due to damage.

【0021】実施例2 実施例1におけるイオン照射中の真空度と照射エネルギ
ーを図1のように代えた以外は実施例1と同様にして窒
素イオンが導入されたカーボンナノチューブを作成し
た。その観察結果を図1に示す。図1からイオン照射中
の真空度を1×10−5Pa以下及び照射エネルギーを2
0〜200eVとすることにより、カーボンナノチューブ
に損傷を与えることなく窒素を導入できることが分か
る。
Example 2 A carbon nanotube into which nitrogen ions were introduced was prepared in the same manner as in Example 1 except that the vacuum degree and the irradiation energy during ion irradiation in Example 1 were changed as shown in FIG. The observation result is shown in FIG. From Fig. 1, the degree of vacuum during ion irradiation is less than 1 × 10 -5 Pa and the irradiation energy is 2
It can be seen that by setting 0 to 200 eV, nitrogen can be introduced without damaging the carbon nanotubes.

【0022】[0022]

【発明の効果】本発明の異種元素が注入されたチューブ
状無機物質の製造方法は、チューブ状物質に損傷を与え
ることなく多種多様の異種元素を導入できると共にその
イオン注入量の的確な制御が可能であり、工業的に極め
て有利な製造方法ということができる。また得られるチ
ューブ状無機物質は半導体電子伝導特性の制御が可能と
なることからこのような半導体の電子伝導体として応用
することが可能となる。
INDUSTRIAL APPLICABILITY According to the method for producing a tubular inorganic substance into which different elements are implanted according to the present invention, various kinds of different elements can be introduced without damaging the tubular material and the ion implantation amount can be accurately controlled. It is possible and can be said to be an industrially extremely advantageous production method. Further, the obtained tube-shaped inorganic substance can control the electron conduction characteristics of the semiconductor, and thus can be applied as an electron conductor of such a semiconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 イオンエネルギーおよび照射中の真空度とチ
ューブ状物質への損傷の関係図
Fig. 1 Relationship between ion energy, vacuum during irradiation, and damage to tubular materials

フロントページの続き Fターム(参考) 4G146 AA13 AA15 AA17 AC03A AC03B BA04 BA38 BC15Continued front page    F-term (reference) 4G146 AA13 AA15 AA17 AC03A                       AC03B BA04 BA38 BC15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】チューブ状無機物質に異種元素のイオンを
真空度1×10−5Pa以下、20〜200eVの照射エネ
ルギー下で注入することを特徴とする異種元素が導入さ
れたチューブ状無機物質の製造方法。
1. A tubular inorganic substance into which a foreign element has been introduced, characterized in that ions of a foreign element are injected into the tubular inorganic substance under irradiation energy of a vacuum degree of 1 × 10 −5 Pa or less and 20 to 200 eV. Manufacturing method.
【請求項2】チューブ状無機物質がカーボンナノチュー
ブであることを特徴とする請求項1に記載の異種元素が
導入されたチューブ状無機物質の製造方法。
2. The method for producing a tubular inorganic substance into which a foreign element is introduced according to claim 1, wherein the tubular inorganic substance is a carbon nanotube.
【請求項3】請求項1又は2に記載の製造方法で得られ
る異種元素が導入されたチューブ状無機物質。
3. A tubular inorganic substance into which a different element is introduced, which is obtained by the production method according to claim 1.
【請求項4】チューブ状無機物質がカーボンナノチュー
ブであることを特徴とする請求項3に記載の異種元素が
導入されたチューブ状無機物質。
4. The tubular inorganic substance introduced with a different element according to claim 3, wherein the tubular inorganic substance is a carbon nanotube.
【請求項5】請求項4に記載のカーボンナノチューブか
らなる電子伝導体。
5. An electron conductor comprising the carbon nanotube according to claim 4.
JP2002137897A 2002-05-14 2002-05-14 Method for producing tube-like substance with different elements introduced Expired - Lifetime JP3627021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137897A JP3627021B2 (en) 2002-05-14 2002-05-14 Method for producing tube-like substance with different elements introduced

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137897A JP3627021B2 (en) 2002-05-14 2002-05-14 Method for producing tube-like substance with different elements introduced

Publications (2)

Publication Number Publication Date
JP2003327423A true JP2003327423A (en) 2003-11-19
JP3627021B2 JP3627021B2 (en) 2005-03-09

Family

ID=29699489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137897A Expired - Lifetime JP3627021B2 (en) 2002-05-14 2002-05-14 Method for producing tube-like substance with different elements introduced

Country Status (1)

Country Link
JP (1) JP3627021B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253534A (en) * 2005-03-14 2006-09-21 National Institute Of Advanced Industrial & Technology Semiconductor device and method and apparatus for implanting hetero element thereinto
JP2007197596A (en) * 2006-01-27 2007-08-09 Teijin Ltd Heat-resistant resin composition with excellent mechanical properties and method for producing the same
JP2007231156A (en) * 2006-03-01 2007-09-13 Teijin Ltd Polyether ester amide elastomer resin composition and its manufacturing method
JP2007297463A (en) * 2006-04-28 2007-11-15 Teijin Ltd Reinforced resin composition and its manufacturing method
JP2007321071A (en) * 2006-06-01 2007-12-13 Teijin Ltd Resin composite composition and its manufacturing method
CN100386471C (en) * 2005-09-07 2008-05-07 清华大学 Method for controlling growth of carbon nanotube by ion Injection surface modification
JP2008143934A (en) * 2006-12-06 2008-06-26 Teijin Ltd Heat-resistant resin composite composition and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253534A (en) * 2005-03-14 2006-09-21 National Institute Of Advanced Industrial & Technology Semiconductor device and method and apparatus for implanting hetero element thereinto
CN100386471C (en) * 2005-09-07 2008-05-07 清华大学 Method for controlling growth of carbon nanotube by ion Injection surface modification
JP2007197596A (en) * 2006-01-27 2007-08-09 Teijin Ltd Heat-resistant resin composition with excellent mechanical properties and method for producing the same
JP2007231156A (en) * 2006-03-01 2007-09-13 Teijin Ltd Polyether ester amide elastomer resin composition and its manufacturing method
JP2007297463A (en) * 2006-04-28 2007-11-15 Teijin Ltd Reinforced resin composition and its manufacturing method
JP2007321071A (en) * 2006-06-01 2007-12-13 Teijin Ltd Resin composite composition and its manufacturing method
JP2008143934A (en) * 2006-12-06 2008-06-26 Teijin Ltd Heat-resistant resin composite composition and method for producing the same

Also Published As

Publication number Publication date
JP3627021B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
US7579604B2 (en) Beam stop and beam tuning methods
JP2007525838A (en) Method for forming doped and undoped strained semiconductor and method for forming semiconductor thin film by gas cluster ion irradiation
TW200816255A (en) Ion beam apparatus for ion implantation
JP2003327423A (en) Method for manufacturing different element-introduced tubular substance
JP2639158B2 (en) Etching method and etching apparatus
US20150140232A1 (en) Ultrahigh Vacuum Process For The Deposition Of Nanotubes And Nanowires
TWI638058B (en) Cluster ion beam generation method and cluster ion beam irradiation method using same
Tona et al. Highly charged ion beams from the Tokyo EBIT for applications to nano-science and-technology
JP4280818B2 (en) How to introduce different elements into diamond
Ross et al. Characterisation of tungsten nano-wires prepared by electron and ion beam induced chemical vapour deposition
Ensinger The influence of the ion flux density on the properties of molybdenum films deposited from the vapour phase under simultaneous argon ion irradiation
Jiang et al. Fabrication of 2-and 3-dimensional nanostructures
Panchenko et al. Development of technology for the formation of vacuum field emission cells using focused ion beams
Hlawacek Ion Microscopy
CN109320291B (en) Cluster ion bombardment method for obtaining solid material with wide controllable range of surface hole diameter
US20240018003A1 (en) Using anab technology to remove production processing residuals from graphene
Chee et al. Microstructural changes in silicon induced by patterning with focused ion beams of Ga, Si and Au
Tripathi et al. Substrate atom enriched carbon nanostructures fabricated by focused electron beam induced deposition
Liu et al. Fabrication and investigation of tungsten deposit on top and bottom surfaces of thin film substrate
Fujiwara et al. Characteristics of a cluster‐ion beam of Os3 (CO) n+ (n= 7 or 8) for low‐damage sputtering
Markwitz et al. Low‐energy Fe+ ion implantation into silicon nanostructures
Miyake Ion-beam deposition
Ensinger Realization of ion mass and energy selected hyperthermal ion-beam assisted deposition of thin, epitaxial nitride films: characterization and application
Kulkarni et al. Micro-and nanomanufacturing by focused ion beam
TWI412052B (en) Method for preparing ion source with nanoparticles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Ref document number: 3627021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term