JP2003324027A - Method of manufacturing laminated electronic component - Google Patents

Method of manufacturing laminated electronic component

Info

Publication number
JP2003324027A
JP2003324027A JP2002126461A JP2002126461A JP2003324027A JP 2003324027 A JP2003324027 A JP 2003324027A JP 2002126461 A JP2002126461 A JP 2002126461A JP 2002126461 A JP2002126461 A JP 2002126461A JP 2003324027 A JP2003324027 A JP 2003324027A
Authority
JP
Japan
Prior art keywords
support
conductive film
electronic component
pattern
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002126461A
Other languages
Japanese (ja)
Inventor
Shigeru Nishiyama
西山  茂
Kuniaki Watanabe
邦昭 渡辺
Shuichi Ishida
修一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2002126461A priority Critical patent/JP2003324027A/en
Publication of JP2003324027A publication Critical patent/JP2003324027A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, when a conductor pattern is formed by printing, the pattern is not made to be finer in structure and, when the film thickness of the pattern is increased so as to prevent the rise of the resistance value of the pattern at the time of making the structure of the pattern finer, the dimensional accuracy of the pattern becomes worse, the characteristic value of the pattern fluctuates, short circuits occur between conductors, or the pattern is distorted. <P>SOLUTION: Firstly, a photosensitive conductive film is formed on the surface of a substrate having grooves formed along the conductor pattern and a mold release layer formed on its surface, by applying photosensitive conductive paste to the surface of the substrate and drying the paste. Then a patterned conductive film is formed by removing the photosensitive conductive film from the surface of the substrate except the portions corresponding to the grooves by exposing and developing the conductive film. Successively, the conductor pattern is formed on an insulator layer by transferring the patterned conductive film formed on the substrate to the surface of the insulator layer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁体層と導体パ
ターンが積層された積層型電子部品の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a laminated electronic component in which an insulating layer and a conductor pattern are laminated.

【0002】[0002]

【従来の技術】この種の従来の積層型電子部品は、絶縁
体層上に導体ペーストをスクリーン印刷することにより
絶縁体層上に導体パターンが形成されていた。近年、電
子機器の小型化や回路の集積化が進むにつれ、電子機器
に実装される積層型電子部品の小型化が要求されてお
り、この積層型電子部品の小型化に伴って導体パターン
の微細化が進められている。
2. Description of the Related Art In a conventional laminated electronic component of this type, a conductor pattern is formed on an insulating layer by screen-printing a conductive paste on the insulating layer. In recent years, as electronic devices have been downsized and circuits have been integrated, miniaturization of laminated electronic components mounted on electronic devices has been required. Is being promoted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
積層型電子部品は、導体パターンがスクリーン印刷によ
り形成されているため、印刷する際の導体ペーストのダ
レやニジミの発生及び、印刷マスクのメッシュの存在に
より、導体パターンの形状(特に線幅)のバラツキが数
十μmあった。従って、従来の積層体型電子部品は、導
体パターン間の間隔と導体パターンの線幅を40μm以
上にする必要があり、小型化できなかった。また、この
種の積層型電子部品は、導体パターンが微細化されるに
したがって抵抗値が上昇するという問題がある。そこ
で、導体パターンの膜厚を厚くすることにより抵抗値を
低下させることが検討されている。この導体パターンの
膜厚を厚くする方法としては、絶縁体層に導体パターン
形状の貫通孔を形成し、この貫通孔内に導体ペーストを
充填することにより導体パターンを形成したものがある
(特開平7-130543号)。しかしながら、この方法では、
貫通孔内への導体ペーストの充填がスクリーン印刷によ
り行われるので、導体ペーストを印刷する位置がずれた
り、導体パターンが貫通孔からはみだして印刷されたり
して寸法精度のよい導体パターンが形成できなかった。
また、絶縁体表面に余分な導体ペーストが残存して、積
層型電子部品の特性値にバラツキが発生しやすかった。
However, in the conventional multilayer electronic component, since the conductor pattern is formed by screen printing, the conductor paste is dripping or bleeding at the time of printing, and the mesh of the print mask is not printed. Due to the existence, the shape of the conductor pattern (particularly the line width) was varied by several tens of μm. Therefore, the conventional laminated body type electronic component cannot be downsized because it is necessary to set the interval between the conductor patterns and the line width of the conductor patterns to 40 μm or more. Further, this type of multilayer electronic component has a problem that the resistance value increases as the conductor pattern is miniaturized. Therefore, it is considered to reduce the resistance value by increasing the film thickness of the conductor pattern. As a method of increasing the thickness of the conductor pattern, there is a method of forming a conductor pattern-shaped through hole in an insulating layer and filling the through hole with a conductor paste to form the conductor pattern. 7-130543). However, with this method,
Since the conductive paste is filled in the through holes by screen printing, the position where the conductive paste is printed may be misaligned, or the conductive pattern may be printed out of the through holes, making it impossible to form a conductive pattern with good dimensional accuracy. It was
In addition, excess conductor paste remains on the surface of the insulator, and variations in the characteristic values of the multilayer electronic component are likely to occur.

【0004】また、導体パターンの膜厚を厚くする別の
方法としては、溝が形成された凹版の溝に導体ペースト
を充填し、この凹版の溝に充填された導体ペーストを絶
縁体層に転写することにより導体パターンを形成したも
のがある。(特開平7-169635号)。しかしながら、この
方法では、凹版の表面に付着した余分な導体ペーストを
掻き取る必要があり、掻き取りかたによっては、余分な
導体ペーストを充分除去できずに導体パターン間がショ
ートしたり、導体ペーストを掻き取りすぎて導体パター
ンに歪みが発生するという問題がある。
Another method for increasing the thickness of the conductor pattern is to fill a groove of an intaglio plate having a groove with a conductor paste and transfer the conductor paste filled in the groove of the intaglio plate to an insulating layer. In some cases, a conductor pattern is formed by doing so. (JP-A-7-169635). However, in this method, it is necessary to scrape off the excess conductor paste adhering to the surface of the intaglio plate, and depending on the scraping method, the excess conductor paste cannot be removed sufficiently and short-circuits between conductor patterns, or conductor paste There is a problem that the conductor pattern is distorted due to excessive scraping.

【0005】本発明は、その膜厚が厚く、位置や形状・
寸法の精度のよい導体パターンを絶縁体層に形成するこ
とができ、それにより抵抗値が低く、特性値のバラツキ
を少なくできる積層型電子部品の製造方法を提供するこ
とを目的とする。
In the present invention, the film thickness is large, and the position, shape,
It is an object of the present invention to provide a method for manufacturing a laminated electronic component, which can form a conductor pattern having a high dimensional accuracy on an insulating layer, thereby having a low resistance value and reducing variations in characteristic values.

【0006】[0006]

【課題を解決するための手段】本発明の積層型電子部品
の製造方法は、導体パターンの形成の仕方を改良するこ
とにより、前述の課題を解決するものである。すなわ
ち、パターン形状の溝を有し、その表面に離型層が形成
された支持体の表面に、感光性導電ペーストを塗布し、
乾燥させて感光性導電膜を形成する第1の工程、感光性
導電膜を露光し、現像によって溝と対応する部分以外の
感光性導電膜を除去してパターン形状の導電膜を形成す
る第2の工程及び、支持体上のパターン形状の導電膜を
絶縁体層上に転写して、絶縁体層上に導体パターンを形
成する第3の工程を備える。
The method of manufacturing a laminated electronic component according to the present invention solves the above-mentioned problems by improving the method of forming a conductor pattern. That is, having a patterned groove, on the surface of the support on which the release layer is formed, apply a photosensitive conductive paste,
The first step of forming a photosensitive conductive film by drying, the photosensitive conductive film is exposed to light, and the photosensitive conductive film other than the portion corresponding to the groove is removed by development to form a patterned conductive film. And a third step of transferring the patterned conductive film on the support onto the insulator layer to form a conductor pattern on the insulator layer.

【0007】[0007]

【発明の実施の形態】本発明の積層型電子部品は、ま
ず、パターン形状の溝を有し、その表面に離型層が形成
された支持体の表面に、感光性導電ペーストを塗布し、
乾燥させることにより、支持体上に溝と対応する位置の
膜厚が溝の深さと同じか又は、溝の深さよりも厚くなる
様に感光性導電膜が形成される。次に、この感光性導電
膜を露光し、現像によって溝と対応する部分以外の感光
性導電膜を除去することにより、支持体の溝内にパター
ン形状の導電膜が形成される。続いて、このパターン形
状の導電膜を絶縁体層上に転写して、絶縁体層上に導体
パターンを形成する。この様に導体パターンを形成した
場合、従来の様に支持体上の導体ペーストを掻き取る必
要がないので、導体パターンが変形することもなく、支
持体上に導電ペーストが残ることもない。また、膜厚が
溝の深さと同じか又は溝の深さよりも大きくなる様に感
光性導電膜が支持体上に形成された場合、パターン形状
の導電膜を絶縁体層上に転写する際に、パターン形状の
導電膜の表面が絶縁体層に確実に接触するので、導電膜
と絶縁体層の密着性が良くなる。
BEST MODE FOR CARRYING OUT THE INVENTION The multilayer electronic component of the present invention comprises first applying a photosensitive conductive paste to the surface of a support having a groove having a pattern and having a release layer formed on the surface thereof.
By drying, the photosensitive conductive film is formed on the support so that the film thickness at the position corresponding to the groove is equal to or larger than the depth of the groove. Next, this photosensitive conductive film is exposed to light, and the photosensitive conductive film other than the portion corresponding to the groove is removed by development to form a patterned conductive film in the groove of the support. Then, the conductive film having this pattern shape is transferred onto the insulator layer to form a conductor pattern on the insulator layer. When the conductor pattern is formed in this way, it is not necessary to scrape off the conductor paste on the support as in the conventional case, so that the conductor pattern is not deformed and the conductive paste does not remain on the support. Further, when the photosensitive conductive film is formed on the support so that the film thickness is equal to or larger than the groove depth, when the patterned conductive film is transferred onto the insulating layer, Since the surface of the patterned conductive film surely contacts the insulating layer, the adhesion between the conductive film and the insulating layer is improved.

【0008】[0008]

【実施例】以下、本発明の積層型電子部品の製造方法を
図1乃至図5を参照して説明する。図1は本発明の積層
型電子部品の製造方法の第1の実施例を示す断面図であ
る。本発明の積層型電子部品は、まず、図1(A)に示
す様に、パターン形状の溝11が形成された支持体10
が準備される。この支持体10は、例えば、大きさが15
0mm×150mmで厚さが75μmのポリエチレンテレフタ
レートフィルム(商品名:マイラーフィルム)が用いら
れ、レーザ加工により深さ10μm、幅50μmの溝が形成
される。このレーザ加工に用いられるレーザとしては、
様々なものがあるが、エキシマレーザを用いた場合、光
分解すなわちアブレーション効果によって支持体が加工
されるので、炭酸ガスレーザやYAGレーザの様に照射
部分の周囲の熱分解による損傷が少なく、幅30μm、深
さ20μmといった微細で深さの深い溝を精度よく形成す
ることができる。この様に溝11が形成された支持体1
0の表面には、離型層12が形成される。離型層12
は、シリコン樹脂系の離型剤又は、フッ化炭素系の離型
剤を支持体10に塗布することにより形成される。な
お、図1では、1つの支持体上に積層型電子部品1個分
を形成する場合を模式的に示しているが、長尺の支持体
を用いることにより複数個を連続的に生産することもで
きる。次に、図1(B)に示す様に、支持体10の表面
全体に感光性導電ペーストを塗布し、乾燥させることに
より、支持体10上に感光性導電膜13Aが形成され
る。感光性導電膜13Aは、この支持体10上に、銀、
銀とパラジュウムの合金、銅、ニッケル等の導電材料に
ネガ型の感光剤が混入された感光性導電ペーストをスク
リーン印刷、スピンコート、ドクターブレード等の方法
を用いて塗布し、これを60〜80℃で30〜60分乾燥させて
形成される。この時、感光性導電膜13Aは、支持体1
0の溝に対応する部分の膜厚Hが支持体10の溝の深さ
Fと同じ(H=F)か又は支持体10の溝の深さFより
も大きくなる(H>F)様に形成される。例えば、深さ
10μmの溝に対し、ステンレス200メッシュ(紗厚80μ
m、開口率50%)のスクリーンを用い、スキージスピー
ドを50mm/秒で感光性導電ペーストを1回印刷したと
ころ、支持体10の溝に対応する部分の膜厚Hが15μm
となり、後述のパターン形状の導電膜を支持体10の表
面から5μm突出させることができた。続いて、図1
(C)に示す様に、パターン形状の孔を有するマスク1
4をその孔の位置が支持体10の溝の位置と一致する様
に配置し、このマスク14を介して感光性導電膜13A
に光線(例えば、紫外線)が照射される。この光線が照
射された感光性導電膜13Aは、支持体10の溝と対応
する部分が硬化して耐アルカリ性を示す。この感光性導
電膜13Aをアルカリ性の現像液で現像すると、光線が
照射された支持体10の溝と対応する部分を残してそれ
以外の部分が除去される。これを60〜80℃で30〜60分乾
燥させることにより、図1(D)に示す様に、支持体1
0の溝内にパターン形状の導電膜13Bが形成される。
このパターン形状の導電膜13Bは、感光性導電膜の支
持体10の溝に対応する部分の膜厚Hと支持体10の溝
の深さFと同じにした場合にはその表面が支持体10の
表面と同じ高さになり、感光性導電膜の支持体10の溝
に対応する部分の膜厚Hを支持体10の溝の深さFより
も大きくした場合にはその上部が支持体10の溝から突
出する。次に、図1(E)に示す様に、この支持体10
の導電膜13Bが形成された面と絶縁体層15の表面を
密着させ、圧力を加える。この導電膜13Bは、加圧し
た時点で絶縁体層15との密着力が支持体10との密着
力よりも大きくなり、絶縁体層15上に転写される。こ
の加圧した時点での導電膜13Bと支持体10の密着力
は、支持体10の表面に形成される離型層12の材料や
形成の仕方を変えることにより導体膜12Bと絶縁体層
15の密着力よりも小さくなる様に調整することができ
る。また、加圧した時点での導体膜12Bと絶縁体層1
5の密着力は、絶縁体層15に接着剤を混入するか、絶
縁体層15上に接着剤層を形成することにより導電膜1
3Bと支持体10の密着力よりも大きくなる様に調整す
ることができる。そして、この支持体10を剥離するこ
とにより、図1(F)に示す様に絶縁体層15の表面に
導体パターン13が形成される。この絶縁体層15は、
磁性体、誘電体、絶縁性セラミック等の絶縁体によって
形成される。また、この絶縁体層15は、セラミックグ
リーンシート、下層の絶縁体層上に形成された未焼成の
絶縁体材料層及び、焼成済みの基板等によって構成され
る。この絶縁体層15が未焼成の絶縁体材料層である場
合には、この絶縁体層15上に導体パターン13を覆う
様に絶縁体材料が印刷され、図1(A)〜図1(F)の
工程が行われ、積層体内や積層体表面の導体パターンに
よって回路素子や配線が形成される。また、この絶縁体
層15がセラミックグリーンシートの場合には、この絶
縁体層15を所定の順序で積層し、積層体内や積層体表
面の導体パターンによって回路素子や配線が形成され
る。さらに、この絶縁体層15が焼成済みの基板の場合
には、この絶縁体層15上に印刷積層法やシート積層法
により導体パターンと絶縁体層を積み重ね、積層体内や
積層体表面の導体パターンによって回路素子や配線が形
成される。導体パターン13は、インダクタンス素子を
形成する場合にはコイル用導体パターンとして機能し、
容量素子を形成する場合には容量用導体パターンとして
機能し、配線を形成する場合には配線用導体パターンと
して機能する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a laminated electronic component according to the present invention will be described below with reference to FIGS. FIG. 1 is a sectional view showing a first embodiment of a method for manufacturing a laminated electronic component of the present invention. In the multilayer electronic component of the present invention, first, as shown in FIG. 1 (A), a support 10 having a patterned groove 11 is formed.
Is prepared. The support 10 has, for example, a size of 15
A polyethylene terephthalate film (trade name: Mylar film) having a thickness of 0 mm × 150 mm and a thickness of 75 μm is used, and a groove having a depth of 10 μm and a width of 50 μm is formed by laser processing. As the laser used for this laser processing,
There are various types, but when an excimer laser is used, the support is processed by the photolysis, that is, the ablation effect, so there is little damage due to thermal decomposition around the irradiated part like carbon dioxide laser and YAG laser, and the width is 30 μm It is possible to accurately form a fine groove having a depth of 20 μm and a deep depth. Support 1 having grooves 11 formed in this way
The release layer 12 is formed on the surface of 0. Release layer 12
Is formed by applying a silicone resin-based release agent or a fluorocarbon-based release agent to the support 10. Although FIG. 1 schematically shows the case where one laminated electronic component is formed on one support, a plurality of continuous production can be performed by using a long support. You can also Next, as shown in FIG. 1B, a photosensitive conductive paste is applied to the entire surface of the support 10 and dried to form a photosensitive conductive film 13A on the support 10. The photosensitive conductive film 13A is formed on the support 10 by silver,
An alloy of silver and palladium, copper, a photosensitive conductive paste in which a negative type photosensitive agent is mixed with a conductive material such as nickel is applied using a method such as screen printing, spin coating, doctor blade, etc. It is formed by drying at 30 ° C. for 30 to 60 minutes. At this time, the photosensitive conductive film 13A is the support 1
The film thickness H of the portion corresponding to the 0 groove is equal to the groove depth F of the support 10 (H = F) or is larger than the groove depth F of the support 10 (H> F). It is formed. For example, depth
200 mesh stainless (80 μm mesh thickness) for 10 μm groove
m, an aperture ratio of 50%), a photosensitive conductive paste was printed once at a squeegee speed of 50 mm / sec, and the film thickness H of the portion corresponding to the groove of the support 10 was 15 μm.
Thus, the conductive film having a pattern shape described later could be projected from the surface of the support 10 by 5 μm. Then, Fig. 1
As shown in (C), a mask 1 having pattern-shaped holes
4 are arranged so that the positions of the holes thereof coincide with the positions of the grooves of the support 10, and the photosensitive conductive film 13A is formed through the mask 14.
Is irradiated with light rays (for example, ultraviolet rays). The portion of the photosensitive conductive film 13A irradiated with this light ray, which corresponds to the groove of the support 10, is cured and exhibits alkali resistance. When this photosensitive conductive film 13A is developed with an alkaline developing solution, a portion corresponding to the groove of the support 10 irradiated with the light beam is left and the other portion is removed. By drying this at 60 to 80 ° C. for 30 to 60 minutes, as shown in FIG.
A patterned conductive film 13B is formed in the groove of 0.
When the pattern-shaped conductive film 13B has the same film thickness H at the portion corresponding to the groove of the support 10 of the photosensitive conductive film and the groove depth F of the support 10, the surface thereof is the support 10. When the film thickness H of the portion of the photosensitive conductive film corresponding to the groove of the support 10 is made larger than the depth F of the groove of the support 10, the upper part of the support is the same as the surface of the support 10. Protruding from the groove. Next, as shown in FIG.
The surface on which the conductive film 13B is formed and the surface of the insulator layer 15 are brought into close contact with each other, and pressure is applied. This conductive film 13B has a larger adhesive force with the insulating layer 15 than the adhesive force with the support 10 at the time of pressing, and is transferred onto the insulating layer 15. The adhesive force between the conductive film 13B and the support 10 at the time of pressurizing the conductor film 12B and the insulating layer 15 is changed by changing the material and the method of forming the release layer 12 formed on the surface of the support 10. Can be adjusted to be smaller than the adhesion force of. In addition, the conductor film 12B and the insulator layer 1 at the time of applying pressure
The adhesive force of 5 is obtained by mixing an adhesive agent into the insulating layer 15 or by forming an adhesive layer on the insulating layer 15 to form the conductive film 1
It can be adjusted to be larger than the adhesion between 3B and the support 10. Then, by peeling the support 10, the conductor pattern 13 is formed on the surface of the insulating layer 15 as shown in FIG. This insulator layer 15 is
It is formed of an insulator such as a magnetic substance, a dielectric substance, or an insulating ceramic. The insulating layer 15 is composed of a ceramic green sheet, an unsintered insulating material layer formed on the lower insulating layer, a baked substrate, and the like. When the insulating layer 15 is an unsintered insulating material layer, an insulating material is printed on the insulating layer 15 so as to cover the conductor pattern 13, and the insulating layer 15 shown in FIGS. The step (1) is performed to form circuit elements and wirings by the conductor pattern on the surface of the laminated body and the laminated body. When the insulator layer 15 is a ceramic green sheet, the insulator layers 15 are laminated in a predetermined order, and circuit elements or wirings are formed by the conductor pattern inside the laminate or on the surface of the laminate. Further, when the insulating layer 15 is a baked substrate, a conductor pattern and an insulating layer are stacked on the insulating layer 15 by a printing laminating method or a sheet laminating method to form a conductor pattern in the laminated body or on the surface of the laminated body. A circuit element and wiring are formed by. The conductor pattern 13 functions as a coil conductor pattern when forming an inductance element,
When forming a capacitive element, it functions as a capacitance conductor pattern, and when forming a wiring, it functions as a wiring conductor pattern.

【0009】図2は、本発明の積層型電子部品の製造方
法の第2の実施例を示す断面図である。本発明の積層型
電子部品は、まず、図2に示す様に、パターン形状の溝
21が形成され、表面に離型層21が形成された支持体
20が準備される。この支持体20の溝21は、前述の
ものと異なり、深さを部分的に異ならせてある。次に、
支持体20の表面全体に感光性導電ペーストを塗布し、
乾燥させることにより、支持体20上に感光性導電膜が
形成される。続いて、パターン形状の孔を有するマスク
を介して感光性導電膜に光線を照射(露光)し、現像液
を用いて現像することにより、支持体20の溝21内に
パターン形状の導電膜が形成される。次に、この支持体
20の導電膜が形成された面と絶縁体層の表面を密着さ
せ、圧力を加え、支持体20を剥離することにより、絶
縁体層上に導体パターンが形成される。この導体パター
ンは、支持体20の溝21の深さの深い部分と深さの浅
い部分とで厚みが異なっており、溝21の深さの深い部
分に対応する部分が他の部分よりも突出している。この
様に絶縁体層上に形成された導体パターンは、その表面
が部分的に突出しているので、この突出した部分がこの
導体パターンを覆う様に形成された上層の絶縁体層のス
ルーホール内に埋設されることにより、この導体パター
ンと上層の絶縁体層上に形成された導体パターンを接続
することができ、コイル用導体パターン、回路素子と回
路素子の接続部分及び、配線用導体パターンとして用い
るのに適している。
FIG. 2 is a sectional view showing a second embodiment of the method for manufacturing a laminated electronic component according to the present invention. In the multilayer electronic component of the present invention, first, as shown in FIG. 2, a support 20 having a patterned groove 21 formed therein and a release layer 21 formed on the surface thereof is prepared. The groove 21 of the support 20 is partially different in depth, unlike the above-mentioned one. next,
Apply a photosensitive conductive paste to the entire surface of the support 20,
A photosensitive conductive film is formed on the support 20 by drying. Subsequently, the photosensitive conductive film is irradiated (exposed) with light through a mask having a pattern-shaped hole and is developed with a developing solution, so that the pattern-shaped conductive film is formed in the groove 21 of the support 20. It is formed. Next, the surface of the support 20 on which the conductive film is formed and the surface of the insulator layer are brought into close contact with each other, pressure is applied, and the support 20 is peeled off, whereby a conductor pattern is formed on the insulator layer. This conductor pattern has different thicknesses between the deep and shallow portions of the groove 21 of the support 20, and the portion corresponding to the deep portion of the groove 21 projects more than other portions. ing. Since the surface of the conductor pattern thus formed on the insulator layer partially protrudes, the inside of the through-hole of the upper insulator layer formed so that the protruded portion covers the conductor pattern. By embedding in, it is possible to connect this conductor pattern to the conductor pattern formed on the upper insulating layer, and to form a coil conductor pattern, a connecting portion between circuit elements and circuit elements, and a wiring conductor pattern. Suitable to use.

【0010】図3は、本発明の積層型電子部品の製造方
法の第3の実施例を示す断面図である。本発明の積層型
電子部品は、まず、図3に示す様に、パターン形状の溝
31が形成され、表面に離型層が形成された支持体30
が準備される。この支持体30の溝31は、底面の所定
の位置に凹み31が形成される。次に、支持体30の表
面全体に感光性導電ペーストを塗布し、乾燥させること
により、支持体30上に感光性導電膜が形成される。続
いて、マスクを介して感光性導電膜を露光し、現像液を
用いて現像することにより、支持体30の溝31と凹み
31B内に導電膜が形成される。次に、この支持体30
の導電膜を絶縁体層に転写し、支持体30を剥離するこ
とにより、絶縁体層上に導体パターンが形成される。こ
の導体パターンは、支持体30の凹み31Bに対応する
部分が他の部分よりも突出していおり、この部分がスル
ーホール内の導体として用いられる。
FIG. 3 is a sectional view showing a third embodiment of the method for manufacturing a laminated electronic component of the present invention. In the multilayer electronic component of the present invention, first, as shown in FIG. 3, a support 30 having a patterned groove 31 and a release layer formed on the surface thereof.
Is prepared. The groove 31 of the support 30 has a recess 31 formed at a predetermined position on the bottom surface. Next, a photosensitive conductive paste is applied to the entire surface of the support 30 and dried to form a photosensitive conductive film on the support 30. Subsequently, the photosensitive conductive film is exposed through a mask and developed with a developing solution, so that the conductive film is formed in the groove 31 and the recess 31B of the support 30. Next, this support 30
The conductive pattern is transferred to the insulating layer and the support 30 is peeled off to form a conductor pattern on the insulating layer. In this conductor pattern, a portion corresponding to the recess 31B of the support 30 is projected more than other portions, and this portion is used as a conductor in the through hole.

【0011】図4は、本発明の積層型電子部品の製造方
法の第4の実施例を示す断面図である。本発明の積層型
電子部品は、まず、パターン形状の溝が形成され、表面
に離型層(図示を省略)が形成された支持体が準備され
る。この支持体の溝41は、図4(A)に示す様に、そ
の断面形状が多角形の一部分からなり、かつ、溝を構成
する面の法線ベクトルVが常に平らに配置した支持体4
0の表面側又は表面に平行な方向を向く様に形成され
る。また、この溝41は、図4(B)に示す様に、その
断面形状が円形の一部分からなり、かつ、溝を構成する
面の法線ベクトルVが常に平らに配置した支持体40の
表面側又は表面に平行な方向を向く様に形成することも
できる。次に、この支持体40の表面全体に感光性導電
ペーストを塗布、乾燥させて支持体40上に感光性導電
膜が形成される。続いて、この感光性導電膜を露光し、
現像液を用いて現像することにより、支持体40の溝4
1内に導電膜が形成される。次に、この支持体40の導
電膜が形成された面と絶縁体層の表面を密着させ、圧力
を加え、支持体40を剥離することにより、絶縁体層上
に導体パターンが形成される。この様に導体パターンを
形成した場合、支持体40を剥離する際に支持体40か
ら導電膜が剥がれ易くなり、導体パターンへの応力が小
さくなり、形状の変形が小さくなる。
FIG. 4 is a sectional view showing a fourth embodiment of the method of manufacturing a laminated electronic component of the present invention. In the multilayer electronic component of the present invention, first, a support having a groove having a pattern shape and a release layer (not shown) formed on the surface is prepared. As shown in FIG. 4 (A), the groove 41 of this support body has a cross-sectional shape that is a part of a polygon, and the support body 4 in which the normal vector V of the surface forming the groove is always arranged flat.
It is formed so as to face the surface side of 0 or a direction parallel to the surface. Further, as shown in FIG. 4 (B), the groove 41 has a circular sectional shape, and the surface of the support 40 is such that the normal vector V of the surface forming the groove is always flat. It can also be formed so as to face a direction parallel to the side or the surface. Next, a photosensitive conductive paste is applied to the entire surface of the support 40 and dried to form a photosensitive conductive film on the support 40. Then, the photosensitive conductive film is exposed to light,
The groove 4 of the support 40 is developed by developing with a developer.
A conductive film is formed in the inside 1. Next, the surface of the support 40 on which the conductive film is formed and the surface of the insulator layer are brought into close contact with each other, pressure is applied, and the support 40 is peeled off, whereby a conductor pattern is formed on the insulator layer. When the conductor pattern is formed in this manner, the conductive film is easily peeled from the support 40 when the support 40 is peeled off, stress on the conductor pattern is reduced, and deformation of the shape is reduced.

【0012】以上、本発明の積層型電子部品の製造方法
の実施例を述べたが、本発明はこれらの実施例に限られ
るものではない。例えば、この導体パターンの形状は、
形成される回路素子や配線によって異なるが、例えば、
インダクタ、トランス、カプラ、バラン、コモンモード
チョーク、LCフィルタ、ノイズフィルタ、インピーダ
等の回路素子のコイル用導体パターンを形成する場合に
は、絶縁体層上に、直線状、ミアンダ状、ループ状、ス
パイラル状等様々な形状に形成される。また、絶縁体層
は、形成される回路素子によってその材質を適切に選択
して形成される。また、積層体の最上層の絶縁体層上に
配線用導体パターンを前述の様に形成することにより、
多層配線板を形成することもできる。
Although the embodiments of the method for manufacturing a laminated electronic component of the present invention have been described above, the present invention is not limited to these embodiments. For example, the shape of this conductor pattern is
Depending on the circuit elements and wiring to be formed, for example,
When forming a conductor pattern for a coil of a circuit element such as an inductor, a transformer, a coupler, a balun, a common mode choke, an LC filter, a noise filter, and an impeder, a linear shape, a meander shape, a loop shape, It is formed in various shapes such as a spiral shape. Further, the insulating layer is formed by appropriately selecting the material of the insulating layer according to the circuit element to be formed. Further, by forming the wiring conductor pattern on the uppermost insulating layer of the laminate as described above,
It is also possible to form a multilayer wiring board.

【0013】[0013]

【発明の効果】以上述べた様に、本発明の積層型電子部
品の製造方法は、パターン形状の溝を有し、その表面に
離型層が形成された支持体の表面に、感光性導電ペース
トを塗布し、乾燥させて感光性導電膜を形成する第1の
工程、感光性導電膜を露光し、現像によって溝と対応す
る部分以外の感光性導電膜を除去してパターン形状の導
電膜を形成する第2の工程及び、支持体上のパターン形
状の導電膜を絶縁体層上に転写して、絶縁体層上に導体
パターンを形成する第3の工程を備えているので、導体
パターンが変形することもなく、支持体上に導電ペース
トが残ることもない。従って、本発明の積層型電子部品
の製造方法は、その膜厚が厚く、位置や形状・寸法の精
度のよい導体パターンを絶縁体層に形成することがで
き、それにより抵抗値が低く、特性値のバラツキを少な
くできる。
As described above, according to the method of manufacturing a laminated electronic component of the present invention, a photosensitive conductive film is formed on the surface of a support having pattern-shaped grooves and a release layer formed on the surface thereof. First step of applying a paste and drying it to form a photosensitive conductive film, exposing the photosensitive conductive film, and removing the photosensitive conductive film other than the portion corresponding to the groove by development to form a patterned conductive film. And the third step of transferring the pattern-shaped conductive film on the support onto the insulator layer to form a conductor pattern on the insulator layer. Does not deform, and the conductive paste does not remain on the support. Therefore, according to the method for manufacturing a multilayer electronic component of the present invention, it is possible to form a conductor pattern having a large film thickness and high accuracy in position, shape, and dimension on the insulator layer, which results in a low resistance value and excellent characteristics. The variation in the value can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の積層型電子部品の製造方法の第1の
実施例を示す断面図である。
FIG. 1 is a cross-sectional view showing a first embodiment of a method of manufacturing a multilayer electronic component of the present invention.

【図2】 本発明の積層型電子部品の製造方法の第2の
実施例を示す断面図である。
FIG. 2 is a sectional view showing a second embodiment of the method for manufacturing a laminated electronic component of the present invention.

【図3】 本発明の積層型電子部品の製造方法の第3の
実施例を示す断面図である。
FIG. 3 is a cross-sectional view showing a third embodiment of the method for manufacturing a multilayer electronic component of the present invention.

【図4】 本発明の積層型電子部品の製造方法の第4の
実施例を示す断面図である。
FIG. 4 is a cross-sectional view showing a fourth embodiment of the method for manufacturing a multilayer electronic component of the present invention.

【符号の説明】[Explanation of symbols]

10 支持体 13 導体パターン 15 絶縁体層 10 Support 13 conductor pattern 15 Insulator layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 修一 埼玉県比企郡玉川村大字玉川字日野原828 番地 東光株式会社玉川工場内 Fターム(参考) 5E062 DD04 5E082 AA01 AB03 BB07 BC14 BC36 BC38 EE35 FG06 FG26 FG46 HH02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shuichi Ishida             828 Hinohara, Tamagawa character, Tamagawa village, Hiki district, Saitama prefecture             Address Toko Co., Ltd. Tamagawa factory F-term (reference) 5E062 DD04                 5E082 AA01 AB03 BB07 BC14 BC36                       BC38 EE35 FG06 FG26 FG46                       HH02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 パターン形状の溝を有し、その表面に離
型層が形成された支持体の表面に、感光性導電ペースト
を塗布し、乾燥させて感光性導電膜を形成する第1の工
程、該感光性導電膜を露光し、現像によって該溝と対応
する部分以外の該感光性導電膜を除去してパターン形状
の導電膜を形成する第2の工程及び、該支持体上のパタ
ーン形状の導電膜を絶縁体層上に転写して、該絶縁体層
上に導体パターンを形成する第3の工程を備えたことを
特徴とする積層型電子部品の製造方法。
1. A photosensitive conductive paste is applied to the surface of a support having pattern-shaped grooves and a release layer formed on the surface thereof, and dried to form a photosensitive conductive film. A second step of exposing the photosensitive conductive film to light and developing the photosensitive conductive film except a portion corresponding to the groove to form a conductive film having a pattern; and a pattern on the support. A method of manufacturing a multilayer electronic component, comprising a third step of transferring a conductive film having a shape onto an insulating layer to form a conductor pattern on the insulating layer.
【請求項2】 前記感光性導電膜は、前記支持体の溝と
対応する部分の乾燥後の膜厚が該溝の深さと同じか又
は、該溝の深さよりも大きくなる様に形成された請求項
1に記載の積層型電子部品の製造方法。
2. The photosensitive conductive film is formed such that a film thickness of a portion of the support corresponding to the groove after drying is equal to or greater than the depth of the groove. The method for manufacturing a multilayer electronic component according to claim 1.
【請求項3】 前記支持体の溝は、部分的に深さが異な
っている請求項1又は請求項2に記載の積層型電子部品
の製造方法。
3. The method for manufacturing a laminated electronic component according to claim 1, wherein the grooves of the support have partially different depths.
【請求項4】 前記支持体の溝は、底面に凹みが形成さ
れている請求項1又は請求項2に記載の積層型電子部品
の製造方法。
4. The method for manufacturing a multilayer electronic component according to claim 1, wherein the groove of the support has a recess formed on the bottom surface.
【請求項5】 前記支持体の溝は、その断面形状が多角
形又は円の一部分からなり、かつ、該溝を構成する面の
法線ベクトルが支持体の表面側又は支持体の表面と平行
な方向を向いている請求項1乃至請求項4に記載の積層
型電子部品の製造方法。
5. The groove of the support has a polygonal shape or a part of a circle in cross section, and the normal vector of the surface forming the groove is parallel to the surface side of the support or the surface of the support. 5. The method for manufacturing a multilayer electronic component according to claim 1, wherein the multilayer electronic component is oriented in any direction.
【請求項6】 前記支持体の溝がエキシマレーザを用い
て形成された請求項1乃至請求項5に記載の積層型電子
部品の製造方法。
6. The method for manufacturing a multilayer electronic component according to claim 1, wherein the groove of the support is formed by using an excimer laser.
【請求項7】 前記支持体の表面に形成される離型層
は、シリコン樹脂系又はフッ化炭素系の離型剤を用いて
形成される請求項1乃至請求項6に記載の積層型電子部
品の製造方法。
7. The multilayer electron according to claim 1, wherein the release layer formed on the surface of the support is formed using a silicone resin-based or fluorocarbon-based release agent. Manufacturing method of parts.
【請求項8】 前記絶縁体層が、誘電体又は磁性体で
形成された請求項1乃至請求項7に記載の積層型電子部
品の製造方法。
8. The method for manufacturing a multilayer electronic component according to claim 1, wherein the insulating layer is formed of a dielectric or a magnetic material.
【請求項9】 前記導体パターンが、前記絶縁体層と前
記導体パターンの積層体内に形成されたコイル用導体パ
ターンを構成する請求項1乃至請求項8に記載の積層型
電子部品の製造方法。
9. The method of manufacturing a laminated electronic component according to claim 1, wherein the conductor pattern constitutes a conductor pattern for a coil formed in a laminate of the insulator layer and the conductor pattern.
【請求項10】 前記導体パターンが、多層配線基板の
配線用導体パターンを構成する請求項1乃至請求項8に
記載の積層型電子部品の製造方法。
10. The method for manufacturing a multilayer electronic component according to claim 1, wherein the conductor pattern constitutes a wiring conductor pattern of a multilayer wiring board.
JP2002126461A 2002-04-26 2002-04-26 Method of manufacturing laminated electronic component Pending JP2003324027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126461A JP2003324027A (en) 2002-04-26 2002-04-26 Method of manufacturing laminated electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126461A JP2003324027A (en) 2002-04-26 2002-04-26 Method of manufacturing laminated electronic component

Publications (1)

Publication Number Publication Date
JP2003324027A true JP2003324027A (en) 2003-11-14

Family

ID=29540869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126461A Pending JP2003324027A (en) 2002-04-26 2002-04-26 Method of manufacturing laminated electronic component

Country Status (1)

Country Link
JP (1) JP2003324027A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814461B1 (en) 2006-04-18 2008-03-17 삼성전기주식회사 Manufacturing process of the electrode pattern
JP2009187991A (en) * 2008-02-01 2009-08-20 Noritake Co Ltd Method of manufacturing multilayer chip element
JP2014120759A (en) * 2012-12-13 2014-06-30 Samsung Electro-Mechanics Co Ltd Common mode filter and method of manufacturing the same
CN114464453A (en) * 2020-11-06 2022-05-10 株式会社村田制作所 Method for manufacturing electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814461B1 (en) 2006-04-18 2008-03-17 삼성전기주식회사 Manufacturing process of the electrode pattern
JP2009187991A (en) * 2008-02-01 2009-08-20 Noritake Co Ltd Method of manufacturing multilayer chip element
JP2014120759A (en) * 2012-12-13 2014-06-30 Samsung Electro-Mechanics Co Ltd Common mode filter and method of manufacturing the same
CN114464453A (en) * 2020-11-06 2022-05-10 株式会社村田制作所 Method for manufacturing electronic component

Similar Documents

Publication Publication Date Title
KR100455890B1 (en) A printed circuit board with embedded capacitors, and a manufacturing process thereof
US7570491B2 (en) Printed circuit board with embedded capacitors therein, and process for manufacturing the same
US6910266B2 (en) Printed circuit board with embedded capacitors therein, and process for manufacturing the same
TW388200B (en) Method for filling holes in printed wiring boards
JP2008112996A (en) Method of manufacturing printed-circuit substrate
JP2006261651A (en) Capacitor incorporated printed circuit board having blind via hole, and method of manufacturing the board
WO1998027795A1 (en) Circuit board having electric component and its manufacturing method
US8828247B2 (en) Method of manufacturing printed circuit board having vias and fine circuit and printed circuit board manufactured using the same
US20150053457A1 (en) Printed circuit board and method of manufacturing the same
US20070132476A1 (en) Method of forming circuit pattern on printed circuit board
JP2003324027A (en) Method of manufacturing laminated electronic component
JP2002176258A (en) Method of manufacturing printed wiring board
JP2001196746A (en) Printed wiring substrate and method for manufacturing printed wiring substrate
KR20070010452A (en) Printed circuit board making method
JP2005045163A (en) Method for manufacturing multilayer circuit board
JP3570242B2 (en) Manufacturing method of ceramic multilayer substrate
JP2009094330A (en) Substrate for wiring board and method for manufacturing the same
KR100871034B1 (en) Fabricating method of paste bump for printed circuit board
JP2003304060A (en) Method of manufacturing double-sided circuit board
JP3846209B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JP2005340728A (en) Laminated ceramic electronic component, circuit board and the like, and manufacturing method of ceramic green sheet including electrode and the like for manufacturing same component, same circuit board and the like
JP4082193B2 (en) Printed circuit board manufacturing method
KR100601477B1 (en) Manufacturing process of a capacitor embedded in PCB
JP2006253606A (en) Method for manufacturing ceramic green sheet and ceramic electronic device
JP3582481B2 (en) Manufacturing method of electronic components