JP2003321274A - Solid electrolyte element - Google Patents

Solid electrolyte element

Info

Publication number
JP2003321274A
JP2003321274A JP2003012005A JP2003012005A JP2003321274A JP 2003321274 A JP2003321274 A JP 2003321274A JP 2003012005 A JP2003012005 A JP 2003012005A JP 2003012005 A JP2003012005 A JP 2003012005A JP 2003321274 A JP2003321274 A JP 2003321274A
Authority
JP
Japan
Prior art keywords
sintered body
solid electrolyte
magnesia
electrolyte element
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003012005A
Other languages
Japanese (ja)
Other versions
JP2003321274A5 (en
Inventor
Takuya Matsubara
拓也 松原
Tomohiko Ogata
知彦 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003012005A priority Critical patent/JP2003321274A/en
Publication of JP2003321274A publication Critical patent/JP2003321274A/en
Publication of JP2003321274A5 publication Critical patent/JP2003321274A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte element having higher thermal shock resistance and having a quick electromotive force response speed and a stabilized electromotive force value irrespectively of oxygen concentrations. <P>SOLUTION: This solid electrolyte element is a zirconia sinter containing 6-12 molds magnesia and 0.1-0.5 wt.% (in terms of SiO<SB>2</SB>) silicic acid compound, wherein the bulk density of the sinter is 5.3 g/cm<SP>3</SP>or higher, the average crystal grain diameter is 20-80 μm, and 1,000-2,500 voids/mm<SP>2</SP>are present in a cross section inside the sinter. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製鉄、製鋼、ある
いは銅の精錬等で溶融金属の精錬を行う分野で、粗原料
から鍛錬した場合、溶存した酸素の濃度をより正確に、
より迅速に測定することが必要な酸素センサー用に好適
な固体電解質素子に関するものである。
TECHNICAL FIELD The present invention is in the field of refining molten metal by iron refining, steel making, copper refining, etc., and when refining from a raw material, the concentration of dissolved oxygen can be more accurately determined.
The present invention relates to a solid electrolyte element suitable for an oxygen sensor that needs to be measured more quickly.

【0002】[0002]

【従来の技術】立方晶ジルコニアは酸素イオン伝導体で
あることが知られており、溶融金属中の酸素濃度を測定
する固体電解質素子に使用されている。溶銅あるいは溶
鋼用の酸素センサーに使用する際の要求特性は耐熱衝撃
性および起電力特性(起電力値、応答速度)が挙げられ
る。耐熱衝撃性の優れた素材として部分安定化ジルコニ
ア燒結体が知られているが(例えば特許文献1参照)、
室温から1700℃までの急速な昇温による熱衝撃が与
えられた場合、割れてしまうことがあり、十分とは言え
ない。
BACKGROUND OF THE INVENTION Cubic zirconia is known to be an oxygen ion conductor and is used in a solid electrolyte element for measuring the oxygen concentration in molten metal. Required properties when used in an oxygen sensor for molten copper or molten steel include thermal shock resistance and electromotive force characteristics (electromotive force value, response speed). A partially stabilized zirconia sintered body is known as a material having excellent thermal shock resistance (see, for example, Patent Document 1).
When a thermal shock is applied due to a rapid temperature rise from room temperature to 1700 ° C., it may crack and is not sufficient.

【0003】また起電力特性においては、特に応答速度
が早いこと、および起電力値が低酸素濃度においても十
分大きく且つ酸素濃度に関わらず安定していることが必
要であるが、それを実現するための指標は提示されてい
ない。
Regarding the electromotive force characteristics, it is necessary that the response speed is particularly fast, and that the electromotive force value is sufficiently large even at a low oxygen concentration and stable regardless of the oxygen concentration, which is realized. No indicators are provided for this.

【0004】[0004]

【特許文献1】特公平3−53271号公報(全頁)[Patent Document 1] Japanese Patent Publication No. 3-53271 (all pages)

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる従来
の課題に鑑み、酸素センサー用固体電解質素子に好適な
耐熱衝撃性に優れ、かつ酸素濃度に関わらず迅速な応答
速度と安定した起電力値を有する固体電解質素子を提供
するものである。
In view of such conventional problems, the present invention has excellent thermal shock resistance suitable for a solid electrolyte element for an oxygen sensor, and has a rapid response speed and stable electromotive force regardless of oxygen concentration. A solid electrolyte element having a value is provided.

【0006】[0006]

【課題を解決するための手段】本発明はかかる課題を解
決するために次のような手段を採用するものである。す
なわち、マグネシアを6〜12モル%、珪酸化合物をS
iO2換算で0.1〜0.5重量%含有するジルコニア
燒結体から構成され、該燒結体は、その嵩密度が5.3
g/cm3以上、平均結晶粒子径が20〜80μmであり、か
つ燒結体内部に空孔が単位断面積あたり1000〜25
00個/mm2存在することを特徴とする固体電解質素子で
ある。
The present invention employs the following means in order to solve the above problems. That is, 6 to 12 mol% of magnesia and S of a silicic acid compound
It is composed of a zirconia sintered body containing 0.1 to 0.5% by weight in terms of iO 2 , and the sintered body has a bulk density of 5.3.
g / cm 3 or more, average crystal particle size is 20 to 80 μm, and pores are 1000 to 25 per unit cross-sectional area inside the sintered body.
The solid electrolyte element is characterized in that it is present at 00 / mm 2 .

【0007】[0007]

【発明の実施の形態】本発明は、耐熱衝撃性と起電力特
性が要求される固体電解質素子について鋭意検討し、マ
グネシアおよび珪酸化合物を特定量含有するジルコニア
燒結体であって、該燒結体は、その嵩密度が5.3g/cm
3以上、平均結晶粒子径が20〜80μmであり、かつ燒
結体内部に空孔が単位断面積あたり1000〜2500
個/mm 2存在するジルコニア燒結体によりかかる課題を解
決したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to thermal shock resistance and electromotive force characteristics.
Of solid electrolyte elements, which require high performance,
Zirconia containing specific amounts of gnesia and silicic acid compounds
A sintered body having a bulk density of 5.3 g / cm 3.
3As described above, the average crystal grain size is 20 to 80 μm, and
1000-2500 holes per unit cross-sectional area inside the united body
Pieces / mm 2Solve this problem by existing zirconia sintered body
It was decided.

【0008】本発明に使用されるジルコニア燒結体とし
ては、マグネシアを6〜12モル%、珪酸化合物をSi
2に換算して0.1〜0.5重量%含有することが重
要である。
The sintered zirconia used in the present invention contains 6 to 12 mol% of magnesia and Si of silicate compound.
It is important to contain 0.1 to 0.5% by weight in terms of O 2 .

【0009】純粋なジルコニアは室温では単斜晶であ
り、立方晶に変態させるには2370℃の温度が必要で
ある。しかし溶融金属の温度は通常1200℃〜170
0℃程度で扱われており、かかる温度で立方晶とするた
めにはイットリアやマグネシア、カルシアなどを固溶さ
せ、立方晶安定化ジルコニアとする必要がある。中でも
マグネシア系の安定化ジルコニアが耐熱素材として最も
優れている。
Pure zirconia is monoclinic at room temperature and requires a temperature of 2370 ° C. to transform into cubic. However, the temperature of the molten metal is usually 1200 ° C to 170 ° C.
It is handled at about 0 ° C., and it is necessary to form a cubic crystal-stabilized zirconia by solid-dissolving yttria, magnesia, calcia, etc. in order to form a cubic crystal at such a temperature. Among them, magnesia-based stabilized zirconia is the most excellent heat-resistant material.

【0010】本発明に用いるジルコニア燒結体はマグネ
シアを6〜12モル%含む必要があり、7〜10モル%
が好ましい。マグネシアが6モル%未満であると安定化
が十分に起こらず、イオン伝導性が阻害されることから
応答速度が遅く、また12モル%を越えるとマグネシア
層が単独で析出してしまい、起電力が不安定になる。
The sintered zirconia used in the present invention must contain 6 to 12 mol% of magnesia, and 7 to 10 mol%.
Is preferred. If the content of magnesia is less than 6 mol%, the stabilization will not occur sufficiently and the ion conductivity will be impaired, resulting in a slow response speed. If the content of magnesia exceeds 12 mol%, the magnesia layer will precipitate alone, resulting in electromotive force. Becomes unstable.

【0011】固体電解質素子として、耐熱衝撃性と良好
な起電力特性を両立するには焼結体の嵩密度、結晶粒界
の多さ、空孔の数を制御することが重要である。
As a solid electrolyte element, it is important to control the bulk density, the number of crystal grain boundaries, and the number of holes of the sintered body in order to achieve both thermal shock resistance and good electromotive force characteristics.

【0012】すなわち燒結体の嵩密度が5.3g/cm3
上、平均結晶粒子径が20〜80μmであり、かつ燒結
体内部に空孔が単位断面積あたり1000〜2500個
/mm2存在させることが重要である。
That is, the sintered body has a bulk density of 5.3 g / cm 3 or more, an average crystal grain size of 20 to 80 μm, and 1000 to 2500 pores per unit cross-sectional area inside the sintered body.
/ mm 2 It is important to exist.

【0013】上述の範囲において、嵩密度のみが、5.
3g/cm3未満である場合は、燒結体の空孔が大きすぎる
ため、燒結体強度が低下し溶鋼につけたときの流動抵抗
でセンサー素子が折れる恐れがある。また平均結晶粒子
が20μm未満であると粒界の数が多く、イオン伝導へ
の抵抗が大きいため、応答速度が遅くなり、起電力値も
低下することから低酸素濃度用として使用が困難にな
る。また80μmを越えると、耐熱衝撃性が弱く、17
00℃以上の溶鋼に浸けた場合、破損してしまう。また
空孔の存在割合が1000個/mm2未満であると耐熱衝撃
性が弱く破損してしまい、2500個/mm2を越えると応
答速度が遅くなり、起電力値も低下することから好まし
くない。
In the above range, only the bulk density is 5.
If it is less than 3 g / cm 3 , the pores of the sintered body are too large, and the strength of the sintered body decreases, and the sensor element may break due to the flow resistance when it is immersed in molten steel. If the average crystal grain size is less than 20 μm, the number of grain boundaries is large and the resistance to ionic conduction is large, so the response speed becomes slow and the electromotive force value also decreases, making it difficult to use for low oxygen concentration. . If it exceeds 80 μm, the thermal shock resistance becomes weak, and
If it is immersed in molten steel at 00 ° C or higher, it will be damaged. If the existence ratio of pores is less than 1000 holes / mm 2 , the thermal shock resistance is weak and damage occurs, and if it exceeds 2500 holes / mm 2 , the response speed becomes slow and the electromotive force value also decreases, which is not preferable. .

【0014】さらに起電力値を安定させるには、焼結体
を構成する各結晶粒子に存在する固溶したマグネシウア
の量について、そのバラツキを制御することが重要であ
る。各結晶中に存在するマグネシウア量は燒結条件に影
響される。これは燒結中に結晶の粒界に移動していくガ
ラス相の珪酸化合物が結晶成長時に結晶粒子内へ取り込
まれるはずのマグネシアと反応して珪酸マグネシウムと
なることで結晶内部のマグネシアの固溶量を不均一にす
ることが原因である。このバラツキをマグネシア重量濃
度の変動係数として2.0%以下とすることで従来より
さらに起電力の安定性を高めることができた。この変動
係数は次式により定義される。 変動係数[%] =σ/x×100 σ:結晶粒子のマグネシア重量濃度の母集団の標準偏差 x:結晶粒子のマグネシア重量濃度の平均値 ここで結晶粒子のマグネシア濃度は、後述する方法によ
り電子線マイクロアナライザーを用いて点分析を行いマ
グネシウム量を特定することにより求めることができ
る。
Further, in order to stabilize the electromotive force value, it is important to control the variation in the amount of solid solution magnesium present in each crystal grain constituting the sintered body. The amount of magnesia present in each crystal is affected by the sintering conditions. This is because the silicate compound in the glass phase that moves to the grain boundaries of the crystal during sintering reacts with magnesia that should be incorporated into the crystal grains during crystal growth to form magnesium silicate, which is the solid solution amount of magnesia inside the crystal. This is due to the non-uniformity. By setting this variation to 2.0% or less as the variation coefficient of the magnesia weight concentration, the stability of the electromotive force could be further improved as compared with the conventional case. This coefficient of variation is defined by the following equation. Coefficient of variation [%] = σ / x × 100 σ: Standard deviation of magnesia weight concentration of crystal particles from population x: Average value of magnesia weight concentration of crystal particles Here, the magnesia concentration of crystal particles is determined by the method described later. It can be determined by performing point analysis using a line microanalyzer and specifying the amount of magnesium.

【0015】変動係数の制御により、例えば2つの固体
電解質素子を酸素濃度数〜数十ppmの範囲で測定した
場合、マグネシア重量濃度の変動係数を2.0%以下と
することによって起電力値のさらなる安定性を実現でき
る。具体的には2つの固体電解質素子の起電力の差を5
mV以内にすることができる。尚、マグネシアの重量濃
度の変動係数が1.8%以下であることが望ましい。
By controlling the coefficient of variation, for example, when two solid electrolyte elements are measured in the oxygen concentration range of several to several tens of ppm, the coefficient of variation of the weight concentration of magnesia is set to 2.0% or less to reduce the electromotive force value. Further stability can be realized. Specifically, the difference between the electromotive forces of the two solid electrolyte elements is 5
It can be within mV. Incidentally, it is desirable that the coefficient of variation of the weight concentration of magnesia is 1.8% or less.

【0016】この変動係数の範囲にするためには燒結時
間の短縮、特に結晶が成長するまでの燒結時間を短くす
ることが有効である。特に1000℃から1700℃〜
1800℃まで昇温する際に、昇温速度が150℃/h
以上であることが好ましく、300℃/以上であればよ
り好ましく、1700℃/hあれば本発明には十分であ
る。
In order to bring the variation coefficient into the range, it is effective to shorten the sintering time, particularly to shorten the sintering time until the crystal grows. Especially from 1000 ° C to 1700 ° C
When heating up to 1800 ° C, the heating rate is 150 ° C / h
The above is preferable, and 300 ° C./or more is more preferable, and 1700 ° C./h is sufficient for the present invention.

【0017】またマグネシア含有ジルコニア燒結体10
0重量%に対して珪酸化合物をSiO2換算で0.1〜
0.5重量%含有する必要がある。好ましくは0.2〜
0.3重量%である。この珪酸化合物としてはSi
2、珪酸アルミニウム、珪酸マグネシウム、珪酸カル
シウムなどが挙げられるが、特にSiO2単独であるこ
とが好ましい。この珪酸化合物は燒結体の立方晶ジルコ
ニア結晶粒界にガラス相として存在し、粒界に存在する
単斜晶ジルコニアを包含し、単斜晶ジルコニア、立方晶
ジルコニアとの粒界にマイクロクラックを有する構造と
なる。このマイクロクラックがジルコニア結晶の熱膨張
を吸収することにより、さらに耐熱衝撃性を向上させる
効果がある。珪酸化合物含有量が0.1重量%未満であ
ると、結晶粒界に充分なガラス相が析出できなくなり、
その効果が見られないことがある。また0.5重量%を
越えると、ガラス相が厚くなり、イオン伝導性を阻害し
たり、マイクロクラックが大きくなり過ぎて気密性が低
下し、溶鋼中で溶鋼が浸透するためセンサーとしての起
電力安定性に欠けてしまう。
Further, a sintered body of zirconia containing magnesia 10
0.1% by weight of silicic acid compound in terms of SiO 2 with respect to 0% by weight.
It is necessary to contain 0.5% by weight. Preferably 0.2-
It is 0.3% by weight. This silicate compound is Si
Examples thereof include O 2 , aluminum silicate, magnesium silicate, calcium silicate and the like, but SiO 2 alone is particularly preferable. This silicic acid compound exists as a glass phase in the cubic zirconia crystal grain boundaries of the sintered body, includes monoclinic zirconia existing in the grain boundaries, and has microcracks in the grain boundaries with the monoclinic zirconia and cubic zirconia. It becomes a structure. The microcracks absorb the thermal expansion of the zirconia crystals, which has the effect of further improving the thermal shock resistance. When the content of the silicic acid compound is less than 0.1% by weight, a sufficient glass phase cannot be precipitated at the crystal grain boundary,
The effect may not be seen. On the other hand, if it exceeds 0.5% by weight, the glass phase becomes thick, which hinders the ionic conductivity, and the microcracks become too large to reduce the airtightness. It lacks stability.

【0018】本ジルコニア燒結体は立方晶および単斜晶
が共存している構造であり、室温におけるジルコニア単
斜晶率は60〜80モル%であることが好ましい。この
単斜晶率はX線回折法にて測定する回折強度により次式
で求める。ただし回折強度はローレンツ因子による補正
後の値を使用する。
The present zirconia sintered body has a structure in which cubic crystals and monoclinic crystals coexist, and the zirconia monoclinic crystal ratio at room temperature is preferably 60 to 80 mol%. The monoclinic crystal ratio is determined by the following formula from the diffraction intensity measured by the X-ray diffraction method. However, the diffraction intensity uses the value corrected by the Lorentz factor.

【0019】[0019]

【数1】 [Equation 1]

【0020】単斜晶率が60モル%未満であると、急加
熱時の単斜晶から立方晶への変態による体積収縮効果が
小さく、急激な膨張に耐えることができずに燒結体が割
れてしまうことがある。また80モル%を越えると、立
方晶の粒界に発生する単斜晶量が多くなり、立方晶への
変態時の収縮により粒界にクラックが発生し、機械的強
度が低くなり、溶鋼の流動などでセンサーが折れてしま
う恐れがある。本構造を得るためには1700〜180
0℃にて燒結した後、100〜500℃/hの冷却速度
で1300〜1400℃まで冷却し、その温度で1〜4
時間保持した後、50〜400℃/hの冷却速度で80
0〜1000℃まで冷却し、1〜4時間保持した後室温
まで冷却する。
If the monoclinic rate is less than 60 mol%, the effect of volumetric shrinkage due to the transformation from monoclinic to cubic at the time of rapid heating is small, and the sintered body cannot crack due to rapid expansion. It may happen. On the other hand, if it exceeds 80 mol%, the amount of monoclinic crystals generated at the grain boundaries of cubic crystals increases, cracks occur at the grain boundaries due to contraction during transformation to cubic crystals, and the mechanical strength becomes low, The sensor may break due to flow etc. 1700 to 180 to obtain this structure
After sintering at 0 ° C., it is cooled to 1300 to 1400 ° C. at a cooling rate of 100 to 500 ° C./h, and at that temperature for 1 to 4
After holding for 80 hours at a cooling rate of 50 to 400 ° C / h
Cool to 0 to 1000 ° C., hold for 1 to 4 hours, and then cool to room temperature.

【0021】本発明の固体電解質素子をセンサーとして
使用する場合は一端閉鎖管(以下タンマン管という)の
形状を有することが好ましい。これは内部に酸素濃度を
一定にする金属クロムと酸化クロム混合粉末や金属モリ
ブデンと酸化モリブデン混合粉末等の標準物質を入れる
ためである。封じ側の厚みは特に限定されるものではな
いが、0.4〜1.0mm程度が取扱性の点などから好
ましい。一般に厚さを薄くすればイオン伝導の距離が短
くなり、応答速度が速くなるが、薄すぎると起電力値の
低下および構造体としての強度が低下し、取扱時に破損
する恐れがある。
When the solid electrolyte element of the present invention is used as a sensor, it preferably has a shape of a closed end tube (hereinafter referred to as a Tammann tube). This is because a standard substance such as a mixed powder of metallic chromium and chromium oxide or a mixed powder of metallic molybdenum and molybdenum oxide that keeps the oxygen concentration constant is put inside. The thickness on the sealing side is not particularly limited, but is preferably about 0.4 to 1.0 mm from the viewpoint of handleability. Generally, if the thickness is made thin, the distance of ionic conduction becomes short and the response speed becomes fast, but if it is too thin, the electromotive force value decreases and the strength of the structure decreases, which may cause damage during handling.

【0022】本発明の固体電解質素子としてはヘリウム
リーク量が10〜100Ncc/cm2・hr・atmであることが
好ましく、さらに好ましくは20〜70Ncc/cm2・hr・a
tmであるのがよい。ヘリウムリーク量とは気密性の指標
であり、素子の構造の緻密さを判断することができる。
ヘリウムリーク量が100Ncc/cm2・hr・atmを越える場
合は、粒界のマイクロクラックを含むクラックが内部ま
で連結している恐れがある。この場合、溶鋼に浸けた場
合に溶鋼が固体電解質素子の内部まで浸透し、短絡によ
り正確に起電力を測定できなくなる恐れがある。また1
0Ncc/cm2・hr・atm未満であると、全体の厚みが厚すぎ
るか、粒界の珪酸化合物のマイクロクラックが不足して
おり、耐熱衝撃性に劣り、溶鋼に浸けた場合に割れてし
まう恐れがある。
The solid electrolyte element of the present invention preferably has a helium leak amount of 10 to 100 Ncc / cm 2 · hr · atm, more preferably 20 to 70 Ncc / cm 2 · hr · a.
It should be tm. The helium leak amount is an index of airtightness, and can determine the fineness of the device structure.
When the helium leak amount exceeds 100 Ncc / cm 2 · hr · atm, cracks including micro cracks at grain boundaries may be connected to the inside. In this case, when the molten steel is immersed in the molten steel, the molten steel may penetrate into the solid electrolyte element, and a short circuit may make it impossible to accurately measure the electromotive force. Again 1
If it is less than 0 Ncc / cm 2 · hr · atm, the overall thickness is too thick or the microcracks of the silicate compound at the grain boundaries are insufficient, resulting in poor thermal shock resistance and cracking when immersed in molten steel. There is a fear.

【0023】本発明の固体電解質素子の製造方法につい
て説明する。原料粉末は酸化物、塩化物、炭酸塩等のい
ずれでもよい。粉末の組成はマグネシアを6〜12モル
%、珪酸化合物をSiO2換算で0.1〜0.5重量%
混合する。ここでカルシアを0.3〜1.5モル%、ア
ルミナを0.5〜2モル%添加してもよい。カルシアは
マグネシアの立方晶安定化効果を補助する効果を持ち、
アルミナは燒結体の機械強度を向上させる効果がある。
粉末の合成は共沈法、加水分解法、酸化物混合法、熱分
解法のいずれでもよい。合成した粉末はボールミル、ビ
ーズミル、アトライター等で混合・粉砕しスラリー化す
る。その際、メディアや粉砕時間などは不純物の混入が
無い程度に行う。このスラリーを乾燥造粒する。プレス
成形をする場合にはスラリーの乾燥前にPVA、アクリ
ル酸エステル、パラフィン等、の有機バインダーを添加
する。プレス成形、射出成形などの成形方法で成形加工
し、上述の燒結条件範囲内で最高温度1700℃〜18
00℃の燒結を行う。
A method for manufacturing the solid electrolyte element of the present invention will be described. The raw material powder may be any of oxides, chlorides, carbonates and the like. The composition of the powder is 6 to 12 mol% of magnesia and 0.1 to 0.5 wt% of silicic acid compound in terms of SiO 2.
Mix. Here, 0.3 to 1.5 mol% of calcia and 0.5 to 2 mol% of alumina may be added. Calcia has the effect of assisting the cubic stabilizing effect of magnesia,
Alumina has the effect of improving the mechanical strength of the sintered body.
The powder may be synthesized by any of a coprecipitation method, a hydrolysis method, an oxide mixing method and a thermal decomposition method. The synthesized powder is mixed and pulverized with a ball mill, bead mill, attritor, etc. to form a slurry. At that time, the media and crushing time should be such that impurities are not mixed. This slurry is dry granulated. In the case of press molding, an organic binder such as PVA, acrylic acid ester or paraffin is added before drying the slurry. Molded by a molding method such as press molding or injection molding, and the maximum temperature is 1700 ° C to 18 within the above-mentioned sintering condition range.
Sinter at 00 ° C.

【0024】[0024]

【実施例】以下本発明を実施例により、さらに詳細に説
明する。
EXAMPLES The present invention will now be described in more detail by way of examples.

【0025】実施例の物性測定、評価を以下のように行
った。 (1)焼結体中のマグネシア量、シリカ量 試料約0.05gを白金ルツボに秤量し、硫酸水素カリ
ウムで溶融した。これを希硝酸で溶解して定溶し、IC
P発行分光分析法で各元素を定量し、この定量値を酸化
物換算した。 (2)平均結晶粒子径 燒結体表面を走査型電子顕微鏡で二次電子像を倍率20
0〜500にて撮影し、画像処理装置にて100個以上
の結晶を処理し、平均円相当径を求めた。 (3)空孔の存在割合 燒結体表面を#100のホーニングにより数mm研磨
し、さらにラップ鏡面処理を行った。その鏡面を走査型
電子顕微鏡にて二次電子像を倍率200倍で撮影し、
0.5mm角の画像4枚の空孔の個数を数えた。 (4)単斜晶率 燒結体表面を#100のホーニングにより数mm研磨
し、さらにラップ鏡面処理を行った。その表面をX線回
折測定装置にてCuKα線を用いてX線回折測定し、次
式で単斜晶率を求めた。ただし回折強度はローレンツ因
子による補正後の値を使用した。
The physical properties of the examples were measured and evaluated as follows. (1) Amount of magnesia and amount of silica in the sintered body About 0.05 g of the sample was weighed in a platinum crucible and melted with potassium hydrogen sulfate. Dissolve this with dilute nitric acid to make a constant solution,
Each element was quantified by the P-issuing spectroscopic method, and the quantified value was converted into an oxide. (2) Average crystal particle size A secondary electron image of the sintered body surface is magnified with a scanning electron microscope at a magnification of 20.
Images were taken at 0 to 500, 100 or more crystals were processed by an image processing device, and the average equivalent circle diameter was determined. (3) Proportion of Voids The surface of the sintered body was polished for several mm by # 100 honing, and further subjected to lapping mirror surface treatment. A secondary electron image of the mirror surface is taken with a scanning electron microscope at a magnification of 200 times,
The number of holes in four 0.5 mm square images was counted. (4) The monoclinic crystal sintered body surface was polished for several mm by # 100 honing and further subjected to lapping mirror surface treatment. The surface was subjected to X-ray diffraction measurement using CuKα ray with an X-ray diffraction measurement device, and the monoclinic crystal ratio was obtained by the following formula. However, the diffraction intensity used the value after correction by the Lorentz factor.

【0026】[0026]

【数2】 [Equation 2]

【0027】(5)ヘリウムリーク量 タンマン管形状の燒結体を、水を使用して超音波洗浄
し、250℃で乾燥した。次に燒結体外側を760mmHg
に調整したヘリウムガス雰囲気中に保持し、内部を真空
ポンプにて減圧した。減圧度を0.5torr(66.661P
a)以下になったら、減圧側を封止して減圧度1torr(1
33.322Pa)から5torr(666.61Pa)までの変化時間を
測定した。ヘリウムリーク量Lは次式で求めた。 L=(5/760−1/760)×V×3600/(T
×A) V:燒結体内部の内容積 (Ncc) T:減圧度1torrから5torrまでの変化時間 (秒) A:ヘリウムガスに接している燒結体の表面積と減圧雰
囲気に接している燒結体表面との単純平均面積 (cm
2) (6)結晶粒子内部のマグネシウム重量濃度の変動係数 燒結体表面を#100のホーニングにより数mm研磨
し、さらにラップ鏡面処理を行った。その鏡面から任意
に5個の結晶を選び、各結晶について電子線マイクロア
ナライザー(EPMA、日本電子製JXA-8621MX)にて点
分析を行いマグネシウムの定量分析を行った。定量分析
はBraggの回折条件を利用した分光器により特性X線を
分光測定し標準試料との強度比にZAF補正を行った。
またより精度を上げるため、結晶1個を3回測定し、そ
の平均値を定量値とした。
(5) Helium Leakage A sintered Tamman tube-shaped sintered body was ultrasonically washed with water and dried at 250 ° C. Next, the outside of the sintered body is 760 mmHg
It was kept in a helium gas atmosphere adjusted to, and the pressure inside was reduced by a vacuum pump. Decompression degree is 0.5 torr (66.661P
a) When the pressure falls below, seal the pressure reduction side and reduce the pressure to 1 torr (1
The change time from 33.322 Pa) to 5 torr (666.61 Pa) was measured. The helium leak amount L was calculated by the following equation. L = (5 / 760-1 / 760) × V × 3600 / (T
× A) V: Internal volume of sintered body (Ncc) T: Change time from decompression degree of 1 torr to 5 torr (seconds) A: Surface area of sintered body in contact with helium gas and surface of sintered body in contact with reduced pressure atmosphere And the simple average area (cm
2 ) (6) Coefficient of variation of magnesium weight concentration inside crystal particles The surface of the sintered body was ground for several mm by # 100 honing and further subjected to lapping mirror surface treatment. Five crystals were arbitrarily selected from the mirror surface, and each crystal was subjected to point analysis with an electron beam microanalyzer (EPMA, JXA-8621MX manufactured by JEOL Ltd.) to quantitatively analyze magnesium. In the quantitative analysis, characteristic X-rays were spectroscopically measured by a spectroscope utilizing Bragg's diffraction condition, and ZAF correction was performed on the intensity ratio with the standard sample.
In order to improve the accuracy, one crystal was measured three times, and the average value was used as the quantitative value.

【0028】この5個の結晶についての定量値を酸化物
換算の重量%として平均値xおよび、母集団の標準偏差
σを算出して下式より変動係数をもとめた。 変動係数[%] =σ/x×100 σ:結晶粒子のマグネシア重量濃度の母集団の標準偏差 x:結晶粒子のマグネシア重量濃度の平均値 (7)耐熱衝撃性 焼結体から構成される固体電解質素子を1700℃の溶
鋼に素早く浸漬し、15秒間保持して素早く引き上げ、
室温で放置して冷却した。まず、そのままの状態で鉄の
浸食状況を確認し、次にカラーチェック液(日本油脂製
浸透液FAW−3)に漬け、水洗した。カラーチェック
液はクラックがあればその部分に浸透するため、目視に
より検査を行った。クラックや割れが3ヶ所以上あるも
のを×、2ヶ所までのものを△、全くないものを○とし
て評価した。また鉄の浸食が発生するほど大きなクラッ
クが1本でもあるものは×とした。これを1種類につき
10本評価して1本でも×があれば×とし、×がなく1
本でも△があるものは△とした。 (8)起電力安定性および応答速度 焼結体から構成される固体電解質素子の内部に基準極と
して酸素濃度の標準物質である金属クロム粉末と酸化ク
ロム粉末を混合したものを充填し、モリブデン金属棒を
差し込み、内部に空気が入らないように解放口をアルミ
ナセメントで完全に封じた。また測定極としては溶鋼中
にFe棒を侵入した。それぞれの極を電位測定計および
レコーダーチャートにつないだものを2本準備し、酸素
濃度数〜数十ppmに調整した1600〜1700℃の
溶鋼中に同時に浸漬し、起電力値を測定した。これを1
種類につき10回、計20本について評価した。起電力
値は固体電解質素子の温度が上昇するにつき変動し、温
度が安定すると安定域になる。この安定域になるまでの
時間を応答速度とし、10秒以内であれば○、10秒以
上であれば×とした。また起電力の安定性は安定域に入
った段階で2本の起電力差が10回とも5mV以下であ
れば◎、1回でも5〜10mVがある場合は○、1回で
も10mVを越えた場合であれば×とした。 (実施例1)マグネシア量およびシリカ量が表1のN
o.1に示す量となるように調製した原料粉末を準備し
た。
The quantitative value of these five crystals was taken as the weight% in terms of oxide, and the average value x and the standard deviation σ of the population were calculated, and the coefficient of variation was determined from the following equation. Coefficient of variation [%] = σ / x × 100 σ: Standard deviation of magnesia weight concentration of crystal particles from population x: Average magnesia weight concentration of crystal particles (7) Solid composed of thermal shock resistant sintered body Immediately immerse the electrolyte element in molten steel at 1700 ° C, hold for 15 seconds, and quickly pull up,
It was left to cool at room temperature. First, the state of iron erosion was confirmed as it was, and then it was immersed in a color check liquid (NOW's penetrant FAW-3) and washed with water. If there is a crack, the color check liquid permeates into that portion, so an inspection was conducted visually. Those having 3 or more cracks or cracks were evaluated as ×, those up to 2 were evaluated as Δ, and those having no cracks were evaluated as ○. In addition, the case where even one crack was large enough to cause erosion of iron was marked with x. Evaluate 10 of each type, and if there is even one x, mark it as x.
Books with △ are marked with △. (8) Stability of electromotive force and response speed Molybdenum metal is filled with a mixture of a chromium metal oxide powder and a chromium oxide powder which is a standard substance of oxygen concentration as a reference electrode inside a solid electrolyte element. The rod was inserted and the opening was completely sealed with alumina cement to prevent air from entering inside. Further, as a measuring electrode, an Fe rod penetrated into the molten steel. Two electrodes each having each pole connected to a potentiometer and a recorder chart were prepared, and simultaneously immersed in molten steel at 1600 to 1700 ° C adjusted to an oxygen concentration of several to several tens of ppm, and the electromotive force value was measured. This one
A total of 20 pieces were evaluated 10 times for each type. The electromotive force value fluctuates as the temperature of the solid electrolyte element rises, and enters a stable range when the temperature stabilizes. The response speed was defined as the time until the stable region was reached, and was set to O if it was within 10 seconds and X if it was 10 seconds or more. The stability of electromotive force is such that when the electromotive force difference between the two wires is 5 mV or less for 10 times at the stage of entering the stable range, it is ◎, if there is 5-10 mV even for once, it exceeds 10 mV for once. In some cases, it was marked as x. (Example 1) The magnesia content and the silica content are N in Table 1.
o. The raw material powder prepared so as to have the amount shown in 1 was prepared.

【0029】これをプレス成形により外径4.5mm、
肉厚0.75mm、先端部の曲面R2.25mm、長さ
35mmの一端封じ円筒形状のタンマン管形状となるよ
うに成形した。
This is press-molded to have an outer diameter of 4.5 mm,
It was molded to have a cylindrical Tamman tube shape with a wall thickness of 0.75 mm, a curved surface R of 2.25 mm at the tip, and a length of 35 mm with one end closed.

【0030】本成形体を1000℃から1750℃まで
昇温速度50℃/hで昇温し、1750℃で3h保持し
た後、1400℃まで冷却速度150℃/hで冷却し、
1400℃で4h保持した後、800℃まで冷却速度2
00℃/hで冷却し、800℃で2h保持後、室温まで
冷却し、焼結体を得た。
The molded body was heated from 1000 ° C. to 1750 ° C. at a heating rate of 50 ° C./h, held at 1750 ° C. for 3 hours, and then cooled to 1400 ° C. at a cooling rate of 150 ° C./h,
After holding at 1400 ° C for 4 hours, cooling rate up to 800 ° C 2
After cooling at 00 ° C./h, holding at 800 ° C. for 2 h, it was cooled to room temperature to obtain a sintered body.

【0031】燒結体の単斜晶率、嵩密度、平均結晶粒子
径、空孔の個数、ヘリウムリーク量、マグネシア量の変
動係数は表1のNo.1の通りであった。また該焼結体
から構成される固体電解質素子の耐熱衝撃性および起電
力安定性、応答速度を評価したところ表1のNo.1の
結果となった。 (実施例2)マグネシア量およびシリカ量が表1のN
o.2に示す量となるように調製した原料粉末を準備し
た。
The monoclinic crystal ratio, bulk density, average crystal grain size, number of holes, helium leak amount, and magnesia amount variation coefficient of the sintered body are shown in Table 1. It was as 1. Moreover, when the thermal shock resistance, the electromotive force stability, and the response speed of the solid electrolyte element composed of the sintered body were evaluated, No. 1 in Table 1 was evaluated. The result was 1. (Example 2) The magnesia content and the silica content were N in Table 1.
o. Raw material powders were prepared to have the amounts shown in 2.

【0032】これを実施例1と同様に成形した。This was molded in the same manner as in Example 1.

【0033】本成形体を1000℃から1750℃まで
昇温速度150℃/hで昇温し、1750℃で3h保持
した後、1400℃まで冷却速度150℃/hで冷却
し、1400℃で4h保持した後、800℃まで冷却速
度200℃/hで冷却し、800℃で2h保持後、室温
まで冷却し、焼結体を得た。
The compact was heated from 1000 ° C. to 1750 ° C. at a heating rate of 150 ° C./h, held at 1750 ° C. for 3 hours, cooled to 1400 ° C. at a cooling rate of 150 ° C./h, and then cooled at 1400 ° C. for 4 hours. After holding, it was cooled to 800 ° C. at a cooling rate of 200 ° C./h, held at 800 ° C. for 2 hours and then cooled to room temperature to obtain a sintered body.

【0034】燒結体の単斜晶率、嵩密度、平均結晶粒子
径、空孔の個数、ヘリウムリーク量、マグネシア量の変
動係数は表1のNo.2の通りであった。また該焼結体
から構成される固体電解質素子の耐熱衝撃性および起電
力安定性、応答速度を評価したところ表1のNo.2の
結果となった。 (実施例3)マグネシア量およびシリカ量が表1のN
o.3に示す量となるように調製した原料粉末を準備し
た。
The coefficient of variation of the monoclinic crystal ratio, bulk density, average crystal particle size, number of holes, helium leak amount, and magnesia amount of the sintered body are shown in Table 1. There were two. Moreover, when the thermal shock resistance, the electromotive force stability, and the response speed of the solid electrolyte element composed of the sintered body were evaluated, No. 1 in Table 1 was evaluated. The result was 2. (Example 3) The magnesia amount and the silica amount of N in Table 1 are
o. Raw material powders prepared so as to have the amounts shown in 3 were prepared.

【0035】これを実施例1と同様に成形した。This was molded in the same manner as in Example 1.

【0036】本成形体を1000℃から1720℃まで
昇温速度300℃/hで昇温し、1720℃で3h保持
した後、1400℃まで冷却速度300℃/hで冷却
し、1400℃で4h保持した後、800℃まで冷却速
度200℃/hで冷却し、800℃で2h保持後、室温
まで冷却し、焼結体を得た。
The compact was heated from 1000 ° C. to 1720 ° C. at a heating rate of 300 ° C./h, held at 1720 ° C. for 3 hours, cooled to 1400 ° C. at a cooling rate of 300 ° C./h, and then cooled at 1400 ° C. for 4 hours. After holding, it was cooled to 800 ° C. at a cooling rate of 200 ° C./h, held at 800 ° C. for 2 hours and then cooled to room temperature to obtain a sintered body.

【0037】燒結体の単斜晶率、嵩密度、平均結晶粒子
径、空孔の個数、ヘリウムリーク量、マグネシア量の変
動係数は表1のNo.3の通りであった。また該焼結体
から構成される固体電解質素子の耐熱衝撃性および起電
力安定性、応答速度を評価したところ表1のNo.3の
結果となった。 (比較例1)マグネシア量およびシリカ量が表2のN
o.1に示す量となるように調製した原料粉末を準備し
た。
The coefficient of variation of the monoclinic crystal ratio, bulk density, average crystal particle size, number of holes, helium leak amount, and magnesia amount of the sintered body are shown in Table 1. It was as in 3. Moreover, when the thermal shock resistance, the electromotive force stability, and the response speed of the solid electrolyte element composed of the sintered body were evaluated, No. 1 in Table 1 was evaluated. The result was 3. (Comparative Example 1) The amount of magnesia and the amount of silica are N in Table 2.
o. The raw material powder prepared so as to have the amount shown in 1 was prepared.

【0038】これを実施例1と同様に成形した。This was molded in the same manner as in Example 1.

【0039】本成形体を1000℃から1750℃まで
昇温速度50℃/hで昇温し、1750℃で3h保持し
た後、1400℃まで冷却速度150℃/hで冷却し、
1400℃で4h保持した後、800℃まで冷却速度2
00℃/hで冷却し、800℃で2h保持後、室温まで
冷却し、焼結体を得た。
The compact was heated from 1000 ° C. to 1750 ° C. at a heating rate of 50 ° C./h, held at 1750 ° C. for 3 hours, and then cooled to 1400 ° C. at a cooling rate of 150 ° C./h,
After holding at 1400 ° C for 4 hours, cooling rate up to 800 ° C 2
After cooling at 00 ° C./h, holding at 800 ° C. for 2 h, it was cooled to room temperature to obtain a sintered body.

【0040】燒結体の単斜晶率、嵩密度、平均結晶粒子
径、空孔の個数、ヘリウムリーク量、マグネシア量の変
動係数は表2のNo.1の通りであった。また該焼結体
から構成される固体電解質素子の耐熱衝撃性および起電
力安定性、応答速度を評価したところ表2のNo.1の
結果となった。 (比較例2)マグネシア量およびシリカ量が表2のN
o.2に示す量となるように調製した原料粉末を準備し
た。
The coefficient of variation of the monoclinic crystal ratio, bulk density, average crystal particle diameter, number of holes, helium leak amount, and magnesia amount of the sintered body are shown in Table 2. It was as 1. Further, the thermal shock resistance, the electromotive force stability, and the response speed of the solid electrolyte element composed of the sintered body were evaluated. The result was 1. (Comparative Example 2) The magnesia content and the silica content were N in Table 2.
o. Raw material powders were prepared to have the amounts shown in 2.

【0041】これを実施例1と同様に成形した。This was molded in the same manner as in Example 1.

【0042】本成形体を1000℃から1830℃まで
昇温速度100℃/hで昇温し、1830℃で5h保持
した後、1400℃まで冷却速度150℃/hで冷却
し、1400℃で4h保持した後、800℃まで冷却速
度200℃/hで冷却し、800℃で2h保持後、室温
まで冷却し、焼結体を得た。
The compact was heated from 1000 ° C. to 1830 ° C. at a heating rate of 100 ° C./h, held at 1830 ° C. for 5 hours, cooled to 1400 ° C. at a cooling rate of 150 ° C./h, and then cooled at 1400 ° C. for 4 hours. After holding, it was cooled to 800 ° C. at a cooling rate of 200 ° C./h, held at 800 ° C. for 2 hours and then cooled to room temperature to obtain a sintered body.

【0043】燒結体の単斜晶率、嵩密度、平均結晶粒子
径、空孔の個数、ヘリウムリーク量、マグネシア量の変
動係数は表2のNo.2の通りであった。また該焼結体
から構成される固体電解質素子の耐熱衝撃性および起電
力安定性、応答速度を評価したところ表2のNo.2の
結果となった。 (比較例3)マグネシア量およびシリカ量が表2のN
o.3に示す量となるように調製した原料粉末を準備し
た。
The variation coefficients of the monoclinic crystal ratio, bulk density, average crystal particle size, number of holes, helium leak amount, and magnesia amount of the sintered body are shown in Table 2. There were two. Further, the thermal shock resistance, the electromotive force stability, and the response speed of the solid electrolyte element composed of the sintered body were evaluated. The result was 2. (Comparative Example 3) The magnesia content and the silica content are N in Table 2.
o. Raw material powders prepared so as to have the amounts shown in 3 were prepared.

【0044】これを実施例1と同様に成形した。This was molded in the same manner as in Example 1.

【0045】本成形体を1000℃から1750℃まで
昇温速度100℃/hで昇温し、1750℃で1h保持
した後、1000℃まで冷却速度200℃/hで冷却
し、1000℃で2h保持後、室温まで冷却し、焼結体
を得た。
The molded body was heated from 1000 ° C. to 1750 ° C. at a heating rate of 100 ° C./h, held at 1750 ° C. for 1 hour, cooled to 1000 ° C. at a cooling rate of 200 ° C./h, and heated at 1000 ° C. for 2 hours. After holding, it was cooled to room temperature to obtain a sintered body.

【0046】燒結体の単斜晶率、嵩密度、平均結晶粒子
径、空孔の個数、ヘリウムリーク量、マグネシア量の変
動係数は表2のNo.3の通りであった。また該焼結体
から構成される固体電解質素子の耐熱衝撃性および起電
力安定性、応答速度を評価したところ表2のNo.3の
結果となった。 (比較例4)マグネシア量およびシリカ量が表2のN
o.4に示す量となるように調製した原料粉末を準備し
た。
The coefficient of variation of the monoclinic crystal ratio, bulk density, average crystal particle diameter, number of holes, helium leak amount, and magnesia amount of the sintered body are shown in Table 2. It was as in 3. Further, the thermal shock resistance, the electromotive force stability, and the response speed of the solid electrolyte element composed of the sintered body were evaluated. The result was 3. (Comparative Example 4) The magnesia content and the silica content were N in Table 2.
o. Raw material powders prepared so as to have the amounts shown in 4 were prepared.

【0047】これを実施例1と同様に成形した。This was molded in the same manner as in Example 1.

【0048】本成形体を1000℃から1690℃まで
昇温速度100℃/hで昇温し、1690℃で3h保持
した後、1400℃まで冷却速度300℃/hで冷却
し、1400℃で4h保持した後、800℃まで冷却速
度200℃/hで冷却し、800℃で2h保持後、室温
まで冷却し、焼結体を得た。
The compact was heated from 1000 ° C. to 1690 ° C. at a heating rate of 100 ° C./h, held at 1690 ° C. for 3 hours, cooled to 1400 ° C. at a cooling rate of 300 ° C./h, and then cooled at 1400 ° C. for 4 hours. After holding, it was cooled to 800 ° C. at a cooling rate of 200 ° C./h, held at 800 ° C. for 2 hours and then cooled to room temperature to obtain a sintered body.

【0049】燒結体の単斜晶率、嵩密度、平均結晶粒子
径、空孔の個数、ヘリウムリーク量、マグネシア量の変
動係数は表2のNo.4の通りであった。また該焼結体
から構成される固体電解質素子の耐熱衝撃性および起電
力安定性、応答速度を評価したところ表2のNo.4の
結果となった。 (比較例5)マグネシア量およびシリカ量が表2のN
o.5に示す量となるように調製した原料粉末を準備し
た。
The variation coefficients of the monoclinic crystal ratio, bulk density, average crystal particle size, number of holes, helium leak amount, and magnesia amount of the sintered body are shown in Table 2. 4 was as follows. Further, the thermal shock resistance, the electromotive force stability, and the response speed of the solid electrolyte element composed of the sintered body were evaluated. The result was 4. (Comparative Example 5) The magnesia amount and the silica amount were N in Table 2.
o. Raw material powders prepared so as to have the amounts shown in No. 5 were prepared.

【0050】これを実施例1と同様に成形した。This was molded in the same manner as in Example 1.

【0051】本成形体を1000℃から1750℃まで
昇温速度100℃/hで昇温し、1750℃で3h保持
した後、1400℃まで冷却速度150℃/hで冷却
し、1400℃で4h保持した後、800℃まで冷却速
度200℃/hで冷却し、800℃で2h保持後、室温
まで冷却し、焼結体を得た。
The molded body was heated from 1000 ° C. to 1750 ° C. at a heating rate of 100 ° C./h, held at 1750 ° C. for 3 hours, cooled to 1400 ° C. at a cooling rate of 150 ° C./h, and cooled at 1400 ° C. for 4 hours. After holding, it was cooled to 800 ° C. at a cooling rate of 200 ° C./h, held at 800 ° C. for 2 hours and then cooled to room temperature to obtain a sintered body.

【0052】燒結体の単斜晶率、嵩密度、平均結晶粒子
径、空孔の個数、ヘリウムリーク量、マグネシア量の変
動係数は表2のNo.5の通りであった。また該焼結体
から構成される固体電解質素子の耐熱衝撃性および起電
力安定性、応答速度を評価したところ表2のNo.5の
結果となった。
The variation coefficients of the monoclinic crystal ratio, bulk density, average crystal particle size, number of holes, helium leak amount, and magnesia amount of the sintered body are shown in Table 2. It was as 5. Further, the thermal shock resistance, the electromotive force stability, and the response speed of the solid electrolyte element composed of the sintered body were evaluated. The result was 5.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【発明の効果】本発明により、耐熱衝撃性に優れ、起電
力応答速度が速くかつ起電力の安定性の優れた酸素濃度
測定等に好適に用いることのできる固体電解質素子を提
供することができる。
According to the present invention, it is possible to provide a solid electrolyte element which is excellent in thermal shock resistance, has a high electromotive force response speed, and is excellent in stability of electromotive force, and which can be suitably used for oxygen concentration measurement and the like. .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】マグネシアを6〜12モル%、珪酸化合物
をSiO2換算で0.1〜0.5重量%含有するジルコ
ニア燒結体から構成され、該燒結体は、その嵩密度が
5.3g/cm3以上、平均結晶粒子径が20〜80μmであ
り、かつ燒結体内部に空孔が単位断面積あたり1000
〜2500個/mm2存在することを特徴とする固体電解質
素子。
1. A zirconia sintered body containing 6 to 12 mol% of magnesia and 0.1 to 0.5% by weight of a silicic acid compound in terms of SiO 2 , and the sintered body has a bulk density of 5.3 g. / cm 3 or more, the average crystal grain size is 20 to 80 μm, and pores are 1000 per unit cross-sectional area inside the sintered body.
The solid electrolyte element is characterized by the presence of up to 2,500 pieces / mm 2 .
【請求項2】前記ジルコニア燒結体はジルコニア単斜晶
率が60〜80モル%である請求項1記載の固体電解質
素子。
2. The solid electrolyte element according to claim 1, wherein the zirconia sintered body has a zirconia monoclinic crystal ratio of 60 to 80 mol%.
【請求項3】前記燒結体を構成する結晶粒子におけるマ
グネシウア重量濃度の粒子間での変動係数が2.0%以
下であることを特徴とする請求項1または2記載の固体
電解質素子。
3. The solid electrolyte element according to claim 1 or 2, wherein a coefficient of variation between particles of a magnesium concentration of crystal particles forming the sintered body is 2.0% or less.
【請求項4】一端閉鎖管形状を有し、かつヘリウムリー
ク量が10〜100Ncc/cm2・hr・atmであることを特徴
とする請求項1〜3のいずれかに記載の固体電荷質素
子。
4. The solid-state charge device according to claim 1, which has a shape of a tube closed at one end and has a helium leak amount of 10 to 100 Ncc / cm 2 · hr · atm. .
JP2003012005A 2002-02-28 2003-01-21 Solid electrolyte element Pending JP2003321274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012005A JP2003321274A (en) 2002-02-28 2003-01-21 Solid electrolyte element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-53043 2002-02-28
JP2002053043 2002-02-28
JP2003012005A JP2003321274A (en) 2002-02-28 2003-01-21 Solid electrolyte element

Publications (2)

Publication Number Publication Date
JP2003321274A true JP2003321274A (en) 2003-11-11
JP2003321274A5 JP2003321274A5 (en) 2005-10-20

Family

ID=29552093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012005A Pending JP2003321274A (en) 2002-02-28 2003-01-21 Solid electrolyte element

Country Status (1)

Country Link
JP (1) JP2003321274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023128A (en) * 2004-07-06 2006-01-26 Denso Corp Zirconia structure and its manufacturing method
JP2008286569A (en) * 2007-05-16 2008-11-27 Ngk Spark Plug Co Ltd Sensor element, and gas sensor equipped with the sensor element
JP2012027036A (en) * 2011-09-26 2012-02-09 Ngk Spark Plug Co Ltd Sensor element and gas sensor with sensor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023128A (en) * 2004-07-06 2006-01-26 Denso Corp Zirconia structure and its manufacturing method
JP4548020B2 (en) * 2004-07-06 2010-09-22 株式会社デンソー Zirconia structure and manufacturing method thereof
JP2008286569A (en) * 2007-05-16 2008-11-27 Ngk Spark Plug Co Ltd Sensor element, and gas sensor equipped with the sensor element
JP2012027036A (en) * 2011-09-26 2012-02-09 Ngk Spark Plug Co Ltd Sensor element and gas sensor with sensor element

Similar Documents

Publication Publication Date Title
US4370393A (en) Solid electrolytes
CN104150884B (en) Alumina sintered body and manufacture method thereof
JPS6324951B2 (en)
Paulus et al. Sol gel vs solid state synthesis of the fast lithium-ion conducting solid state electrolyte Li7La3Zr2O12 substituted with iron
JP2617204B2 (en) Method for producing solid electrolyte
JPS6038350B2 (en) Solid electrolyte for oxygen sensor
JP3997365B2 (en) Oxide ion conductive single crystal and method for producing the same
JPS61101462A (en) Zirconia ceramic
Cao et al. Mechanical alloying and thermal decomposition of (ZrO2) 0.8–(α-Fe2O3) 0.2 powder for gas sensing applications
JP4254222B2 (en) Zirconia powder
JP2003321274A (en) Solid electrolyte element
EP3079032B1 (en) Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
WO2022254989A1 (en) Solid electrolyte and gas sensor
JP4507148B2 (en) Heat treatment member made of mullite sintered body
JPH07126061A (en) Magnesia-based sintered material and production thereof
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JPH07149522A (en) Zirconia electrolyte powder and its production
JP2003034575A (en) Solid electrolyte element
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
CN101665352A (en) Aluminum oxide sintered product and method for producing the same
JPH0258232B2 (en)
An et al. Investigation of electronic conductivity and thermal shock stability for MgO partially stabilized zirconia
JP2002338348A (en) Solid electrolyte element
Yao et al. Sodium activity determinations in molten 99.5% aluminium using solid electrolytes
JPH10213563A (en) Solid electrolyte element and oxygen concentration measuring device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916