JP2003313624A - Method for manufacturing iron-base sintered compact - Google Patents

Method for manufacturing iron-base sintered compact

Info

Publication number
JP2003313624A
JP2003313624A JP2003042551A JP2003042551A JP2003313624A JP 2003313624 A JP2003313624 A JP 2003313624A JP 2003042551 A JP2003042551 A JP 2003042551A JP 2003042551 A JP2003042551 A JP 2003042551A JP 2003313624 A JP2003313624 A JP 2003313624A
Authority
JP
Japan
Prior art keywords
iron
powder
mass
molding
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003042551A
Other languages
Japanese (ja)
Other versions
JP4615191B2 (en
Inventor
Naomichi Nakamura
尚道 中村
Satoshi Uenosono
聡 上ノ薗
Shigeru Unami
繁 宇波
Masashi Fujinaga
政志 藤長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003042551A priority Critical patent/JP4615191B2/en
Publication of JP2003313624A publication Critical patent/JP2003313624A/en
Application granted granted Critical
Publication of JP4615191B2 publication Critical patent/JP4615191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an iron-base sintered compact having high strength, high density, and little dispersion of characteristics. <P>SOLUTION: This manufacturing method comprises preliminarily compression- molding an iron-base mixed powder which contains an iron-base powder and a graphite powder, and has an adhering rate C defined by the expression: the adhering rate C (%)=ä[CA]/[C<SB>total</SB>]}×100, in an amount of 65% or higher, into a preform; then temporarily sintering the preform into a material to be molded; subsequently recompression-molding the material into a recompressed compact; and resintering and/or heat-treating it. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、各種機械部品に用
いて好適な鉄基焼結体の製造方法に係り、とくに機械的
特性のばらつきが小さな鉄基焼結体の製造方法に関す
る。 【0002】 【従来の技術】粉末冶金技術は、複雑な形状の部品をニ
アネット形状でしかも高寸法精度に製造することがで
き、粉末冶金製品の切削コストを大幅に低減できる。最
近では、とくに、鉄系の粉末冶金製品(鉄基粉末製品
(鉄基焼結部材))に対し、部品の小型化、軽量化のた
めの高強度化が強く要求されている。 【0003】鉄基焼結部材(鉄基焼結体あるいは単に焼
結体ともいう)は、鉄基粉末に、黒鉛粉、銅粉等の合金
用粉末と、さらにステアリン酸亜鉛、ステアリン酸リチ
ウム等の潤滑剤とを混合し鉄基混合粉とし、ついでこの
鉄基混合粉を金型に充填し加圧成形して成形体としたの
ち、この成形体を焼結して焼結体とする工程により製造
されるのが一般的である。得られた焼結体は、必要に応
じサイジングや切削加工が施され粉末冶金製品とされ
る。また、高強度が必要な場合には、焼結体に、さらに
浸炭熱処理や光輝熱処理を施す場合もある。このような
工程で得られた成形体の密度は、たかだか6.6 〜7.1Mg/
m3程度であり、したがって、これらの成形体から得られ
る焼結体の密度もこの程度となる。 【0004】鉄基粉末製品(鉄基焼結部材)の高強度化
には、成形体の高密度化による焼結部材(焼結体)の高
密度化が有効である。高密度の焼結部材(焼結体)ほ
ど、部材中の空孔が減少し、引張強さ、衝撃値、疲労強
度などの機械的性質が向上する。粉末冶金製品(焼結部
材)の密度を高くする方法として、粉末冶金法と冷間鍛
造法を組合せ、ほぼ真密度に近い製品が得られる焼結冷
間鍛造方法が、例えば、特許文献1に提案されている。
焼結冷間鍛造方法(以下、焼結再圧縮成形法ともいう)
とは、金属粉成形体を焼結したプリフォーム(予備成形
品)を冷間で鍛造したのち、再焼結して高密度組成の最
終製品を得る成形、加工方法である。特許文献1に記載
された技術は、表面に液状潤滑剤を塗布した冷間鍛造用
焼結プリフォームをダイス内で仮圧縮成形したのち、該
プリフォームに負圧を作用させて液状潤滑剤を吸引除去
し、その後ダイス内で本圧縮成形し、再焼結する焼結冷
間鍛造方法である。この方法によれば、仮圧縮成形前に
塗布し内部に浸透した液状潤滑剤を本圧縮成形前に吸引
するため、内部の微小空隙が本圧縮成形時に圧潰消滅し
て高密度の最終製品が得られるとしている。しかし、こ
の方法で得られる最終焼結製品の密度は、たかだか7.5M
g/m3程度であるためその強度には限界があった。 【0005】一方、粉末冶金製品(焼結体)の機械的強
度をさらに高めるためには、製品の炭素(C)濃度を増
加させることが効果的である。粉末冶金法では、炭素
(C)源として、黒鉛粉を原料金属粉に混合することが
一般的であるが、黒鉛粉を混合した金属粉を予備成形
後、仮焼結(予備焼結)して成形用素材とし、さらに再
圧縮成形したのち、再焼結して高強度の焼結体を得る方
法が考えられる。しかし、従来の方法で仮焼結(予備焼
結)を行うと、仮焼結(予備焼結)時に炭素(C)が成
形用素材全体に拡散し、成形素材の硬度が増加する。こ
のため、再圧縮成形を行うに際し、成形荷重が非常に大
きくなり、しかも変形能が低下しているため所望の形状
に加工できないという問題があった。したがって、高強
度、高密度の製品が得られないのである。 【0006】このような問題に対しては、例えば、特許
文献2には、高温での成形を行うことなく、軸受部品を
製造する方法が開示されている。この方法は、鉄粉と、
鉄合金粉と、黒鉛粉と潤滑剤とを混合し、この混合粉を
予備成形品に成形したのち、仮焼結し、ついで少なくと
も50%の塑性加工を与える冷間鍛造を行い、その後焼
結、焼鈍し、ロール加工して最終製品(焼結部材)とす
る工程からなっている。特許文献2に記載された技術で
は、黒鉛の拡散を抑制した条件で仮焼結を行うことによ
り、その後の冷間鍛造で高い変形能を発現させ、成形荷
重を低くすることができるとしている。しかし、特許文
献2には、仮焼結条件として、1100℃×15〜20min が推
奨されており、本発明者らの実験によれば、この条件で
は、黒鉛が予備成形品に完全に拡散してしまい、焼結部
材用素材(予備成形品)の硬さが著しく増加し、その後
の冷間鍛造が困難であるということがわかった。 【0007】このような問題に対し、例えば、特許文献
3には、鉄を主成分とする金属粉に0.3 重量%以上の黒
鉛を混合してなる金属質粉を圧粉成形して、密度が7.3g
/cm3以上の予備成形体を得る成形工程と、この予備成形
体を、好ましくは800 〜1000℃の温度範囲で仮焼結し
て、金属粉の粒界に黒鉛が残留している状態の組織を有
する金属質粉成形素材を得る焼結工程と、からなる金属
質成形素材の製造方法が提案されている。この技術によ
れば、強度増加に必要な炭素量のみを固溶し、遊離黒鉛
を残存させ、鉄粉が過度に硬化するのを防止することに
より、再圧縮成形時に、低い成形荷重と高い変形能を有
する成形用素材が得られ、高強度の製品(焼結部材)が
得られるとしている。しかしながら、この方法で得られ
た金属質粉成形素材は、再圧縮成形工程において高い変
形能を有しているが、その後の本焼結時に、残存した遊
離黒鉛が消失して、細長い空孔を生ずることがあり、製
品の機械的強度に問題が残されていた。 【0008】また、特許文献4には、鉄を主成分とする
金属粉に0.3 重量%以上の黒鉛を混合してなる金属質粉
を圧粉成形して得られた、 密度が7.3 g/cm3 以上の予
備成形体を所定の温度で仮焼結して、金属粉の粒界に黒
鉛が残留している状態の組織を有する金属質粉成形素材
を得る仮焼結工程と、この仮焼結工程で得られた金属質
粉成形素材を再圧縮成形する再圧縮工程と、この再圧縮
工程で得られた再圧縮成形体を再焼結する再焼結工程
と、からなる焼結体の製造方法が提案されている。 【0009】また、特許文献5には、合金鋼粉に、0.1
重量%以上の黒鉛を混合してなる金属質粉を圧粉成形し
て得られた、 密度が7.3 g/cm3 以上の予備成形体を所
定の温度で仮焼結して、金属粉の粒界に黒鉛が残留して
いる状態の組織を有する金属質粉成形素材とし、この金
属質粉成形素材を再圧縮成形して空隙のほとんどない緻
密化した組織を有する合金鋼粉塑性加工体とし、この合
金鋼粉塑性加工体を所定温度で再焼結してなり、黒鉛が
拡散した組織と、黒鉛が残留した組織が再焼結温度に応
じて所定の割合で有する合金鋼粉再焼結加工体が示され
ている。 【0010】 【特許文献1】特開平1−123005号公報 【特許文献2】米国特許第4,393,563号公報 【特許文献3】特開平11−117002号公報 【特許文献4】特開2000−303106号公報 【特許文献5】特開2000−355726号公報 【0011】 【発明が解決しようとする課題】特許文献4、特許文献
5に記載された技術によれば、高密度の焼結体が得られ
るが、しかしながら、特許文献4、特許文献5に記載さ
れた技術で製造された焼結体では、回転曲げ疲労特性な
どの機械的特性のばらつきが大きい場合があり問題を残
していた。 【0012】本発明は、上記した従来技術の問題を有利
に解決し、高密度で、かつ優れた機械的特性を有する焼
結体を、特性のばらつきが少なく、しかも安定して製造
できる方法を提案することを目的とする。 【0013】 【課題を解決するための手段】本発明者らは、上記した
課題を達成するために、焼結再圧縮成形法を用いて製造
された鉄基焼結体の機械的特性に影響する要因につい
て、鋭意検討した。その結果、鉄基焼結体の機械的特性
は、混合した黒鉛の量および鉄基混合粉中の黒鉛の分散
の均一性に敏感であることを知見した。そして、本発明
者らは、黒鉛粉末を鉄基粉末へ付着させた状態の鉄基混
合粉を使用することにより、とくに鉄基焼結体の機械的
特性のばらつきが顕著に低減することを見い出した。 【0014】本発明は、上記した知見に基づいて、さら
に検討を加えて完成されたものである。すなわち、本発
明は、鉄基粉末と黒鉛粉末とを含む鉄基混合粉を、予備
圧縮成形して予備成形体としたのち、該予備成形体に仮
焼結を施して成形用素材とし、ついで該成形用素材に再
圧縮成形を施し再圧縮成形体としたのち、該再圧縮成形
体に再焼結および/または熱処理を施す鉄基焼結体の製
造方法において、前記鉄基混合粉を、次(1)式 C付着率(%)={[CA ]/[Ctotal ]}×100 ………(1) (ここで、C付着率:黒鉛粉末の鉄基粉末への付着量
(%)、[CA ]:鉄基混合粉中の100 〜200 メッシュ
留分中のC含有量(質量%)、[Ctotal ]:鉄基混合
粉中のC含有量(質量%)) で定義されるC付着率が65%以上である鉄基混合粉とす
ることを特徴とする鉄基焼結体の製造方法である。 【0015】また、本発明では、前記成形用素材が、質
量%で、C:0.1 〜0.5 %、O:0.3 %以下、N:0.01
00%以下を含み、残部Feおよび不可避的不純物からなる
組成を有し、かつ遊離黒鉛が0.02%以下であることが好
ましく、また、本発明では、前記組成に加えてさらに、
質量%で、Mn:1.2 %以下、Mo:2.3 %以下、Cr:3.0
%以下、Ni:5.0 %以下、Cu:2.0 %以下、V:1.4 %
以下のうちから選ばれた1種または2種以上を含有する
組成とすることが好ましい。 【0016】 【発明の実施の形態】図1に、本発明における鉄基焼結
体の製造工程の1例を示す。本発明では、原料粉末とし
て、鉄基粉末と、黒鉛粉末と、あるいはさらに合金用粉
末とを用いる。原料粉末として使用する鉄基粉末は、質
量%で、C:0.05%以下、O:0.3 %以下、N:0.0100
%以下を含み、残部Feおよび不可避的不純物からなる組
成を有する鉄基粉末が好適である。C:0.05質量%、
O:0.3 質量%、N:0.010 質量%をそれぞれ超える含
有は、粉の圧縮性を低下させ、予備成形体の密度を高く
することが困難になる。なお、鉄基粉末のO含有量はで
きるだけ低いことが圧縮成形性の観点からは好ましい
が、Oは不可避的に含有される元素であり、経済的に高
価とならず工業的に実施可能なレベルである0.02質量%
を下限とするのが望ましい。なお、工業的な経済性の観
点から好ましいO含有量は0.03〜0.2 質量%である。 【0017】本発明で使用する鉄基粉末の粒径は、とく
に限定する必要はないが、工業的に低コストで製造でき
る、平均粒径で30〜100 μm とするのが望ましい。な
お、平均粒径は重量積算粒度分布の中点(d50)の値と
する。また、本発明で使用する鉄基粉末では、上記した
組成に加えてさらに、再焼結体の強度を増加し、あるい
は焼入れ性を増加するために、Mn:1.2 質量%以下、M
o:2.3 質量%以下、Cr:3.0 質量%以下、Ni:5.0 質
量%以下、Cu:2.0 質量%以下、V:1.4 質量%以下か
ら選ばれた1種または2種以上を含有できる。これら合
金元素は、鉄基粉末に予合金化しても、また鉄基粉末に
部分拡散付着して部分合金化してもよく、あるいは金属
粉末(合金用粉末)として混合してもよい。しかし、い
ずれの場合においても、Mn:1.2 質量%、Mo:2.3 質量
%、Cr:3.0 質量%、Ni:5.0 質量%、Cu:2.0 質量
%、V:1.4 質量%を、それぞれ超えると、成形用素材
の硬さが高くなり再圧縮成形時の成形荷重が増大する。 【0018】原料粉末として使用する、黒鉛粉末は、鉄
基粉末と黒鉛粉末との合計量に対し、0.03〜0.5 質量%
とすることが好ましい。黒鉛粉末の含有量が0.03質量%
未満では、焼結体の強度向上効果が不足し、一方、0.5
質量%を超えると、再圧縮成形時の圧縮荷重が過大とな
る。まず、これら原料粉末を混合し、さらに結合材、潤
滑剤を添加し混合して、鉄基粉末と黒鉛粉末とを含む鉄
基混合粉とする。 【0019】本発明では、結合材、潤滑剤を添加し混合
する際には、混合しながら加熱する加熱混合とすること
が好ましい。混合しながら加熱することにより、潤滑剤
および/または結合材の一部または全部を鉄基粉末に溶
融・固着させ、黒鉛粉末を鉄基粉末表面に付着させる。
本発明では、黒鉛粉末の鉄基粉末への付着の指標であ
る、C付着率を65%以上とする。これにより、運搬、ホ
ッパ装入、切り出し等の成形前の黒鉛粉末の偏析を防止
できる。C付着率が65%未満では、成形前の工程で偏析
し、高強度の焼結体を安定して製造できない。 【0020】C付着率は、次(1)式 C付着率(%)={[CA ]/[Ctotal ]}×100 ………(1) で定義される値とする。ここで、C付着率(%)は、黒
鉛粉末の鉄基粉末への付着量の指標であり、[CA ]は
鉄基混合粉中の100 〜200 メッシュ留分中のC含有量
(質量%)であり[Ctotal ]は鉄基混合粉中のC含有
量(質量%)である。黒鉛粉末の粒子は通常 200メッシ
ュより細かいので、黒鉛の鉄粉粒子への付着の度合が低
いと黒鉛粉末が 200メッシュ下に落ちてしまうため、
(1)式で定義されるC付着率が低下する。 【0021】C付着率の調整は、潤滑剤および結合材の
配合量、潤滑剤と結合材との配合比、配合時期等で行う
ことができる。なお、C付着率:65%以上は、例えば、
ステアリン酸 0.2%、オレイン酸0.05%を添加した後、
130℃で加熱混合することにより達成できる。また、加
熱混合工程の後に、潤滑剤を添加して遊離潤滑剤とする
ことも可能である。 【0022】なお、混合は、ヘンシェルミキサー、コー
ン型ミキサー等の、通常公知の混合方法がいずれも適用
可能である。潤滑剤は、成形工程での成形密度の向上、
金型からの抜出力の低減作用を有し、また、結合材は、
鉄基粉末表面に黒鉛粉末を結合させる作用を有する。使
用する潤滑剤、結合材としては、上記した作用を有する
通常公知の物質がいずれも使用でき、例えば特開平1-1
65701 号公報、特開平5-148505 号公報に記載の物質を
用いることが好ましい。 【0023】潤滑剤としては、例えば、ステアリン酸亜
鉛、ステアリン酸リチウム、ステアリン酸カルシウム等
の金属石けんやスピンドル油、タービン油などの有機質
液体潤滑剤あるいはこれらの混合物などが例示できる。
一方、結合材としては、 例えば、ステアリン酸アミド、
オレイン酸アミド、エチレンビスステアリン酸アミドな
どの高級脂肪酸アミドやこれらの溶融混合物、ステアリ
ン酸、オレイン酸などの高級脂肪酸およびこれらの溶融
混合物、ワックス、あるいはこれらの混合物が例示でき
る。 【0024】なお、潤滑と結合の両方の作用をもつ物質
もあり、例えば加熱溶融して鉄基粉末粒子表面に固着し
たステアリン酸亜鉛などは、潤滑剤と結合材の両方の作
用を持つ。潤滑剤の配合量は、鉄基混合粉100 重量部に
対し、0.05〜 0.6重量部とすることが好ましい。また、
結合材の配合量は、鉄基混合粉100 重量部に対し、0.05
〜0.6重量部とすることが好ましい。 【0025】なお、潤滑剤と結合材の合計配合量は、鉄
基混合粉100 重量部に対し、0.1 〜0.6 重量部とするこ
とが好ましい。潤滑剤と結合材の配合量が少ないと所期
の効果が達成できない。一方、配合量が多すぎると、予
備成形体の密度が低下する。なお、より好ましくは0.1
〜0.3 重量部である。好ましくは上記した比率で混合さ
れた鉄基混合粉は、ついで予備圧縮成形を施され、予備
成形体とされる。予備圧縮成形は、通常公知の圧粉成形
技術、例えば金型潤滑法、分割金型による多段成形法、
CNCプレス法、静圧プレス法、特開平11-117002 号公
報に記載されたプレス成形法、温間成形法、あるいはこ
れらを組み合わせた成形方法等がいずれも適用可能であ
る。例えば、特開平11-117002号公報に記載されたプレ
ス成形法によれば、原料粉末や金型を加熱することなく
容易に高密度の成形体を製造することができる。 【0026】予備成形体は、ついで、仮焼結され、成形
用素材とされる。仮焼結は、1000℃超〜1300℃の温度範
囲で行うことが好ましい。仮焼結温度が1000℃以下で
は、遊離黒鉛の残留量が多く、後工程の再焼結時に細長
い空孔となるため、厳しい応力環境で使用される部品で
は新たな欠陥生成の原因となる。一方、仮焼結温度が13
00℃を超えて高くしても、成形性の向上効果は飽和し、
これに対し製造コストが格段に増加するため、経済的に
不利となる。 【0027】なお、仮焼結は、真空中、Arガス中、あ
るいは水素ガス等の非酸化性でかつ窒素分圧が30kPa 以
下である雰囲気中で行うのが好ましい。窒素分圧が低い
ほど、成形用素材のN含有量低減には有利となる。好ま
しい雰囲気としては、例えば、水素濃度が70vol %以上
の水素−窒素混合ガスがある。なお、水素−窒素混合ガ
スを用いる場合には、水素濃度が高いほど成形用素材の
N含有量の低減には有利であることは言うまでもない。
なお、仮焼結の処理時間は目的、条件により適宜設定で
きるが、通常は600 〜7200sの範囲とすることが好まし
い。 【0028】また、予備成形体に仮焼結を施した後に、
仮焼結温度より低い温度で焼鈍を行い、成形用素材とし
てもよい。これにより、成形用素材のN含有量が低減さ
れ、成形用素材の圧縮性 (冷間鍛造性)が顕著に改善さ
れる。焼鈍により、成形用素材のN含有量が低減される
ため、仮焼結雰囲気の窒素分圧を60kPa まで高くしても
成形用素材のN含有量を0.0100質量%以下にすることが
でき、ガスコストを低減できるという利点がある。 【0029】また、成形用素材のN含有量を0.0100質量
%以下に維持するためには、仮焼結後の焼鈍は、500 〜
800 ℃の範囲の温度で行うのが好ましい。焼鈍温度が50
0 ℃未満あるいは800 ℃超では、N量低減効果が小さく
なる。また、焼鈍時の雰囲気は、仮焼結時の雰囲気と同
様に、非酸化性とするのがより好ましい。さらに、脱窒
効率の向上のためには、焼鈍雰囲気中の窒素分圧を60kP
a 以下とすることが好ましい。なお、焼鈍時の雰囲気中
の窒素分圧と、仮焼結時の雰囲気中の窒素分圧とは必ず
しも同一とする必要はない。また、焼鈍時間は、600 〜
7200sの範囲とするのが好ましい。焼鈍時間が、600 s
未満では、窒素低減効果が少なく、また、7200sを超え
ると、効果が飽和するうえ、生産性が低下する。 【0030】また、仮焼結とその後に続く焼鈍は、仮焼
結を行った焼結炉から素材を取り出すことなく、連続し
て行っても何ら問題はない。このようにして得られた成
形用素材は、好ましくは、質量%で、C:0.10〜0.50
%、O:0.3 %以下、N:0.0100%以下を含み、あるい
はさらに、Mn:1.2 %以下、Mo:2.3 %以下、Cr:3.0
%以下、Ni:5.0 %以下、Cu:2.0 %以下、V:1.4 %
以下から選ばれた1種または2種以上を含有し、残部Fe
および不可避的不純物からなる組成を有し、かつ遊離黒
鉛が0.02%以下の仮焼結体である。 【0031】つぎに、成形用素材の組成限定理由につい
て説明する。 C:0.10〜0.50質量% Cは、浸炭焼入れ、光輝焼入れ時の焼入れ性を考慮し、
焼結体の必要強度に応じて0.10〜0.50質量%の範囲内で
調整する。C含有量が0.10質量%未満では、所望の焼入
れ性を確保することができない、一方、0.50質量%を超
える含有は成形素材の硬さが高くなりすぎて、再圧縮成
形時の成形荷重が高くなりすぎて好ましくない。 【0032】O:0.3 質量%以下 Oは、鉄基粉末に不可避的に含有される元素であるが、
O含有量が増加するにしたがい、成形用素材の硬さが増
加し、再圧縮成形時の成形荷重が増加するため、できる
だけ低減するのが好ましい。0.3 質量%を超えて含有す
ると、再圧縮成形時の荷重増加が顕著となるため、0.3
質量%をO含有量の上限とした。なお、工業的に安定し
て製造できる鉄基粉末のO含有量の下限は、0.02質量%
程度であるため、成形用素材のO含有量の下限は0.02質
量%程度とするのが好ましい。なお、より好ましくは0.
02〜0.2 質量%、さらに好ましくは0.04〜0.15質量%で
ある。 【0033】N:0.0100質量%以下 Nは、Cと同様に成形用素材の硬さを高める元素であ
り、黒鉛を鉄基粉末中に固溶し遊離黒鉛を実質的に零と
する本発明では、成形用素材の硬さをできるだけ低く維
持し、成形荷重を低減するために、N含有量をできるだ
け低減するのが望ましい。Nを0.0100質量%を超えて含
有すると、再圧縮成形時の成形荷重が顕著に高くなるた
め、本発明ではNは0.0100質量%以下に限定した。な
お、好ましくは0.0050質量%以下である。 【0034】Mn:1.2 質量%以下、Mo:2.3 質量%以
下、Cr:3.0 質量%以下、Ni:5.0 質量%以下、Cu:2.
0 質量%以下、V:1.4 質量%以下のうちから選ばれた
1種または2種以上 Mn、Mo、Cr、Ni、Cu、Vは、いずれも焼入れ性を向上さ
せる元素であり、成形体、および焼結体の強度確保の目
的で、必要に応じ1種または2種以上を選択して含有で
きる。Mn:1.2 質量%、Mo:2.3 質量%、Cr:3.0 質量
%、Ni:5.0 質量%、Cu:2.0 質量%、V:1.4 質量%
をそれぞれ超えて含有すると、成形用素材の硬さが増加
し、再圧縮成形時の成形荷重が高くなりすぎ好ましくな
い。 【0035】残部Feおよび不可避的不純物 上記した成分以外の残部はFeおよび不可避的不純物であ
る。不可避的不純物としては、Mn:0.04質量%以下、M
o:0.05質量%以下、Cr:0.01質量%以下、Ni:0.01質
量%以下、Cu:0.01質量%以下、V:0.005 質量%以下
を含んでもよい。また, その他の不可避的不純物として
は、P:0.1 質量%以下、S:0.1 質量%以下、Si:0.
2 質量%以下が許容できるが、できるだけ低減すること
が好ましい。なお、工業的生産性の観点からは、不可避
的不純物としてのP、S、Siの下限値を、P:0.001 質
量%、S:0.001 質量%、Si:0.01質量%程度に定めて
もよい。 【0036】遊離黒鉛:0.02質量%以下 本発明における成形用素材は、黒鉛が鉄基金属質の基地
組織に拡散して遊離黒鉛(基地組織から分離独立して存
在する黒鉛)が0.02質量%以下と、実質的に存在しない
組織を有している。遊離黒鉛量が0.02質量%を超える
と、再焼結時に黒鉛が基地組織中に拡散消失し、細長い
空孔が残存することがある。細長い空孔は、焼結体の欠
陥として働き、強度を低下させることがある。このた
め、成形用素材の遊離黒鉛は0.02質量%以下とすること
が好ましい。 【0037】密度:7.3Mg/m3以上 成形用素材は、7.3 Mg/m3 以上の密度を有することが好
ましい。密度を7.3 Mg/m3 以上とすることにより、気孔
は閉気孔となり独立し、鉄基粉末粒子同士の接触面積が
多くなり、仮焼結時に接触面を介した物質拡散が広範囲
に生じて、再圧縮成形時に大きな伸びが得られ、変形能
の高い素材となる。密度が7.3 Mg/m3 未満では、気孔が
閉気孔とならないものがあり、変形能が低下しやすい。
成形用素材の密度は高いほど好ましいが、金型寿命等の
コスト的制約から7.8Mg/m3が上限である。なお、実用的
範囲としては7.35〜7.55Mg/m3 である。 【0038】仮焼結を経て得られた成形用素材の組織の
一例を模式的に図2に示す。成形用素材の組織は、フェ
ライト相(F)を主体とするが、黒鉛が拡散した領域に
パーライト相(P)が混在する場合がある。しかし、仮
焼結の温度範囲では、再圧縮成形時の変形を阻害するほ
どの硬さ増加とはならない。ついで、成形用素材は、再
圧縮成形を施され、再圧縮成形体とされる。 【0039】本発明の再圧縮成形では、通常公知の圧縮
成形技術がいずれも適用できる。本発明の成形用素材
は、高い変形能を有するため、コスト面、寸法精度面で
有利な冷間鍛造法を適用するのがより好ましい。また、
冷間鍛造法に代えてロールフォーミング法等の他の圧縮
成形方法を適用してもよい。ついで、再圧縮成形体は、
再焼結処理を施され、焼結体とされる。 【0040】再焼結処理は、製品の酸化防止のため、不
活性雰囲気あるいは還元性雰囲気、または真空中とする
のが好ましい。また、再焼結温度は、1050〜1300℃の範
囲の温度とするのが好ましい。再焼結温度が、1050℃未
満では、粒子間の焼結の進行や再圧縮成形体に含まれる
Cの拡散が不十分で所望の製品強度を確保できない。ま
た、1300℃を超える温度で再焼結しても、製品強度はさ
ほど向上せず、製造コストが上昇するので不利である。 【0041】焼結体は、ついで必要に応じ熱処理を施さ
れる。熱処理方法は、とくに限定する必要はないが、目
的に応じ、浸炭処理、焼入れ処理、焼戻し処理等の処理
を適宜選択し、単独あるいは組み合わせて行うことがで
きる。浸炭処理としては、ガス浸炭、真空浸炭が、焼入
れ処理としては、光輝焼入れ、高周波焼入れなどがいず
れも好適である。例えば、ガス浸炭焼入れでは、カーボ
ンポテンシャルが0.6 〜1%程度の雰囲気で、800 〜90
0 ℃程度の温度で加熱したのち、油中に焼入れするのが
好ましい。また、光輝焼入れでは、焼結体の表面の高温
酸化、脱炭防止のため、Arガス等の不活性雰囲気、水
素を含む窒素雰囲気等の保護雰囲気中で、800 〜950 ℃
程度の温度に加熱したのち、油中に焼入れするのが好ま
しい。また、真空浸炭焼入れ、高周波焼入れでも、上記
した温度範囲に加熱したのち、焼入れするのが好まし
い。これらの熱処理により製品の強度を向上することが
できる。 【0042】また、焼入れ処理後に、必要に応じ焼戻し
処理を施してもよい。焼戻し温度は、130 〜250 ℃の通
常公知の焼戻し温度範囲とするのが好ましい。なお、熱
処理の前あるいは後に、寸法、形状の調整のために、機
械加工を施してもよい。また、本発明では、再圧縮成形
体を再焼結することなく、熱処理を行い、製品として
も、強度、密度等特性上何ら問題はない。 【0043】 【実施例】鉄基粉末に、黒鉛粉末として表1に示す含有
量の天然黒鉛粉末、潤滑剤・結合材として表1に示す種
類、配合量の潤滑剤・結合材* を添加し、ヘンシェルミ
キサーで130 ℃に加熱しながら混合し、室温まで冷却し
た。その後さらに表1に示す種類、配合量の潤滑剤**
追加添加し混合して、鉄基混合粉とした。なお、潤滑剤
・結合剤の配合量は、鉄基粉末と黒鉛粉末の合計量(10
0 重量部)に対する重量部で表示した。 【0044】なお、使用した鉄基粉末は、純鉄粉に1.5
質量%のMoを部分合金化した、C:0.007 質量%、Mn:
0.13質量%、O:0.09質量%、N:0.0030質量%、Mo:
1.48質量%を含有する、平均粒径79μmの粉末である。
得られた鉄基混合粉のC付着率を求め、表1に示す。な
お、鉄基混合粉のC付着率は、次(1)式 C付着率(%)={[CA ]/[Ctotal ]}×100 ………(1) を用いて算出し、表1に示す。ここで、[CA ]は、得
られた鉄基混合粉について、篩による分級を行い、100
〜200 メッシュ留分について、燃焼ー赤外線吸収法によ
るC分析を行って求めた値であり、鉄基粉末に付着した
黒鉛量に該当する。また、[Ctotal ]は得られた鉄基
混合粉について、燃焼ー赤外線吸収法によるC分析を行
って求めた値であり、黒鉛の総量に該当する。 【0045】得られた鉄基混合粉を、金型に装入し、油
圧式圧縮成形機により予備圧縮成形を施し、密度:約7.
4Mg/m3の角棒状の予備成形体(20mm×30mm×長さ100mm
)とした。ついで、得られた予備成形体に、窒素80vol
%−水素20vol %の雰囲気で1140℃×1800s間仮焼結
を施し、成形用素材とした。 【0046】得られた成形用素材から分析用試験片を採
取し、N量、および遊離黒鉛量を測定した。その結果、
すべての試料において、N量が0.0100質量%未満、遊離
黒鉛量が0.02質量%未満であることを確認した。なお、
N量は、燃焼−不活性ガス融解熱伝導度法で測定した。
また、成形用素材から採取した試験片を硝酸で溶解した
のちの残渣を、燃焼−赤外線吸収法でC量を測定し遊離
黒鉛量とした。 【0047】ついで、得られた成形用素材を、断面減少
率:70%の後方押出し法により、冷間鍛造(再圧縮成
形)を施して再圧縮成形体とした。また、得られた再圧
縮成形体に、再焼結を施し焼結体を得た。再焼結の条件
は、窒素80vol %−水素20vol %のガス雰囲気中で1140
℃×1800s保持する条件とした。これら焼結体の密度を
アルキメデス法で測定した結果、いずれも 7.7Mg/m3
上であった。 【0048】一部の焼結体(試料 No.1〜 No.4)か
ら、測定部直径8mmφの小野式回転曲げ疲労試験片(粗
形状)を採取した。これら試験片に、上記した熱処理と
同様の熱処理を施したのち、仕上加工して小野式回転曲
げ疲労試験を実施した。小野式回転曲げ疲労試験は、JI
S Z 2274の規定に準拠して行い、疲れ限度を求めた。得
られた結果を図3に示す。これらの結果から、疲れ限度
と成形用素材の全C量(C:質量%)との関係を一次回
帰式で表すと、次(2)式 疲れ限度(MPa )=371 +984 C ………(2) のように表される。なお、成形用素材の全C量は、成形
素材から切り粉状に切り出した分析用資料を用いて燃焼
−赤外線吸収法で測定した。 【0049】 【表1】 【0050】上記した方法で得られた鉄基混合粉のう
ち、C付着率が異なる、鉄基混合粉(試料 No.1、 No.
5、 No.6、 No.7)について、サンプル150kg を、そ
れぞれ落差800mm の2段ホッパーから落下させ、切り出
し量を10〜150kg に変化して、サンプル粉末(鉄基混合
粉)を採取した。これらサンプル粉末(鉄基混合粉)
を、それぞれ金型に装入し、油圧式圧縮成形機により予
備圧縮成形を施して、密度:7.4Mg/m3の角棒状の予備成
形体とした。 【0051】ついで、得られた予備成形体に、窒素80vo
l %−水素20vol %の雰囲気で1140℃×1800sの、条件
で仮焼結を施し、成形用素材とした。得られた成形用素
材から試験片を採取して、成形用素材中の全C量を測定
し、それぞれの試料毎にホッパ切り出し開始から終了ま
での全C量の平均値Cm と標準偏差σを求めた。得られ
た結果を表2に示す。なお、全C量の測定は、燃焼−赤
外線吸収法とした。 【0052】 【表2】【0053】本発明例はいずれも、C量の標準偏差σは
小さく、鉄基混合粉のホッパからの切り出しの開始から
完了までの過程で、製品の特性ばらつきが少ないことが
推察される。一方、本発明の範囲を外れる鉄基混合粉を
用いた成形用素材(比較例)では、標準偏差σが大き
く、ホッパからの切り出し進行過程で大きな製品特性の
ばらつきが生じることが予測される。 【0054】得られたこの成形用素材のC量の測定結果
に基づき、試料 No.1〜4を使用して求めた、熱処理後
製品の疲れ限度と成形用素材の全C量との関係式である
(2)式を利用し、回転曲げ試験における疲れ限度の推
定を試みた。C付着量が65%以上の本発明例(試料 No.
1、 No.7)では、平均C量が0.13質量%であっても、
C量のばらつき下限(3σ)で、回転曲げ試験における
疲れ限度:450MPa以上が得られることが予測される。一
方、C付着量が本発明の範囲を低く外れる比較例(試料
No.5、 No.6)では、ばらつきが大きく、C量のばら
つき下限(Cm−3σ)では、疲れ限度:450MPa未満と
なることが予測される。なお、試料 No.5ではCm −3
σが負の値となるので、疲れ限度の下限値は、(2)式
におけるC=0として算出した。 【0055】 【発明の効果】本発明によれば、高密度で、高強度の優
れた機械的特性を有する鉄基焼結体を特性のばらつきが
少なく、しかも安定して製造でき、産業上格段の効果を
奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various machine parts.
And a suitable method for producing an iron-based sintered body.
Regarding the method of manufacturing iron-based sintered bodies with small variations in characteristics
You. 2. Description of the Related Art Powder metallurgy technology is used to create parts having complicated shapes.
It can be manufactured with an annet shape and high dimensional accuracy.
The cutting cost of powder metallurgy products can be greatly reduced. Most
Recently, especially iron-based powder metallurgy products (iron-based powder products
(Iron-based sintered members)).
There is a strong demand for higher strength. [0003] Iron-based sintered members (iron-based sintered body or simply sintered
Alloys such as graphite powder, copper powder, etc.
Powder, zinc stearate, and lithium stearate
Mixed with a lubricant such as aluminum to form an iron-based mixed powder.
The mold was filled with the iron-based mixed powder and pressed to form a compact.
That is, the compact is manufactured by a process of sintering and forming a sintered body.
It is generally done. The obtained sintered body can be used as needed.
Powder metallurgy product
You. When high strength is required,
In some cases, carburizing heat treatment or bright heat treatment is performed. like this
The density of the compact obtained in the process is at most 6.6 to 7.1 Mg /
m Three Degree and therefore obtained from these compacts
The density of the sintered body is also about this level. Improvement of strength of iron-based powder products (iron-based sintered members)
The height of the sintered member (sintered body) due to the high density of the compact
Densification is effective. High-density sintered members (sintered bodies)
Porosity in the member decreases, tensile strength, impact value, fatigue strength
Mechanical properties such as degree are improved. Powder metallurgy products (sintering department
Powder metallurgy and cold forging
Combination of manufacturing methods and sintering cooling to obtain products with almost true density
A hot forging method is proposed in, for example, Patent Document 1.
Sintering cold forging method (hereinafter also referred to as sintering recompression molding method)
Is a preform (pre-molded) obtained by sintering a metal powder compact.
Product) is cold forged and then re-sintered to achieve the highest density composition.
It is a molding and processing method to obtain the final product. Described in Patent Document 1
Technology for cold forging with liquid lubricant applied to the surface
After pre-compression molding of the sintered preform in the die,
Apply negative pressure to preform to remove liquid lubricant by suction
Sintering and then compression molding in a die and resintering
It is a forging method. According to this method, before temporary compression molding
The liquid lubricant that has been applied and penetrated inside is sucked before the main compression molding
Crushing disappears during the main compression molding.
And high-density final products. But this
The density of the final sintered product obtained by the method of
g / m Three The strength was limited. On the other hand, the mechanical strength of powder metallurgy products (sinters)
In order to further increase the level, increase the carbon (C) concentration of the product.
Is effective. In powder metallurgy, carbon
(C) As a source, it is possible to mix graphite powder with raw metal powder.
General, but preformed metal powder mixed with graphite powder
After that, it is pre-sintered (pre-sintered) to form a molding material,
After compression molding, re-sintering to obtain a high-strength sintered body
Law is conceivable. However, pre-sintering (pre-sintering)
), Carbon (C) is formed during preliminary sintering (pre-sintering).
It diffuses throughout the forming material and increases the hardness of the forming material. This
Therefore, when performing recompression molding, the molding load is very large.
The desired shape due to reduced deformability
There was a problem that it could not be processed. Therefore, high strength
Often, high-density products cannot be obtained. To solve such a problem, for example, a patent
Literature 2 states that bearing parts can be used without molding at high temperatures.
A method of making is disclosed. This method uses iron powder,
Mix iron alloy powder, graphite powder and lubricant, and mix this powder
After forming into a preformed product, it is pre-sintered and then at least
Cold forging to give 50% plastic working
Sintering, annealing and rolling to produce the final product (sintered member)
Process. With the technology described in Patent Document 2
Is performed by pre-sintering under the condition that the diffusion of graphite is suppressed.
High deformability in the subsequent cold forging,
The weight can be reduced. But the patent statement
For sintering 2, 1100 ° C x 15-20 min is recommended as the sintering condition.
It is recommended, and according to our experiments, in this condition
Is that graphite diffuses completely into the preform and the sintered part
The hardness of the material for material (pre-formed product) increases significantly,
It was found that cold forging was difficult. [0007] To solve such a problem, for example, see Patent Documents
In No.3, 0.3% by weight or more of black is added to metal powder mainly composed of iron.
Compacted metal powder made by mixing lead with a density of 7.3g
/cm Three Forming process to obtain the above preformed body and this preforming
The body is pre-sintered, preferably in a temperature range of 800-1000 ° C.
Have a structure in which graphite remains at the grain boundaries of the metal powder.
A sintering process to obtain a metallic powder molding material
A method for producing a quality molding material has been proposed. With this technology
If only carbon necessary for increasing the strength is dissolved,
To prevent iron powder from hardening excessively
With low molding load and high deformability during recompression molding
Molding material that can be obtained, and high-strength products (sintered members)
It is said that it can be obtained. However, it is obtained in this way
Metal powder molding material is highly variable in the recompression molding process.
Although it has the ability to
The exfoliated graphite may disappear and form elongated pores.
Problems remained in the mechanical strength of the product. [0008] Patent Document 4 discloses that iron is a main component.
Metal powder made by mixing 0.3% by weight or more of graphite with metal powder
Of 7.3 g / cm Three More than
Pre-sintering the preform at a specified temperature, blackening the grain boundaries of the metal powder
Metallic powder molding material having a structure with lead remaining
The sintering process for obtaining
The recompression process of recompressing the powder compact and the recompression
Resintering process for resintering the recompressed compact obtained in the process
And a method for producing a sintered body comprising: Further, Patent Document 5 discloses that 0.1% is added to alloy steel powder.
Metal powder made by mixing graphite by weight of at least
With a density of 7.3 g / cm Three With the above preformed body
Temporary sintering at a certain temperature, leaving graphite at the grain boundaries of the metal powder
This is a metal powder molding material with
Re-compression molding of the powdered material,
An alloy steel powder plastic working body with a dense structure
The re-sintering of the powder metal compacted body at a predetermined temperature
The diffused structure and the structure with residual graphite
The re-sintered alloy steel powder having a predetermined ratio
ing. [0010] [Patent Document 1] Japanese Patent Application Laid-Open No. 1-123005 [Patent Document 2] US Patent No. 4,393,563 [Patent Document 3] Japanese Patent Application Laid-Open No. 11-117002 [Patent Document 4] [Patent Document 5] Japanese Patent Application Laid-Open No. 2000-355726 [0011] Patent Documents 4 and Patent Documents
According to the technique described in No. 5, a high-density sintered body can be obtained.
However, as described in Patent Documents 4 and 5,
The sintered body manufactured by the advanced technology
There may be large variations in mechanical properties, leaving problems.
Was. The present invention has the advantages of the prior art described above.
With high density and excellent mechanical properties
Manufactures bonded bodies with little variation in characteristics and stable
The aim is to propose a possible method. Means for Solving the Problems The present inventors have made the above-mentioned description.
Manufactured using a sintering recompression molding method to achieve the task
Factors affecting the mechanical properties of
I studied diligently. As a result, the mechanical properties of the iron-based sintered body
Is the amount of graphite mixed and the dispersion of graphite in the iron-based mixed powder
Was found to be sensitive to the uniformity of And the present invention
Have mixed iron-based powder with graphite powder attached to iron-based powder.
The use of mixed powder enables the mechanical
It has been found that variations in characteristics are significantly reduced. The present invention has been made based on the above findings.
It was completed after consideration of the above. That is,
Akira reserves iron-based mixed powder containing iron-based powder and graphite powder.
After compression molding to form a preformed body, the preformed body is temporarily
After sintering to form a molding material,
After performing compression molding to obtain a recompression molded body, the recompression molding
Of an iron-based sintered body that is subjected to resintering and / or heat treatment
In the manufacturing method, the iron-based mixed powder is obtained by the following equation (1): C adhesion rate (%) = {[C A ] / [C total ] × 100 (1) (where C adhesion ratio: amount of graphite powder adhering to iron-based powder)
(%), [C A ]: 100 to 200 mesh in iron-based mixed powder
C content in the fraction (% by mass), [C total ]: Iron-based mixed
Iron-based mixed powder having a C adhesion rate of at least 65% as defined by the C content (% by mass) in the powder.
A method for producing an iron-based sintered body. Further, in the present invention, the molding material may be made of a material
%: C: 0.1-0.5%, O: 0.3% or less, N: 0.01
Including 00% or less, with the balance being Fe and unavoidable impurities
Preferably, it has a composition and free graphite is 0.02% or less.
Preferably, in the present invention, in addition to the composition,
By mass%, Mn: 1.2% or less, Mo: 2.3% or less, Cr: 3.0
%, Ni: 5.0% or less, Cu: 2.0% or less, V: 1.4%
Contains one or more selected from the following
It is preferable to use a composition. FIG. 1 shows an iron-based sintered material according to the present invention.
1 shows an example of a body manufacturing process. In the present invention, the raw material powder
And iron-based powder, graphite powder, or even alloy powder
Use the end. Iron-based powder used as raw material powder
%: C: 0.05% or less, O: 0.3% or less, N: 0.0100
% Or less, the balance being Fe and unavoidable impurities
An iron-based powder having a composition is preferable. C: 0.05% by mass,
O: 0.3% by mass, N: Over 0.010% by mass
Existence decreases the compressibility of the powder and increases the density of the preform.
It becomes difficult to do. The O content of the iron-based powder is
It is preferable that the temperature is as low as possible from the viewpoint of compression moldability.
However, O is an unavoidably contained element and is economically expensive.
0.02 mass% which is industrially practicable level
Is desirably set to the lower limit. In addition, industrial economics
From the viewpoint, a preferable O content is 0.03 to 0.2% by mass. The particle size of the iron-based powder used in the present invention is particularly
It is not necessary to limit to
Preferably, the average particle size is 30 to 100 μm. What
The average particle size is calculated at the midpoint (d 50 ) Value and
I do. Further, in the iron-based powder used in the present invention, the above-mentioned
In addition to the composition, it also increases the strength of the resinter
In order to increase the hardenability, Mn: 1.2 mass% or less, M
o: 2.3% by mass or less, Cr: 3.0% by mass or less, Ni: 5.0
% Or less, Cu: 2.0% by mass or less, V: 1.4% by mass or less
One or more selected from these can be contained. These
Gold element can be pre-alloyed into iron-based powder or
It may be partially alloyed by partial diffusion adhesion or metal
You may mix as a powder (powder for alloys). But yes
Even in the case of displacement, Mn: 1.2% by mass, Mo: 2.3% by mass
%, Cr: 3.0% by mass, Ni: 5.0% by mass, Cu: 2.0% by mass
%, V: 1.4 mass%, respectively, the material for molding
And the molding load during recompression molding increases. The graphite powder used as a raw material powder is iron
0.03 to 0.5% by mass based on the total amount of base powder and graphite powder
It is preferable that 0.03% by mass of graphite powder
If less, the effect of improving the strength of the sintered body is insufficient, while
If it exceeds 50% by mass, the compression load during recompression molding will be excessive.
You. First, these raw material powders are mixed, and the binder,
Add a lubricant and mix to form an iron containing iron-based powder and graphite powder.
Base mixed powder. In the present invention, a binder and a lubricant are added and mixed.
When mixing, heat and mix while heating
Is preferred. Lubricant by heating while mixing
And / or dissolve part or all of the binder in the iron-based powder.
The graphite powder is melted and fixed to adhere to the surface of the iron-based powder.
In the present invention, it is an index of adhesion of graphite powder to iron-based powder.
The C adhesion rate is 65% or more. This allows transportation,
Prevents segregation of graphite powder before molding such as packing and cutting
it can. If the C adhesion rate is less than 65%, segregation occurs in the process before molding
However, a high-strength sintered body cannot be manufactured stably. The C adhesion rate is given by the following equation (1): C adhesion rate (%) = {[C A ] / [C total ]} 100 It is a value defined by (1). Here, the C adhesion rate (%) is black
It is an index of the amount of lead powder adhering to the iron-based powder. A ]
C content in 100-200 mesh fraction in iron-based mixed powder
(% By mass) and [C total ]: C content in iron-based mixed powder
Amount (% by mass). Graphite powder particles are typically 200 mesh
Low degree of adhesion of graphite to iron powder particles
Graphite powder falls below 200 mesh,
The C adhesion rate defined by the equation (1) decreases. The adjustment of the C adhesion rate is performed by adjusting the lubricant and the binder.
Perform according to the compounding amount, compounding ratio of lubricant and binder, compounding time, etc.
be able to. In addition, C adhesion rate: 65% or more is, for example,
After adding 0.2% of stearic acid and 0.05% of oleic acid,
This can be achieved by heating and mixing at 130 ° C. In addition,
After the heat mixing process, add a lubricant to make it a free lubricant
It is also possible. The mixing was performed using a Henschel mixer,
Any commonly used mixing method such as a mixer
It is possible. Lubricant improves molding density in the molding process,
It has the effect of reducing the ejection force from the mold, and the binder is
It has the effect of binding graphite powder to the surface of the iron-based powder. Use
The lubricant and binder used have the above-mentioned effects.
Generally, any known substances can be used.
No. 65701, JP-A-5-148505
Preferably, it is used. As the lubricant, for example, stearic acid
Lead, lithium stearate, calcium stearate, etc.
Organic matter such as metallic soap, spindle oil and turbine oil
Examples thereof include a liquid lubricant and a mixture thereof.
On the other hand, as the binder, for example, stearic acid amide,
Oleic acid amide, ethylene bisstearic acid amide
Which higher fatty acid amides and their molten mixtures, steari
Acids and higher melting acids such as oleic acid
Examples include mixtures, waxes, or mixtures thereof.
You. In addition, a substance having both lubricating and binding actions
For example, heat melting and fixation on the surface of iron-based powder particles
Zinc stearate, etc., can act as both a lubricant and a binder.
Have a business. The amount of lubricant is 100 parts by weight of iron-based mixed powder.
On the other hand, it is preferably 0.05 to 0.6 parts by weight. Also,
The blending amount of the binder is 0.05
It is preferable to set it to 0.6 parts by weight. The total amount of the lubricant and the binder is iron
0.1 to 0.6 parts by weight based on 100 parts by weight of the base mixed powder
Is preferred. Expected if the blending amount of lubricant and binder is small
Effect cannot be achieved. On the other hand, if the amount is too large,
The density of the preform decreases. Incidentally, more preferably 0.1
0.3 parts by weight. Preferably mixed in the above ratio
The iron-based mixed powder is then pre-compressed,
It is a molded article. Pre-compression molding is generally known as compacting
Techniques, such as mold lubrication, multi-stage molding with split molds,
CNC press method, hydrostatic press method, JP-A-11-117002
Press forming method, warm forming method described in
Any of these molding methods can be applied.
You. For example, a press described in JP-A-11-117002
According to the metal forming method, without heating the raw material powder and the mold
A high-density molded body can be easily manufactured. The preform is then pre-sintered and formed
Material. Temporary sintering is performed in a temperature range of over 1000 ° C to 1300 ° C.
It is preferable to carry out the operation in the surroundings. If the sintering temperature is 1000 ° C or less
Has a large residual amount of free graphite and is slender when re-sintering in a later process.
Parts are used in severe stress environments.
Causes new defect generation. On the other hand, the sintering temperature is 13
Even if the temperature is higher than 00 ° C., the effect of improving the moldability is saturated,
On the other hand, the production cost will increase significantly,
Disadvantageous. The preliminary sintering is performed in a vacuum, in an Ar gas,
Or a non-oxidizing gas such as hydrogen gas and a nitrogen partial pressure of 30 kPa or less
It is preferably performed in an atmosphere below. Low nitrogen partial pressure
It is more advantageous to reduce the N content of the molding material. Like
A good atmosphere is, for example, a hydrogen concentration of 70 vol% or more.
Hydrogen-nitrogen mixed gas. The hydrogen-nitrogen mixed gas
When using hydrogen, the higher the hydrogen concentration,
It goes without saying that it is advantageous for reducing the N content.
The processing time of the preliminary sintering can be appropriately set according to the purpose and conditions.
But it is usually preferable to be in the range of 600 to 7200s
No. Further, after performing preliminary sintering on the preformed body,
Anneal at a temperature lower than the pre-sintering temperature to obtain a molding material.
You may. As a result, the N content of the molding material is reduced.
The compressibility (cold forgeability) of the molding material has been significantly improved.
It is. Annealing reduces N content of molding material
Therefore, even if the partial pressure of nitrogen in the pre-sintering atmosphere is increased to 60 kPa,
To reduce the N content of the molding material to 0.0100% by mass or less
There is an advantage that the gas cost can be reduced. The N content of the molding material is set to 0.0100 mass
%, The annealing after temporary sintering should be 500 ~
It is preferably carried out at a temperature in the range of 800 ° C. Annealing temperature 50
Below 0 ° C or above 800 ° C, the effect of reducing the amount of N is small.
Become. The atmosphere during annealing is the same as the atmosphere during temporary sintering.
As described above, it is more preferable to use a non-oxidizing agent. Furthermore, denitrification
In order to improve the efficiency, the partial pressure of nitrogen in the annealing atmosphere was reduced to 60 kP.
a It is preferred to be less than or equal to. In the atmosphere during annealing
Be sure that the nitrogen partial pressure of
They need not be the same. The annealing time is 600 ~
It is preferably in the range of 7200 s. 600 s annealing time
If less, the effect of reducing nitrogen is small, and it exceeds 7200s
Then, the effect is saturated and the productivity is reduced. Further, the calcination and the subsequent annealing are performed by calcination.
Continuously without removing the material from the sintered sintering furnace
There is no problem if you go. The result obtained in this way is
The forming material is preferably in mass%, C: 0.10 to 0.50
%, O: 0.3% or less, N: 0.0100% or less, or
Furthermore, Mn: 1.2% or less, Mo: 2.3% or less, Cr: 3.0%
%, Ni: 5.0% or less, Cu: 2.0% or less, V: 1.4%
One or more selected from the following, with the balance being Fe
And a composition consisting of unavoidable impurities and free black
It is a temporary sintered body with less than 0.02% lead. Next, the reasons for limiting the composition of the molding material will be described.
Will be explained. C: 0.10 to 0.50 mass% C is taken into consideration of the hardenability during carburizing and bright quenching,
Within the range of 0.10 to 0.50 mass% depending on the required strength of the sintered body
adjust. If the C content is less than 0.10% by mass, desired quenching
Cannot be ensured, on the other hand, exceeds 0.50% by mass
Contains too high hardness of the molding material,
The molding load during molding is too high, which is not preferable. O: 0.3% by mass or less O is an element inevitably contained in the iron-based powder.
As the O content increases, the hardness of the molding material increases.
In addition, the molding load at the time of recompression molding increases, so
It is preferred to reduce only Contains more than 0.3% by mass
Increases the load during re-compression molding,
The mass% was set as the upper limit of the O content. In addition, industrially stable
The lower limit of the O content of the iron-based powder that can be produced by
The lower limit of the O content of the molding material is 0.02
%. Incidentally, more preferably 0.
02 to 0.2% by mass, more preferably 0.04 to 0.15% by mass
is there. N: 0.0100% by mass or less N is an element that increases the hardness of the molding material as in C.
And dissolve graphite in iron-based powder to reduce free graphite to substantially zero.
In the present invention, the hardness of the molding material is kept as low as possible.
To reduce the molding load
It is desirable to reduce this. N in excess of 0.0100% by mass
With this, the molding load during recompression molding was significantly increased.
Therefore, in the present invention, N is limited to 0.0100% by mass or less. What
The content is preferably 0.0050% by mass or less. Mn: 1.2% by mass or less, Mo: 2.3% by mass or less
Bottom, Cr: 3.0% by mass or less, Ni: 5.0% by mass or less, Cu: 2.
0 mass% or less, V: selected from among 1.4 mass% or less
One or more of Mn, Mo, Cr, Ni, Cu and V all have improved hardenability
Element to ensure the strength of the compact and sintered body
And if necessary, select one or two or more
Wear. Mn: 1.2% by mass, Mo: 2.3% by mass, Cr: 3.0% by mass
%, Ni: 5.0% by mass, Cu: 2.0% by mass, V: 1.4% by mass
When the content exceeds each, the hardness of the molding material increases.
However, the molding load during recompression molding is too high,
No. The balance Fe and inevitable impurities The balance other than the above components is Fe and inevitable impurities.
You. As unavoidable impurities, Mn: 0.04% by mass or less, Mn
o: 0.05 mass% or less, Cr: 0.01 mass% or less, Ni: 0.01 quality
% Or less, Cu: 0.01% by mass or less, V: 0.005% by mass or less
May be included. Also, as other inevitable impurities
Are P: 0.1% by mass or less, S: 0.1% by mass or less, Si: 0.
2% by mass or less is acceptable, but should be reduced as much as possible
Is preferred. In addition, from the viewpoint of industrial productivity, it is inevitable
Lower limit of P, S and Si as chemical impurities, P: 0.001
%, S: 0.001% by mass, Si: 0.01% by mass
Is also good. Free graphite: not more than 0.02% by mass The material for molding in the present invention is a material in which graphite is an iron-based metallic base.
Free graphite diffuses into tissues (separates and separates from base tissues)
0.02% by mass or less when graphite is present)
Have an organization. Free graphite content exceeds 0.02% by mass
When resintering, graphite diffuses and disappears into the matrix,
Voids may remain. The elongated pores are
Acts as a depression and may reduce strength. others
Therefore, the free graphite of the molding material should be 0.02 mass% or less.
Is preferred. Density: 7.3 Mg / m Three The molding material is 7.3 Mg / m Three It is preferable to have a density of
Good. 7.3 Mg / m density Three By doing the above, the pores
Are closed pores and independent, and the contact area between the iron-based powder particles is
The diffusion of material through the contact surface during pre-sintering is widespread
Large elongation during recompression molding,
High material. Density 7.3 Mg / m Three Below, the pores
Some do not become closed pores, and the deformability is likely to decrease.
The higher the density of the molding material, the better, but the mold life
7.8Mg / m due to cost constraints Three Is the upper limit. In addition, practical
The range is 7.35 ~ 7.55Mg / m Three It is. The structure of the molding material obtained through the preliminary sintering
FIG. 2 schematically shows an example. The structure of the molding material
Mainly in the light phase (F), but in the area where graphite diffuses
The pearlite phase (P) may be mixed. However, provisional
In the sintering temperature range, deformation that hinders recompression molding is hindered.
It does not result in any hardness increase. Next, the material for molding
It is subjected to compression molding to obtain a recompression molded body. In the re-compression molding of the present invention, generally known compression
Any of the molding techniques can be applied. Material for molding of the present invention
Has high deformability, so cost and dimensional accuracy
More preferably, an advantageous cold forging method is applied. Also,
Other compression such as roll forming instead of cold forging
A molding method may be applied. Then, the recompression molded body
A resintering process is performed to obtain a sintered body. The resintering process is not performed to prevent oxidation of the product.
Active atmosphere, reducing atmosphere, or vacuum
Is preferred. The resintering temperature is in the range of 1050-1300 ° C.
Preferably, the temperature is the ambient temperature. Re-sintering temperature is less than 1050 ° C
At full, it is included in the progress of sintering between particles and in the recompression molded body
The desired product strength cannot be ensured due to insufficient diffusion of C. Ma
Even if resintering at temperatures exceeding 1300 ° C, the product strength is
This is disadvantageous because it does not improve as much and increases the manufacturing cost. The sintered body is then subjected to a heat treatment if necessary.
It is. The heat treatment method does not need to be particularly limited.
Such as carburizing, quenching, tempering, etc.
Can be selected appropriately and can be performed alone or in combination.
Wear. Gas carburizing and vacuum carburizing include quenching.
Brightening, induction hardening, etc.
These are also suitable. For example, in gas carburizing and quenching,
In an atmosphere with a potential of 0.6 to 1%, 800 to 90
After heating at a temperature of about 0 ° C, quenching in oil
preferable. In bright quenching, the surface of the sintered body
Inert atmosphere such as Ar gas, water to prevent oxidation and decarburization
800 to 950 ° C in a protective atmosphere such as nitrogen atmosphere containing nitrogen
After heating to a moderate temperature, quenching in oil is preferred.
New In case of vacuum carburizing and induction hardening,
After heating to the specified temperature range, quenching is preferred.
No. These heat treatments can improve the strength of the product.
it can. After the quenching treatment, if necessary,
Processing may be performed. Tempering temperature is 130-250 ° C.
It is preferable that the tempering temperature range is commonly known. In addition, heat
Before or after processing, adjust the size and shape
Mechanical processing may be performed. In the present invention, the re-compression molding
Heat treatment without resintering the body
However, there is no problem in characteristics such as strength and density. [Examples] The contents shown in Table 1 as graphite powder were added to iron-based powder.
Amount of natural graphite powder, lubricant and binder as shown in Table 1
Kinds of lubricants and binders * Add Henschelmi
Mix while heating to 130 ° C with a mixer and cool to room temperature.
Was. After that, the lubricant of the type and blending amount shown in Table 1 ** To
It was added and mixed to obtain an iron-based mixed powder. In addition, lubricant
-The amount of binder is the total amount of iron-based powder and graphite powder (10
0 parts by weight). The iron-based powder used was 1.5% pure iron powder.
C: 0.007% by mass, Mn:
0.13% by mass, O: 0.09% by mass, N: 0.0030% by mass, Mo:
It is a powder containing 1.48% by mass and having an average particle size of 79 μm.
The C adhesion rate of the obtained iron-based mixed powder was determined and is shown in Table 1. What
The C adhesion rate of the iron-based mixed powder is expressed by the following equation (1): C adhesion rate (%) = {[C A ] / [C total } × 100 (1) and is shown in Table 1. Here, [C A ]
The obtained iron-based mixed powder was classified by a sieve, and 100
Combustion-infrared absorption method
Is a value obtained by performing a C analysis of the iron-based powder.
It corresponds to the amount of graphite. Also, [C total ] Is the obtained iron base
Combustion analysis of mixed powder by infrared absorption method
This corresponds to the total amount of graphite. The obtained iron-based mixed powder is charged into a mold, and
Pre-compression molding with a compression-type compression molding machine, density: approx.
4Mg / m Three Square rod shaped preform (20mm x 30mm x 100mm length)
). Then, 80 vol. Of nitrogen was added to the obtained preform.
% -Hydrogen 20vol% atmosphere at 1140 ℃ × 1800s
To give a molding material. A test piece for analysis was obtained from the obtained molding material.
Then, the amount of N and the amount of free graphite were measured. as a result,
In all samples, N content is less than 0.0100% by mass, free
It was confirmed that the amount of graphite was less than 0.02% by mass. In addition,
The N amount was measured by a combustion-inert gas melting thermal conductivity method.
In addition, the test piece collected from the molding material was dissolved with nitric acid.
The remaining residue is released by measuring the amount of C by combustion-infrared absorption method
The amount of graphite was used. Next, the obtained molding material is reduced in cross section.
Cold forging (recompression molding) by 70% backward extrusion
Shape) to give a recompression molded body. Also obtained re-pressure
The compact was re-sintered to obtain a sintered body. Re-sintering conditions
Is 1140 in a gas atmosphere of 80 vol% nitrogen-20 vol% hydrogen.
C. × 1800 s was maintained. The density of these sintered bodies
All measured by Archimedes method, all are 7.7Mg / m Three Less than
Was on. Some of the sintered bodies (samples No. 1 to No. 4)
Ono-type rotating bending fatigue test piece (rough
Shape) was collected. These test pieces were subjected to the heat treatment described above.
After applying the same heat treatment, finish processing and turn ono
A fatigue test was performed. Ono-type rotary bending fatigue test was conducted by JI
The test was performed in accordance with the rules of SZ 2274, and the fatigue limit was determined. Profit
The results obtained are shown in FIG. From these results, the fatigue limit
And the relationship between the total C content of the molding material (C: mass%)
When expressed by a regression equation, the following equation (2) is used to express the fatigue limit (MPa) = 371 + 984 C (2). The total C amount of the molding material is
Combustion using analytical materials cut into chips from the material
-Measured by the infrared absorption method. [Table 1] The iron-based mixed powder obtained by the above method is used.
In addition, iron-based mixed powders (Sample No. 1, No.
For No. 5, No. 6 and No. 7), a 150 kg sample was
Drop and cut out from 800mm two-stage hopper
Change the sample weight to 10-150kg and change the sample powder (iron-based mixed
Powder) was collected. These sample powders (iron-based mixed powder)
Into the mold, and pre-load by the hydraulic compression molding machine.
Pre-compression molding, density: 7.4Mg / m Three Square bar-shaped preformed
Shaped. Next, the obtained preform was charged with nitrogen 80 vo
l% -hydrogen 20vol% atmosphere, 1140 ℃ × 1800s, condition
Was subjected to temporary sintering to obtain a molding material. Obtained molding element
Collect test specimens from the material and measure the total C content in the molding material
From the start to the end of hopper cutting for each sample.
The average value Cm and the standard deviation σ of the total C amount in the above were determined. Obtained
Table 2 shows the results. In addition, the measurement of the total C amount is as follows: combustion-red
The outside line absorption method was used. [Table 2] In each of the examples of the present invention, the standard deviation σ of the C amount is
From the start of cutting out a small, iron-based mixed powder from the hopper
In the process up to completion, there is little variation in product characteristics
Inferred. On the other hand, iron-based mixed powders that fall outside the scope of the present invention
The standard deviation σ is large in the molding material used (comparative example).
In the process of cutting out from the hopper,
Variations are expected to occur. Measurement results of C content of the obtained molding material
After heat treatment, determined using Sample Nos. 1-4 based on
It is a relational expression between the fatigue limit of the product and the total carbon content of the molding material.
Using equation (2), estimate the fatigue limit in the rotating bending test.
Tried to determine. Example of the present invention (Sample No.
1, No. 7), even if the average C amount is 0.13% by mass,
In the lower limit (3σ) of the variation of the C amount, in the rotational bending test
Fatigue limit: 450MPa or more is expected to be obtained. one
On the other hand, the comparative example (sample
No.5 and No.6) had large variations and rose in the amount of C.
At the lower limit (Cm-3σ), the fatigue limit is less than 450 MPa.
It is expected to be. In addition, in sample No. 5, Cm-3
Since σ is a negative value, the lower limit of the fatigue limit is given by the equation (2)
Was calculated as C = 0. According to the present invention, high density, high strength
Characteristics of iron-based sintered compacts with improved mechanical properties
It can be manufactured in a small amount and stably, and has a remarkable industrial effect.
Play.

【図面の簡単な説明】 【図1】本発明の成形用素材、焼結体の製造工程を示す
説明図である。 【図2】成形用素材の組織を模式的に示す概略図であ
る。 【図3】熱処理後の焼結体の回転曲げ疲れ限度と成形用
素材のC含有量との関係を示すグラフである。 【符号の説明】 1 鉄基粉末粒子 F フェライト相 P パーライト相
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing a manufacturing process of a molding material and a sintered body according to the present invention. FIG. 2 is a schematic view schematically showing the structure of a molding material. FIG. 3 is a graph showing a relationship between a rotational bending fatigue limit of a sintered body after heat treatment and a C content of a forming material. [Description of Signs] 1 Iron-based powder particles F Ferrite phase P Pearlite phase

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇波 繁 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 藤長 政志 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K018 AA24 AB07 BC28 EA51    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shigeru Unami             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba             Iron Research Institute (72) Inventor Masanori Fujinaga             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba             Inside the Iron Corporation Chiba Works F term (reference) 4K018 AA24 AB07 BC28 EA51

Claims (1)

【特許請求の範囲】 【請求項1】 鉄基粉末と黒鉛粉末とを含む鉄基混合粉
を、予備圧縮成形して予備成形体としたのち、該予備成
形体に仮焼結を施して成形用素材とし、ついで該成形用
素材に再圧縮成形を施し再圧縮成形体としたのち、該再
圧縮成形体に再焼結および/または熱処理を施す鉄基焼
結体の製造方法において、前記鉄基混合粉を、下記
(1)式で定義されるC付着率が65%以上である鉄基混
合粉とすることを特徴とする鉄基焼結体の製造方法。 記 C付着率(%)={[CA ]/[Ctotal ]}×100 ………(1) ここで、C付着率:黒鉛粉末の鉄基粉末への付着量
(%) [CA ]:鉄基混合粉中の100 〜200 メッシュ留分中の
C含有量(質量%) [Ctotal ]:鉄基混合粉中のC含有量(質量%)
Claims 1. An iron-based mixed powder containing an iron-based powder and a graphite powder is pre-compressed and formed into a pre-formed body, and then the pre-formed body is pre-sintered and formed. The method for producing an iron-based sintered body, which comprises subjecting the molding material to recompression molding to form a recompression molded body and then subjecting the recompression molded body to resintering and / or heat treatment, A method for producing an iron-based sintered body, wherein the base mixed powder is an iron-based mixed powder having a C adhesion rate defined by the following formula (1) of 65% or more. Note C adhesion rate (%) = {[C A ] / [C total ]} × 100 (1) where, C adhesion rate: Amount of graphite powder adhering to iron-based powder (%) [C A ]: C content (% by mass) in 100-200 mesh fraction in iron-based mixed powder [C total ]: C content (% by mass) in iron-based mixed powder
JP2003042551A 2002-02-20 2003-02-20 Method for producing iron-based sintered body Expired - Lifetime JP4615191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042551A JP4615191B2 (en) 2002-02-20 2003-02-20 Method for producing iron-based sintered body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002043102 2002-02-20
JP2002-43102 2002-02-20
JP2003042551A JP4615191B2 (en) 2002-02-20 2003-02-20 Method for producing iron-based sintered body

Publications (2)

Publication Number Publication Date
JP2003313624A true JP2003313624A (en) 2003-11-06
JP4615191B2 JP4615191B2 (en) 2011-01-19

Family

ID=29551734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042551A Expired - Lifetime JP4615191B2 (en) 2002-02-20 2003-02-20 Method for producing iron-based sintered body

Country Status (1)

Country Link
JP (1) JP4615191B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503653A (en) * 2004-06-23 2008-02-07 ホガナス アクチボラゲット Lubricant for insulated electromagnetic soft iron-based powder composition
US20130028780A1 (en) * 2009-10-15 2013-01-31 Christopherson Jr Denis Boyd Iron-based sintered powder metal for wear resistant applications
JP2018109445A (en) * 2018-03-02 2018-07-12 Ntn株式会社 Sintered bearing
US10907685B2 (en) 2013-10-03 2021-02-02 Ntn Corporation Sintered bearing and manufacturing process therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503653A (en) * 2004-06-23 2008-02-07 ホガナス アクチボラゲット Lubricant for insulated electromagnetic soft iron-based powder composition
US20130028780A1 (en) * 2009-10-15 2013-01-31 Christopherson Jr Denis Boyd Iron-based sintered powder metal for wear resistant applications
US8801828B2 (en) * 2009-10-15 2014-08-12 Federal-Mogul Corporation Iron-based sintered powder metal for wear resistant applications
US10232438B2 (en) 2009-10-15 2019-03-19 Tenneco Inc Iron-based sintered powder metal for wear resistant applications
US10907685B2 (en) 2013-10-03 2021-02-02 Ntn Corporation Sintered bearing and manufacturing process therefor
JP2018109445A (en) * 2018-03-02 2018-07-12 Ntn株式会社 Sintered bearing

Also Published As

Publication number Publication date
JP4615191B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5453251B2 (en) Iron-based powder and composition thereof
US6696014B2 (en) Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density
JP3651420B2 (en) Alloy steel powder for powder metallurgy
JP3741654B2 (en) Manufacturing method of high density iron-based forged parts
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
US20080202651A1 (en) Method For Manufacturing High-Density Iron-Based Compacted Body and High-Density Iron-Based Sintered Body
KR101382304B1 (en) Process for production of sintered compact by powder metallurgy
US5552109A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
CA2489488A1 (en) Prealloyed iron-based powder, a method of producing sintered components and a component
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP3378012B2 (en) Manufacturing method of sintered product
JP4923801B2 (en) Method for producing high-density iron-based molded body and high-strength high-density iron-based sintered body
JP2011094187A (en) Method for producing high strength iron based sintered compact
JP4640134B2 (en) Method for producing high-strength, high-density iron-based sintered body
JP3729764B2 (en) Iron-based powder molding material, manufacturing method thereof, and manufacturing method of high-strength high-density iron-based sintered body
JP4615191B2 (en) Method for producing iron-based sintered body
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP2006241533A (en) Iron based mixed powder for high strength sintered component
JP2008240031A (en) Preform for pressing using iron powder as raw material, and its manufacturing method
EP0835329A1 (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
JP4367133B2 (en) Iron-based powder mixture for high-strength sintered parts
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
EP1323840A1 (en) Iron base mixed powder for high strength sintered parts
JP2003096533A (en) Iron-base powder mixture for warm compaction, iron-base powder mixture for warm die lubrication compaction, and method for manufacturing iron-base sintered compact using them
JP2018193575A (en) Sintering forging member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R150 Certificate of patent or registration of utility model

Ref document number: 4615191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term