JP2003309056A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JP2003309056A
JP2003309056A JP2002111985A JP2002111985A JP2003309056A JP 2003309056 A JP2003309056 A JP 2003309056A JP 2002111985 A JP2002111985 A JP 2002111985A JP 2002111985 A JP2002111985 A JP 2002111985A JP 2003309056 A JP2003309056 A JP 2003309056A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
orientation
exposure apparatus
crystal orientation
reticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111985A
Other languages
Japanese (ja)
Inventor
Junya Okuda
純也 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2002111985A priority Critical patent/JP2003309056A/en
Publication of JP2003309056A publication Critical patent/JP2003309056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projection aligner that precisely matches the orientation and a reticle without providing any orientation marks on appearances such as orientation flats, notches and any scratch marks instead of the orientation ones. <P>SOLUTION: The compact projection aligner 101 has a prealignment section 102 for orientating the orientation flat 1a toward a preset orientation. The prealignment section 102 comprises: a prealignment stage 13 for placing a semiconductor substrate 1; a rotary shaft 15 for connecting the prealignment stage 13 with a rotary driving motor 14; an X-ray source 104 for applying X rays onto the semiconductor substrate 1, and a scattered light detection section 105 for detecting diffracted X rays that are subjected to Bragg reflection from the semiconductor substrate 1, as a crystal orientation detection section 103 for detecting the crystal orientation of the semiconductor substrate 1; and a rotation control section 106 for rotating the prealignment stage 13 based on the signal. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、露光装置に関し、
特に、半導体基板の結晶方位とレチクルとの方位合せを
して露光する露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus,
In particular, the present invention relates to an exposure apparatus that aligns a crystal orientation of a semiconductor substrate with a reticle for exposure.

【0002】[0002]

【従来の技術】従来より、半導体装置の製造工程では、
投影光学系を用いて、レチクルマスクに形成されたレチ
クルを半導体基板に塗布したレジストに投影し、転写
(露光)する露光装置が使用されている。また、この露
光を行うに際し、半導体基板の結晶方位を予め設定した
方位に揃え、半導体基板間の均一性を確保したり、ある
いは、後工程でのペレッタイズの際に劈開に利用したり
する。
2. Description of the Related Art Conventionally, in the process of manufacturing a semiconductor device,
An exposure apparatus is used which projects a reticle formed on a reticle mask onto a resist coated on a semiconductor substrate using a projection optical system and transfers (exposes) it. Further, when performing this exposure, the crystal orientation of the semiconductor substrate is aligned with a preset orientation to ensure uniformity between the semiconductor substrates, or it is used for cleavage during pelletizing in a subsequent process.

【0003】このため、図2(a)に示すように、半導
体基板1には、結晶方位を示す面方位マークとして、オ
リエンテーションフラット1a(以下、オリフラと略
す)またはノッチ1bを付ける。いずれも、インゴット
(図示せず)の状態において、外周部を研削してして形
成し、半導体基板1にスライスした状態では、オリフラ
1aは、真円形の一部を直線状に削り取った格好とな
り、ノッチ1bは、真円形の1箇所に例えばV字型の切
込みを形成した格好となる。
Therefore, as shown in FIG. 2 (a), an orientation flat 1a (hereinafter abbreviated as an orientation flat) or a notch 1b is attached to the semiconductor substrate 1 as a plane orientation mark indicating a crystal orientation. In either case, in the state of the ingot (not shown), the outer peripheral portion is ground and formed, and in the state where it is sliced into the semiconductor substrate 1, the orientation flat 1a becomes a shape in which a part of a perfect circle is cut into a straight line. The notch 1b has a shape of, for example, a V-shaped notch formed in one place of a perfect circle.

【0004】尚、半導体基板1には、通常、多数回の露
光が繰り返し行われるが、上記の面方位マークを利用し
てレチクルと半導体基板1との方位合せを行うのは、第
1回目の露光時で、第2回目以降の露光時は、第1回目
の露光で半導体基板1に形成したアライメントマーク
(図示せず)を用いて行う。
Although the semiconductor substrate 1 is usually repeatedly exposed a number of times, it is the first time that the reticle and the semiconductor substrate 1 are aligned by using the plane orientation mark. During the second and subsequent exposures, the alignment mark (not shown) formed on the semiconductor substrate 1 in the first exposure is used.

【0005】従来の露光装置の一例として、縮小投影露
光装置の側面図を図3に示す。縮小投影露光装置2は、
光源(水銀ランプ)3、楕円ミラー4、インテグレータ
5、コンデンサレンズ6、レチクルマスク7を保持する
レチクルステージ8、縮小レンズ9、基板ホルダ10、
基板ホルダ10に半導体基板1を載置する前にオリフラ
1aを予め設定した方位に合わせるプリアライメント部
11、半導体基板1を搬送する搬送部12とで構成され
ている。
FIG. 3 shows a side view of a reduction projection exposure apparatus as an example of a conventional exposure apparatus. The reduction projection exposure apparatus 2 is
A light source (mercury lamp) 3, an elliptical mirror 4, an integrator 5, a condenser lens 6, a reticle stage 8 for holding a reticle mask 7, a reduction lens 9, a substrate holder 10,
A pre-alignment unit 11 for aligning the orientation flat 1a in a preset direction before mounting the semiconductor substrate 1 on the substrate holder 10 and a transport unit 12 for transporting the semiconductor substrate 1 are provided.

【0006】ここで、プリアライメント部11の一例の
詳細を図4に示す。プリアライメント部11は、半導体
基板1を載置するプリアライメントステージ13、プリ
アライメントステージ13と回転駆動モータ14とを連
結する回転軸15、半導体基板1のオリフラ1aを検出
するオリフラ検出センサとして半導体基板1の上下に配
置した発光部16aと受光部16b、その信号に基づい
てプリアライメントステージ13を回転させる回転制御
部17とで成る。
Details of an example of the pre-alignment unit 11 are shown in FIG. The pre-alignment unit 11 is a semiconductor substrate as a pre-alignment stage 13 on which the semiconductor substrate 1 is placed, a rotary shaft 15 that connects the pre-alignment stage 13 and the rotary drive motor 14, and an orientation flat detection sensor that detects the orientation flat 1 a of the semiconductor substrate 1. 1, a light emitting unit 16a and a light receiving unit 16b arranged above and below 1, and a rotation control unit 17 for rotating the pre-alignment stage 13 based on the signals thereof.

【0007】上記の縮小投影露光装置2を用いた露光方
法は、先ず、半導体基板1をプリアライメントステージ
13上に、回転中心と半導体基板1の中心とを合せて載
置し、半導体基板1のオリフラ1aの方位を予め設定し
た方位(レチクルと整合する方位)に合わせる。オリフ
ラ1aの方位合せ方法は、半導体基板1の周辺部に発光
部16aから光線を照射しながら半導体基板1を回転さ
せる。光線は、通常は半導体基板1の周辺部によって遮
光されるが、半導体基板1のオリフラ1a部分では半導
体基板1によって遮光されることなく、半導体基板1を
挟んで対向する位置に配置した受光部16bにより受光
される。さらに、半導体基板1が回転すると、今度は、
オリフラ1aでない部分で光線が遮光される。回転制御
部17は、この信号に基づき回転駆動モータ14を作動
しプリアライメントステージ13を回転させ、予め設定
した方位にオリフラ1aが向くようにする。即ち、半導
体基板1の周辺部に光線を照射しながら、半導体基板1
を回転させ、受光部16bで検出する光線の光量変化を
調べることによりオリフラ1aを検出し方位合せを行
う。尚、図では、発光部および受光部を2組配置したが
1組であってもよい。また、オリフラ1aを検出する手
段は、特にこれに限るものではなくCCDカメラによる
画像を画像処理して検出する構成もある。
In the exposure method using the reduction projection exposure apparatus 2 described above, first, the semiconductor substrate 1 is placed on the pre-alignment stage 13 with the center of rotation and the center of the semiconductor substrate 1 aligned with each other. The orientation of the orientation flat 1a is adjusted to a preset orientation (an orientation that matches the reticle). The orientation of the orientation flat 1a is performed by rotating the semiconductor substrate 1 while irradiating the peripheral portion of the semiconductor substrate 1 with light rays from the light emitting unit 16a. The light rays are normally shielded by the peripheral portion of the semiconductor substrate 1, but the orientation flat 1a portion of the semiconductor substrate 1 is not shielded by the semiconductor substrate 1 and the light receiving portions 16b arranged at opposite positions with the semiconductor substrate 1 sandwiched therebetween. Is received by. Furthermore, when the semiconductor substrate 1 rotates, this time,
The light rays are blocked at a portion other than the orientation flat 1a. Based on this signal, the rotation control unit 17 operates the rotation drive motor 14 to rotate the pre-alignment stage 13 so that the orientation flat 1a faces the preset direction. That is, while irradiating the peripheral portion of the semiconductor substrate 1 with light rays, the semiconductor substrate 1
Is rotated, and the orientation flat 1a is detected by observing the change in the light amount of the light beam detected by the light receiving unit 16b and the orientation is aligned. In the figure, two sets of the light emitting unit and the light receiving unit are arranged, but one set may be provided. Further, the means for detecting the orientation flat 1a is not particularly limited to this, and there is also a configuration in which an image obtained by a CCD camera is image-processed and detected.

【0008】次に、オリフラ1aの方位合せが完了した
ら、プリアライメントステージ13上の半導体基板1を
搬送部12により基板ホルダ10上に搬送する。露光
は、光源(水銀ランプ)3より出た光を楕円ミラー4で
集光し、インテグレータ5で均一化し、コンデンサレン
ズ6、レチクルマスク7、縮小レンズ9をこの順に通過
させ半導体基板1上のレジスト(図示せず)に照射して
行う。
Next, when the orientation of the orientation flat 1a is completed, the semiconductor substrate 1 on the pre-alignment stage 13 is transferred onto the substrate holder 10 by the transfer section 12. In the exposure, the light emitted from the light source (mercury lamp) 3 is condensed by the elliptical mirror 4 and is made uniform by the integrator 5, and the condenser lens 6, the reticle mask 7, and the reduction lens 9 are passed in this order in this order to the resist on the semiconductor substrate 1. (Not shown).

【0009】このようにして、プリアライメント部11
で、予め半導体基板1に施された外観上の面方位マーク
を検出し、半導体基板1の方向を補正して、レチクルと
の方位合せを行い露光する。
In this way, the pre-alignment unit 11
Then, the surface orientation mark on the external appearance that has been previously applied to the semiconductor substrate 1 is detected, the direction of the semiconductor substrate 1 is corrected, and the orientation is aligned with the reticle and exposure is performed.

【0010】しかしながら、面方位マークとして上記の
ようなオリフラ1aやノッチ1bを設けると、当然、そ
の分、半導体基板1上の半導体素子を形成できる有効面
積が減少することになるとともに、露光前に酸処理工程
がある場合、図2(b)に示すように、オリフラ1aや
ノッチ1bのシャープなエッジがこの酸によってエッチ
ングされ丸くなり、オリフラ検出センサでの検出精度を
劣化させるおそれがあった。このため、事前に、オリフ
ラ1aやノッチ1bを基準にして、半導体基板1の表面
に、図2(c)に示すような、例えば、直線状のキズマ
ーク1cをダイヤモンドポイント(図示せず)などによ
って形成し、オリフラ1aやノッチ1bに代わる面方位
マークを形成してやるが、このキズマーク1cは、目視
により識別できる程度の大きさでなければならず、当
然、その分、半導体素子を破壊し歩留りを悪化させるこ
とになるし、また、深さは、半導体素子製造工程におけ
るエッチングなどで消えない程度の深さ(5〜50μm
程度)にしなければならず、キズマーク1cの形成工数
と出来映え管理工数が余分に掛かることになった。
However, if the orientation flat 1a and the notch 1b as described above are provided as the plane orientation marks, the effective area of the semiconductor substrate 1 on which semiconductor elements can be formed is naturally reduced by that amount, and before exposure. When there is an acid treatment step, as shown in FIG. 2B, the sharp edges of the orientation flat 1a and the notch 1b are etched and rounded by this acid, which may deteriorate the detection accuracy of the orientation flat detection sensor. Therefore, with reference to the orientation flat 1a and the notch 1b, a linear scratch mark 1c, for example, as shown in FIG. 2C is formed on the surface of the semiconductor substrate 1 by a diamond point (not shown) or the like. The orientation mark 1c is formed to replace the orientation flat 1a and the notch 1b. The flaw mark 1c must be of a size that can be visually identified, and naturally the semiconductor element is destroyed by that amount and the yield is deteriorated. In addition, the depth is a depth (5 to 50 μm) that does not disappear due to etching in the semiconductor element manufacturing process.
However, the man-hour for forming the scratch mark 1c and the man-hour for managing the workmanship are additionally required.

【0011】[0011]

【発明が解決しようとする課題】従来の露光装置では、
半導体基板にオリフラやノッチなどの外観上の面方位マ
ークを設けて、それを検出センサで検出しレチクルとの
方位合せを行うが、当然、その分、半導体素子を形成す
る有効面積が減少する。また、酸処理工程がある場合、
事前にオリフラやノッチに代わる面方位マークとして、
オリフラやノッチを基準にして、半導体基板表面に、キ
ズマークを形成してやる必要があり、その形成工数や出
来映え管理工数が余分に掛かった。
In the conventional exposure apparatus,
An orientation plane mark such as an orientation flat or a notch is provided on the semiconductor substrate, and the orientation is aligned with the reticle by detecting it with a detection sensor, but naturally the effective area for forming the semiconductor element is reduced accordingly. Also, if there is an acid treatment step,
As a plane orientation mark that replaces orientation flats and notches in advance,
It was necessary to form a scratch mark on the surface of the semiconductor substrate based on the orientation flat or notch, which required extra man-hours for forming the defect mark and man-hours for quality control.

【0012】本発明の目的は、半導体基板にオリフラや
ノッチなどの外観上の面方位マークや、それに代わるキ
ズマークを設けることなく、精度よくレチクルとの方位
合せができる露光装置を提供することである。
An object of the present invention is to provide an exposure apparatus capable of accurately aligning an orientation with a reticle without providing a surface orientation mark such as an orientation flat or a notch on the semiconductor substrate in appearance, or a scratch mark in place of it. .

【0013】[0013]

【課題を解決するための手段】本発明の露光装置は、半
導体基板の結晶方位とレチクルとの方位合せを行い、半
導体基板にレチクルを露光する露光装置において、半導
体基板の結晶方位を検出する結晶方位検出部を備えたこ
とを特徴とする露光装置である。
An exposure apparatus of the present invention is a crystal for detecting a crystal orientation of a semiconductor substrate in an exposure apparatus for aligning a crystal orientation of a semiconductor substrate with that of a reticle and exposing the reticle to the semiconductor substrate. An exposure apparatus having an azimuth detecting unit.

【0014】[0014]

【発明の実施の形態】本発明の露光装置の一例として、
縮小投影露光装置の側面図を図1に示す。図3と同一部
分には同一符号を付す。縮小投影露光装置101は、光
源(水銀ランプ)3、楕円ミラー4、インテグレータ
5、コンデンサレンズ6、レチクルマスク7を保持する
レチクルステージ8、縮小レンズ9、基板ホルダ10、
基板ホルダ10に半導体基板1を載置する前にオリフラ
1aを予め設定した方位に合わせるプリアライメント部
102、半導体基板1を搬送する搬送部12とで構成さ
れている。
BEST MODE FOR CARRYING OUT THE INVENTION As an example of the exposure apparatus of the present invention,
A side view of the reduction projection exposure apparatus is shown in FIG. The same parts as those in FIG. 3 are designated by the same reference numerals. The reduction projection exposure apparatus 101 includes a light source (mercury lamp) 3, an elliptical mirror 4, an integrator 5, a condenser lens 6, a reticle stage 8 holding a reticle mask 7, a reduction lens 9, a substrate holder 10,
A pre-alignment unit 102 that aligns the orientation flat 1a in a preset direction before placing the semiconductor substrate 1 on the substrate holder 10 and a transport unit 12 that transports the semiconductor substrate 1 are configured.

【0015】ここで、プリアライメント部102は、半
導体基板1を載置するプリアライメントステージ13、
プリアライメントステージ13と回転駆動モータ14と
を連結する回転軸15、半導体基板1の結晶方位を検出
する結晶方位検出部103として、半導体基板1上にX
線を照射するX線源104と半導体基板1からブラッグ
反射する回折X線を検出する散乱光検出部105と、そ
の信号に基づいてプリアライメントステージ13を回転
させる回転制御部106とで成る。また、X線が散乱す
る空間は、例えば、鉛を含有した遮蔽板(図示せず)を
用いて取囲み被爆しないようにしておく。
Here, the pre-alignment unit 102 includes a pre-alignment stage 13 on which the semiconductor substrate 1 is placed,
The rotation axis 15 that connects the pre-alignment stage 13 and the rotation drive motor 14 and the crystal orientation detection unit 103 that detects the crystal orientation of the semiconductor substrate 1 serve as X on the semiconductor substrate 1.
The X-ray source 104 for irradiating the X-rays, the scattered light detection unit 105 for detecting the diffracted X-rays Bragg-reflected from the semiconductor substrate 1, and the rotation control unit 106 for rotating the pre-alignment stage 13 based on the signal thereof. The space in which the X-rays are scattered is surrounded by, for example, a lead-containing shield plate (not shown) so as not to be exposed to radiation.

【0016】上記の縮小投影露光装置101を用いた露
光方法は、先ず、半導体基板1をプリアライメントステ
ージ13上に、回転中心と半導体基板1の中心とを合せ
て載置し、半導体基板1の結晶方位を予め設定した方位
(レチクルと整合する方位)に合わせる。結晶方位合せ
の方法は、X線源104から半導体基板1上にX線を照
射する。半導体基板1に対して角度θ1で照射したX線
は、半導体基板1からブラッグ反射により回折X線とし
て角度θ2で回折され、この回折X線を散乱光検出部1
05で検出する。ここで、角度θ1と角度θ2との角度
差は、半導体基板1の表面の結晶構造によって定まる。
次に、半導体基板1を例えば、90°回転させて、この
角度差を測定し、この2方向における測定結果から結晶
方位を算出する。回転制御部106は、この信号に基づ
き回転駆動モータ14を作動し予め設定した方位に半導
体基板1の結晶方位が向くようにプリアライメントステ
ージ13を回転させる。即ち、X線回折により、半導体
基板1表面の結晶方位を直接検出し、半導体基板1を所
望の方位に補正するものである。尚、ここで、半導体基
板1には、オリフラやノッチなど結晶方位を示す外観上
のマークが有っても無くてもどちらでもよい。尚、上記
では、直交する2方向で角度差を測定する構成で説明し
たが、特にこれに限るものではなく。半導体基板の結晶
方位を算出できる測定値が得られれば測定方向や測定ポ
イントを限定するものではない。
In the exposure method using the above-described reduction projection exposure apparatus 101, first, the semiconductor substrate 1 is placed on the pre-alignment stage 13 with the center of rotation and the center of the semiconductor substrate 1 aligned, and the semiconductor substrate 1 Match the crystal orientation to the preset orientation (the orientation that matches the reticle). The crystal orientation is aligned by irradiating the semiconductor substrate 1 with X-rays from the X-ray source 104. The X-rays that irradiate the semiconductor substrate 1 at the angle θ1 are diffracted from the semiconductor substrate 1 by the Bragg reflection as diffracted X-rays at the angle θ2, and the diffracted X-rays are scattered light detecting unit 1
Detect at 05. Here, the angle difference between the angle θ1 and the angle θ2 is determined by the crystal structure of the surface of the semiconductor substrate 1.
Next, the semiconductor substrate 1 is rotated, for example, by 90 °, the angle difference is measured, and the crystal orientation is calculated from the measurement results in the two directions. Based on this signal, the rotation control unit 106 operates the rotation drive motor 14 to rotate the pre-alignment stage 13 so that the crystal orientation of the semiconductor substrate 1 is oriented in a preset orientation. That is, the crystal orientation of the surface of the semiconductor substrate 1 is directly detected by X-ray diffraction, and the semiconductor substrate 1 is corrected to a desired orientation. Incidentally, here, the semiconductor substrate 1 may or may not have an outward mark such as an orientation flat or a notch indicating a crystal orientation. In the above description, the configuration is described in which the angle difference is measured in two orthogonal directions, but the present invention is not limited to this. The measurement direction or measurement point is not limited as long as a measurement value that can calculate the crystal orientation of the semiconductor substrate is obtained.

【0017】次に、半導体基板1の方位合せが完了した
ら、プリアライメントステージ13上の半導体基板1を
搬送部12により基板ホルダ10上に搬送する。露光
は、光源(水銀ランプ)3より出た光を楕円ミラー4で
集光し、インテグレータ5で均一化し、コンデンサレン
ズ6、レチクルマスク7、縮小レンズ9をこの順に通過
させ半導体基板1上のレジスト(図示せず)に照射して
行う。
Next, when the orientation of the semiconductor substrate 1 is completed, the semiconductor substrate 1 on the pre-alignment stage 13 is transferred onto the substrate holder 10 by the transfer unit 12. In the exposure, the light emitted from the light source (mercury lamp) 3 is condensed by the elliptical mirror 4 and is made uniform by the integrator 5, and the condenser lens 6, the reticle mask 7, and the reduction lens 9 are passed in this order in this order to the resist on the semiconductor substrate 1. (Not shown).

【0018】このようにして、プリアライメント部10
2で、予め半導体基板1の結晶方位を精度よく、かつ、
非破壊で検出し、半導体基板1の方向を補正して、レチ
クルとの方位合せを行い露光する。
In this way, the pre-alignment unit 10
2. In advance, the crystal orientation of the semiconductor substrate 1 can be accurately measured in advance, and
Non-destructive detection is performed, the direction of the semiconductor substrate 1 is corrected, alignment is performed with the reticle, and exposure is performed.

【0019】[0019]

【発明の効果】本発明の露光装置によると、露光の際
に、半導体基板の結晶方位を直接、非破壊方法で測定し
方位合せを行うため、半導体基板に結晶方位を示すオリ
フラやノッチのような欠損部分を設けなくて済み、半導
体素子を形成する有効面積を減少させることがない。ま
た、露光前に酸処理工程がある場合でも、オリフラやノ
ッチの場合のように、シャープなエッジが丸くなること
を心配し、オリフラやノッチに代わるキズなどの面方位
マークを新たに形成してやる必要がなく、面方位マーク
の形成工数や出来映え管理が不要である。
According to the exposure apparatus of the present invention, during exposure, the crystal orientation of the semiconductor substrate is directly measured by a non-destructive method to align the orientation. It is not necessary to provide such a defective portion, and the effective area for forming a semiconductor element is not reduced. Even if there is an acid treatment process before exposure, it is necessary to newly form surface orientation marks such as scratches instead of orientation flats and notches, worrying about sharp edges becoming rounded as in the case of orientation flats and notches. There is no need for man-hours for forming surface orientation marks and quality control.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の露光装置の一例の縮小投影露光装置
の側面図
FIG. 1 is a side view of a reduction projection exposure apparatus which is an example of an exposure apparatus of the present invention.

【図2】 半導体基板に設けた面方位マークの説明図FIG. 2 is an explanatory diagram of plane orientation marks provided on a semiconductor substrate.

【図3】 従来の露光装置の一例の縮小投影露光装置の
側面図
FIG. 3 is a side view of a reduction projection exposure apparatus as an example of a conventional exposure apparatus.

【図4】 従来の露光装置のプリアライメント部の要部
斜視図
FIG. 4 is a perspective view of a main part of a pre-alignment unit of a conventional exposure apparatus.

【符号の説明】[Explanation of symbols]

1 半導体基板 101 縮小投影露光装置 102 プリアライメント部 103 結晶方位検出部 1 Semiconductor substrate 101 Reduction projection exposure apparatus 102 pre-alignment section 103 Crystal orientation detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の結晶方位とレチクルとの方位
合せを行い、前記半導体基板に前記レチクルを露光する
露光装置において、前記半導体基板の結晶方位を検出す
る結晶方位検出部を備えたことを特徴とする露光装置。
1. An exposure apparatus that aligns a crystal orientation of a semiconductor substrate with a reticle and exposes the reticle on the semiconductor substrate, comprising a crystal orientation detection unit for detecting the crystal orientation of the semiconductor substrate. Characteristic exposure equipment.
【請求項2】前記結晶方位検出部は、前記半導体基板上
にX線を照射するX線源と、前記半導体基板からブラッ
グ反射する回折X線を検出する散乱光検出部とで成るこ
とを特徴とする請求項1に記載の露光装置。
2. The crystal orientation detector comprises an X-ray source for irradiating the semiconductor substrate with X-rays, and a scattered light detector for detecting diffracted X-rays that are Bragg-reflected from the semiconductor substrate. The exposure apparatus according to claim 1.
【請求項3】前記半導体基板は、結晶方位を示すオリエ
ンテーションフラット、ノッチまたは、表面キズを設け
ていないことを特徴とする請求項1に記載の露光装置。
3. The exposure apparatus according to claim 1, wherein the semiconductor substrate is not provided with an orientation flat indicating a crystal orientation, a notch, or a surface flaw.
JP2002111985A 2002-04-15 2002-04-15 Projection aligner Pending JP2003309056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111985A JP2003309056A (en) 2002-04-15 2002-04-15 Projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111985A JP2003309056A (en) 2002-04-15 2002-04-15 Projection aligner

Publications (1)

Publication Number Publication Date
JP2003309056A true JP2003309056A (en) 2003-10-31

Family

ID=29394624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111985A Pending JP2003309056A (en) 2002-04-15 2002-04-15 Projection aligner

Country Status (1)

Country Link
JP (1) JP2003309056A (en)

Similar Documents

Publication Publication Date Title
KR100277110B1 (en) Exposure device
US20030030050A1 (en) Apparatus and method of inspecting semiconductor wafer
TWI604278B (en) Exposure apparatus, and method of manufacturing device
JP2943673B2 (en) Apparatus and method for manufacturing semiconductor substrate
JP3292022B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
US20040063232A1 (en) Surface inspection method, surface inspection apparatus, and recording medium and data signal for providing surface inspection program
JPH11219894A (en) Aligner for wafer
JP2003532866A (en) Method and apparatus for aligning a crystalline substrate
JP4289961B2 (en) Positioning device
JPH11162833A (en) Method of edge exposure for substrate
JP2003309056A (en) Projection aligner
JPH09139342A (en) Method and device for prealignment
JPH09162120A (en) Method and apparatus for peripheral exposure of wafer for eliminating residual resist on semiconductor wafer
JP3439932B2 (en) Peripheral exposure equipment
JPH1126379A (en) Aligner and manufacture of device
JP2001267235A (en) Exposure system and method of aligning photomask in the same
US7072441B2 (en) Alignment diffractometer
JPH05315215A (en) Semiconductor manufacturing apparatus
JP4158418B2 (en) Adjustment method of resist pattern width dimension
JPH01228130A (en) Process and device of exposure
JP2004111955A (en) Alignment adjusting device
JPS63155722A (en) Aligner
JP2004523114A5 (en)
JP2662524B2 (en) Method and apparatus for determining orientation of sample in X-ray analysis
JP2002280298A (en) Aligner and manufacturing method of semiconductor element using the same