JPS63155722A - Aligner - Google Patents

Aligner

Info

Publication number
JPS63155722A
JPS63155722A JP61301237A JP30123786A JPS63155722A JP S63155722 A JPS63155722 A JP S63155722A JP 61301237 A JP61301237 A JP 61301237A JP 30123786 A JP30123786 A JP 30123786A JP S63155722 A JPS63155722 A JP S63155722A
Authority
JP
Japan
Prior art keywords
crystal
substrate
orientation
pattern
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61301237A
Other languages
Japanese (ja)
Inventor
Shinji Tanaka
伸司 田中
Kazuo Sato
一雄 佐藤
Tsuneo Terasawa
恒男 寺澤
Yoshio Kawamura
河村 喜雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61301237A priority Critical patent/JPS63155722A/en
Publication of JPS63155722A publication Critical patent/JPS63155722A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To accurately align a photomask pattern to a crystal face orientation by specifying a crystal orientation by a parallel beam reflected or diffracted on a substrate crystal to measure the crystal orientation of the single crystal substrate and to regulate the relative position of the substrate to a photomask. CONSTITUTION:A light emitting unit 3 for supplying a parallel beam irradiates the beam to the crystal face of a recess 2 formed on an Si wafer, and a reflected light quantity is measured by a photodetector 4. A rotary table 5 is rotated by a rotary driver 8 at the recess 2 as a center at this time, and stopped at the position where the reflected light quantity supplied to the photodetector 4 becomes maximum. The incident light and the reflected light at a crystal plane (111) 10 formed in the recess and a crystal orientation vector 9 exist in the same plane, and are positioned in an accurate orientation. A pattern transfer mask 6 is positioned to a normal direction by measuring in advance mark holes 11, 11' by other optical systems 12, 12'. The mask 6 is accurately aligned to the crystal orientation of the substrate 1 by this operation to transfer a desired pattern accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リング2フイ装置に係り、特に単結晶基板の
表面にマスクパターンを転写する露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ring two-fi device, and particularly to an exposure device for transferring a mask pattern onto the surface of a single crystal substrate.

〔従来の技術〕[Conventional technology]

方位依存性エツチングを用いた単結晶の微細加工では、
単結晶基板上にマスクパターンを転写する際、基板の結
晶方位とパターンの方向を厳密に合せる必要がある。従
来の装置では、基板の結晶方位と転写すべきパターンの
方向を合せるために、例えば特開昭59−139626
に示されるように、単結晶基板の外周に設けられた結晶
方位を示す直線部分(オリエンテーション・フラット)
ヲ利用していた。しかし、オリエンテーション・フラッ
トは機械加工されたものであシ、所定の方向に対して、
約0.5°の角度誤差を生じることは避けられない。ま
た、従来の露光装置では、このオリエンテーション・フ
ラットヲ、ある基準面に接触させる機械的な位置決めを
行っており装着の際の誤差が更に加わることが避けられ
ない。このため、転写すべきパターンと基板の結晶方位
の間に角度誤差を生じる。その結果、パターン転写後の
方位依存性エツチングの工程において、エツチングで除
去される部分は、形成したマスクパターン寸法よシも大
きくなり、寸法精度が劣化するという問題を生じる。
In single crystal microfabrication using orientation-dependent etching,
When transferring a mask pattern onto a single crystal substrate, it is necessary to precisely match the crystal orientation of the substrate and the direction of the pattern. In conventional devices, in order to match the crystal orientation of the substrate with the direction of the pattern to be transferred, for example, Japanese Patent Laid-Open No. 59-139626
As shown in , the straight line section (orientation flat) on the outer periphery of a single crystal substrate that indicates the crystal orientation.
I was using it. However, the orientation flats are machined, and for a given direction,
An angular error of about 0.5° is unavoidable. Furthermore, in conventional exposure apparatuses, this orientation flat is mechanically positioned to bring it into contact with a certain reference surface, which inevitably adds additional errors during installation. Therefore, an angular error occurs between the pattern to be transferred and the crystal orientation of the substrate. As a result, in the direction-dependent etching step after pattern transfer, the portion removed by etching becomes larger than the dimension of the formed mask pattern, resulting in a problem of deterioration of dimensional accuracy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、フォトマスクのパターンと単結晶基板
の結晶方位を合せるために、予め機械加工されたオリエ
ンテーション・フラットを基準面として用いているが、
このオリエンテーション・フラットの加工誤差に加えて
、機械的接触による基準面の位置決めによる誤差は避け
られないという問題があった。
The above conventional technology uses a pre-machined orientation flat as a reference plane in order to align the photomask pattern with the crystal orientation of the single crystal substrate.
In addition to the machining error of the orientation flat, there is a problem in that errors due to positioning of the reference surface due to mechanical contact are unavoidable.

本発明の目的は、上述の問題点を解決するため、露光装
置上で、単結晶基板の結晶方位を計測するとともに、フ
ォトマスクに対して単結晶基板の相対位置を調整し、フ
ォトマスクパターンと結晶面方位の正確な合せを行うこ
とにある。
An object of the present invention is to solve the above-mentioned problems by measuring the crystal orientation of a single-crystal substrate on an exposure device, adjusting the relative position of the single-crystal substrate with respect to the photomask, and adjusting the relative position of the single-crystal substrate to the photomask pattern. The purpose is to accurately align crystal plane orientations.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記目的は、露光装置において単結晶基板を少なくとも
その面内で回転運動させる手段と、平行光を単結晶基板
に入射するための手段と、単結晶基板からの反射光又は
回折光を受光するだめの手段を具備せしめた上で、単結
晶基板上に異方性エツチングで設けた(111)面から
の反射光量又は回折光量によって単結晶基板の結晶方位
を特定することによって達成される。
The above object is to provide a means for rotationally moving a single crystal substrate at least within its plane in an exposure apparatus, a means for making parallel light incident on the single crystal substrate, and a means for receiving reflected light or diffracted light from the single crystal substrate. This is achieved by specifying the crystal orientation of the single crystal substrate based on the amount of reflected light or diffracted light from the (111) plane provided on the single crystal substrate by anisotropic etching.

〔作用〕[Effect]

露光装置に設けた結晶方向検出系の光源から供給された
平行ビームは単結晶基板に予め設けた方位が既知の結晶
面に照射される。入射光は結晶面で反射又は回折するが
、反射光量又は回折光量の最大となる方向は、既知の結
晶面への入射光路と結晶面の入射点に立つ法線を含む平
面内に存在する。これらの反射光又は回折光はディテク
タによって検出され、結晶面の回転方向位置ずれ量が計
測される。計測結果に基づき、単結晶基板は、その特定
な結晶方位が、ホトマスクのパターンの方向と一致する
ように、微小回転機構によって位置決めされる。それに
よって、転写されるパターンの方向は、基板上に形成し
た結晶面と正確に合った方向に転写される。
A parallel beam supplied from a light source of a crystal orientation detection system provided in an exposure apparatus is irradiated onto a crystal plane with a known orientation provided in advance on a single crystal substrate. Incident light is reflected or diffracted by a crystal surface, and the direction in which the amount of reflected light or diffracted light is maximized is within a plane that includes the known optical path of incidence on the crystal surface and the normal to the point of incidence on the crystal surface. These reflected lights or diffracted lights are detected by a detector, and the amount of rotational positional deviation of the crystal plane is measured. Based on the measurement results, the single crystal substrate is positioned by a minute rotation mechanism so that its specific crystal orientation matches the direction of the pattern on the photomask. Thereby, the direction of the pattern to be transferred is exactly aligned with the crystal plane formed on the substrate.

〔実施例〕〔Example〕

以下、本発明について実施例を用いて説明する。 The present invention will be explained below using Examples.

第1図は、発明に係る露光装置を示す図である。FIG. 1 is a diagram showing an exposure apparatus according to the invention.

従来の露光装置はマスクのパターンとウェハ上のパター
ンとの回転方向位置決めを行う機能を持っているが、本
露光装置はマスク6のパターンとウェハの結晶方位との
回転方向位置決めを行う機能を持つことを特徴とする。
Conventional exposure equipment has a function to perform rotational positioning between the pattern on the mask and the pattern on the wafer, but this exposure equipment has a function to perform rotational positioning between the pattern on the mask 6 and the crystal orientation of the wafer. It is characterized by

同図において、露光装置は、従来の機能に加えて、投光
部3、受光部4および、回転テーブル5を具備している
。1は、マスクパターン転写のために露光装置に供給さ
れたSi単結晶ウェハを示す。該ウェハは、例えば基板
面方位が(110)で、(111)系の結晶面で形成さ
れた凹部2を有している。結晶方位は、との凹部2に形
成された結晶面を用いて決定する。
In the figure, the exposure apparatus includes a light projecting section 3, a light receiving section 4, and a rotary table 5 in addition to conventional functions. 1 shows a Si single crystal wafer supplied to an exposure apparatus for mask pattern transfer. The wafer has, for example, a substrate surface orientation of (110) and a recess 2 formed of a (111) crystal plane. The crystal orientation is determined using the crystal plane formed in the recess 2.

次に、凹部2に形成された結晶面方位を基準とした、反
射光の計測による精密な位置決めの詳細について示す。
Next, details of precise positioning by measuring reflected light based on the crystal plane orientation formed in the recess 2 will be described.

第1図において、平行光を供給する投光部3をSiウェ
ハに形成した凹部2の結晶面に照射し、反射光量を受光
部4で測定する。このとき、回転テーブル5は、凹部2
を中心として回転駆動装置8によって回転し、受光部4
に供給される反射光量が最大となる位置で停止する。
In FIG. 1, a light projector 3 that supplies parallel light is irradiated onto the crystal plane of a recess 2 formed in a Si wafer, and a light receiver 4 measures the amount of reflected light. At this time, the rotary table 5
The light receiving section 4 is rotated by the rotational drive device 8 around the
It stops at the position where the amount of reflected light supplied to the

第2図は、上記位置関係をy−z断面で見た図を示す。FIG. 2 shows the above-mentioned positional relationship seen in a yz cross section.

このとき入射光と、凹部に形成された(111)結晶面
10での反射光と結晶面方位ベクトル9は、同一面内に
存在し、正確な方位に位置決めされた。
At this time, the incident light, the reflected light from the (111) crystal plane 10 formed in the recess, and the crystal plane orientation vector 9 existed within the same plane and were positioned in an accurate orientation.

なお、基板面方位が(110)のとき、結晶面10と基
板面のなす角度は、35.3°であシ、基板面方位が(
100)のSi単結晶ウェハでは、結晶面10と基板面
のなす角度は約54.7°である。従って、使用する単
結晶基板の面方位によって、投光部3と受光部4の位置
関係を変更する必要がある。受光部4としてポジション
アレイセンサを用いることも可能である。
Note that when the substrate plane orientation is (110), the angle between the crystal plane 10 and the substrate plane is 35.3°, and the substrate plane orientation is (110).
In the Si single crystal wafer No. 100), the angle between the crystal plane 10 and the substrate surface is about 54.7°. Therefore, it is necessary to change the positional relationship between the light projecting section 3 and the light receiving section 4 depending on the surface orientation of the single crystal substrate used. It is also possible to use a position array sensor as the light receiving section 4.

一方、パターン転写用マスク6は、予め、目印穴11.
11’を他の光学系12.12’で計測し正規の方向に
位置決めする。
On the other hand, the pattern transfer mask 6 has the mark holes 11 in advance.
11' is measured by another optical system 12 and 12' and positioned in the normal direction.

上記操作によって、パターン転写マスク6と基板1の結
晶方位が正確に合されて、所望のパターンを高精度で転
写することができる。
By the above operation, the crystal orientations of the pattern transfer mask 6 and the substrate 1 are accurately aligned, and a desired pattern can be transferred with high precision.

次に、反射光を得るために好適な凹部を、Si単結晶基
板上に形成する手順の詳細を第3図によって説明する。
Next, the details of the procedure for forming a concave portion suitable for obtaining reflected light on a Si single crystal substrate will be explained with reference to FIG.

まず、基板1の表面に酸化膜13を形成する(第3図(
a))その後、酸化膜13の上にホトレジスト14を塗
布する(第3図(b))。次いで、露光装置を用いた露
光および現像によシ、ホトレジスト14に、円形パター
ンを形成する(第3図(C))。
First, an oxide film 13 is formed on the surface of the substrate 1 (see Fig. 3).
a)) Thereafter, a photoresist 14 is applied on the oxide film 13 (FIG. 3(b)). Next, a circular pattern is formed on the photoresist 14 by exposure using an exposure device and development (FIG. 3(C)).

更に、ホトレジスト14をマスクとしてフッ化水素酸等
で酸化膜13をエツチングして、酸化膜13に、円形パ
ターン16を形成する(第3図(d))。
Furthermore, using the photoresist 14 as a mask, the oxide film 13 is etched with hydrofluoric acid or the like to form a circular pattern 16 in the oxide film 13 (FIG. 3(d)).

次いで、ホトレジスト14を除去した後、酸化膜13を
マスクとしてK OH等のアルカリ金属水溶液、あるい
はヒドラジン等のアミン系水溶液を用いて異方性エツチ
ングを行うことにより、基板1の表面に基板面とある角
度θをなす結晶面17゜17′から成る凹部を形成する
(第3図(e))。基板面方位が(110)のSi単結
晶ウつノ・ではθ中35.3°となシ、(100)のS
i単結晶ではθキ54.7°となる。この場合、形成さ
れる面は(111)系の結晶面である。最後に、基板1
の表面の酸化膜を除去することによって第1図に示す凹
部を有するSi単結晶基板が得られる(第3図(f))
Next, after removing the photoresist 14, using the oxide film 13 as a mask, anisotropic etching is performed using an aqueous alkali metal solution such as KOH or an aqueous amine solution such as hydrazine, thereby forming a pattern on the surface of the substrate 1. A concave portion consisting of crystal planes 17° and 17' forming a certain angle θ is formed (FIG. 3(e)). In case of Si single crystal substrate with (110) plane orientation, θ is 35.3°, and (100) S
In the i single crystal, θ is 54.7°. In this case, the plane formed is a (111) crystal plane. Finally, board 1
By removing the oxide film on the surface, a Si single crystal substrate having the recesses shown in FIG. 1 is obtained (FIG. 3(f)).
.

次に、基板面方位が(110)のSi単結晶ウェハを用
いて実際に得られる結晶面およびその形口円形パターン
16をマスクとしたとき、方位依存性エツチングを施し
て得た複数の結晶面を示す。
Next, using a crystal plane actually obtained using a Si single crystal wafer with a substrate surface orientation of (110) and its shape circular pattern 16 as a mask, a plurality of crystal planes obtained by performing orientation-dependent etching are shows.

結晶面17.17’は(111)系の面で、それぞれ線
分AB、CII基板面と共有する関係におる。また、他
に(111)系の4個の結晶面がそれぞれ線分BF、F
D、AE、ECを含んで、基板面1に垂直に形成されて
いる。第1図で示した露光装置において、結晶方位を決
定するために使用される面は、第4図(b)に示すよう
に基板とのなす角θが90°よシも小さな結晶面17.
17’である。
Crystal planes 17 and 17' are planes of the (111) system, and are in a shared relationship with the line segment AB and the CII substrate plane, respectively. In addition, the four crystal planes of the (111) system are line segments BF and F, respectively.
It includes D, AE, and EC and is formed perpendicular to the substrate surface 1. In the exposure apparatus shown in FIG. 1, the plane used to determine the crystal orientation is a crystal plane 17. whose angle θ with the substrate is smaller than 90°, as shown in FIG. 4(b).
It is 17'.

実施例では、凹部2に形成した結晶面での反射光量を測
定して、該結晶面の方向のずれを決定する方法を示した
が、回折光量を計測することにより、該結晶の方向のず
れ量を求めることも可能である。この場合は、第1図の
凹部の領域に、第4図(b)で示す結晶面を、等ピッチ
で規則的に多数設けることによって、適切な強度の回折
光を得ることができる。
In the example, a method was shown in which the amount of reflected light on the crystal plane formed in the recess 2 was measured to determine the deviation in the direction of the crystal plane. However, by measuring the amount of diffracted light, the deviation in the direction of the crystal It is also possible to determine the amount. In this case, by regularly providing a large number of crystal planes shown in FIG. 4(b) at equal pitches in the region of the recess shown in FIG. 1, it is possible to obtain diffracted light of appropriate intensity.

また、上記実施例では、投光部からの平行光を第2図に
示す結晶面10で反射させて、1個のディテクタで反射
光量を計測したが、もう一方の結晶面10′での反射光
量を計測し、左右のディテクタを使用して、結晶面の方
向のずれ量を求めることも可能である。この場合、ディ
テクタとしては、ホトダイオードやポジションアレイセ
ンサを使用することができる。実施例では、(110)
方向のSi単結晶基板を用いているが、他の方位をもつ
Si単結晶基板でも本発明は適用可能である。さらに、
Si単結晶基板を実施例で用いているが、他の単結晶基
板の結晶方位合せも同じ原理に基づいて実施可能である
Furthermore, in the above embodiment, the parallel light from the light projector is reflected by the crystal plane 10 shown in FIG. 2, and the amount of reflected light is measured by one detector. It is also possible to measure the amount of light and use the left and right detectors to determine the amount of deviation in the direction of the crystal plane. In this case, a photodiode or a position array sensor can be used as the detector. In the example, (110)
Although a Si single crystal substrate with a different orientation is used, the present invention is also applicable to a Si single crystal substrate with other orientations. moreover,
Although a Si single-crystal substrate is used in the embodiment, the crystal orientation of other single-crystal substrates can also be adjusted based on the same principle.

〔発明の効果〕〔Effect of the invention〕

(Q) 以上の記述から明らかなように、この発明に係る露光装
置においては、パターン転写の直前に、単結晶基板の結
晶方位を光学的に精度良く決定できる手段を有しており
、正しい結晶方位にパターンを転写する上で効果がある
(Q) As is clear from the above description, the exposure apparatus according to the present invention has a means for optically determining the crystal orientation of the single crystal substrate with high precision immediately before pattern transfer, and corrects the crystal orientation of the single crystal substrate. It is effective in transferring patterns in different directions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る露光装置の全体の構成を示す説明
図、第2図は結晶面測定のだめの光学系の位置関係を示
す模式図、第3図は第1図で示したSi単結晶基板の製
造方法の工程説明断面図、第4図は第3図のプロセスで
形成した結晶面形状の詳細断面図である。 3・・・投光部、4・・・受光部、5・・・回転テーブ
ル、8第1凹 第2図 日〜R4 ′第30        第4図 断面1−1 ノ’7./7’  I整hσ白
FIG. 1 is an explanatory diagram showing the overall configuration of an exposure apparatus according to the present invention, FIG. 2 is a schematic diagram showing the positional relationship of the optical system for crystal plane measurement, and FIG. 3 is a diagram showing the Si unit shown in FIG. FIG. 4 is a cross-sectional view illustrating the process of manufacturing a crystal substrate, and is a detailed cross-sectional view of the crystal plane shape formed by the process shown in FIG. 3... Light projecting section, 4... Light receiving section, 5... Rotating table, 8 1st concave Fig. 2 - R4' 30 Fig. 4 Cross section 1-1 No'7. /7' I adjustment hσ white

Claims (1)

【特許請求の範囲】 1、被露光用の単結晶基板に設けた結晶面に平行光を照
射する照射光学系と、該結晶面で反射又は回折した光を
検出するディテクタを有すること、および、該結晶面方
位とフォトマスクのパターンの方向を一致させるための
回転移動機構を有することを特徴とした露光装置。 2、少なくとも2個以上の、反射光又は回折光を検出す
るディテクタを有することを特徴とする第1項に記載の
露光装置。
[Scope of Claims] 1. It has an irradiation optical system that irradiates parallel light onto a crystal plane provided on a single crystal substrate to be exposed, and a detector that detects the light reflected or diffracted by the crystal plane, and An exposure apparatus comprising a rotational movement mechanism for matching the crystal plane orientation with the direction of the pattern of the photomask. 2. The exposure apparatus according to item 1, further comprising at least two detectors for detecting reflected light or diffracted light.
JP61301237A 1986-12-19 1986-12-19 Aligner Pending JPS63155722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61301237A JPS63155722A (en) 1986-12-19 1986-12-19 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61301237A JPS63155722A (en) 1986-12-19 1986-12-19 Aligner

Publications (1)

Publication Number Publication Date
JPS63155722A true JPS63155722A (en) 1988-06-28

Family

ID=17894431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61301237A Pending JPS63155722A (en) 1986-12-19 1986-12-19 Aligner

Country Status (1)

Country Link
JP (1) JPS63155722A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936118A (en) * 1995-07-24 1997-02-07 Fujitsu Ltd Manufacture of semiconductor device and semiconductor device
WO2001040876A1 (en) * 1999-11-29 2001-06-07 Bookham Technology Plc Method and apparatus for aligning a crystalline substrate
WO2002059696A1 (en) * 2001-01-23 2002-08-01 Bookham Technology Plc Method of alignment
GB2382156A (en) * 2001-11-15 2003-05-21 Marconi Optical Components Ltd Manufacture of optical devices

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936118A (en) * 1995-07-24 1997-02-07 Fujitsu Ltd Manufacture of semiconductor device and semiconductor device
WO2001040876A1 (en) * 1999-11-29 2001-06-07 Bookham Technology Plc Method and apparatus for aligning a crystalline substrate
US6977986B1 (en) 1999-11-29 2005-12-20 Bookham Technology Plc Method and apparatus for aligning a crystalline substrate
WO2002059696A1 (en) * 2001-01-23 2002-08-01 Bookham Technology Plc Method of alignment
US7072441B2 (en) 2001-01-23 2006-07-04 Bookham Technology, Plc Alignment diffractometer
GB2382156A (en) * 2001-11-15 2003-05-21 Marconi Optical Components Ltd Manufacture of optical devices
WO2003042759A3 (en) * 2001-11-15 2003-11-27 Bookham Technology Plc Manufacture of optical devices

Similar Documents

Publication Publication Date Title
JP3203719B2 (en) Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and device manufacturing method using the exposure method
KR100303743B1 (en) An exposure method
JPH03136264A (en) Prepositioning of semiconductor article and its device
JP2646412B2 (en) Exposure equipment
US4662754A (en) Method for facilitating the alignment of a photomask with individual fields on the surfaces of a number of wafers
JPH11143087A (en) Aligning device and projection aligner using the same
JPS63155722A (en) Aligner
JPH04120716A (en) Method and mechanism for positioning aligner
JP3244783B2 (en) Alignment apparatus and method, and exposure apparatus and semiconductor device manufacturing method using the same
JPH04212436A (en) Position alignment equipment for circular substrate
JPH11307436A (en) Projection aligner, reticle and reticle aligning method
JP3198718B2 (en) Projection exposure apparatus and method for manufacturing semiconductor device using the same
US20040071262A1 (en) Method of alignment
JPH01228130A (en) Process and device of exposure
JP3204253B2 (en) Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and method of manufacturing device using the exposure method
JP2555651B2 (en) Alignment method and device
JP2823227B2 (en) Positioning device
JPS5821824A (en) Wafer alignment method
JP3237022B2 (en) Projection exposure equipment
JPH0766115A (en) Aligner
JPH10223510A (en) Aligner
JP2829649B2 (en) Alignment device
JP2882821B2 (en) Alignment device
JPH04168717A (en) Aligner
JP2860569B2 (en) Exposure equipment