JP2003308876A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003308876A
JP2003308876A JP2002113608A JP2002113608A JP2003308876A JP 2003308876 A JP2003308876 A JP 2003308876A JP 2002113608 A JP2002113608 A JP 2002113608A JP 2002113608 A JP2002113608 A JP 2002113608A JP 2003308876 A JP2003308876 A JP 2003308876A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
battery
electrolyte secondary
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002113608A
Other languages
Japanese (ja)
Other versions
JP4313982B2 (en
Inventor
Koyo Watari
亘  幸洋
Tetsuya Murai
村井  哲也
Sumio Mori
森  澄男
Hiroki Ozaki
尾崎  博樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002113608A priority Critical patent/JP4313982B2/en
Publication of JP2003308876A publication Critical patent/JP2003308876A/en
Application granted granted Critical
Publication of JP4313982B2 publication Critical patent/JP4313982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a longer service life nonaqueous electrolyte secondary battery less decreasing in capacity during charge/discharge cycling with no decrease in initial discharge capacity. <P>SOLUTION: The nonaqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, a separator and a nonaqueous electrolyte consisting of a nonaqueous solvent and a solute. The nonaqueous electrolyte contains chain diol sulfonic acid represented by Formula 1 or Formula 2. In Formula 1, R1 and R2 are independently hydrogen, a halogen element or an 1-4C alkyl group. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、特に、サイクル寿命性能が優れた非水電解質二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having excellent cycle life performance.

【0002】[0002]

【従来の技術】近年、民生用の携帯電話、ポータブル機
器や携帯情報端末などの急速な小型軽量化・多様化に伴
い、その電源である電池に対して、小型で軽量かつ高エ
ネルギー密度で、さらに長期間繰り返し充放電が実現で
きる二次電池の開発が強く要求されている。なかでも、
水溶液系電解液を使用する鉛電池、ニッケルカドミウム
電池、およびニッケル水素電池と比較して、これらの要
求を満たす二次電池として、リチウムイオン二次電池な
どの非水電解質二次電池が最も有望であり、活発な研究
がおこなわれている。
2. Description of the Related Art In recent years, with the rapid miniaturization and diversification of consumer mobile phones, portable devices, personal digital assistants, etc., a battery as a power source thereof is small, lightweight and has high energy density, Furthermore, there is a strong demand for the development of secondary batteries that can be repeatedly charged and discharged for a long period of time. Above all,
Compared with lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries that use aqueous electrolytes, non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are the most promising secondary batteries that meet these requirements. Yes, active research is being conducted.

【0003】非水電解質二次電池の正極活物質には、二
硫化チタン、五酸化バナジウムおよび三酸化モリブデン
をはじめとしてリチウムコバルト複合酸化物、リチウム
ニッケル複合酸化物およびスピネル型リチウムマンガン
酸化物等の一般式LiMO (ただし、Mは一種以上
の遷移金属)で表される種々の化合物が検討されてい
る。なかでも、リチウムコバルト複合酸化物、リチウム
ニッケル複合酸化物およびスピネル型リチウムマンガン
酸化物などは、4V(vs Li/Li)以上の極め
て貴な電位で充放電をおこなうため、正極として用いる
ことで高い放電電圧を有する電池を実現できる。
The positive electrode active material of the non-aqueous electrolyte secondary battery includes
Titanium sulfide, vanadium pentoxide and molybdenum trioxide
Including lithium cobalt composite oxide, lithium
Nickel complex oxide and spinel type lithium manganese
General formula Li such as oxidesxMO Two(However, M is more than one
Various compounds represented by
It Among them, lithium cobalt composite oxide, lithium
Nickel complex oxide and spinel type lithium manganese
Oxides are 4V (vs Li / Li+) More than
Used as a positive electrode because it charges and discharges at a noble potential.
Therefore, a battery having a high discharge voltage can be realized.

【0004】非水電解質二次電池の負極活物質には、金
属リチウム、リチウム合金、リチウムの吸蔵・放出が可
能な炭素材料などの種々のものが検討されているが、な
かでも炭素材料を使用すると、サイクル寿命の長い電池
が得られ、かつ安全性が高いという利点がある。
As the negative electrode active material of the non-aqueous electrolyte secondary battery, various materials such as metallic lithium, lithium alloys, and carbon materials capable of inserting and extracting lithium have been studied. Among them, carbon materials are used. Then, there is an advantage that a battery having a long cycle life can be obtained and the safety is high.

【0005】非水電解質二次電池の電解質には、一般に
エチレンカーボネート(EC)やプロピレンカーボネー
ト(PC)などの高誘電率溶媒とジメチルカーボネート
(DMC)やジエチルカーボネート(DEC)などの低
粘度溶媒との混合系溶媒にLiPFやLiBF等の
支持塩を溶解させた電解質が使用されている。
As the electrolyte of the non-aqueous electrolyte secondary battery, a high dielectric constant solvent such as ethylene carbonate (EC) or propylene carbonate (PC) and a low viscosity solvent such as dimethyl carbonate (DMC) or diethyl carbonate (DEC) are generally used. An electrolyte in which a supporting salt such as LiPF 6 or LiBF 4 is dissolved in the mixed solvent of is used.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、非水電
解質二次電池は、充放電サイクルが進むに従い、負極上
で非水電解質中の支持塩や溶媒の分解が進行して、電解
液の枯渇が生じる、あるいは、負極表面やセパレータの
細孔部に溶媒の分解生成物が堆積してリチウムイオンの
移動を阻害して、放電容量が減少するという問題があ
る。
However, in the non-aqueous electrolyte secondary battery, as the charge / discharge cycle progresses, the supporting salt and the solvent in the non-aqueous electrolyte are decomposed on the negative electrode, and the electrolyte is depleted. There is a problem in that the decomposition product of the solvent is generated or deposited on the surface of the negative electrode or in the pores of the separator to impede the movement of lithium ions and the discharge capacity is reduced.

【0007】本発明は、上記問題を解決するためになさ
れたものであり、その目的とするところは、初期の放電
容量を低下させることなく、かつ充放電サイクル時の容
量低下が小さく、長寿命である非水電解質二次電池を提
供することにある。
The present invention has been made in order to solve the above problems, and an object of the present invention is not to decrease the initial discharge capacity, but to reduce the capacity decrease during charge / discharge cycles and to prolong the life. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、正極
と、負極と、セパレータと、非水溶媒と溶質とからなる
非水電解質を備えた非水電解質二次電池において、前記
非水電解質が化学式(1)または化学式(2)で表され
る鎖状ジオールスルホン酸を含むことを特徴とする。
The invention of claim 1 provides a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte composed of a non-aqueous solvent and a solute. The electrolyte is characterized by containing a chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2).

【0009】[0009]

【化3】 [Chemical 3]

【0010】[0010]

【化4】 [Chemical 4]

【0011】(但し、式(1)において、R1およびR
2は、各々独立して水素、ハロゲン元素、または炭素数
1〜4のアルキル基を表す)。
(However, in the formula (1), R1 and R
2 independently represents hydrogen, a halogen element, or an alkyl group having 1 to 4 carbon atoms).

【0012】請求項1の発明によれば、充放電サイクル
時の容量低下が小さく、長寿命である非水電解質二次電
池が得られる。
According to the invention of claim 1, a non-aqueous electrolyte secondary battery is obtained which has a small decrease in capacity during charge / discharge cycles and has a long life.

【0013】請求項2の発明は、上記非水電解質二次電
池において、非水電解質中の化学式(1)または化学式
(2)で表される鎖状ジオールスルホン酸の含有量を2
重量%以下とすることを特徴とする。
According to a second aspect of the present invention, in the above non-aqueous electrolyte secondary battery, the content of the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) in the non-aqueous electrolyte is 2
It is characterized in that it is not more than wt%.

【0014】請求項2の発明によれば、初期の放電容量
を低下させることなく、良好なサイクル寿命性能を有す
る非水電解質二次電池が得られる。
According to the invention of claim 2, a non-aqueous electrolyte secondary battery having a good cycle life performance can be obtained without lowering the initial discharge capacity.

【0015】[0015]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0016】本発明は、非水電解質二次電池において、
非水電解質中に化学式(1)または化学式(2)で表さ
れる鎖状ジオールスルホン酸を含有することを特徴とす
る。
The present invention relates to a non-aqueous electrolyte secondary battery,
The non-aqueous electrolyte is characterized by containing a chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2).

【0017】[0017]

【化5】 [Chemical 5]

【0018】[0018]

【化6】 [Chemical 6]

【0019】なお、化学式(1)および化学式(2)に
おいて、R1およびR2は、各々独立して水素、ハロゲ
ン元素、または炭素数1〜4のアルキル基を表すものと
する。また、炭素数1〜4のアルキル基は不飽和結合を
有するものでもよい。
In the chemical formulas (1) and (2), R1 and R2 each independently represent hydrogen, a halogen element, or an alkyl group having 1 to 4 carbon atoms. Further, the alkyl group having 1 to 4 carbon atoms may have an unsaturated bond.

【0020】非水電解質二次電池において、非水電解質
中に化学式(1)または化学式(2)で表される鎖状ジ
オールスルホン酸を含有させることにより、負極活物質
の表面に良好なSEIが形成されるため、その後の負極
活物質の表面での非水電解質の分解が抑制され、その結
果、充放電サイクル時の容量低下が小さく、長寿命であ
る非水電解質二次電池が得られる。
In the non-aqueous electrolyte secondary battery, when the chain diol sulfonic acid represented by the chemical formula (1) or (2) is contained in the non-aqueous electrolyte, good SEI can be obtained on the surface of the negative electrode active material. Since it is formed, the subsequent decomposition of the non-aqueous electrolyte on the surface of the negative electrode active material is suppressed, and as a result, a non-aqueous electrolyte secondary battery having a small capacity decrease during charge / discharge cycles and a long life can be obtained.

【0021】ここで、SEI(Solid Elect
rolyte Interphase)とは、非水電解
質中で金属リチウムや炭素材料の初充電をおこなった場
合、電解質中の溶媒や、電解質中に含まれる成分が還元
されて、金属リチウムや炭素材料の表面に形成される不
働体膜をさす。そして、金属リチウムや炭素材料の表面
に形成されたSEIが、リチウムイオン伝導性の保護膜
として働き、その後の金属リチウムや炭素材料と溶媒と
の反応が抑制されるのである。
Here, SEI (Solid Select)
When a lithium lithium or carbon material is charged for the first time in a non-aqueous electrolyte, the solvent in the electrolyte or components contained in the electrolyte are reduced to form on the surface of the lithium metal or carbon material. Refers to the passive membrane. The SEI formed on the surface of the metallic lithium or carbon material acts as a lithium ion conductive protective film, and the subsequent reaction between the metallic lithium or carbon material and the solvent is suppressed.

【0022】また、本発明は、非水電解質中の化学式
(1)または化学式(2)で表される鎖状ジオールスル
ホン酸の含有量を2重量%以下とすることを特徴とす
る。なお、非水電解質中の化学式(1)または化学式
(2)で表される鎖状ジオールスルホン酸の含有量は、
後述の実施例で述べる0.001重量%以下の微量の場
合でも、本発明の効果は認められる。
Further, the present invention is characterized in that the content of the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) in the non-aqueous electrolyte is 2% by weight or less. The content of the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) in the non-aqueous electrolyte is
The effect of the present invention can be recognized even when the amount is 0.001% by weight or less, which will be described in Examples below.

【0023】非水電解質中に鎖状ジオールスルホン酸が
適度に含まれておれば、負極活物質の表面に良好なSE
Iが形成されるが、非水電解質中の鎖状ジオールスルホ
ン酸の含有量が2重量%よりも多い場合には、初期充放
電時の不可逆容量が大きくなるために、初期の放電容量
が小さくなる。
If the chain diol sulfonic acid is contained in the non-aqueous electrolyte in an appropriate amount, a good SE can be obtained on the surface of the negative electrode active material.
I is formed, but when the content of the chain diol sulfonic acid in the non-aqueous electrolyte is more than 2% by weight, the irreversible capacity at the time of initial charge / discharge becomes large, and the initial discharge capacity becomes small. Become.

【0024】本発明の非水電解質二次電池を作製する場
合には、上記の非水電解質を用い、通常の方法により電
池を作製すれば良い。
When producing the non-aqueous electrolyte secondary battery of the present invention, the above non-aqueous electrolyte may be used to produce the battery by a usual method.

【0025】本発明の非水電解質二次電池に用いる正極
活物質としては、リチウムを吸蔵放出可能な化合物であ
る、組成式LiMO、またはLi(ただ
しMは遷移金属、0≦x≦1、0≦y≦2 )で表され
る複合酸化物、トンネル状の空孔を有する酸化物、層状
構造の金属カルコゲン化物を用いることができる。その
具体例としては、LiCoO、LiNiO、LiM
、LiMn 、MnO、FeO、V
、V13、TiO、TiS等がある。ま
た、ポリアニリン等の導電性ポリマー等の有機化合物を
用いることもでき、さらに、これらを混合して用いても
よい。また、粒状の活物質を用いる場合には、例えば、
活物質粒子と導電助剤と結着剤とからなる合材をアルミ
ニウム等の金属集電体上に形成することで作製できる。
Positive electrode used in the non-aqueous electrolyte secondary battery of the present invention
The active material is a compound capable of inserting and extracting lithium.
Composition formula LixMOTwo, Or LiyMTwoOFour(However
M is a transition metal, represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 2)
Complex oxides, oxides with tunnel-shaped holes, layered
Structural metal chalcogenides can be used. That
As a specific example, LiCoOTwo, LiNiOTwo, LiM
nTwoOFour, LiTwoMn TwoOFour, MnOTwo, FeOTwo, V
TwoO5, V6OThirteen, TiOTwo, TiSTwoEtc. Well
In addition, organic compounds such as conductive polymers such as polyaniline
It is possible to use, and even if these are mixed and used.
Good. When a granular active material is used, for example,
A mixture of active material particles, a conductive additive, and a binder is used as the aluminum
It can be manufactured by forming it on a metal current collector such as nickel.

【0026】また、負極活物質としては、例えば、A
l、Si、Pb、Sn、Zn、Cd等とリチウムとの合
金、LiFe、WO、MoO等の遷移金属酸
化物、グラファイト、カーボン等の炭素質材料、Li
(LiN)等の窒化リチウム、もしくは金属リチウム
箔、または、これらの混合物を用いてもよい。また、粒
状の炭素質材料を用いる場合には、例えば、活物質粒子
と結着剤とからなる合材を銅等の金属集電体上に形成す
ることで作製できる。
As the negative electrode active material, for example, A
1, alloys of Si, Pb, Sn, Zn, Cd and the like with lithium, transition metal oxides such as LiFe 2 O 3 , WO 2 and MoO 2 , carbonaceous materials such as graphite and carbon, Li 5
Lithium nitride such as (Li 3 N), lithium metal foil, or a mixture thereof may be used. When a granular carbonaceous material is used, for example, it can be produced by forming a mixture of active material particles and a binder on a metal current collector such as copper.

【0027】非水電解質の溶媒としては、エチレンカー
ボネート、ビニレンカーボネート、プロピレンカーボネ
ート、ブチレンカーボネート、トリフルオロプロピレン
カーボネート、γ−ブチロラクトン、スルホラン、1,
2−ジメトキシエタン、1,2−ジエトキシエタン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、3
−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エ
チル、プロピオン酸メチル、プロピオン酸エチル、ジメ
チルカーボネート、ジエチルカーボネート、エチルメチ
ルカーボネート、ジプロピルカーボネート、メチルプロ
ピルカーボネート等の非水溶媒を、単独、またはこれら
を混合して使用することができる。また、適宜、ビフェ
ニル、シクロヘキシルベンゼン等の重合剤、および1,
3−プロパンスルトン、1,3−プロペンスルトン、グ
リコールサルフェート等の皮膜形成剤などの添加剤を、
適量含有したものでも良い。
As the solvent of the non-aqueous electrolyte, ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,
2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3
-A non-aqueous solvent such as methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, dipropyl carbonate or methylpropyl carbonate, alone or These can be mixed and used. In addition, a polymerization agent such as biphenyl or cyclohexylbenzene, and 1,
Additives such as film-forming agents such as 3-propane sultone, 1,3-propene sultone and glycol sulfate,
It may be contained in an appropriate amount.

【0028】非水電解質は、これらの非水溶媒に支持塩
を溶解して使用する。支持塩としては、LiClO
LiPF、LiBF、LiAsF、LiCF
、LiCFSO、LiCFCFSO、L
iCFCFCFSO、LiN(SOCF
、LiN(SOCFCF、LiN(COC
、LiN(COCFCFおよびLiP
(CFCF などの塩、もしくはこれらの混
合物を使用することができる。
The non-aqueous electrolyte is a supporting salt in these non-aqueous solvents.
Dissolve and use. As the supporting salt, LiClOFour,
LiPF6, LiBFFour, LiAsF6, LiCFThreeC
OTwo, LiCFThreeSOThree, LiCFThreeCFTwoSOThree, L
iCFThreeCFTwoCFTwoSOThree, LiN (SOTwoCFThree)
Two, LiN (SOTwoCFTwoCFThree)Two, LiN (COC
FThree)Two, LiN (COCFTwoCFThree)TwoAnd LiP
FThree(CFTwoCFThree) ThreeSuch as salt, or a mixture of these
Compounds can be used.

【0029】また、液状の電解質のかわりに固体のイオ
ン導電性ポリマー電解質を用いることもできる。ポリマ
ー電解質膜が、ポリエチレンオキシド、ポリアクリロニ
トリル、ポリエチレングリコールおよびこれらの変性体
などの場合には、軽量で柔軟性があり、巻回して使用す
る場合に有利である。さらに、イオン導電性ポリマー電
解質膜と非水電解質を組み合わせて使用することができ
る。また、電解質としては、ポリマー電解質以外にも、
有機ポリマー電解質と無機固体電解質の混合材料、もし
くは有機バインダーによって結着された無機固体粉末な
ど、いずれも公知のものの使用が可能である。
A solid ion conductive polymer electrolyte may be used instead of the liquid electrolyte. When the polymer electrolyte membrane is polyethylene oxide, polyacrylonitrile, polyethylene glycol, or a modified product thereof, it is lightweight and flexible, which is advantageous when it is wound and used. Furthermore, an ion conductive polymer electrolyte membrane and a non-aqueous electrolyte can be used in combination. Further, as the electrolyte, other than the polymer electrolyte,
Any known material such as a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, or an inorganic solid powder bound by an organic binder can be used.

【0030】本発明の非水電解質二次電池は、通常、そ
の構成として正極、負極およびセパレータと非水電解質
との組み合わせからなっているが、セパレータとして
は、多孔性ポリオレフィン膜や多孔性ポリ塩化ビニル膜
などの多孔性ポリマー膜、あるいは、リチウムイオンま
たはイオン導電性ポリマー電解質膜を、単独、または組
み合わせて使用することができる。
The non-aqueous electrolyte secondary battery of the present invention usually comprises a combination of a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte as its constitution. As the separator, a porous polyolefin membrane or a porous polychlorinated material is used. Porous polymer membranes such as vinyl membranes or lithium ion or ion conductive polymer electrolyte membranes can be used alone or in combination.

【0031】また、電池の形状は、特に限定されるもの
ではなく、本発明は、角形、円筒形、長円筒形、コイン
形、ボタン形、シート形電池等の様々な形状の非水電解
質二次電池に適用可能である。
The shape of the battery is not particularly limited, and the present invention is applicable to various shapes of non-aqueous electrolytes such as prismatic, cylindrical, oblong cylindrical, coin, button and sheet type batteries. It can be applied to the next battery.

【0032】[0032]

【実施例】以下に好適な実施例を用いて本発明を説明す
るが、本発明は、本実施例により、何ら限定されるもの
ではなく、その主旨を変更しない範囲において、適宜変
更して実施することができる。
EXAMPLES The present invention will be described below with reference to the preferred examples. However, the present invention is not limited to the examples, and various modifications may be made without departing from the scope of the invention. can do.

【0033】[実施例1]正極活物質にLiCoO
負極活物質に炭素材料を使用した、角形非水電解質二次
電池を作製した。図1は、作製した角形非水電解質二次
電池の断面構造を示した図であり、図1において、1は
角形非水電解質二次電池、2は扁平状電極群、3は正
極、4は負極、5はセパレータ、6は電池ケース、7は
電池蓋、8は安全弁、9は正極端子、10は正極リード
である。扁平状電極群2は、正極3と負極4とをセパレ
ータ5を介して巻回したものである。そして、扁平状電
極群2は電池ケース6に収納してあり、電池ケース6に
は安全弁8を設け、電池蓋7と電池ケース6はレーザー
溶接で密閉されている。正極端子9は正極リード10と
接続され、負極4は電池ケース6の内壁と接触により接
続されている。
Example 1 LiCoO 2 was used as the positive electrode active material.
A prismatic non-aqueous electrolyte secondary battery using a carbon material as the negative electrode active material was produced. FIG. 1 is a view showing a cross-sectional structure of the produced prismatic nonaqueous electrolyte secondary battery. In FIG. 1, 1 is a prismatic nonaqueous electrolyte secondary battery, 2 is a flat electrode group, 3 is a positive electrode, and 4 is a positive electrode. Negative electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 is a safety valve, 9 is a positive electrode terminal, and 10 is a positive electrode lead. The flat electrode group 2 is formed by winding a positive electrode 3 and a negative electrode 4 with a separator 5 in between. The flat electrode group 2 is housed in a battery case 6, a safety valve 8 is provided in the battery case 6, and the battery lid 7 and the battery case 6 are sealed by laser welding. The positive electrode terminal 9 is connected to the positive electrode lead 10, and the negative electrode 4 is connected to the inner wall of the battery case 6 by contact.

【0034】正極合材は、活物質としてLiCoO
0重量%と、導電助剤のアセチレンブラック5重量%
と、結着剤のポリフッ化ビニリデン(PVdF)5重量
%とを混合して正極合材とし、N−メチル−2−ピロリ
ドン(NMP)に分散させることによりペーストを調製
した。このペーストを厚さ20μmのアルミニウム集電
体に均一に塗布して、乾燥させた後、ロールプレスで圧
縮成形することにより正極を作製した。
The positive electrode mixture is made of LiCoO 2 9 as an active material.
0% by weight and 5% by weight of conductive auxiliary agent acetylene black
And 5% by weight of polyvinylidene fluoride (PVdF) as a binder were mixed to prepare a positive electrode mixture, which was then dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a paste. This paste was uniformly applied to an aluminum current collector having a thickness of 20 μm, dried, and then compression molded by a roll press to produce a positive electrode.

【0035】負極合材は、リチウムイオンを吸蔵放出す
る炭素材料90重量%と、結着剤のPVdF10重量%
とを混合し、NMPを適宜加えて分散させ、スラリーを
調製した。このスラリーを厚さ15μmの銅集電体に均
一に塗布、乾燥させた後、100℃で5時間乾燥させた
後、ロールプレスで圧縮成形することにより負極を作製
した。
The negative electrode mixture was composed of 90% by weight of a carbon material which absorbs and releases lithium ions and 10% by weight of PVdF as a binder.
And were mixed, and NMP was appropriately added and dispersed to prepare a slurry. The slurry was uniformly applied to a copper current collector having a thickness of 15 μm, dried, dried at 100 ° C. for 5 hours, and compression-molded with a roll press to prepare a negative electrode.

【0036】セパレータとしては、厚さ20μm程度の
微多孔性ポリエチレンフィルムを用いた。これらの正・
負極及びセパレータを巻回して扁平状電極群を作製し
た。電解質には、エチレンカーボネート(EC)とエチ
ルメチルカーボネート(EMC)の体積比3:7混合溶
媒にLiPFを1.1M溶解させた非水電解質を用い
て、角形非水電解質二次電池を作製した。
A microporous polyethylene film having a thickness of about 20 μm was used as the separator. These positive
The negative electrode and the separator were wound to produce a flat electrode group. A rectangular non-aqueous electrolyte secondary battery was prepared by using a non-aqueous electrolyte prepared by dissolving 1.1 M of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 as an electrolyte. did.

【0037】そして、この非水電解質中にエタン−1,
2−ジオールスルホン酸を0.001〜2.5重量%含
有させた7種類の電池を作製し、0.001重量%含有
させた電池をA、0.01重量%含有させた電池をB、
0.1重量%含有させた電池をC、0.5重量%含有さ
せた電池をD、1重量%含有させた電池をE、2重量%
含有させた電池をF、2.5重量%含有させた電池をG
とした。
Then, in this non-aqueous electrolyte, ethane-1,
Seven kinds of batteries containing 0.001 to 2.5% by weight of 2-diolsulfonic acid were prepared, a battery containing 0.001% by weight of A, a battery containing 0.01% by weight of B,
Battery containing 0.1% by weight C, battery containing 0.5% by weight D, battery containing 1% by weight E, 2% by weight
The battery containing F is F, and the battery containing 2.5 wt% is G.
And

【0038】また、プロパン−1,2−ジオールスルホ
ン酸を0.5重量%含有させた電池をHとし、さらに、
エチレンカーボネート(EC)とエチルメチルカーボネ
ート(EMC)の体積比3:7混合溶媒にLiPF
1.1M溶解させた電解質を用いた電池をZとした。
A battery containing 0.5% by weight of propane-1,2-diol sulfonic acid was designated as H, and
A battery using an electrolyte in which 1.1 M of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 was designated as Z.

【0039】電池の試験条件は、つぎの通りとした。同
じ条件の電池を各10セルずつ作製し、これらの電池
を、充電は600mAの電流で4.2Vまで3時間定電
流定電圧充電し、その後600mAの電流で3Vまで放
電をおこない、初期の放電容量を確認した。その後、同
様の充放電サイクルを500サイクル繰り返し、500
サイクル後の容量保持率(%)を測定した。ここで「容
量保持率」とは、初期の放電容量に対する500サイク
ル後の放電容量の比率(%)を示すものとする。なお、
前記容量保持率が80%以上の電池を良好とし、80%
未満の電池を不良とした。
The battery test conditions were as follows. Batteries under the same conditions were made 10 cells each, and these batteries were charged at a constant current of 600 mA for 3 hours at a constant voltage of 4.2 V, and then discharged at a current of 600 mA to 3 V for initial discharge. Checked capacity. After that, the same charge / discharge cycle was repeated 500 times,
The capacity retention rate (%) after the cycle was measured. Here, the “capacity retention rate” means the ratio (%) of the discharge capacity after 500 cycles to the initial discharge capacity. In addition,
A battery having a capacity retention rate of 80% or more is regarded as good and 80%
Batteries of less than were considered defective.

【0040】測定結果を、表1に示す。なお、表1のデ
ータはすべて10セルの平均値で表示した。
The measurement results are shown in Table 1. All the data in Table 1 are represented by the average value of 10 cells.

【0041】[0041]

【表1】 [Table 1]

【0042】表1より、エタン−1,2−ジオールスル
ホン酸およびプロパン−1,2−ジオールスルホン酸を
含有する非水電解質を用いた場合、すなわち電池A〜G
および電池Hでは、500サイクル後の容量保持率が電
池Zに比べて著しく向上することがわかった。
From Table 1, when a non-aqueous electrolyte containing ethane-1,2-diolsulfonic acid and propane-1,2-diolsulfonic acid is used, that is, batteries A to G are used.
It was also found that the capacity retention of the battery H after 500 cycles was significantly improved as compared with the battery Z.

【0043】また、初期の放電容量については、エタン
−1,2−ジオールスルホン酸の含有量が2重量%以下
である電池A〜Fでは、電池Zよりも大きいことがわか
った。
Further, it was found that the initial discharge capacities of the batteries A to F in which the content of ethane-1,2-diolsulfonic acid was 2% by weight or less were larger than those of the battery Z.

【0044】エタン−1,2−ジオールスルホン酸の含
有量を2.5重量%とした電池Gの場合は、充放電サイ
クル後の容量保持率は83%と高いものの、初期の放電
容量は電池Zと同等であった。この理由は、鎖状ジオー
ルスルホン酸の非水電解質に対する含有量が多い場合、
SEI形成に必要な電気量が大きくなったことと、形成
されたSEIが負極へのLi挿入反応を阻害することに
より充電電気量が減少したことがあげられる。
In the case of the battery G in which the content of ethane-1,2-diolsulfonic acid was 2.5% by weight, the capacity retention rate after the charge / discharge cycle was as high as 83%, but the initial discharge capacity was the battery. It was equivalent to Z. The reason for this is that when the content of chain diol sulfonic acid in the non-aqueous electrolyte is high,
This is because the amount of electricity required to form SEI has increased and that the formed SEI inhibits the Li insertion reaction into the negative electrode to reduce the amount of electricity charged.

【0045】また、上記実施例では、鎖状ジオールスル
ホン酸として、エタン−1,2−ジオールスルホン酸お
よびプロパン−1,2−ジオールスルホン酸を用いた場
合を例に説明したが、ブタン−2,3−ジオールスルホ
ン酸等の他の鎖状ジオールスルホン酸を用いた場合、お
よび式中のR1、R2をフッ素等のハロゲン元素で置換
したものを用いた場合においても、同様に優れたサイク
ル寿命性能を有する非水電解質二次電池が得られた。
In the above embodiment, the case where ethane-1,2-diol sulfonic acid and propane-1,2-diol sulfonic acid were used as the chain diol sulfonic acid was described as an example. Butane-2 Excellent cycle life when other chain diol sulfonic acid such as 1,3-diol sulfonic acid is used and when R1 and R2 in the formula are replaced with halogen elements such as fluorine A non-aqueous electrolyte secondary battery having performance was obtained.

【0046】[実施例2]実施例1で作製したのと同様
の、正極活物質にLiCoO、負極活物質に炭素材料
を使用した、角形非水電解質二次電池を作製した。電池
の構造、正極合材、負極合材、セパレータも実施例1と
同様のものを用いた。
Example 2 The same prismatic non-aqueous electrolyte secondary battery as that manufactured in Example 1 was prepared using LiCoO 2 for the positive electrode active material and the carbon material for the negative electrode active material. The same battery structure, positive electrode mixture, negative electrode mixture, and separator as in Example 1 were used.

【0047】電解質には、エチレンカーボネート(E
C)とエチルメチルカーボネート(EMC)の体積比
3:7混合溶媒にLiPFを1.1M溶解させた非水
電解質を用いて、角形非水電解質二次電池を作製した。
As the electrolyte, ethylene carbonate (E
A prismatic non-aqueous electrolyte secondary battery was produced using a non-aqueous electrolyte in which 1.1 M of LiPF 6 was dissolved in a mixed solvent of C) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7.

【0048】そして、この非水電解質中にエテン−1,
2−ジオールスルホン酸を0.001〜2.5重量%含
有させた7種類の電池を作製し、0.001重量%含有
させた電池をI、0.01重量%含有させた電池をJ、
0.1重量%含有させた電池をK、0.5重量%含有さ
せた電池をL、1重量%含有させた電池をM、2重量%
含有させた電池をN、2.5重量%含有させた電池をO
とした。
Then, in this non-aqueous electrolyte, ethene-1,
Seven kinds of batteries containing 0.001 to 2.5% by weight of 2-diolsulfonic acid were prepared, and a battery containing 0.001% by weight of I, a battery containing 0.01% by weight of J,
A battery containing 0.1% by weight is K, a battery containing 0.5% by weight is L, a battery containing 1% by weight is M, and 2% by weight.
The battery containing N was N, and the battery containing 2.5 wt% was O.
And

【0049】また、プロペン−1,2−ジオールスルホ
ン酸を0.5重量%含有させた電池をPとした。比較の
ために、実施例1で作製した電池Zを用いた。
A battery containing 0.5% by weight of propene-1,2-diolsulfonic acid was designated as P. For comparison, the battery Z manufactured in Example 1 was used.

【0050】同じ条件の電池を各10セルずつ作製し、
実施例1と同じ条件での試験を行った。測定結果を、表
2に示す。なお、表2のデータはすべて10セルの平均
値で表示した。
Batteries under the same conditions were prepared for each 10 cells,
A test was conducted under the same conditions as in Example 1. The measurement results are shown in Table 2. All the data in Table 2 are shown as the average value of 10 cells.

【0051】[0051]

【表2】 [Table 2]

【0052】表2より、エテン−1,2−ジオールスル
ホン酸およびプロペン−1,2−ジオールスルホン酸を
含有する非水電解質を用いた場合、すなわち電池I〜O
および電池Pでは、500サイクル後の容量保持率が電
池Zに比べて著しく向上することがわかった。
From Table 2, it can be seen that when a non-aqueous electrolyte containing ethene-1,2-diolsulfonic acid and propene-1,2-diolsulfonic acid is used, that is, in batteries I to O.
It was also found that the capacity retention of the battery P after 500 cycles was significantly improved as compared with the battery Z.

【0053】また、初期の放電容量については、エテン
−1,2−ジオールスルホン酸の含有量が2重量%以下
である電池I〜Nでは、電池Zよりも大きいことがわか
った。
It was also found that the initial discharge capacities of the batteries I to N in which the content of ethene-1,2-diolsulfonic acid was 2% by weight or less were larger than those of the battery Z.

【0054】エテン−1,2−ジオールスルホン酸の含
有量を2.5重量%とした電池Oの場合は、充放電サイ
クル後の容量保持率は80%と高いものの、初期の放電
容量は電池Zと同等であった。この理由は、鎖状ジオー
ルスルホン酸の非水電解質に対する含有量が多い場合、
SEI形成に必要な電気量が大きくなったことと、形成
されたSEIが負極へのLi挿入反応を阻害することに
より充電電気量が減少したことがあげられる。
In the case of the battery O in which the content of ethene-1,2-diolsulfonic acid was 2.5% by weight, the capacity retention rate after the charge / discharge cycle was as high as 80%, but the initial discharge capacity was It was equivalent to Z. The reason for this is that when the content of chain diol sulfonic acid in the non-aqueous electrolyte is high,
This is because the amount of electricity required to form SEI has increased and that the formed SEI inhibits the Li insertion reaction into the negative electrode to reduce the amount of electricity charged.

【0055】また、上記実施例では、不飽和結合を有す
る鎖状ジオールスルホン酸として、エテン−1,2−ジ
オールスルホン酸およびプロペン−1,2−ジオールス
ルホン酸を用いた場合を例に説明したが、他の不飽和結
合を有する鎖状ジオールスルホン酸を用いた場合、およ
び式中のR1,R2をフッ素等のハロゲン元素で置換し
たものを用いた場合においても、同様に優れたサイクル
寿命性能を有する非水電解質二次電池が得られる。
Further, in the above embodiments, the case where ethene-1,2-diolsulfonic acid and propene-1,2-diolsulfonic acid are used as the chain diol sulfonic acid having an unsaturated bond has been described as an example. However, when using a chain diol sulfonic acid having another unsaturated bond, and when R1 and R2 in the formula are substituted with a halogen element such as fluorine, similarly, excellent cycle life performance is obtained. A non-aqueous electrolyte secondary battery having is obtained.

【0056】このように、化学式(1)または化学式
(2)で表される鎖状ジオールスルホン酸を非水電解質
に含有させることにより、電池のサイクル寿命性能が向
上することがわかった。この原因については明らかにな
っていないが、電解質中に化学式(1)または化学式
(2)で表される鎖状ジオールスルホン酸を含有させる
ことにより、負極活物質の表面に良好なSEI皮膜が形
成され、その後の負極上での非水電解質の分解が抑制さ
れたものと考えられる。
As described above, it was found that the cycle life performance of the battery is improved by incorporating the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) into the non-aqueous electrolyte. Although the cause of this has not been clarified, by incorporating the chain diol sulfonic acid represented by the chemical formula (1) or (2) into the electrolyte, a good SEI film is formed on the surface of the negative electrode active material. It is considered that the subsequent decomposition of the non-aqueous electrolyte on the negative electrode was suppressed.

【0057】また、初期の放電容量の低下を防ぐため
に、非水電解質中の化学式(1)または化学式(2)で
表される鎖状ジオールスルホン酸の含有量は、2重量%
以下であることが好ましく、1重量%以下とすることが
より好ましい。
In order to prevent the initial discharge capacity from decreasing, the content of the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) in the non-aqueous electrolyte is 2% by weight.
It is preferably the following or less, and more preferably 1% by weight or less.

【0058】なお、上記実施例では、電解質溶媒がEC
とEMCの混合溶媒について記述したが、環状カーボネ
ートと鎖状カーボネートの比率を変化させた場合や、鎖
状カーボネートとして、DMCまたはDECを用いた場
合にも同様の傾向が見られ、さらに、鎖状カーボネート
の代わりにγ―ブチロラクトンを使用した場合にも同様
の傾向が見られた。支持塩の濃度を変化させた場合にお
いても同様の傾向が見られた。また、各種の添加剤(例
えば、ビフェニル、シクロヘキシルベンゼン等の重合
剤、および1,3−プロパンスルトン、1,3−プロペ
ンスルトン、グリコールサルフェート等の皮膜形成剤
等)と併用して用いても同様の効果が得られた。
In the above example, the electrolyte solvent was EC.
However, the same tendency was observed when the ratio of cyclic carbonate and chain carbonate was changed or when DMC or DEC was used as the chain carbonate. A similar tendency was observed when γ-butyrolactone was used instead of carbonate. The same tendency was observed when the concentration of the supporting salt was changed. Also, the same applies when used in combination with various additives (for example, a polymerizing agent such as biphenyl and cyclohexylbenzene, and a film forming agent such as 1,3-propane sultone, 1,3-propene sultone, and glycol sulfate). The effect of was obtained.

【0059】[0059]

【発明の効果】本発明によれば、非水電解質中に化学式
(1)または化学式(2)で表される鎖状ジオールスル
ホン酸を含有させることにより、負極活物質の表面に良
好なSEIが形成されるため、その後の負極活物質の表
面での非水電解質の分解が抑制され、その結果、充放電
サイクル時の容量低下が小さく、長寿命である非水電解
質二次電池を得ることが可能となった。
According to the present invention, by incorporating the chain diol sulfonic acid represented by the chemical formula (1) or (2) into the non-aqueous electrolyte, good SEI can be obtained on the surface of the negative electrode active material. As a result, the decomposition of the non-aqueous electrolyte on the surface of the negative electrode active material is suppressed, and as a result, the capacity decrease during charge / discharge cycles is small, and a long-life non-aqueous electrolyte secondary battery can be obtained. It has become possible.

【0060】また、鎖状ジオールスルホン酸の非水電解
質中の含有量を2重量%以下とすることで、初期の放電
容量が大きく、かつ充放電サイクル時の容量低下が小さ
く長寿命である非水電解質二次電池を得ることが可能と
なった。
When the content of the chain diol sulfonic acid in the non-aqueous electrolyte is 2% by weight or less, the initial discharge capacity is large, the capacity decrease during charge / discharge cycles is small, and the life is long. It has become possible to obtain a water electrolyte secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例、および比較例の角形電池の断
面構造を示す図。
FIG. 1 is a diagram showing a cross-sectional structure of prismatic batteries of examples of the present invention and comparative examples.

【符号の説明】[Explanation of symbols]

1 角形非水電解質二次電池 2 扁平形電極群 3 正極 4 負極 5 セパレータ 6 電池ケース 7 電池蓋 8 安全弁 9 正極端子 10 正極リード 1 Prismatic non-aqueous electrolyte secondary battery 2 Flat electrode group 3 positive electrode 4 Negative electrode 5 separator 6 battery case 7 Battery lid 8 safety valve 9 Positive terminal 10 Positive electrode lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村井 哲也 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社内 (72)発明者 森 澄男 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社内 (72)発明者 尾崎 博樹 京都市南区吉祥院新田壱ノ段町5番地 ジ −エス・メルコテック株式会社内 Fターム(参考) 5H029 AJ05 AK03 AL06 AL07 AL08 AL12 AM03 AM04 AM05 AM07 AM11 AM16    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tetsuya Murai             Kyoto Prefecture Kyoto City Minami-ku Kichijoin Nishinosho Inono Babacho             No. 1 within Japan Battery Co., Ltd. (72) Inventor Sumio Mori             Kyoto Prefecture Kyoto City Minami-ku Kichijoin Nishinosho Inono Babacho             No. 1 within Japan Battery Co., Ltd. (72) Inventor Hiroki Ozaki             5 Jincho, Nitta, Kichijoin, Minami-ku, Kyoto             − Within S-Melcotech Co., Ltd. F term (reference) 5H029 AJ05 AK03 AL06 AL07 AL08                       AL12 AM03 AM04 AM05 AM07                       AM11 AM16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、セパレータと、非水溶
媒と溶質とからなる非水電解質を備えた非水電解質二次
電池において、前記非水電解質が化学式(1)または化
学式(2)で表される鎖状ジオールスルホン酸を含むこ
とを特徴とする非水電解質二次電池。 【化1】 【化2】 (但し、式(1)において、R1およびR2は、各々独
立して水素、ハロゲン元素、または炭素数1〜4のアル
キル基を表す)。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte composed of a non-aqueous solvent and a solute, wherein the non-aqueous electrolyte is the chemical formula (1) or the chemical formula (2). A non-aqueous electrolyte secondary battery comprising a chain diol sulfonic acid represented by: [Chemical 1] [Chemical 2] (However, in the formula (1), R1 and R2 each independently represent hydrogen, a halogen element, or an alkyl group having 1 to 4 carbon atoms).
【請求項2】 非水電解質中の化学式(1)または化学
式(2)で表される鎖状ジオールスルホン酸の含有量が
2重量%以下であることを特徴とする請求項1に記載の
非水電解質二次電池。
2. The non-aqueous electrolyte according to claim 1, wherein the content of the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) is 2% by weight or less. Water electrolyte secondary battery.
JP2002113608A 2002-04-16 2002-04-16 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4313982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113608A JP4313982B2 (en) 2002-04-16 2002-04-16 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113608A JP4313982B2 (en) 2002-04-16 2002-04-16 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003308876A true JP2003308876A (en) 2003-10-31
JP4313982B2 JP4313982B2 (en) 2009-08-12

Family

ID=29395744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113608A Expired - Fee Related JP4313982B2 (en) 2002-04-16 2002-04-16 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4313982B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317389A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2006004813A (en) * 2004-06-18 2006-01-05 Nec Corp Non-aqueous electrolytic solution for secondary battery, and secondary battery using it
JP2007173014A (en) * 2005-12-21 2007-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317389A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2006004813A (en) * 2004-06-18 2006-01-05 Nec Corp Non-aqueous electrolytic solution for secondary battery, and secondary battery using it
JP4544408B2 (en) * 2004-06-18 2010-09-15 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP2007173014A (en) * 2005-12-21 2007-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4313982B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
US11183711B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP4151060B2 (en) Non-aqueous secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
US11876177B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP2003142152A (en) Non-aqueous electrolyte secondary battery
JP4167012B2 (en) Nonaqueous electrolyte secondary battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2007173014A (en) Nonaqueous electrolyte secondary battery
JP2021506074A (en) Electrolyte and lithium secondary battery containing it
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP2002319430A (en) Nonaqueous electrolyte secondary cell
JP2009245830A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing nonaqueous electrolyte
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP2011040333A (en) Nonaqueous electrolyte secondary battery
JP2006080008A (en) Nonaqueous electrolyte secondary battery
KR100558842B1 (en) Organic electrolytic solution and lithium battery adopting the same
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP4759932B2 (en) Nonaqueous electrolyte secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP4134556B2 (en) Nonaqueous electrolyte secondary battery
JP2003331914A (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4313982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees