JP2003307408A - Method and apparatus for measuring optical characteristics of liquid - Google Patents

Method and apparatus for measuring optical characteristics of liquid

Info

Publication number
JP2003307408A
JP2003307408A JP2002112978A JP2002112978A JP2003307408A JP 2003307408 A JP2003307408 A JP 2003307408A JP 2002112978 A JP2002112978 A JP 2002112978A JP 2002112978 A JP2002112978 A JP 2002112978A JP 2003307408 A JP2003307408 A JP 2003307408A
Authority
JP
Japan
Prior art keywords
liquid
thin film
liquid thin
film thickness
measurement data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002112978A
Other languages
Japanese (ja)
Other versions
JP3979157B2 (en
Inventor
Akihiro Tsukada
明宏 塚田
Shinichi Tozawa
伸一 戸沢
Masashi Gunjima
政司 郡嶋
Masaru Masuda
勝 増田
Takashi Inamura
崇 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002112978A priority Critical patent/JP3979157B2/en
Publication of JP2003307408A publication Critical patent/JP2003307408A/en
Application granted granted Critical
Publication of JP3979157B2 publication Critical patent/JP3979157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for measuring optical characteristics of a liquid, capable of providing a more accurate optical characteristics even if the thickness of a liquid thin film exhibits a value different from a set or designed film thickness at each measurement, and capable of measuring a liquid of higher viscosity. <P>SOLUTION: The apparatus for measuring an optical characteristics of a liquid based on a measurement data acquired by radiating light from a light source to the liquid, comprises a liquid thin-film forming means for forming a liquid thin film between first and second members which are arranged to face each other in parallel at a transparent flat part, a spectrometry means for spectro-measuring the transmission light and/or reflection light projected on the liquid thin film, and a measurement data calculation means which calculates a thickness of the liquid thin film from a measurement data for a wavelength with no absorption by the liquid thin film, which is obtained from the spectrometry means, and also calculates the optical characteristics from the liquid thin film from the measurement data for the wavelength in a visible light region acquired by the spectrometry means. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、印刷インキや塗料
などに用いられる液体の光学特性を測定する装置、及び
その方法に関し、特に液体において薄膜を形成し、その
膜厚と光学特性の同時測定を行ない、所望の膜厚におけ
る光学特性の測定を可能とする液体光学特性測定装置及
びその測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the optical characteristics of a liquid used for printing ink, paint, etc., and a method therefor, and in particular, a thin film is formed in the liquid and its thickness and optical characteristics are simultaneously measured. The present invention relates to a liquid optical characteristic measuring device and a measuring method therefor capable of measuring optical characteristics at a desired film thickness.

【0002】[0002]

【従来の技術】従来の、液体の光学特性の測定には、液
体を十分に希釈して厚みがミリ単位のセルに注入し、そ
の透過率/反射率を求める方法や、展色機などを用いて
紙やフィルムに展色し、測定機器を用いて、その紙やフ
ィルムの透過率又は反射率を求める方法を用いている。
またその他にも、特開平11−304692号公報、特
開平11−339681号公報においては、液体薄膜を
形成するセルを用いた液体光学特性測定装置又はその方
法が開示されており、特開2000−241320号公
報においては、所望の膜厚を形成する装置を用いた液体
光学特性測定装置又はその測定方法が開示されている。
2. Description of the Related Art Conventionally, for measuring the optical characteristics of a liquid, a method in which the liquid is sufficiently diluted and poured into a cell having a thickness of millimeter unit, and the transmittance / reflectance of the liquid is obtained, or a color spreader is used. It is used to develop a color on a paper or film, and a measuring device is used to obtain the transmittance or reflectance of the paper or film.
In addition, Japanese Patent Laid-Open No. 11-304692 and Japanese Patent Laid-Open No. 11-339681 disclose a liquid optical characteristic measuring apparatus or method using a cell for forming a liquid thin film, and Japanese Patent Laid-Open No. 2000- Japanese Patent No. 241320 discloses a liquid optical characteristic measuring device or a measuring method using a device for forming a desired film thickness.

【0003】光学特性を利用した実施例としては、特色
の色合わせ(コンピューターカラーマッチング)が良く
知られている。この色合わせには膜厚が十分厚い場合を
仮定したクベルカムンクの理論式を基にした方法と、膜
厚が十分に薄いと仮定したランバートベールの法則を基
にした方法があるが、クベルカムンクの理論式は、完全
なる理想状態下で成り立つものであって、実際に適用す
ると、様々な誤差が生じてくるため、クベルカムンクの
理論式を基にした色合わせでは、多くのノウハウを必要
とする。一方でランバートベールの法則は液体の散乱性
が十分に低い状態、つまり液体の薄膜化を図り散乱性を
低下させることで、非常に精度良く成り立つことが知ら
れている。特開平2000−246871号公報ではセ
ルを用いて液体の薄膜化を図り、液体の散乱性を抑える
ことにより、精度向上を実現している。
Color matching of special colors (computer color matching) is well known as an embodiment utilizing optical characteristics. For this color matching, there are a method based on the Kubelka-Munk's theoretical formula assuming that the film thickness is sufficiently thick, and a method based on Lambert-Beer's law assuming that the film thickness is sufficiently thin. The formulas hold under a perfect ideal state, and when actually applied, various errors occur. Therefore, color matching based on the Kubelka-Munk theoretical formula requires a lot of know-how. On the other hand, it is known that Lambert-Beer's law can be very accurately established in a state where the scattering property of a liquid is sufficiently low, that is, by reducing the scattering property by thinning the liquid. In Japanese Unexamined Patent Publication No. 2000-246871, accuracy is improved by using a cell to make a liquid thin film and suppressing the scattering property of the liquid.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
従来の技術では、測定用セルの洗浄を行なったとして
も、繰返し測定を行なうことで測定用セルに汚れが付着
し、実際に形成される液体薄膜の膜厚が設定した膜厚値
とは異なる膜厚で形成されてしまい、正確な光学特性を
求めることが困難である。さらに、液体薄膜の光学特性
を測定している同じ場所の膜厚を同時に測ることは出来
ないため、絶対的な膜厚の測定が困難であり、より精度
の良い光学特性を測定することは難しいことが問題とし
て挙げられている。
However, in the above-mentioned conventional technique, even if the measurement cell is washed, the measurement cell is repeatedly soiled by repeated measurement, and the liquid actually formed is formed. The film thickness of the thin film is different from the set film thickness value, and it is difficult to obtain accurate optical characteristics. Furthermore, since it is not possible to measure the film thickness at the same place where the optical properties of the liquid thin film are measured at the same time, it is difficult to measure the absolute film thickness, and it is difficult to measure the optical properties with higher accuracy. Is mentioned as a problem.

【0005】また、オフセットインキ等に代表される高
粘度の液体を薄膜にするには、液体を短に圧迫するだけ
では実現できず、液体を練ってチキソトロピーを低下さ
せなくては薄膜化することができないため、従来の薄膜
形成セルや膜厚形成装置を用いた測定法を、高粘度な液
体に適用することは困難である。
Further, in order to form a thin film of a high-viscosity liquid represented by offset ink or the like, it cannot be realized by only pressing the liquid for a short time. Therefore, it is difficult to apply the conventional measuring method using a thin film forming cell or a film forming device to a highly viscous liquid.

【0006】従って、本発明は上記の課題に鑑みて為さ
れたものであって、本発明の目的は、液体薄膜の膜厚が
測定毎に設定または設計した膜厚と異なる値を示して
も、より正確な光学特性を求めることができ、さらに、
より粘度の高い液体も測定できる液体光学特性測定装置
及びその方法を提供することにある。
Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid thin film having a thickness different from the thickness set or designed for each measurement. , More accurate optical characteristics can be obtained, and
It is an object of the present invention to provide a liquid optical characteristic measuring device and method capable of measuring a liquid having higher viscosity.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の第1の発明は、光源からの光を液体に照
射して得た測定データより、液体の光学特性を測定する
装置において、透明な平面部を有し、該平面部が略平行
に対向配置された第1および第2部材間に液体薄膜を形
成する液体薄膜形成手段と、前記液体薄膜に対して照射
した光の透過光及び/又は反射光を分光測定する分光測
定手段と、前記分光測定手段より得られた液体薄膜によ
る吸収のない波長の測定データから液体薄膜の膜厚を、
前記分光測定手段より得られた可視領域の波長の測定デ
ータから液体薄膜の光学特性を演算する測定データ演算
手段と、を備えることを特徴とする液体光学特性測定装
置である。
In order to solve the above problems, the first aspect of the present invention is to measure the optical characteristics of a liquid from the measurement data obtained by irradiating the liquid with light from a light source. In the apparatus, a liquid thin film forming means for forming a liquid thin film between a first member and a second member which have a transparent flat surface and are arranged so as to face each other in a substantially parallel manner, and light irradiated to the liquid thin film. The spectroscopic measurement means for spectroscopically measuring the transmitted light and / or the reflected light, and the thickness of the liquid thin film from the measurement data of the wavelength not absorbed by the liquid thin film obtained by the spectroscopic measurement means,
A liquid optical characteristic measuring device comprising: a measurement data calculating unit that calculates the optical characteristic of the liquid thin film from the measurement data of the wavelength in the visible region obtained by the spectroscopic measuring unit.

【0008】また、本発明の第2の発明は、前記分光測
定手段より得られた液体薄膜による吸収のない波長の測
定データが、近赤外領域の測定データであることを特徴
とする請求項1記載の液体光学特性測定装置である。
A second aspect of the present invention is characterized in that the measurement data of the wavelength without absorption by the liquid thin film obtained by the spectroscopic measurement means is the measurement data in the near infrared region. It is a liquid optical characteristic measuring device as described in 1.

【0009】また、本発明の第3の発明は、前記液体薄
膜形成手段は、透明な平面部を有する第1及び/又は第
2部材を液体薄膜に対して垂直方向に移動させる垂直駆
動機構と、該第1及び/又は第2部材を液体薄膜に対し
て、平行方向に回動させる回動機構と、を備えることを
特徴とする請求項1又は2に記載の液体光学特性測定装
置である。
In a third aspect of the present invention, the liquid thin film forming means comprises a vertical drive mechanism for moving the first and / or second member having a transparent flat surface in a vertical direction with respect to the liquid thin film. The liquid optical characteristic measuring device according to claim 1 or 2, further comprising: a rotating mechanism that rotates the first and / or the second member in a direction parallel to the liquid thin film. .

【0010】また、本発明の第4の発明は、光源からの
光を液体に照射して得た測定データより、液体の光学特
性を測定する方法において、透明な平面部が略平行に対
向配置された第1および第2部材間に液体薄膜を形成
し、該液体薄膜に対して光を照射し、得られた透過光及
び/又は反射光を分光測定し、分光測定して得られた液
体薄膜による吸収のない波長の測定データから液体薄膜
の膜厚を算出し、該液体薄膜の膜厚が所望の膜厚となる
まで液体薄膜の形成から膜厚算出までを繰り返し行い、
該液体薄膜の膜厚が所望の膜厚となった時に、分光測定
して得られた可視領域の波長の測定データから液体薄膜
の光学特性を算出することを特徴とする液体光学特性測
定方法である。
A fourth aspect of the present invention is a method for measuring the optical characteristics of a liquid based on measurement data obtained by irradiating the liquid with light from a light source. A liquid thin film is formed between the first and second members, the liquid thin film is irradiated with light, the obtained transmitted light and / or reflected light is spectroscopically measured, and the liquid is obtained by spectroscopic measurement. Calculate the film thickness of the liquid thin film from the measurement data of the wavelength without absorption by the thin film, repeat the formation of the liquid thin film to the film thickness calculation until the thickness of the liquid thin film reaches the desired film thickness,
When the liquid thin film has a desired film thickness, a liquid optical property measuring method is characterized in that the optical property of the liquid thin film is calculated from the measurement data of the wavelength in the visible region obtained by spectroscopic measurement. is there.

【0011】また、本発明の第5の発明は、前記液体薄
膜の算出された膜厚と所望の膜厚との誤差が±25%以
内の時に、膜厚値に応じて透過率及び/又は反射率に対
し補正を施し、該補正された透過率及び/又は反射率を
用いて液体薄膜の光学特性を算出することを特徴とする
請求項4記載の液体光学特性測定方法である。
Further, in a fifth aspect of the present invention, when the error between the calculated film thickness of the liquid thin film and the desired film thickness is within ± 25%, the transmittance and / or the transmittance is changed according to the film thickness value. 5. The liquid optical characteristic measuring method according to claim 4, wherein the reflectance is corrected, and the optical characteristic of the liquid thin film is calculated using the corrected transmittance and / or reflectance.

【0012】[0012]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。図1は、本発明の一実施例に係る液
体光学特性測定装置の構成を示し、透過光を測定する場
合のものである。液体光学特性測定装置は、可視領域か
ら液体薄膜に吸収のない近赤外領域までの波長帯域(4
00nm〜2000nm付近)を連続的に有する光源1
を備え、光源1より放射された光は、光ファイバー1
5、及び光学素子3を経て、液体薄膜が形成されている
サンプル7にほぼ垂直に照射される。サンプル7を透過
した光は光学素子4および光ファイバー14を経て、分
光器2へ取り込まれる。分光器2によって波長毎の強度
が求められ、その液体薄膜の測定データが得られる。得
られた測定データを測定データ演算手段である計算機1
3に取り込み、膜厚及び光学特性を算出する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on specific embodiments. FIG. 1 shows the configuration of a liquid optical characteristic measuring apparatus according to an embodiment of the present invention, which is for measuring transmitted light. The liquid optical property measuring device is designed to have a wavelength range from the visible region to the near infrared region (4
Light source having a continuous wavelength range of 00 nm to 2000 nm) 1
And the light emitted from the light source 1 is
After passing through 5 and the optical element 3, the sample 7 on which the liquid thin film is formed is irradiated almost vertically. The light transmitted through the sample 7 is taken into the spectroscope 2 via the optical element 4 and the optical fiber 14. The intensity for each wavelength is obtained by the spectroscope 2, and the measurement data of the liquid thin film is obtained. Calculator 1 which is a measurement data calculation means for the obtained measurement data
Take in 3 and calculate the film thickness and optical characteristics.

【0013】この時、膜厚測定については、液体薄膜に
よる吸収のない波長の測定データを用いて算出を行い、
光学特性については、可視領域の波長の測定データを用
いて算出を行う。求められた膜厚が所望の膜厚に達して
いなかった場合、所望の膜厚にするため液体薄膜形成手
段を用いて所望の膜厚となるまでこれを繰り返す。所望
の膜厚が形成されると同時にその光学特性も得ることが
出来る。
At this time, for the film thickness measurement, calculation is carried out by using the measurement data of the wavelength which is not absorbed by the liquid thin film,
The optical characteristics are calculated using measurement data of wavelengths in the visible region. When the obtained film thickness has not reached the desired film thickness, this is repeated until the desired film thickness is obtained using the liquid thin film forming means in order to obtain the desired film thickness. At the same time that a desired film thickness is formed, its optical characteristics can be obtained.

【0014】光源1は、光学特性の測定波長としての可
視領域の他に、膜厚測定用として液体薄膜による光吸収
がない波長を有している必要があり、比較的安価なハロ
ゲン光源の他に、キセノンや水銀ランプ等を用いても良
い。また、光源は安定した光を供給できるのであれば、
複数用いても構わないが、その場合は、液体薄膜のほぼ
同一場所を照射するように、光を導くことが望ましい。
The light source 1 is required to have a wavelength that does not absorb light by the liquid thin film for film thickness measurement, in addition to the visible region as the measurement wavelength of the optical characteristics. Alternatively, xenon or a mercury lamp may be used. Also, if the light source can supply a stable light,
A plurality of light sources may be used, but in that case, it is desirable to guide the light so as to irradiate almost the same place on the liquid thin film.

【0015】光学素子3は照射する光を液体の薄膜サン
プル7のほぼ同一点に照射されるように配置されてお
り、そのサンプル7を透過した測定光は光学素子4、光
ファイバー14によって分光器2へ取り込まれるよう設
計されている。光学素子4は積分球のような光学的捕捉
が可能であるものであっても良い。また、ここでは分光
器2は波長可視領域から近赤外領域の光を分光すること
のできる1つの分光器を用いているが、より広範囲な波
長域を使用する場合やより高分解能な分光が必要である
場合には、複数の分光器を用いても構わない。
The optical element 3 is arranged so that the irradiation light is irradiated to almost the same point of the liquid thin film sample 7, and the measurement light transmitted through the sample 7 is separated by the optical element 4 and the optical fiber 14 into the spectroscope 2. It is designed to be incorporated into. The optical element 4 may be an element capable of optical capture such as an integrating sphere. Further, here, the spectroscope 2 uses one spectroscope that can disperse light in the wavelength visible region to the near-infrared region, but in the case of using a wider wavelength range or in the case of higher resolution spectroscopy. Multiple spectroscopes may be used if desired.

【0016】次に、液体薄膜形成手段において、略平行
に対向配置された第1及び/又は第2部材としての平面
基板5、6には石英ガラスやサファイアガラス等からな
る透明ガラス基板を用いており、ガラス表面は面精度が
高いものが好ましい。平面基板5、6は固定ロット11
及び可動ロット10に固定されていて、可動ロット9、
10はそれぞれ駆動部12に連動するようになってい
る。また、可動ロット10は駆動部8にも連動するよう
になっている。
Next, in the liquid thin film forming means, transparent glass substrates made of quartz glass, sapphire glass or the like are used for the flat substrates 5 and 6 as the first and / or second members which are arranged in parallel and face each other. Therefore, it is preferable that the glass surface has high surface accuracy. Flat substrates 5 and 6 are fixed lot 11
And the movable lot 9, which is fixed to the movable lot 10,
Each of 10 is linked to the drive unit 12. Further, the movable lot 10 is adapted to interlock with the drive unit 8.

【0017】ここでの垂直駆動機構は、可動ロット9、
10及び駆動部12からなり、駆動部12によって可動
ロット9、10を液体薄膜に対して垂直方向に駆動す
る。また、回動機構は、駆動部8と可動ロット10から
なり、駆動部8によって可動ロット10が回動されるよ
うになっている。平面基板5、6間は常に平行が保たれ
る構成となっており、ほぼ均一な膜厚の液体薄膜が形成
できる構成となっている。また、この時、垂直駆動機構
と回動機構を同時に制御する制御機構を設けることで、
より迅速かつ正確な液体薄膜形成が可能となる。
The vertical drive mechanism here is a movable lot 9,
10 and a drive unit 12, and the drive unit 12 drives the movable lots 9 and 10 in a direction perpendicular to the liquid thin film. The rotating mechanism includes a drive unit 8 and a movable lot 10, and the drive unit 8 rotates the movable lot 10. The flat substrates 5 and 6 are always kept parallel to each other, and a liquid thin film having a substantially uniform film thickness can be formed. At this time, by providing a control mechanism that controls the vertical drive mechanism and the rotation mechanism at the same time,
The liquid thin film can be formed more quickly and accurately.

【0018】ここで、図1では固定ロット11および平
面基板6は固定されており、可動ロット9、可動ロット
10および平面基板5が可動であると示されているが、
逆の構成をしていても良いし、両部が可動であっても良
い。また、可動ロット9、10及び固定ロット11に用
いる材質は、剛性が高く、熱膨張率の低いインバー材等
を用いるのが好ましい。
Here, in FIG. 1, the fixed lot 11 and the plane substrate 6 are fixed, and the movable lot 9, the movable lot 10 and the plane substrate 5 are shown to be movable.
The configuration may be reversed, or both parts may be movable. Further, as the material used for the movable lots 9, 10 and the fixed lot 11, it is preferable to use an Invar material or the like having high rigidity and low thermal expansion coefficient.

【0019】以上、透過光を測定するタイプの装置構成
について説明してきたが、反射光を測定するタイプや透
過/反射両光を測定するタイプの構成も取ることができ
る。反射光を測定する場合は、ビームスプリッターなど
を用いて入射光と区別して反射光を取り出す必要があ
る。図7、8は、それぞれ反射光を測定するタイプ、透
過/反射両光を測定するタイプの装置構成の一例を示し
ている。
The apparatus configuration of the type that measures transmitted light has been described above, but a configuration of a type that measures reflected light or a type that measures both transmitted / reflected light can be adopted. When measuring reflected light, it is necessary to distinguish reflected light from incident light by using a beam splitter or the like. 7 and 8 show examples of device configurations of a type that measures reflected light and a type that measures both transmitted / reflected light, respectively.

【0020】本実施例の具体的な測定方法を、図2のフ
ローチャートを元に説明する。はじめに、平面ガラス基
板がきれいに清掃された状態で、液体を平面基板間に導
入し、駆動部12及び駆動部8を用いて可動ロット9、
10を操作し、液体に様々な方向から力を加えながら、
液体を徐々に薄膜化して行く。次に、適当な液体薄膜を
形成したところで、光源1からの光を液体薄膜へ照射
し、ここでは近赤外領域波長の光の測定データから膜厚
を測定して所望の膜厚との比較を行う。ここで、所望の
膜厚は光学特性を特定するために、予め設定してあるも
のである。
A specific measuring method of this embodiment will be described with reference to the flowchart of FIG. First, in a state where the flat glass substrate is cleanly cleaned, a liquid is introduced between the flat substrates, and the movable lot 9 is driven by using the driving unit 12 and the driving unit 8.
While operating 10 and applying force from various directions to the liquid,
The liquid is gradually thinned. Next, when a suitable liquid thin film is formed, the liquid thin film is irradiated with light from the light source 1. Here, the film thickness is measured from the measurement data of light in the near-infrared region and compared with the desired film thickness. I do. Here, the desired film thickness is preset in order to specify the optical characteristics.

【0021】求められた膜厚と、所望の膜厚が一致して
いなければ、再び駆動部12及び駆動部8を用いて可動
ロット9、10を操作して膜厚を変化させた後、再び膜
厚を測定する。この作業を、液体薄膜の膜厚が所望の膜
厚になるまで繰返し、膜厚が一致したところで透過光及
び/又は反射光から光学特性を測定する。もしくは、所
望の膜厚付近の薄膜が形成された場合には、所望の膜厚
と比較し、その差から光学定数を補正する測定方法を用
いても良い。この時の膜厚の誤差としては、±25%以
内にすることが望ましい。
If the obtained film thickness and the desired film thickness do not match, the movable lots 9 and 10 are operated again by using the driving unit 12 and the driving unit 8 to change the film thickness, and then the film thickness is changed again. Measure the film thickness. This operation is repeated until the film thickness of the liquid thin film reaches a desired film thickness, and when the film thicknesses match, the optical characteristics are measured from the transmitted light and / or the reflected light. Alternatively, when a thin film near the desired film thickness is formed, a measuring method of comparing with the desired film thickness and correcting the optical constant from the difference may be used. The error of the film thickness at this time is preferably within ± 25%.

【0022】また、透過率や透過率を必要とする光学定
数を求めたい場合には、測定のはじめに、無色透明で平
面基板5、6と屈折率が近い液体を平面基板5、6の間
に導入し、駆動部12及び駆動部8を用いて可動ロット
9及び可動ロット10を操作し、液体を薄膜化して行
き、透過光を測定し、その値を記憶しておく必要があ
る。
To obtain the transmittance or the optical constants requiring the transmittance, a colorless transparent liquid having a refractive index close to that of the flat substrates 5 and 6 is placed between the flat substrates 5 and 6 at the beginning of the measurement. It is necessary to introduce and operate the movable lot 9 and the movable lot 10 using the drive unit 12 and the drive unit 8 to thin the liquid, measure the transmitted light, and store the value.

【0023】膜厚を測定する手法は、分光干渉法を用い
ている。以下に、具体的な膜厚の測定方法を説明する。
未知の膜厚の液体薄膜が形成された後、光源1からの光
は、光ファイバー15及び光学素子3を介し液体薄膜へ
照射され、その透過光は光学素子4および光ファイバー
14を経て分光器で波長毎に分解される。波長毎に分解
された光の強度は計算機13へ送られ、液体薄膜特有の
分光波形を得る。この時、可視領域ではその液体の色味
に応じた分光波形が得られるが、液体薄膜は近赤外領域
では色味には影響されず、その膜厚に応じた分光波形が
得られる。この近赤外領域の分光波形と液体の膜厚との
間には次式の関係が成り立つ。また、本発明の液体光学
特性測定装置から得られた測定データにおける近赤外領
域を図3に示し、可視領域を図4に示す。
A spectral interference method is used as a method for measuring the film thickness. Hereinafter, a specific method of measuring the film thickness will be described.
After the liquid thin film having an unknown film thickness is formed, the light from the light source 1 is applied to the liquid thin film through the optical fiber 15 and the optical element 3, and the transmitted light passes through the optical element 4 and the optical fiber 14 and has a wavelength at the spectroscope. It is decomposed every time. The intensity of the light decomposed for each wavelength is sent to the computer 13 to obtain a spectral waveform peculiar to the liquid thin film. At this time, a spectral waveform corresponding to the tint of the liquid is obtained in the visible region, but the liquid thin film is not affected by the tint in the near infrared region, and a spectral waveform corresponding to the film thickness is obtained. The following relationship holds between the spectral waveform in the near infrared region and the film thickness of the liquid. Further, the near infrared region in the measurement data obtained from the liquid optical characteristic measuring device of the present invention is shown in FIG. 3, and the visible region is shown in FIG.

【0024】[0024]

【数1】 [Equation 1]

【0025】d:薄膜の絶対的な膜厚値 λ:波長 n0(λ):入射側の層の屈折率分布 n1(λ):液体の屈折率分布 n2(λ):出射側の層の屈折率分布 r0(λ):入射側の層の振幅透過率分布 r1(λ):出射側の層の振幅透過率分布 Δ :光が薄膜中を進行する際の位相ずれ分布D: Absolute film thickness value of thin film λ: Wavelength n 0 (λ): Refractive index distribution n 1 (λ) of incident side layer: Liquid refractive index distribution n 2 (λ): Outgoing side Layer refractive index distribution r 0 (λ): Incident side layer amplitude transmittance distribution r 1 (λ): Exit side layer amplitude transmittance distribution Δ: Phase shift distribution when light travels in a thin film

【0026】実際には入射側の層と出射側の層とは同じ
材質を用いているため、n0(λ)とn2(λ)、r
0(λ)とr1(λ)は等しい値である。ここで、計算機
13を用いて、数1式と実際に得られた分光波形と一致
する波形の膜厚を求めることが出来るので、液体の薄膜
を形成するのと同時にその膜厚測定を行なうことが可能
となる。ただし、実際の測定ではノイズや誤差が生じる
ため理論式とは異なる波形となることがあるため、次に
示すような、分光波形のピーク値を求め(図3を参
照)、膜厚を算出する手法を用いても良い。ここで、分
光波形のピーク波長をλ pとすると膜厚値は次式で表す
ことができる。
In practice, the incident side layer and the emitting side layer are the same.
Since the material is used, n0(λ) and n2(Λ), r
0(Λ) and r1(Λ) is an equal value. Where the calculator
Using Equation 13, match the equation 1 with the actually obtained spectral waveform
It is possible to obtain the film thickness of the corrugated waveform
It is possible to measure the film thickness at the same time as forming
Becomes However, noise and error will occur in actual measurement
Therefore, the waveform may differ from the theoretical formula.
Find the peak value of the spectral waveform as shown (see Figure 3).
) And a method of calculating the film thickness may be used. Where the minute
The peak wavelength of the optical waveform is λ pThen, the film thickness value is expressed by the following equation
be able to.

【0027】[0027]

【数2】 [Equation 2]

【0028】λpi:1つのピーク位置の波長 λpj:λpiとは異なるピーク位置の波長 X:λpiからλpj間でのピークの個数 n1(λ):液体の屈折率分布The lambda pi: 1 single peak positions of the wavelength lambda pj: the wavelength of the peak position which is different from the lambda pi X: peak number n 1 of between from λ pi λ pj (λ): the refractive index distribution of the liquid

【0029】以上の数1式、数2式より、膜厚を求める
際に重要となってくるのが、液体の屈折率分布n
1(λ)であって、平面基板の屈折率分布n0(λ)又は
2(λ)と液体の屈折率分布n1(λ)の屈折率差が小
さいと、膜厚に応じた分光波形が得られなくなってしま
い、膜厚を求めることが困難となってしまうため、液体
の屈折率と屈折率差のある平面基板を用いる必要があ
る。
From the above equations (1) and (2), it is important to calculate the film thickness, that is, the refractive index distribution n of the liquid.
If 1 (λ) and the difference in refractive index between the refractive index distribution n 0 (λ) or n 2 (λ) of the flat substrate and the refractive index distribution n 1 (λ) of the liquid is small, the spectrum depending on the film thickness is obtained. Since it becomes difficult to obtain a waveform and it is difficult to obtain the film thickness, it is necessary to use a flat substrate having a refractive index difference with that of the liquid.

【0030】また実際には、液体薄膜を作成する過程
で、所望の膜厚と同一の膜厚をもつ液体薄膜を形成する
には時間がかかってしまうため、所望の膜厚に近い膜厚
が形成された際の、補正の方法について示す。所望の膜
厚Dと液体薄膜の膜厚dであった場合、はじめに液体薄
膜の膜厚がdである時の透過率をTd(λ)とすると、
所望の膜厚Dの液体薄膜の透過率はランバートベールの
法則を用いると、容易に求めることができる。ただし、
Dとdは近い膜厚であることが好ましい。ここで、数3
式にランバートベールの法則の式を、数4式に補正の式
を示す。
In practice, in the process of forming a liquid thin film, it takes time to form a liquid thin film having the same film thickness as the desired film thickness. A correction method when formed is shown. If the desired film thickness D and the film thickness d of the liquid thin film are given, and let T d (λ) be the transmittance when the film thickness of the liquid thin film is d,
The transmittance of a liquid thin film having a desired film thickness D can be easily obtained by using Lambert-Beer's law. However,
It is preferable that D and d have similar film thicknesses. Where the number 3
The Lambert Beer's law equation is shown in the equation, and the correction equation is shown in the equation 4.

【0031】[0031]

【数3】 [Equation 3]

【0032】 I:液体薄膜の透過光 I0:液体薄膜への入射光 k:液体特有の定数 c:液体濃度 d:液体薄膜の膜厚 T:液体の透過率 −log(T):光学濃度I: transmitted light of liquid thin film I 0 : incident light to liquid thin film k: constant peculiar to liquid c: liquid concentration d: film thickness of liquid thin film T: liquid transmittance −log (T): optical density

【0033】[0033]

【数4】 [Equation 4]

【0034】 d:液体薄膜の膜厚 Td(λ):膜厚dにおける、液体の透過率(実測値) TD(λ):膜厚Dにおける、液体の透過率(補正値)D: Liquid film thickness T d (λ): Liquid transmittance (measured value) at film thickness d T D (λ): Liquid transmittance (correction value) at film thickness D

【0035】<実施例>以上に説明した装置及び方法を
用いて、オフセットインキを用いて光学濃度の測定を行
なった。先述したように光源にはハロゲン光源、平面基
板にはサファイア製の基板を使用し、可視領域(400
nm−700nm)で光学濃度をもとめ、近赤外領域
(900nm−1600nm)で膜厚を算出し、所望の
膜厚を10μmとして、測定を行なった。測定には同じ
10μmの膜厚での再現性と、補正方法を用いた測定を
行なった。
<Example> Using the apparatus and method described above, the optical density was measured using an offset ink. As described above, a halogen light source is used for the light source, and a sapphire substrate is used for the flat substrate, and the visible region (400
(nm-700 nm), the optical density was determined, the film thickness was calculated in the near infrared region (900 nm-1600 nm), and the desired film thickness was set to 10 μm for measurement. For the measurement, the reproducibility with the same film thickness of 10 μm and the correction method were used.

【0036】先ず、図5に膜厚を10μmとした時の繰
返し測定の結果を示す。図5はx−y色度図で表されて
いる。尚、x−y色度図とは分光分布より求められる値
で、点のばらつきが無ければ良好な再現性があることを
意味している。ここでは10回ほどの繰り返し測定を行
ったが、ほとんどが同一点を示しており非常に再現性が
高いことが確認できた。
First, FIG. 5 shows the results of repeated measurement when the film thickness was 10 μm. FIG. 5 is represented by an xy chromaticity diagram. The xy chromaticity diagram is a value obtained from the spectral distribution and means that there is no point variation and good reproducibility. Here, the measurement was repeated about 10 times, but almost all showed the same point, and it was confirmed that the reproducibility was extremely high.

【0037】次に様々な膜厚の液体薄膜を形成し、数4
式による膜厚補正を施した実験結果を図6に示す。ここ
で、各膜厚は7.62、12.61、8.17、11.
02、11.15、12.59、7.40、12.23
μmである。各膜厚で得られた透過率から所望の膜厚1
0μmに補正した結果が図6であり、図5と同様に非常
に精度の良い結果が得られた。以上の結果より装置の再
現性やその補正方法の有効性が確認できた。
Next, liquid thin films of various thicknesses are formed, and
FIG. 6 shows the result of the experiment in which the film thickness was corrected by the formula. Here, the respective film thicknesses are 7.62, 12.61, 8.17, 11.
02, 11.15, 12.59, 7.40, 12.23
μm. The desired film thickness 1 from the transmittance obtained at each film thickness
The result of correction to 0 μm is shown in FIG. 6, and as in FIG. 5, a very accurate result was obtained. From the above results, the reproducibility of the device and the effectiveness of its correction method were confirmed.

【0038】[0038]

【発明の効果】本発明は以上の構成であるから、下記に
示す如き効果がある。本発明の第1及び第2の発明によ
れば、液体薄膜の光学特性と、その測定場所と同一場所
の膜厚とを、同時に測定することが可能となり、迅速
に、より正確な光学特性を求めることができる。
Since the present invention has the above-mentioned constitution, it has the following effects. According to the first and second aspects of the present invention, it is possible to simultaneously measure the optical characteristics of the liquid thin film and the film thickness at the same location as the measurement location, and quickly and more accurately obtain the optical characteristics. You can ask.

【0039】また、本発明の第3の発明によれば、液体
の薄膜を作成するために、薄膜の膜厚を均一に保ちつ
つ、上下、左右、回転方向の力を薄膜に加えることによ
って、低粘度から高粘度な液体まで、ほとんどの液体の
薄膜を形成することができるため、従来困難であった高
粘度な液体の薄膜を形成することが可能となり、その光
学特性も求めることができる。
Further, according to the third aspect of the present invention, in order to form a thin film of liquid, by applying a force in the vertical, horizontal, and rotational directions to the thin film while keeping the film thickness uniform, Since it is possible to form a thin film of almost any liquid from a low viscosity to a high viscosity liquid, it becomes possible to form a thin film of a high viscosity liquid, which has been difficult in the past, and it is possible to obtain its optical characteristics.

【0040】本発明の第4の発明によれば、形成された
液体の薄膜の光学特性及びその膜厚をリアルタイムで把
握し、且つその膜厚値をフィードバックして、薄膜の膜
厚を制御する手法が可能となり、より正確な液体の光学
特性をもとめることができる。また、所望の膜厚の薄膜
を作成することが可能で、装置の再現性や精度も、非常
に高めることができる。
According to the fourth aspect of the present invention, the optical characteristics of the formed thin film of the liquid and the film thickness thereof are grasped in real time, and the film thickness value is fed back to control the film thickness of the thin film. The method becomes possible, and more accurate optical characteristics of the liquid can be obtained. Further, it is possible to form a thin film having a desired film thickness, and the reproducibility and accuracy of the device can be greatly improved.

【0041】本発明の第5の発明によれば、所望の膜厚
値が得られなくても、測定した膜厚値と所望の膜厚値と
の誤差が±25%以内であれば、その分光透過率及び/
又は分光反射率に補正を施した値から所望の膜厚値の光
学特性を算出することが可能となったため、測定時間を
大幅に短縮することができる。
According to the fifth aspect of the present invention, even if the desired film thickness value is not obtained, if the error between the measured film thickness value and the desired film thickness value is within ± 25%, Spectral transmittance and /
Alternatively, the optical characteristic of a desired film thickness value can be calculated from the value obtained by correcting the spectral reflectance, so that the measurement time can be significantly shortened.

【0042】さらに、本発明を用いると、光学特性を求
めるだけではなく、液中コンピューターカラーマッチン
グ等が可能となる。特に従来は困難であった、オフセッ
トインキのような高粘度な液体の液中コンピューターカ
ラーマッチングをも実現できる。
Furthermore, according to the present invention, not only the optical characteristics but also the in-liquid computer color matching can be performed. In particular, it is possible to realize in-liquid computer color matching of a highly viscous liquid such as offset ink, which has been difficult in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液体光学特性測定装置の一実施例の構
成を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of an embodiment of a liquid optical characteristic measuring apparatus of the present invention.

【図2】本発明の液体光学特性測定方法の一実施例の流
れを示すフォローチャートである。
FIG. 2 is a follow chart showing the flow of one embodiment of the liquid optical property measuring method of the present invention.

【図3】近赤外領域の分光波長と透過率の一例を示す図
である。
FIG. 3 is a diagram showing an example of spectral wavelength and transmittance in the near infrared region.

【図4】可視領域の分光波長と透過率の一例を示す図で
ある。
FIG. 4 is a diagram showing an example of spectral wavelengths and transmittances in a visible region.

【図5】本発明の実施例(単なる繰り返し測定)に係わ
るx−y色度図である。
FIG. 5 is an xy chromaticity diagram according to an example of the present invention (mere repeated measurement).

【図6】本発明の実施例(透過率に補正を入れた場合)
に係わるx−y色度図である。
FIG. 6 is an example of the present invention (when the transmittance is corrected).
3 is an xy chromaticity diagram relating to FIG.

【図7】本発明の液体光学特性測定装置の他の例の構成
を示す模式図である。
FIG. 7 is a schematic view showing the configuration of another example of the liquid optical characteristic measuring apparatus of the present invention.

【図8】本発明の液体光学特性測定装置の他の例の構成
を示す模式図である。
FIG. 8 is a schematic diagram showing the configuration of another example of the liquid optical characteristic measuring apparatus of the present invention.

【符号の説明】 1・・・光源部 2・・・分光器 3・・・光学素子(照射光用) 4・・・光学素子(測定光用) 5・・・第1平面基板 6・・・第2平面基板 7・・・サンプル(液体薄膜) 8・・・駆動部(回動) 9・・・可動ロット(上下) 10・・・可動ロット(回動、上下) 11・・・固定ロット 12・・・駆動部(上下) 13・・・計算機 14・・・光ファイバー(測定光、導光手段) 15・・・光ファイバー(照射光、導光手段)[Explanation of symbols] 1 ... Light source 2 ... Spectrometer 3 ... Optical element (for irradiation light) 4 ... Optical element (for measuring light) 5 ... First flat substrate 6 ... Second flat substrate 7 ... Sample (liquid thin film) 8 ... Drive unit (rotation) 9: Movable lot (up and down) 10: Movable lot (rotation, up and down) 11: Fixed lot 12 ... Drive unit (up and down) 13 ... Calculator 14 ... Optical fiber (measurement light, light guiding means) 15 ... Optical fiber (irradiation light, light guiding means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 勝 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 (72)発明者 稲村 崇 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 Fターム(参考) 2F065 AA30 BB22 CC31 FF23 FF41 FF46 GG02 GG03 HH13 LL02 LL67 QQ28 2G020 AA04 AA08 BA18 CA02 DA14 DA62    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masaru Masuda             1-5-1 Taito, Taito-ku, Tokyo Toppan stamp             Imprint Co., Ltd. (72) Inventor Takashi Inamura             1-5-1 Taito, Taito-ku, Tokyo Toppan stamp             Imprint Co., Ltd. F term (reference) 2F065 AA30 BB22 CC31 FF23 FF41                       FF46 GG02 GG03 HH13 LL02                       LL67 QQ28                 2G020 AA04 AA08 BA18 CA02 DA14                       DA62

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光源からの光を液体に照射して得た測定デ
ータより、液体の光学特性を測定する装置において、 透明な平面部を有し、該平面部が略平行に対向配置され
た第1および第2部材間に液体薄膜を形成する液体薄膜
形成手段と、 前記液体薄膜に対して照射した光の透過光及び/又は反
射光を分光測定する分光測定手段と前記分光測定手段よ
り得られた液体薄膜による吸収のない波長の測定データ
から液体薄膜の膜厚を、前記分光測定手段より得られた
可視領域の波長の測定データから液体薄膜の光学特性を
演算する測定データ演算手段と、を備えることを特徴と
する液体光学特性測定装置。
1. An apparatus for measuring optical characteristics of a liquid based on measurement data obtained by irradiating a liquid with light from a light source, the device having a transparent flat portion, and the flat portions are arranged substantially parallel to each other. Liquid thin film forming means for forming a liquid thin film between the first and second members, spectroscopic measuring means for spectroscopically measuring transmitted light and / or reflected light of the light applied to the liquid thin film, and obtained from the spectroscopic measuring means. From the measurement data of the wavelength without absorption by the liquid thin film, the film thickness of the liquid thin film, the measurement data calculation means for calculating the optical characteristics of the liquid thin film from the measurement data of the wavelength in the visible region obtained by the spectroscopic measurement means, A liquid optical characteristic measuring device comprising:
【請求項2】前記分光測定手段より得られた液体薄膜に
よる吸収のない波長の測定データが、近赤外領域の測定
データであることを特徴とする請求項1記載の液体光学
特性測定装置。
2. The liquid optical characteristic measuring device according to claim 1, wherein the measurement data of the wavelength which is not absorbed by the liquid thin film obtained by the spectroscopic measurement means is the measurement data in the near infrared region.
【請求項3】前記液体薄膜形成手段は、透明な平面部を
有する第1及び/又は第2部材を液体薄膜に対して垂直
方向に移動させる垂直駆動機構と、 該第1及び/又は第2部材を液体薄膜に対して、平行方
向に回動させる回動機構と、 を備えることを特徴とする請求項1又は2に記載の液体
光学特性測定装置。
3. The liquid thin film forming means comprises a vertical drive mechanism for moving a first and / or a second member having a transparent flat surface in a direction perpendicular to the liquid thin film, and the first and / or second The liquid optical characteristic measuring device according to claim 1 or 2, further comprising: a rotating mechanism that rotates the member in a direction parallel to the liquid thin film.
【請求項4】光源からの光を液体に照射して得た測定デ
ータより、液体の光学特性を測定する方法において、 透明な平面部が略平行に対向配置された第1および第2
部材間に液体薄膜を形成し、該液体薄膜に対して光を照
射し、得られた透過光及び/又は反射光を分光測定し、
分光測定して得られた液体薄膜による吸収のない波長の
測定データから液体薄膜の膜厚を算出し、該液体薄膜の
膜厚が所望の膜厚となるまで液体薄膜の形成から膜厚算
出までを繰り返し行い、該液体薄膜の膜厚が所望の膜厚
となった時に、分光測定して得られた可視領域の波長の
測定データから液体薄膜の光学特性を算出することを特
徴とする液体光学特性測定方法。
4. A method for measuring optical characteristics of a liquid based on measurement data obtained by irradiating the liquid with light from a light source, wherein first and second transparent flat parts are arranged in parallel and face each other.
A liquid thin film is formed between members, light is applied to the liquid thin film, and the obtained transmitted light and / or reflected light is spectroscopically measured,
Calculate the film thickness of the liquid thin film from the measurement data of the wavelength without absorption by the liquid thin film obtained by the spectroscopic measurement, until the film thickness of the liquid thin film becomes the desired film thickness Repeatedly, when the film thickness of the liquid thin film reaches a desired film thickness, the optical characteristic of the liquid thin film is calculated from the measurement data of the wavelength in the visible region obtained by the spectroscopic measurement. Characteristic measurement method.
【請求項5】前記液体薄膜の算出された膜厚と所望の膜
厚との誤差が±25%以内の時に、膜厚値に応じて透過
率及び/又は反射率に対し補正を施し、該補正された透
過率及び/又は反射率を用いて液体薄膜の光学特性を算
出することを特徴とする請求項4記載の液体光学特性測
定方法。
5. When the error between the calculated film thickness of the liquid thin film and the desired film thickness is within ± 25%, the transmittance and / or the reflectance are corrected according to the film thickness value, The liquid optical characteristic measuring method according to claim 4, wherein the optical characteristic of the liquid thin film is calculated using the corrected transmittance and / or reflectance.
JP2002112978A 2002-04-16 2002-04-16 Method for measuring liquid optical properties Expired - Fee Related JP3979157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112978A JP3979157B2 (en) 2002-04-16 2002-04-16 Method for measuring liquid optical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112978A JP3979157B2 (en) 2002-04-16 2002-04-16 Method for measuring liquid optical properties

Publications (2)

Publication Number Publication Date
JP2003307408A true JP2003307408A (en) 2003-10-31
JP3979157B2 JP3979157B2 (en) 2007-09-19

Family

ID=29395289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112978A Expired - Fee Related JP3979157B2 (en) 2002-04-16 2002-04-16 Method for measuring liquid optical properties

Country Status (1)

Country Link
JP (1) JP3979157B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023088A (en) * 2004-07-06 2006-01-26 Toppan Printing Co Ltd Liquid colorimetric apparatus and liquid colorimetric method
US8049884B2 (en) * 2006-10-06 2011-11-01 Shimadzu Corporation Spectrophotometer
WO2013174448A1 (en) * 2012-05-25 2013-11-28 Foss Analytical A/S Optical spectrometer
CN118090651A (en) * 2024-04-23 2024-05-28 世纳微电子科技(成都)有限公司 Optical liquid detection method, device and system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023088A (en) * 2004-07-06 2006-01-26 Toppan Printing Co Ltd Liquid colorimetric apparatus and liquid colorimetric method
JP4506311B2 (en) * 2004-07-06 2010-07-21 凸版印刷株式会社 Liquid color measuring device
US8049884B2 (en) * 2006-10-06 2011-11-01 Shimadzu Corporation Spectrophotometer
WO2013174448A1 (en) * 2012-05-25 2013-11-28 Foss Analytical A/S Optical spectrometer
US9228937B2 (en) 2012-05-25 2016-01-05 Foss Analytical A/S Optical spectrometers
RU2581725C1 (en) * 2012-05-25 2016-04-20 ФОСС Аналитикал А/С Optical spectrometer
AU2012380733B2 (en) * 2012-05-25 2016-07-21 Foss Analytical A/S Optical spectrometer
CN118090651A (en) * 2024-04-23 2024-05-28 世纳微电子科技(成都)有限公司 Optical liquid detection method, device and system

Also Published As

Publication number Publication date
JP3979157B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US8125641B2 (en) Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (PCSES)
JP3996677B2 (en) How to match color prescriptions
KR20050091997A (en) Measuring method, analyzing method, measuring apparatus, analyzing apparatus, ellipsometer, and computer program
US10837898B2 (en) Sensor for a virtually simultaneous measurement of a transmission and/or forward scattering and/or remission and for a simultaneous measurement of the transmission and forward scattering or transmission and remission of a liquid sample
JP2010536046A (en) Learning method for manufacturing color formulas
van Nijnatten An automated directional reflectance/transmittance analyser for coating analysis
US7345762B1 (en) Control of beam spot size in ellipsometer and the like systems
JP4084817B2 (en) Film thickness measuring method and film thickness measuring apparatus
JP2003307408A (en) Method and apparatus for measuring optical characteristics of liquid
JP2009103598A (en) Spectroscopic ellipsometer and polarization analysis method
US20090185186A1 (en) Systems and methods for improving measurement of light transmittance through ink deposited on a substrate
Alterovitz et al. Multiple minima in the ellipsometric error function
JP3941432B2 (en) Film thickness measurement method
US5656939A (en) Apparatus for measuring hardness of ultraviolet curing transformation agent comprising stain and method for the same
JP2000314612A (en) Measurement method for film thickness of light transmission film and film thickness measuring device
JP7388801B2 (en) Fluid analysis device and method
JP2935412B2 (en) Method and apparatus for measuring thickness of thin film and method for manufacturing optical filter
JP2003028718A (en) Instrument for measuring color of liquid
KR101225031B1 (en) Apparatus for interference lithography
KR20110003527A (en) Method for producing color formulas comprising effect pigments
JP3613707B2 (en) Ultrathin film and thin film measurement method
Ohlídal et al. Optical characterization of thin films non‐uniform in thickness by a multiple‐wavelength reflectance method
JP2002277218A (en) Film thickness measuring device and method thereof
Zapien et al. Real-time spectroscopic ellipsometry from 1.5 to 6.5 eV
JP2003247912A (en) Inspection device for minute object element, inspection device for color filter, inspection method for minute object element, manufacturing method for substrate with picture element, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061027

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Effective date: 20070514

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100706

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110706

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110706

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120706

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120706

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130706

LAPS Cancellation because of no payment of annual fees