JP2003307352A - Underground heat exchanger - Google Patents

Underground heat exchanger

Info

Publication number
JP2003307352A
JP2003307352A JP2002111430A JP2002111430A JP2003307352A JP 2003307352 A JP2003307352 A JP 2003307352A JP 2002111430 A JP2002111430 A JP 2002111430A JP 2002111430 A JP2002111430 A JP 2002111430A JP 2003307352 A JP2003307352 A JP 2003307352A
Authority
JP
Japan
Prior art keywords
pipe
heat
heat exchanger
underground heat
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111430A
Other languages
Japanese (ja)
Inventor
Akimi Suzawa
昭己 洲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Kankyo Gijutsu KK
Original Assignee
Misawa Kankyo Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Kankyo Gijutsu KK filed Critical Misawa Kankyo Gijutsu KK
Priority to JP2002111430A priority Critical patent/JP2003307352A/en
Priority to CNB031207278A priority patent/CN1238668C/en
Publication of JP2003307352A publication Critical patent/JP2003307352A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Road Paving Structures (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground heat exchanger capable of effectively and economically collecting the underground heat. <P>SOLUTION: In this heat exchanger wherein a plurality of coaxial double pipes 1 respectively having an inner pipe of an outer diameter of 40-60 mm coaxially mounted in an outer pipe of an outer diameter of 80-100 mm, are vertically buried under the ground, and which collects the underground heat when the heat medium is supplied from upper end parts of the inner pipes 3, and reversed at lower end parts to be upwardly passed in the outer pipes 3, intervals D of the plurality of coaxial double pipes 1 are determined to be 5 m in minimum, and a flow rate of the heat medium is determined to be 20-25 litters per minute. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】 本発明は、四季を通じて豊
富に存在する地中熱を利用して、空調、給湯、温水プー
ル、植物栽培、動物飼育あるいは融雪等を行うために使
用する地中熱交換器に関するものである。 【0002】 【従来の技術】 従来から、自然界に存在する熱エネル
ギーを利用して空調や給湯等に利用することが考えられ
ている。例えば、地下から熱水を汲み上げて、その熱水
を空調や給湯等に利用することもその一つである。しか
し、熱水を大量に汲み上げると地盤沈下等の大きな環境
問題が発生するため、充分な実用化が進んでいない。 【0003】また、地中に熱交換器を構成する複数の埋
設管を埋設し、その埋設管に熱媒を送り、その熱媒と地
中熱との間で伝熱面を介して間接的に熱交換させ、地中
熱を採取する手段も考えられている。この手段は、地盤
沈下等の問題を誘発しないものの、火山地帯等を除く通
常の地域では地中熱の温度が高くないので、充分な熱量
を効果的かつ経済的に採取することが難しいといった問
題がある。 【0004】すなわち、複数の埋設管を近接して埋設す
ると、各埋設管で採取できる熱量が必然的に低下してし
まう。逆に、離隔して埋設すると、各埋設管を連結する
ためのパイプを長く設定したり、多くのポンプを設ける
必要が生じる等、きわめて非経済的となる。 【0005】 【発明が解決しようとする課題】従って、地盤沈下等の
環境問題を発生させることなく、効率的かつ経済的に地
中熱を採取して、それを空調や給湯等に利用することの
できる機器の出現が望まれる。 【0006】本発明者は、こうした点に鑑み、独自に熱
交換器を創案し、かつ、その配置や熱媒の流量等につい
て研究を重ねた結果、満足できる結果を得ることができ
た。本発明は、そうした結果を基にしたものであり、効
果的かつ経済的に地中熱を採取することのできる地中熱
交換器を提供する。 【0007】 【課題を解決するための手段】 図1および図2を参照
して説明する。本発明に係る地中熱交換器は、外径80
〜100mmの外管2内に、外径40〜60mmの内管
3を同心状に設けた同心二重管1を、複数、地中に垂直
に埋設し、熱媒を内管3の上端部から供給し、その下端
部で反転させて外管2内を上方に向かって通過させる際
に地中熱を採取する熱交換器において、前記複数の同心
二重管1の間隔Dを、最短でも5mに設定し、かつ、前
記熱媒の流量を毎分20〜25リットルに設定してな
る。 【0008】 【発明の実施の形態】 本発明に係る地中熱交換湖の実
施形態を、図1および図2に示す。この地中熱交換器
は、外径90mmの硬質ポリエチレン製である外管2内
に、外径56mmの同じく硬質ポリエチレン製の内管3
を同心状に設けて同心二重管1を形成し、この同心二重
管1を、複数、地中に垂直に埋設している。 【0009】各同心二重管1では、熱媒を内管3の上端
部から供給し、その下端部で反転させて外管2内を上方
に向かって通過させる際に地中熱を採取する。そして、
複数の同心二重管1の間隔Dを5mに設定し、かつ、熱
媒の流量を毎分20リットルに設定している。 【0010】なお、各同心二重管1にはボールバルブ6
およびエアー抜きバルブ7を設けており、また、その内
管3には熱媒供給管4を連通し、外管2には排出管5を
連通している。複数の同心二重管1同士は供給管4と排
出管5を介して連通し、その供給管4には2基の熱媒供
給ポンプ8を並列して設け、一方を予備としている。ま
た、供給管4と排出管5は、道路面の直下に配置され、
路上の雪を融かす放熱管9に連通している。26は流量
計である。 【0011】同心二重管1は、地中に縦孔を掘削して、
その縦穴に挿入した後、その周囲に珪砂10を充填し、
その上部には断熱材11を巻き、また、その断熱材11
をセメントミルク12で固めている。また、地中には基
礎コンクリート13を打設し、その上にコンクリート桝
14を設け、さらにコンクリート桝14を蓋15で覆う
と共に、その内壁に点検保守用のタラップ16を設けて
いる。 【0012】この地中熱交換器の作用について説明す
る。ポンプ8を駆動すると、熱媒供給管4内の熱媒が各
同心二重管1の内管3に送り込まれ、その内管3の下端
部で折り返して外管2(外管2と内管3との間部分)に
侵入し、そのまま上端部に向かって送られる。この際、
熱交換によって地中熱を採取する。 【0013】地中熱を採取した熱媒は、排出管5を通っ
て放熱管9に達し、ここで地中熱を放熱した後、再び、
供給管4を通って同心二重管1に送られる。こうした循
環を繰り返し、採熱と放熱を連続的に交互に行う。 【0014】この地中熱放熱管9においては、外径90
mmの外管2内に、外径56mmの内管3を設けて形成
した同心二重管1に熱媒を供給し、かつ、その同心二重
管1の間隔Dを5mとし、さらに、熱媒の流量を毎分2
0リットルに設定しているので、効果的かつ経済的に地
中熱を採取することができる。 【0015】ちなみに、同心二重管1の間隔Dが5m以
内であると、地中熱の温度が低下して充分な熱量を採取
することができず、また、5mを大きく越えると、複数
の同心二重管1を連結する供給管4および排出管5を必
要以上に長く設定する必要がある等して非経済的とな
る。さらに、外管2および内管3の外径をそれより大幅
に大きくして、熱媒の流量を多く設定すると、充分な熱
量を採取することができない。 【0016】なお、図3に示すように、外径80〜10
0mmの管本体18の中心に隔壁19を設けて二つの通
路20を形成したU字管17においても、同様に、その
間隔を最短でも5mに設定し、かつ熱媒の流量を毎分2
0〜25リットルに設定すると良い。 【0017】なお、ポンプ7は、商用電源の他に、太陽
熱発電装置や内燃機関発電装置によって稼動することが
できる。太陽光発電装置は、図4に示すように、ソーラ
ーパネル21で太陽光を吸収し、蓄電池ボックス22内
の蓄電池24に、充電必要時に作動する制御基板23を
介して蓄電し、コントローラー25によって必要量の電
力をポンプ8へ供給する。 【0018】 【発明の効果】本発明に係る地中熱放熱管9は、外径8
0〜100mmの外管2内に、外径40〜60mmの内
管3を設けて形成した同心二重管1を地中に垂直に埋設
し、その中に熱媒を供給して地中熱を採取するものと
し、かつ、その同心二重管1の間隔Dを最短でも5mと
し、さらに、熱媒の流量を毎分20リットルに設定して
いるので、効果的かつ経済的に地中熱を採取することが
できる。 【0019】従って、この地中熱を利用して、地盤沈下
等の環境問題を誘発することなく、空調、給湯、温水プ
ール、植物栽培、動物飼育あるいは融雪等を行うことが
できる。
Description: TECHNICAL FIELD The present invention relates to air conditioning, hot water supply, heated pools, plant cultivation, animal breeding, snow melting, etc., utilizing geothermal heat abundant throughout the four seasons. The present invention relates to an underground heat exchanger used for performing the heat treatment. Conventionally, utilization of heat energy existing in the natural world for air conditioning, hot water supply, and the like has been considered. For example, pumping hot water from underground and using the hot water for air conditioning, hot water supply and the like is one of them. However, if a large amount of hot water is pumped, a serious environmental problem such as land subsidence occurs, so that sufficient practical use has not been advanced. Further, a plurality of buried pipes constituting a heat exchanger are buried in the ground, a heat medium is sent to the buried pipes, and the heat medium is indirectly connected to the ground heat through a heat transfer surface. Means for exchanging heat and collecting geothermal heat are also being considered. Although this method does not induce problems such as land subsidence, it is difficult to collect sufficient heat effectively and economically because the temperature of geothermal heat is not high in ordinary areas except volcanic areas. There is. That is, when a plurality of buried pipes are buried in close proximity, the amount of heat that can be collected by each buried pipe is necessarily reduced. On the other hand, when buried apart from each other, it becomes extremely uneconomical, for example, it is necessary to set a long pipe for connecting the buried pipes or to provide many pumps. [0005] Accordingly, it is necessary to efficiently and economically collect underground heat without causing environmental problems such as land subsidence, and to use it for air conditioning and hot water supply. It is hoped that a device that can do this will appear. In view of these points, the present inventor has independently devised a heat exchanger, and has repeatedly studied the arrangement thereof, the flow rate of the heat medium, and the like, and as a result, was able to obtain satisfactory results. The present invention is based on such a result, and provides an underground heat exchanger capable of effectively and economically extracting underground heat. A description will be given with reference to FIGS. 1 and 2. The underground heat exchanger according to the present invention has an outer diameter of 80.
A plurality of concentric double pipes 1 having concentrically provided inner pipes 3 having an outer diameter of 40 to 60 mm are buried vertically in the ground within an outer pipe 2 of about 100 mm, and a heat medium is supplied to the upper end of the inner pipe 3. In the heat exchanger which collects geothermal heat when passing through the outer pipe 2 by inverting at the lower end thereof and passing through the outer pipe 2 at the lower end thereof, the interval D between the plurality of concentric double pipes 1 is set to be at least as short as possible. 5 m and the flow rate of the heat medium is set to 20 to 25 liters per minute. FIG. 1 and FIG. 2 show an embodiment of a geothermal heat exchange lake according to the present invention. The underground heat exchanger includes an outer tube 2 made of hard polyethylene having an outer diameter of 90 mm and an inner tube 3 made of hard polyethylene having an outer diameter of 56 mm.
Are formed concentrically to form a concentric double pipe 1, and a plurality of the concentric double pipes 1 are buried vertically in the ground. In each of the concentric double pipes 1, a heat medium is supplied from the upper end of the inner pipe 3, and is inverted at the lower end to collect the underground heat when passing through the outer pipe 2 upward. . And
The interval D between the plurality of concentric double tubes 1 is set to 5 m, and the flow rate of the heat medium is set to 20 liters per minute. Each concentric double pipe 1 has a ball valve 6
And an air release valve 7. The inner pipe 3 is connected to a heat medium supply pipe 4, and the outer pipe 2 is connected to a discharge pipe 5. The plurality of concentric double pipes 1 communicate with each other via a supply pipe 4 and a discharge pipe 5, and two heat medium supply pumps 8 are provided in parallel with the supply pipe 4, and one of them is used as a spare. In addition, the supply pipe 4 and the discharge pipe 5 are arranged immediately below the road surface,
It communicates with a radiator tube 9 that melts snow on the road. 26 is a flow meter. [0011] The concentric double pipe 1 excavates a vertical hole in the ground,
After being inserted into the vertical hole, the surroundings are filled with silica sand 10,
The heat insulating material 11 is wound on the upper part, and the heat insulating material 11
Is hardened with cement milk 12. In addition, a foundation concrete 13 is cast in the ground, a concrete tub 14 is provided thereon, and the concrete tub 14 is further covered with a lid 15 and a ramp 16 for inspection and maintenance is provided on the inner wall thereof. The operation of the underground heat exchanger will be described. When the pump 8 is driven, the heat medium in the heat medium supply pipe 4 is sent to the inner pipe 3 of each concentric double pipe 1, and is turned back at the lower end of the inner pipe 3 to form the outer pipe 2 (the outer pipe 2 and the inner pipe 2). 3) and is sent toward the upper end as it is. On this occasion,
Geothermal heat is collected by heat exchange. The heat medium from which the underground heat has been collected reaches the radiating pipe 9 through the discharge pipe 5, where the underground heat is radiated.
It is sent to the concentric double pipe 1 through the supply pipe 4. Such circulation is repeated, and heat collection and heat radiation are continuously and alternately performed. The underground heat radiation pipe 9 has an outer diameter 90.
A heating medium is supplied to a concentric double pipe 1 formed by providing an inner pipe 3 having an outer diameter of 56 mm inside an outer pipe 2 mm, and a distance D between the concentric double pipes 1 is set to 5 m. Medium flow rate 2 min
Since it is set to 0 liters, it is possible to effectively and economically collect geothermal heat. By the way, if the interval D between the concentric double tubes 1 is less than 5 m, the temperature of the underground heat decreases and it is not possible to collect a sufficient amount of heat. This is uneconomical because the supply pipe 4 and the discharge pipe 5 connecting the concentric double pipe 1 need to be set longer than necessary. Furthermore, if the outer diameters of the outer pipe 2 and the inner pipe 3 are made much larger than that and the flow rate of the heat medium is set large, a sufficient amount of heat cannot be collected. Incidentally, as shown in FIG.
Similarly, in the U-shaped tube 17 in which two partitions 20 are formed by providing the partition wall 19 at the center of the tube main body 18 of 0 mm, the interval is set to at least 5 m, and the flow rate of the heat medium is set to 2 / min.
It is good to set to 0-25 liters. The pump 7 can be operated by a solar thermal power generator or an internal combustion engine power generator in addition to a commercial power supply. As shown in FIG. 4, the solar power generation device absorbs sunlight with a solar panel 21, stores electricity in a storage battery 24 in a storage battery box 22 via a control board 23 that operates when charging is necessary, and requires a controller 25. An amount of power is supplied to the pump 8. The underground heat radiation pipe 9 according to the present invention has an outer diameter 8.
A concentric double pipe 1 formed by providing an inner pipe 3 having an outer diameter of 40 to 60 mm inside an outer pipe 2 having a diameter of 0 to 100 mm is buried vertically in the ground, and a heat medium is supplied therein to heat the ground. And the interval D between the concentric double tubes 1 is set to at least 5 m, and the flow rate of the heat medium is set to 20 liters per minute, so that the geothermal heat can be effectively and economically obtained. Can be collected. Therefore, air-conditioning, hot-water supply, hot-water pool, plant cultivation, animal breeding, snow melting and the like can be performed without inducing environmental problems such as land subsidence by using this underground heat.

【図面の簡単な説明】 【図1】 本発明に係る地中熱交換器の実施形態を示す
構成図である。 【図2】 図1に示す実施形態における同心二重管およ
びその周囲を示す正面断面図である(同心二重管のみを
拡大図示)。 【図3】 本発明に係る地中熱交換器の他の実施形態を
示す正面断面図である。 【図4】 本発明に係る地中熱利用放熱管装置のポンプ
を稼動する太陽熱発電装置のフローチャートである。 【符号の説明】 1 同心二重管 2 外管 3 内管 4 供給管 5 排出管 6 ボールバルブ 7 エアー抜きバルブ 8 ポンプ 9 放熱管 10 珪砂 11 断熱材 12 セメントミルク 13 基礎コンクリート 14 コンクリート桝 15 蓋 16 タラップ 17 U字管 18 管本体 19 隔壁 20 通路 21 ソーラーパネル 22 蓄電池ボックス 23 制御基板 24 蓄電池 25 コントローラー 26 流量計 D 間隔
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing an embodiment of an underground heat exchanger according to the present invention. FIG. 2 is a front sectional view showing a concentric double tube and its periphery in the embodiment shown in FIG. 1 (only the concentric double tube is enlarged). FIG. 3 is a front sectional view showing another embodiment of the underground heat exchanger according to the present invention. FIG. 4 is a flowchart of a solar thermal power generation device that operates a pump of the underground heat utilization heat radiation pipe device according to the present invention. [Description of Signs] 1 Concentric double pipe 2 Outer pipe 3 Inner pipe 4 Supply pipe 5 Drain pipe 6 Ball valve 7 Air release valve 8 Pump 9 Radiation pipe 10 Silica sand 11 Insulation material 12 Cement milk 13 Foundation concrete 14 Concrete basin 15 Lid 16 Trap 17 U-shaped tube 18 Tube main body 19 Partition wall 20 Passage 21 Solar panel 22 Battery box 23 Control board 24 Battery 25 Controller 26 Flow meter D Interval

【手続補正書】 【提出日】平成15年2月24日(2003.2.2
4) 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】0017 【補正方法】変更 【補正内容】 【0017】なお、ポンプは、商用電源の他に、太陽
熱発電装置や内燃機関発電装置によって稼動することが
できる。太陽光発電装置は、図4に示すように、ソーラ
ーパネル21で太陽光を吸収し、蓄電池ボックス22内
の蓄電池24に、充電必要時に作動する制御基板23を
介して蓄電し、コントローラー25によって必要量の電
力をポンプ8へ供給する。 【手続補正2】 【補正対象書類名】明細書 【補正対象項目名】図4 【補正方法】変更 【補正内容】 【図4】 本発明に係る地中熱交換器のポンプを稼動す
る太陽熱発電装置のフローチャートである。
[Procedure amendment] [Date of submission] February 24, 2003 (2003.2.2
4) [Amendment 1] [corrected document name] specification [correction target item name] 0017 [correction method] change [correction content] [0017] In addition, the pump 8, in addition to the commercial power supply, Ya solar thermal power generation device It can be operated by an internal combustion engine power generator. As shown in FIG. 4, the solar power generation device absorbs sunlight with a solar panel 21, stores electricity in a storage battery 24 in a storage battery box 22 via a control board 23 that operates when charging is necessary, and requires a controller 25. An amount of power is supplied to the pump 8. [Procedure amendment 2] [Document name to be amended] Description [Item name to be amended] Fig. 4 [Correction method] Change [Content of amendment] [Fig. 4] Solar thermal power generation that operates the pump of the underground heat exchanger according to the present invention It is a flowchart of an apparatus.

Claims (1)

【特許請求の範囲】 【請求項1】 外径80〜100mmの外管(2)内
に、外径40〜60mmの内管(3)を同心状に設けた
同心二重管(1)を、複数、地中に垂直に埋設し、熱媒
を内管(3)の上端部から供給し、その下端部で反転さ
せて外管(2)内を上方に向かって通過させる際に地中
熱を採取する熱交換器において、 前記複数の同心二重管(1)の間隔(D)を、最短でも
5mに設定し、かつ、前記熱媒の流量を毎分20〜25
リットルに設定してなる地中熱交換器。
1. A concentric double pipe (1) having an inner pipe (3) concentrically provided with an outer diameter of 40 to 60 mm inside an outer pipe (2) having an outer diameter of 80 to 100 mm. , A plurality of them are buried vertically in the ground, the heat medium is supplied from the upper end of the inner pipe (3), and the heat medium is inverted at the lower end to pass upward through the outer pipe (2). In the heat exchanger for collecting heat, the interval (D) between the plurality of concentric double tubes (1) is set to at least 5 m, and the flow rate of the heat medium is 20 to 25 per minute.
Underground heat exchanger set to liter.
JP2002111430A 2002-04-15 2002-04-15 Underground heat exchanger Pending JP2003307352A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002111430A JP2003307352A (en) 2002-04-15 2002-04-15 Underground heat exchanger
CNB031207278A CN1238668C (en) 2002-04-15 2003-03-18 Geothermal heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111430A JP2003307352A (en) 2002-04-15 2002-04-15 Underground heat exchanger

Publications (1)

Publication Number Publication Date
JP2003307352A true JP2003307352A (en) 2003-10-31

Family

ID=29243272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111430A Pending JP2003307352A (en) 2002-04-15 2002-04-15 Underground heat exchanger

Country Status (2)

Country Link
JP (1) JP2003307352A (en)
CN (1) CN1238668C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321383A (en) * 2006-05-31 2007-12-13 Tekken Constr Co Ltd Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
JP2008002770A (en) * 2006-06-23 2008-01-10 Nippon Aaku Kaihatsu Kk Device for planar air-conditioning
JP2011149690A (en) * 2011-02-18 2011-08-04 Nakamura Bussan Kk Underground heat exchanger burying structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321383A (en) * 2006-05-31 2007-12-13 Tekken Constr Co Ltd Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
JP2008002770A (en) * 2006-06-23 2008-01-10 Nippon Aaku Kaihatsu Kk Device for planar air-conditioning
JP2011149690A (en) * 2011-02-18 2011-08-04 Nakamura Bussan Kk Underground heat exchanger burying structure

Also Published As

Publication number Publication date
CN1451928A (en) 2003-10-29
CN1238668C (en) 2006-01-25

Similar Documents

Publication Publication Date Title
US8931276B2 (en) Hybrid renewable energy system having underground heat storage apparatus
CN204762531U (en) Heat supply of big -arch shelter soil is moisturized and is irrigated water intensification cyclic utilization system
CN106168418A (en) A kind of CCHP diaphram wall device and construction method thereof
JP2013513081A (en) Low-energy system ground circuit
CN106225269A (en) A kind of CCHP PCC stake device and preparation method thereof
JP2003148079A (en) Manufacturing method for equipment for exchanging heat with ground, and pile for civil engineering and construction, used for the manufacturing method
JP2003301434A (en) Thawing device utilizing terrestrial heat
KR100753200B1 (en) Air cooling &amp; heating apparatus for farming
JP5145465B1 (en) Underground heat exchange system
JP2003307352A (en) Underground heat exchanger
CN2823922Y (en) Geothermal exchanger with internal and external pipes
JP2003307353A (en) Antifreeze circulation-type device for utilizing underground heat
US20100251710A1 (en) System for utilizing renewable geothermal energy
JP3438093B2 (en) Manufacturing method of building air-conditioning equipment
CN206817658U (en) A kind of round-the-clock ceiling radiation temperature-controlling system
JP2007255803A (en) Waste heat storing and utilizing method
CN106016837B (en) A kind of energy acquisition and energy storage equipment based on pile-raft foundation
JP2003302122A (en) Geothermal unit
JP2005273235A (en) Building using underground heat
CN114532122A (en) Comprehensive system combining solar photo-thermal cross-season storage and agriculture
JPH0960983A (en) Underground heat exchanger
CN106472170A (en) A kind of ground source green house of vegetables of four seasons constant temperature
JP2003306918A (en) Method for controlling underground-heat utilizing snow- melting device
CN206651132U (en) A kind of system that warmhouse booth plantation is carried out using heat caused by frequency converter or inverter
JP2003302121A (en) Air conditioner using natural energy and method for installing the same