JP2003301625A - Seismic isolation system - Google Patents

Seismic isolation system

Info

Publication number
JP2003301625A
JP2003301625A JP2002108737A JP2002108737A JP2003301625A JP 2003301625 A JP2003301625 A JP 2003301625A JP 2002108737 A JP2002108737 A JP 2002108737A JP 2002108737 A JP2002108737 A JP 2002108737A JP 2003301625 A JP2003301625 A JP 2003301625A
Authority
JP
Japan
Prior art keywords
rubber
seismic isolation
isolation system
sliding
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002108737A
Other languages
Japanese (ja)
Other versions
JP3734248B2 (en
Inventor
Naoki Kato
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP2002108737A priority Critical patent/JP3734248B2/en
Publication of JP2003301625A publication Critical patent/JP2003301625A/en
Application granted granted Critical
Publication of JP3734248B2 publication Critical patent/JP3734248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic isolation system which stabilizes the performance of vibration isolation members and protects the same from being damaged. <P>SOLUTION: The seismic isolation system is provided for a lightweight building, which is formed by setting rigid sliding bearings 3, and restoring rubbers 4 at locations between the lightweight building and its foundation. The rigid sliding bearings 3 are arranged at four corners of the foundation 1 of the lightweight building and a lower portion 2 of an entrance. Each bearing 3 is formed by arranging a sliding plate and a sliding member fixed to a holder in a mutually slidable manner, and fitting at least 1/3 of the total thickness of the sliding member into a recess formed in the holder. Further, a portion of the sliding member, protruding from the holder, has a primary form factor S which falls in a range of S≥1.4. The restoring rubbers 4 are set at at least two of the four corners, and they are each formed of a laminate rubber body having two or more rubber layers via a rigid body. Provided that a primary form factor and a secondary form factor of the restoring rubber are represented by S<SB>1</SB>and S<SB>2</SB>, they fall in ranges of S<SB>1</SB>≤7 and S<SB>2</SB>≤3, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、戸建て住宅、低
層、軽量建物等の構造物用免震システムに好適に使用さ
れる免震システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation system suitable for use as a seismic isolation system for structures such as detached houses, low-rise buildings and lightweight buildings.

【0002】[0002]

【従来の技術】軽量建築物用免震システムには、地盤等
の基礎部と低層建物等の構造物との間に、構造物の剛性
に比べて遙かに低い水平剛性を有する免震部材が使用さ
れている。この種の免震部材としては、すべり始めてか
らの剛性がほぼゼロのすべり支承(転がり支承を含む)
と、積層ゴム又は防振ゴムからなり、すべり支承を原点
復元させる機能を有する復元ゴムとを組み合わせて設置
した免震システムがある。当該免震システムには、構造
物のほぼ全荷重をすべり支承で支承するようにして復元
ゴムには殆ど荷重をかけないようにするものと、すべり
支承と復元ゴムの両方に荷重支承機能を持たせるように
するものがある。
2. Description of the Related Art A seismic isolation system for a lightweight building is a seismic isolation member having a horizontal rigidity far lower than that of a structure between a foundation such as the ground and a structure such as a low-rise building. Is used. As this type of seismic isolation member, a sliding bearing (including rolling bearing) has almost zero rigidity after the beginning of sliding.
There is a seismic isolation system that is installed in combination with a restoration rubber that is made of laminated rubber or anti-vibration rubber and has a function of restoring the sliding bearing to the original point. The seismic isolation system has a structure in which almost all the load of the structure is supported by a sliding bearing so that almost no load is applied to the restored rubber, and both the sliding bearing and the restored rubber have a load bearing function. There is something that allows you to.

【0003】すべり支承にはゴム状弾性体と金属板を交
互に積層してなる積層ゴムを直列に配してなる弾性すべ
り支承と、すべり材のみ又は薄いゴム状弾性体を直列に
配してなる剛すべり支承がある。いずれのすべり支承も
地盤、床面等の基礎部と戸建て住宅、低層、軽量建物等
の構造物とに、互いに摺動可能に設けられたすべり板及
びすべり材を備えている。
In the sliding bearing, an elastic sliding bearing formed by arranging laminated rubbers in which rubber-like elastic bodies and metal plates are alternately laminated in series and a sliding material only or a thin rubber-like elastic body are arranged in series. There is a rigid slip bearing. Each of the sliding bearings is provided with a sliding plate and a sliding member slidably provided on the foundation such as the ground and floor and the structure such as a detached house, a low-rise building, and a lightweight building.

【0004】当該免震システムは、通常時にはすべり材
が構造物荷重を支え、地震時にはすべり材がすべり板上
を摺動し、動摩擦係数により発生した水平力(鉛直荷重
×動摩擦係数)により地震エネルギーを熱エネルギーと
して吸収する。地震時に水平移動した構造物は復元ゴム
によってほぼ原点(通常時の構造物位置)に復帰される。
In the seismic isolation system, the sliding material normally supports the structural load, and the sliding material slides on the sliding plate in the event of an earthquake, and the horizontal force (vertical load × dynamic friction coefficient) generated by the dynamic friction coefficient causes seismic energy. Is absorbed as heat energy. The structure that moved horizontally during the earthquake is almost returned to the origin (the position of the structure under normal conditions) by the restoration rubber.

【0005】すべり材は静止摩擦係数を超えた水平力が
加わるとすべり板上を摺動する。すべり始めてからのす
べり支承の剛性は、ほぼゼロになるため、復元ゴムの剛
性を任意に設定することで免震層の長周期化が可能とな
る。現在、免震層を長周期化することにより、例えば、
軟弱地盤や軟らかい上部構造物の免震化が可能であるこ
とが分かっている。
The sliding member slides on the sliding plate when a horizontal force exceeding the static friction coefficient is applied. Since the rigidity of the sliding bearing after the start of sliding is almost zero, it is possible to lengthen the seismic isolation layer by arbitrarily setting the rigidity of the restored rubber. Currently, by lengthening the seismic isolation layer, for example,
It is known that seismic isolation of soft ground and soft upper structures is possible.

【0006】なお、すべり材としては古くから四フッ化
エチレン樹脂(PTFE)が用いられているが、近年、P
TFEよりも高強度で摩耗性に優れ、経済的なナイロン
等のポリアミド系樹脂が用いられるようになった。すべ
り材はステンレス鋼板やフッ素樹脂等がコーティングさ
れたステンレス鋼板が用いられている。
As a sliding material, tetrafluoroethylene resin (PTFE) has been used for a long time.
Economical polyamide-based resins such as nylon have come to be used because they have higher strength than TFE and are superior in wear resistance. As the sliding material, a stainless steel plate or a stainless steel plate coated with fluororesin or the like is used.

【0007】[0007]

【発明が解決しようとする課題】中低層建物や戸建住宅
など鉛直荷重が小さな軽量建築物は、従来の積層ゴムと
ダンパまたはダンパ一体型積層ゴムからなる復元ゴムで
は、水平方向の剛性が高く長周期化が困難であり、剛性
を低くすると荷重を支承する積層ゴムの直径が小さく背
が高いものになり、水平変形時に座屈し破損する傾向が
ある。
For lightweight constructions with a small vertical load such as middle- and low-rise buildings and single-family homes, conventional rubber restorations and dampers or damper-integrated rubber restorations have high horizontal rigidity. It is difficult to lengthen the cycle, and if the rigidity is low, the diameter of the laminated rubber that bears the load will be small and tall, and it tends to buckle and break during horizontal deformation.

【0008】よって、主となる構造物の荷重をすべり支
承で支える免震システムでは、より軟らかい剛性をもつ
復元ゴムが必要となってくる。一般的に復元ゴムは、構
造物の鉛直荷重の負担は小さく、ゴムの直径を超えるよ
うなせん断変形に追従するように、低い水平剛性で設計
される。
Therefore, in the seismic isolation system in which the load of the main structure is supported by the sliding bearing, a restoring rubber having a softer rigidity is required. Generally, the restored rubber has a small vertical load on the structure and is designed with low horizontal rigidity so as to follow the shear deformation exceeding the diameter of the rubber.

【0009】しかしながら、復元ゴムの剛性を単に低く
しただけでは、復元ゴムの水平方向のせん断変形量が大
きくなるにつれて、防振ゴムのようにゴム単層の復元ゴ
ムは、ゴム中央部が細くなり、安定した水平剛性が得ら
れなかったり、復元ゴムに加わる引張力により、上下の
剛性板、特にそれらの端部に応力が集中して復元ゴムが
損傷する等の問題が発生する。
However, if the rigidity of the restored rubber is simply lowered, as the amount of shear deformation in the horizontal direction of the restored rubber increases, the restored rubber having a single rubber layer, such as the anti-vibration rubber, has a thinner central portion of the rubber. However, stable horizontal rigidity cannot be obtained, and tensile force applied to the restored rubber causes problems such that stress concentrates on the upper and lower rigid plates, particularly the ends thereof, and the restored rubber is damaged.

【0010】すべり支承の重要な機能は、鉛直荷重を支
承することにある。すべり支承のすべり材に加わる鉛直
応力(面圧)をより大きくすることで、すべり材直径を小
さくすることが可能であり、すべり支承やすべり板のコ
ンパクト化により経済的な免震部材を提供することがで
きる。
An important function of the sliding bearing is to support a vertical load. By increasing the vertical stress (contact pressure) applied to the sliding material of the sliding bearing, it is possible to reduce the diameter of the sliding material, and to provide an economical seismic isolation member by making the sliding bearing and sliding plate compact. be able to.

【0011】しかしながら、多くのすべり材を構成する
樹脂材料は、鉛直方向の荷重が大きくなると樹脂が直径
方向に拡がるコールドフローという現象が発生する。
However, with the resin materials that make up many sliding materials, a phenomenon called cold flow occurs in which the resin spreads in the diameter direction when the vertical load increases.

【0012】このような問題点を解消するために、本発
明者は従来技術と比較して復元ゴムのせん断変形時に安
定した剛性および変形能力を得られるように、復元ゴム
の構造、形状、設置時の面圧およびせん断弾性係数を検
討した。この検討において、復元ゴムを以下の構造、形
状、面圧およびゴム材料のせん断弾性係数の範囲で使用
することにより、安定した特性を得ることが確認され
た。
In order to solve such a problem, the inventor of the present invention has a structure, shape, and installation of the restored rubber so as to obtain stable rigidity and deformability during shear deformation of the restored rubber as compared with the prior art. The surface pressure and shear elastic modulus at the time were examined. In this study, it was confirmed that stable properties could be obtained by using the restored rubber in the following structures, shapes, surface pressures and shear elastic modulus ranges of the rubber material.

【0013】さらに、本発明者は従来技術と比較してポ
リアミド系樹脂製のすべり材を大きな面圧で支持できる
ように、すべり材の固定方法と直径と厚さの比を検討し
た。この検討において、すべり材をホルダに設けた凹部
に所定量嵌合すると共に、すべり材の、ホルダからの突
出部分の一次形状係数を所定値として使用することによ
り、すべり材が鉛直荷重を安定に支持し、かつ破損を防
止することが確認された。
Further, the present inventor examined the fixing method of the sliding material and the ratio of the diameter to the thickness so that the sliding material made of polyamide resin can be supported with a large surface pressure as compared with the prior art. In this study, the sliding material was fitted in a predetermined amount in the recess provided in the holder, and the primary shape factor of the protruding portion of the sliding material from the holder was used as the predetermined value to stabilize the vertical load of the sliding material. It was confirmed to support and prevent damage.

【0014】本発明は、かかる点にかんがみてなされた
もので、免震性能が安定し、免震部材の破損を防止し得
る免震システムを提供することを目的とする。
The present invention has been made in view of the above points, and an object thereof is to provide a seismic isolation system having stable seismic isolation performance and preventing damage to seismic isolation members.

【0015】[0015]

【課題を解決するための手段】本発明は以上の目的を達
成するため、次の構成を採用する。 〈構成1〉軽量建築物及びその基礎部の間に、すべり板
とホルダに固設されたすべり材とを互いに摺動自在に設
置してなり、上記すべり材の全肉厚の少なくとも1/3
を上記ホルダに設けた凹部に嵌入し、上記すべり材の、
上記ホルダから突出した部分の一次形状係数Sが、S≧
1.4 である剛すべり支承と、剛性体を介して2層以上
のゴム層を有する積層ゴム体からなり、復元ゴムの一次
形状係数をS1、二次形状係数をS2としたとき、S1
7、S2≦3である復元ゴムとを設置した軽量建築物用
免震システムであって、上記剛すべり支承を、軽量建築
物の基礎部の四隅と出入り口の下部にそれぞれ設置する
と共に、上記復元ゴムを、上記四隅のうち、少なくとも
2箇所に設置したことを特徴とする免震システム。
In order to achieve the above object, the present invention adopts the following constitutions. <Structure 1> A sliding plate and a sliding member fixed to a holder are slidably installed between a lightweight building and its foundation, and at least ⅓ of the total thickness of the sliding member.
Fit into the recess provided in the holder, and the sliding member,
The primary shape factor S of the portion protruding from the holder is S ≧
It consists of a rigid sliding bearing of 1.4 and a laminated rubber body having two or more rubber layers with a rigid body interposed between them. When the primary shape coefficient of the restored rubber is S 1 and the secondary shape coefficient is S 2 , S 1
7. A seismic isolation system for a lightweight building, in which a restored rubber having S 2 ≦ 3 is installed, wherein the rigid sliding bearings are installed in the four corners of the foundation of the lightweight building and at the lower part of the entrance and exit respectively. A seismic isolation system characterized in that restored rubber is installed in at least two of the four corners.

【0016】〈構成2〉構成1記載の免震システムにお
いて、上記すべり板は上記基礎部に固設されるベースプ
レート上に固着され、上記すべり材は上記構造物に固設
されたホルダの上記凹部に、1/3〜2/3が嵌入され
たことを特徴とする免震システム。
<Structure 2> In the seismic isolation system according to Structure 1, the sliding plate is fixed on a base plate fixed to the base portion, and the sliding member is the recess of the holder fixed to the structure. The seismic isolation system is characterized in that 1/3 to 2/3 is fitted in.

【0017】〈構成3〉構成1又は2に記載の免震シス
テムにおいて、上記すべり材の、上記ホルダから突出し
た部分の一次形状係数Sを、S≧3 としたことを特徴
とする免震システム。
<Structure 3> In the seismic isolation system according to Structure 1 or 2, the primary shape coefficient S of the portion of the sliding member protruding from the holder is S ≧ 3. .

【0018】〈構成4〉構成1〜3のいずれか1項記載
の免震システムにおいて、上記すべり材はポリアミド系
樹脂により成形されたことを特徴とする免震システム。
<Structure 4> The seismic isolation system according to any one of Structures 1 to 3, wherein the sliding member is formed of a polyamide resin.

【0019】〈構成5〉構成1〜4のいずれか1項記載
の免震システムにおいて、上記復元ゴムのゴム層のせん
断弾性係数Gを、G≦0.44N/mm2としたことを特
徴とする免震システム。
<Structure 5> In the seismic isolation system according to any one of Structures 1 to 4, the shear elastic modulus G of the rubber layer of the restored rubber is set to G≤0.44 N / mm 2. Seismic isolation system.

【0020】〈構成6〉構成1〜5のいずれか1項記載
の免震システムにおいて、上記復元ゴムのゴム層の初期
設定面圧を0.2N/mm2以下とし、かつ鉛直ひずみを
上記ゴム層の総厚さの2%以下としたことを特徴とする
免震システム。
<Structure 6> In the seismic isolation system according to any one of Structures 1 to 5, the initial set surface pressure of the rubber layer of the restored rubber is set to 0.2 N / mm 2 or less, and the vertical strain is set to the rubber. A seismic isolation system characterized by being less than 2% of the total layer thickness.

【0021】〈構成7〉構成1〜6のいずれか1項記載
の免震システムにおいて、上記積層ゴム体は本体ゴム内
に複数枚の剛性体が適当間隔で積層配置され、上記本体
ゴムの両端にそれぞれフランジが配置され、これらが一
体に成形されていることを特徴とする免震システム。
<Structure 7> In the seismic isolation system according to any one of Structures 1 to 6, in the laminated rubber body, a plurality of rigid bodies are laminated in a body rubber at appropriate intervals, and both ends of the body rubber are arranged. The seismic isolation system is characterized in that each of the flanges is arranged in the, and these are integrally molded.

【0022】[0022]

【発明の実施の形態】以下、本発明の免震システムにお
ける実施の形態例について図面を参照して説明する。図
1は本発明の一実施例の概要を示す図であり、図2は同
実施例で使用する剛すべり支承を示し、図3は復元ゴム
を示す図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the seismic isolation system of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an outline of an embodiment of the present invention, FIG. 2 shows a rigid slide bearing used in the embodiment, and FIG. 3 is a diagram showing a restored rubber.

【0023】図1において、軽量建築物である戸建住宅
の基礎部1の四隅と、玄関等の出入り口の下部2にそれ
ぞれ剛すべり支承3を設置し、同戸建住宅の基礎部1の
四隅のうち、少なくとも2箇所に復元ゴム4を設置して
いる。剛すべり支承3と復元ゴム4は、互いに近傍に位
置するように配置されるが、それらの具体的構成は以下
のようにされている。
In FIG. 1, rigid sliding bearings 3 are installed at the four corners of the foundation part 1 of a detached house, which is a lightweight building, and at the bottoms 2 of entrances and exits of entrances, etc., and the four corners of the foundation part 1 of the detached house are installed. Of these, the restoring rubber 4 is installed in at least two places. The rigid slide bearing 3 and the restoring rubber 4 are arranged so as to be located close to each other, and their specific configurations are as follows.

【0024】図2に剛すべり支承3を示している。図2
において、地盤等の基礎部1に固設されるベースプレー
ト上10に、すべり板11がボルト止め等により固着さ
れている。すべり板11上に摺動自在に載置されるすべ
り材12は、板状のホルダ13に固設されている。ホル
ダ13上には傾き吸収材、緩衝材としてのゴムシート1
4を介して高さ調整用形鋼(束材)15の下フランジ1
6が載置されている。下フランジ16とホルダ13とは
複数のボルト17により固定されている。高さ調整用形
鋼15の上部には上フランジ18が複数のボルト19に
より固定されている。高さ調整用形鋼15は、この上に
載置固定される建造物(図示せず)とすべり材12との
間隔(高さ)を調整するものであり、横断面が十字状と
され、且つ上部に向かって広がるテーパが設けられて構
成され、必要に応じて設けられる。
FIG. 2 shows the rigid slide bearing 3. Figure 2
In, the sliding plate 11 is fixed to the base plate 10 fixed to the foundation 1 such as the ground by bolting or the like. The sliding member 12 slidably mounted on the sliding plate 11 is fixed to a plate-shaped holder 13. On the holder 13, a rubber sheet 1 as a tilt absorbing material and a cushioning material is provided.
Lower flange 1 for height adjusting shaped steel (bundle material) 15
6 is mounted. The lower flange 16 and the holder 13 are fixed by a plurality of bolts 17. An upper flange 18 is fixed to an upper portion of the height adjusting shape steel 15 by a plurality of bolts 19. The height adjusting shape steel 15 is for adjusting a space (height) between a building (not shown) placed and fixed on the height adjusting steel 15 and the sliding member 12, and has a cross-shaped cross section, In addition, a taper that widens toward the top is provided, and is provided as necessary.

【0025】なお、すべり材12は、通常用いられてい
るPTFEに比べて機械的強度、耐摩耗性に優れ、しか
も安価なナイロン等のポリアミド樹脂を主剤として円柱
形に成型されている。また、すべり板11はステンレス
鋼板のみ、あるいはフッ素樹脂等がコーティングされた
ステンレス鋼板が用いられている。ホルダ13及び高さ
調整用形鋼15の下フランジ16等はすべり支承の性能
を変えない適度な機械的強度を有する寸法とされる。
The sliding member 12 is formed into a cylindrical shape by using a polyamide resin such as nylon, which is superior in mechanical strength and abrasion resistance and cheaper than PTFE, which is usually used, as a main component. As the sliding plate 11, a stainless steel plate alone or a stainless steel plate coated with a fluororesin or the like is used. The holder 13, the lower flange 16 and the like of the height adjusting shape steel 15 are dimensioned to have an appropriate mechanical strength that does not change the performance of the sliding bearing.

【0026】ホルダ13の上面及び下面に、それぞれ凹
部20、21が設けられている。凹部20にはゴムシー
ト14の一部が嵌入され、凹部21にはすべり材12の
一部が嵌入されている。すべり材12の全肉厚の1/3
〜2/3、好ましくはほぼ1/2が、ホルダ13の凹部
21に嵌入されている。
Recesses 20 and 21 are provided on the upper surface and the lower surface of the holder 13, respectively. A part of the rubber sheet 14 is fitted in the recess 20, and a part of the sliding member 12 is fitted in the recess 21. 1/3 of the total thickness of the sliding material 12
˜2 / 3, preferably approximately ½, is fitted in the recess 21 of the holder 13.

【0027】すべり材12をホルダ13の凹部21に嵌
合した状態で、すべり材12の、凹部21から突出した
部分の一次形状係数Sが S≧1.4 、好ましくは S≧
3とされている。
With the sliding member 12 fitted in the recess 21 of the holder 13, the primary shape factor S of the portion of the sliding member 12 protruding from the recess 21 is S ≧ 1.4, preferably S ≧
It is said to be 3.

【0028】ここで、すべり材12が円柱形の場合、S
=D/(4×t)であり、Dはすべり材12の直径、t
はすべり材12の突出した部分の肉厚である(図2参
照)。また、すべり材12が直方体の場合、S=A/
{2×(a+b)×t}であり、Aはすべり材の受圧面積、
a、bは直方体受圧面の長辺、短辺の各長さである。
Here, when the sliding member 12 has a cylindrical shape, S
= D / (4 × t), D is the diameter of the sliding member 12, t
The thickness is the thickness of the protruding portion of the sliding member 12 (see FIG. 2). When the sliding member 12 is a rectangular parallelepiped, S = A /
{2 × (a + b) × t}, where A is the pressure receiving area of the sliding material,
a and b are the lengths of the long side and the short side of the rectangular parallelepiped pressure receiving surface.

【0029】現実のすべり支承に使用されるすべり材
(外径30〜1500mm、肉厚3〜7mm)に比べ
て、より厚肉で、鉛直荷重に対して不安定な外径30m
m、肉厚5.5mmの2つの縮小試験体と、外径300
mm、肉厚5.5mmの1つの縮小試験体とをそれぞれ
圧縮載荷試験を行ったところ、外径30mmの試験体の
降伏応力値は、68N/mm2、74N/mm2、また外径3
00mmの試験体の降伏応力値は150 N/mm2の結果
がそれぞれ得られた。
An outer diameter of 30 m, which is thicker and unstable to a vertical load, as compared with a sliding material (outer diameter of 30 to 1500 mm, wall thickness of 3 to 7 mm) used for actual sliding bearings.
m, two reduced test pieces with a wall thickness of 5.5 mm and an outer diameter of 300
When a compression load test was conducted on each of a reduced test piece with a thickness of 5.5 mm and a thickness of 5.5 mm, the yield stress value of the test piece with an outer diameter of 30 mm was 68 N / mm 2 , 74 N / mm 2 , and an outer diameter of 3 mm.
The yield stress value of the test piece of 00 mm was 150 N / mm 2 .

【0030】免震建築物及び免震材料に関する技術的基
準の平成12年度建設省告示第2009号(免震建築物
の構造方法に関する安全上必要な技術的基準を定める
件)では、支承材の鉛直基準強度は、圧縮限界強度(降
伏応力)を0.9倍した数値以下の値であり、同支承材
の水平基準変形は、圧縮基準強度の1/3の面圧で水平
方向に変形させた場合の限界の変形であることが定めら
れている。
According to the Ministry of Construction Notification No. 2009 of 2000 concerning the technical standards for seismic isolated buildings and seismic isolated materials (matters that determine the technical standards necessary for safety concerning the construction method of seismic isolated buildings) The vertical standard strength is a value equal to or less than a value obtained by multiplying the compression limit strength (yield stress) by 0.9. The horizontal standard deformation of the bearing material is to be deformed in the horizontal direction with a surface pressure of 1/3 of the compression standard strength. It is stipulated that this is a variation of the limit of the case.

【0031】この基準に、上記3つの試験体のうち、降
伏応力値が最小の68 N/mm2の試験体を当てはめてみ
ると、S=1.36、圧縮方向の許容応力度は68×0.
9/3≒20N/mm2となる。
From these three test pieces, the test piece having the minimum yield stress value of 68 N / mm 2 was applied to this criterion. S = 1.36, the allowable stress in the compression direction was 68 ×. 0.
9/3 ≈ 20 N / mm 2 .

【0032】したがって、S≧1.4にすることによ
り、コールドフロー発生応力を68N/mm2以上にする
ことができる。平成12年度建設省告示第2009号に
基づき圧縮方向の許容応力度は20N/mm2となるか
ら、常用面圧20N/mm2(通常15N/mm2)での従来
同等以上の高い面圧での使用が可能となる。
Therefore, by setting S ≧ 1.4, the cold flow generation stress can be 68 N / mm 2 or more. Based on the Ministry of Construction Notification No. 2009 of 2000, the allowable stress in the compression direction is 20 N / mm 2 , so it is possible to maintain a surface pressure of 20 N / mm 2 (usually 15 N / mm 2 ) which is higher than the conventional level. Can be used.

【0033】また、例えば各種S≧1.4のポリアミド
系樹脂製すべり材の降伏応力試験を行い、その結果より
横軸に形状係数S、縦軸に降伏応力の線図を作成すれ
ば、すべり材に使用するポリアミド系樹脂の形状係数と
降伏応力との関係が容易に分かり、安全な設計をするこ
とができる。
Further, for example, by performing a yield stress test on various sliding materials made of a polyamide resin with S ≧ 1.4, and by making a diagram of the shape factor S on the horizontal axis and the yield stress on the vertical axis from the results, the slip The relationship between the shape factor of the polyamide resin used for the material and the yield stress can be easily understood, and a safe design can be made.

【0034】また、すべり材12の全肉厚の1/3〜2
/3が、ホルダ13に設けた凹部21に嵌入されている
ことにより、すべり支承に水平力が加わってすべり材1
2がせん断変形したときに生じる応力集中が緩和される
から、すべり材12の、ホルダ13への強固な接着が必
要なくなり、ゴム切れや接着破壊が防止される。
Also, 1/3 to 2 of the total thickness of the sliding material 12
/ 3 is fitted in the concave portion 21 provided in the holder 13, so that a horizontal force is applied to the sliding bearing and the sliding member 1
Since the stress concentration generated when 2 is sheared and deformed is alleviated, the strong adhesion of the sliding member 12 to the holder 13 is not necessary, and the breakage of the rubber and the breakage of the adhesive are prevented.

【0035】図3は本発明の一実施例の復元ゴムを示し
ている。図3において、復元ゴム4は、図示しないが地
盤等の基礎部と中低層建物や戸建住宅など鉛直荷重が小
さな軽量建築物との間にすべり支承と共に設置されるも
のであって、複数の剛性体23を介して2層以上のゴム
層24を有する積層ゴム体25を、2段に重ね合わせた
ものである。すなわち、円柱形のゴム層24内に複数枚
の剛性体である中間鋼板23が適当な間隔で積層配置さ
れ、円柱形のゴム層24の両端にそれぞれフランジ26
が配置され、これらが一体に成形されている。ゴム層2
4の軸心にそって中心孔27が設けられている。
FIG. 3 shows a restoring rubber according to an embodiment of the present invention. In FIG. 3, the restoration rubber 4 is installed together with a slide bearing between a foundation such as the ground and a lightweight building such as a middle- and low-rise building or a detached house, which has a small vertical load, although not shown. A laminated rubber body 25 having two or more rubber layers 24 via a rigid body 23 is laminated in two stages. That is, a plurality of intermediate steel plates 23, which are rigid bodies, are laminated and arranged at appropriate intervals in the cylindrical rubber layer 24, and the flanges 26 are provided at both ends of the cylindrical rubber layer 24, respectively.
Are arranged, and these are integrally molded. Rubber layer 2
A center hole 27 is provided along the axis of 4.

【0036】復元ゴム4の、鉛直剛性の指標となる一次
形状係数をS1としたとき、以下のようにされている。 S1≦7 ここで、復元ゴム4が円柱形の場合、S1=(D−d)/
(4×t) で表され、Dは復元ゴム直径(中間鋼板23の
外周面がゴム被覆されている場合は、中間鋼板23の直
径)、dはゴム層24の中心孔27の内径(中間鋼板23
の内周面がゴム被覆されている場合は、中間鋼板23の
内径)、tはゴム層24の1層厚さを示す。
When the primary shape coefficient of the restored rubber 4 which is an index of the vertical rigidity is S 1 , it is as follows. S 1 ≦ 7 Here, when the restoring rubber 4 is cylindrical, S 1 = (D−d) /
(4 × t), D is the restored rubber diameter (the diameter of the intermediate steel plate 23 when the outer peripheral surface of the intermediate steel plate 23 is covered with rubber), and d is the inner diameter of the center hole 27 of the rubber layer 24 (intermediate Steel plate 23
When the inner peripheral surface of (1) is covered with rubber, the inner diameter of the intermediate steel plate 23), and t represents the thickness of one layer of the rubber layer 24.

【0037】また、復元ゴム4が長方体の場合、S1
A/{2×(a+b)×t}で表され、Aは積層ゴム体25
の受圧面積、a,bは長方体の積層ゴム体25の一辺の
長さを示す。一次形状係数S1を7以下とすることで、
復元ゴムに発生する引張応力を緩和し、安定したせん断
変形が可能となる。
If the restoring rubber 4 is a rectangular parallelepiped, S 1 =
A / {2 × (a + b) × t}, where A is the laminated rubber body 25
The pressure receiving areas, a and b indicate the length of one side of the rectangular laminated rubber body 25. By setting the primary shape factor S 1 to 7 or less,
The tensile stress generated in the restored rubber is relaxed and stable shear deformation is possible.

【0038】また、復元ゴム4の、ゴム安定性の指標と
なる二次形状係数をS2としたときは、以下のようにさ
れている。 S2≦3 ここで、復元ゴム4が円柱形の場合、S2=D/(n×
t) で表され、nは復元ゴム層数を示す。また、復元ゴ
ム4が長方体の場合、S2=b/(n×t) で表され、b
は長方体の一辺の長さ(a≧b)を示す。二次形状係数
を3以下とすることで水平変形に追従することが可能と
なる。上記したように、復元ゴム4は剛性ができるだけ
低いものが望ましく、より軽量の構造物の免震化が可能
となる。復元ゴム4のゴム材料のせん断弾性係数Gは、
G≦0.44N/mm2とする。
Further, when the secondary shape coefficient which is an index of the rubber stability of the restored rubber 4 is S 2 , it is as follows. S 2 ≦ 3 Here, when the restoring rubber 4 has a cylindrical shape, S 2 = D / (n ×
t), where n is the number of restored rubber layers. When the restored rubber 4 is a rectangular parallelepiped, it is represented by S 2 = b / (n × t), and b
Indicates the length of one side of the rectangular parallelepiped (a ≧ b). By setting the secondary shape factor to 3 or less, it becomes possible to follow horizontal deformation. As described above, it is desirable that the restored rubber 4 has a rigidity as low as possible, so that a lighter structure can be seismically isolated. The shear modulus G of the rubber material of the restored rubber 4 is
G ≦ 0.44 N / mm 2 .

【0039】次に、直径150mm、内径10mm、厚
さ13mm×10層のせん断弾性係数G0.29N/mm
2の天然ゴムを用いた復元ゴムのせん断試験を行ったと
ころ、以下の結果が得られた。試験結果は、鉛直荷重無
載荷(面圧0N/mm2)でせん断ひずみ400%(520
mm:ゴム直径の約3.5倍)まで実施したが、ゴム中央
部体積の著しい減少,剛性の低下や試験体の損傷は認め
られなかった。また、引張応力により発生するゴム内部
のボイドも認められなかった。
Next, the shear elastic modulus G of 150 mm, the inner diameter of 10 mm, and the thickness of 13 mm × 10 layers G 0.29 N / mm.
When the shear test of the restored rubber using the natural rubber of 2 was conducted, the following results were obtained. The test results show that shear load is 400% (520%) under no vertical load (contact pressure 0 N / mm 2 ).
mm: about 3.5 times the rubber diameter), but no significant decrease in rubber central volume, decrease in rigidity, or damage to the test body was observed. In addition, voids inside the rubber caused by tensile stress were not recognized.

【0040】このとき、復元ゴムに発生した引張応力は
約1.6N/mm2であり、従来の積層ゴムではボイドが
発生しはじめる領域である。通常の積層ゴム(一次形状
係数20〜40)では引張破断応力が3〜4N/mm2
対し、積層のない防振ゴム形状(一次形状係数1.0前
後)の引張破断応力は6〜8N/mm2であり、復元ゴム
の形状が引張耐力に起因していると言える。
At this time, the tensile stress generated in the restored rubber is about 1.6 N / mm 2, which is a region where voids start to be generated in the conventional laminated rubber. Normal laminated rubber (primary shape factor 20-40) has a tensile rupture stress of 3 to 4 N / mm 2, whereas vibration damping rubber shape without lamination (primary shape factor of around 1.0) has a tensile rupture stress of 6 to 8 N. / Mm 2 , and it can be said that the shape of the restored rubber is due to the tensile strength.

【0041】また、復元ゴムのゴム材料のせん断弾性係
数をG≦0.44N/mm2、一次形状係数をS1≦7お
よび二次形状係数をS2≦3としたときの、復元ゴムの
設置時の面圧について検討した。
When the shear elastic modulus of the rubber material of the restored rubber is G ≦ 0.44 N / mm 2 , the primary shape coefficient is S 1 ≦ 7, and the secondary shape coefficient is S 2 ≦ 3, The surface pressure during installation was examined.

【0042】この結果、復元ゴムに載荷する面圧につい
ては以下のことが分かった。 復元ゴムの鉛直変位±5mm(鉛直ひずみ約±4%)で
の水平剛性は±10%程度であり、変化が少ない。但し
鉛直ひずみが大きくなると、水平変位が小さいときに剛
性が小さくなり、復元ゴムも座屈状態となるので好まし
くない。 復元ゴムに軟らかいゴムを用いたとき、面圧0.2N
/mm2時の鉛直ひずみは、約1〜2%である。 一般的に復元ゴムは構造物の梁下に設置されるが、特
に軽量建築物の場合は、鉛直荷重により梁がたわむこと
があるため、梁のたわみを考慮する必要がある。また、
併用されるすべり支承もわずかであるがクリープするた
め、前記梁たわみと併せてたわみを考慮する必要があ
る。従って、復元ゴムの初期設定面圧を0.2N/mm2
以下または復元ゴムのゴム総厚さの1〜2%程度とする
ことで、復元ゴムの剛性および変形能力を長期にわたり
安定にすることができる。
As a result, it was found that the surface pressure applied to the restored rubber was as follows. The horizontal rigidity of the restored rubber at a vertical displacement of ± 5 mm (vertical strain of about ± 4%) is about ± 10%, which shows little change. However, when the vertical strain becomes large, the rigidity becomes small when the horizontal displacement is small, and the restored rubber also becomes buckled, which is not preferable. Surface pressure is 0.2N when soft rubber is used as the restored rubber
The vertical strain at 1 / mm 2 is about 1 to 2%. Generally, the restored rubber is installed under the beam of the structure, but especially in the case of a lightweight building, the beam may bend due to the vertical load, so it is necessary to consider the deflection of the beam. Also,
Since the sliding bearing used in combination also creeps, it is necessary to consider the deflection together with the beam deflection. Therefore, the initial set surface pressure of the restored rubber is 0.2 N / mm 2
The rigidity and the deformability of the restored rubber can be stabilized for a long period of time by setting it to be equal to or less than 1 to 2% of the total thickness of the restored rubber.

【0043】[0043]

【発明の効果】本発明によれば、すべり板とホルダに固
設されたすべり材とを互いに摺動自在に配置してなり、
すべり材の全肉厚の少なくとも1/3をホルダに設けた
凹部に嵌入すると共に、すべり材の、ホルダから突出し
た部分の一次形状係数Sを、S≧1.4 とした剛すべり
支承を、軽量建築物の基礎部の四隅と出入り口の下部に
それぞれ設置すると共に、一次形状係数をS1≦7 、二
次形状係数をS2≦3とし、さらに剛性体を介して2層
以上のゴム層を有する積層ゴム体とした復元ゴムを、軽
量建築物の基礎部の四隅のうち、少なくとも2箇所に設
置したことにより、安定した免震性能を発揮し、部材の
破損が防止されるという効果を奏する。
According to the present invention, the sliding plate and the sliding member fixed to the holder are slidably arranged with respect to each other.
At least 1/3 of the total thickness of the sliding material is fitted into the recess provided in the holder, and a rigid sliding bearing with the primary shape coefficient S of the portion of the sliding material protruding from the holder is S ≧ 1.4, It is installed at each of the four corners of the foundation of a lightweight building and the lower part of the entrance and exit, the primary shape factor is S 1 ≤7, the secondary shape factor is S 2 ≤3, and two or more rubber layers are provided through a rigid body. By installing the restored rubber that is a laminated rubber body with at least two places among the four corners of the foundation of a lightweight building, stable seismic isolation performance is achieved and damage to members is prevented. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる免震システムの一実施例を示す
概略図である。
FIG. 1 is a schematic diagram showing an embodiment of a seismic isolation system according to the present invention.

【図2】同実施例において使用する剛すべり支承を示す
図で、(a)は平面図、(b)は一部縦断正面図であ
る。
2A and 2B are views showing a rigid slide bearing used in the embodiment, FIG. 2A is a plan view, and FIG. 2B is a partially longitudinal front view.

【図3】同実施例において使用する復元ゴムを示す図
で、(a)は平面図、(b)は一部縦断正面図である。
3A and 3B are views showing a restored rubber used in the same embodiment, where FIG. 3A is a plan view and FIG. 3B is a partially longitudinal front view.

【符号の説明】[Explanation of symbols]

1 戸建住宅の基礎部 2 出入り口の下部 3 剛すべり支承 4 復元ゴム 10 ベースプレート 11 すべり板 12 すべり材 13 ホルダ 14 ゴムシート 15 高さ調整用形鋼(束材) 16 下フランジ 17 ボルト 18 上フランジ 19 ボルト 20、21 凹部 23 剛性体 24 ゴム層 25 積層ゴム体 26 フランジ 27 中心孔 1 Foundation of detached house 2 Lower part of the doorway 3 rigid slip bearing 4 restored rubber 10 base plate 11 sliding board 12 sliding materials 13 Holder 14 rubber sheet 15 Height adjusting shaped steel (bundle material) 16 Lower flange 17 Volts 18 Upper flange 19 Volts 20, 21 recess 23 Rigid body 24 rubber layer 25 laminated rubber body 26 Flange 27 Center hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16F 15/04 F16F 15/04 E P ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) F16F 15/04 F16F 15/04 EP

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 軽量建築物及びその基礎部の間に、 すべり板とホルダに固設されたすべり材とを互いに摺動
自在に設置してなり、前記すべり材の全肉厚の少なくと
も1/3を前記ホルダに設けた凹部に嵌入し、前記すべ
り材の、前記ホルダから突出した部分の一次形状係数S
が、S≧1.4である剛すべり支承と、 剛性体を介して2層以上のゴム層を有する積層ゴム体か
らなり、復元ゴムの一次形状係数をS1、二次形状係数
をS2としたとき、S1≦7、S2≦3である復元ゴムと
を設置した軽量建築物用免震システムであって、 前記剛すべり支承を、軽量建築物の基礎部の四隅と出入
り口の下部にそれぞれ設置すると共に、前記復元ゴム
を、前記四隅のうち、少なくとも2箇所に設置したこと
を特徴とする免震システム。
1. A sliding plate and a sliding member fixedly mounted on a holder are slidably installed between a lightweight building and its foundation, and at least 1 / thick of the total thickness of the sliding member. 3 is fitted in the recess provided in the holder, and the primary shape factor S of the portion of the sliding member protruding from the holder is
Consists of a rigid sliding bearing with S ≧ 1.4 and a laminated rubber body having two or more rubber layers with a rigid body interposed between them. The primary shape coefficient of the restored rubber is S 1 and the secondary shape coefficient is S 2. In the seismic isolation system for a lightweight building, in which a restoring rubber having S 1 ≦ 7 and S 2 ≦ 3 is installed, the rigid sliding bearing is provided at the four corners of the foundation of the lightweight building and the lower part of the doorway. The seismic isolation system is characterized in that the restored rubber is installed in at least two locations among the four corners.
【請求項2】 請求項1記載の免震システムにおいて、 前記すべり板は前記基礎部に固設されるベースプレート
上に固着され、前記すべり材は前記構造物に固設された
ホルダの前記凹部に、1/3〜2/3が嵌入されたこと
を特徴とする免震システム。
2. The seismic isolation system according to claim 1, wherein the sliding plate is fixed on a base plate fixed to the base portion, and the sliding member is in the concave portion of a holder fixed to the structure. , 1/3 to 2/3 are inserted, and the seismic isolation system is characterized.
【請求項3】 請求項1又は2に記載の免震システムに
おいて、 前記すべり材の、前記ホルダから突出した部分の一次形
状係数Sを、S≧3としたことを特徴とする免震システ
ム。
3. The seismic isolation system according to claim 1, wherein the primary shape coefficient S of the portion of the sliding member protruding from the holder is S ≧ 3.
【請求項4】 請求項1〜3のいずれか1項記載の免震
システムにおいて、 前記すべり材はポリアミド系樹脂により成形されたこと
を特徴とする免震システム。
4. The seismic isolation system according to claim 1, wherein the sliding member is formed of polyamide resin.
【請求項5】 請求項1〜4のいずれか1項記載の免震
システムにおいて、 前記復元ゴムのゴム層のせん断弾性係数Gを、G≦0.
44N/mm2としたことを特徴とする免震システム。
5. The seismic isolation system according to claim 1, wherein a shear elastic modulus G of the rubber layer of the restored rubber is G ≦ 0.
A seismic isolation system characterized by 44 N / mm 2 .
【請求項6】 請求項1〜5のいずれか1項記載の免震
システムにおいて、 前記復元ゴムのゴム層の初期設定面圧を0.2N/mm2
以下とし、かつ鉛直ひずみを前記ゴム層の総厚さの2%
以下としたことを特徴とする免震システム。
6. The seismic isolation system according to claim 1, wherein an initial set surface pressure of the rubber layer of the restored rubber is 0.2 N / mm 2.
And the vertical strain is 2% of the total thickness of the rubber layer
A seismic isolation system characterized by the following:
【請求項7】 請求項1〜6のいずれか1項記載の免震
システムにおいて、 前記積層ゴム体は本体ゴム内に複数枚の剛性体が適当間
隔で積層配置され、前記本体ゴムの両端にそれぞれフラ
ンジが配置され、これらが一体に成形されていることを
特徴とする免震システム。
7. The seismic isolation system according to any one of claims 1 to 6, wherein the laminated rubber body has a plurality of rigid bodies laminated at appropriate intervals in a main body rubber, and is provided at both ends of the main body rubber. The seismic isolation system is characterized in that flanges are arranged on each, and these are integrally molded.
JP2002108737A 2002-04-11 2002-04-11 Seismic isolation system Expired - Fee Related JP3734248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108737A JP3734248B2 (en) 2002-04-11 2002-04-11 Seismic isolation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108737A JP3734248B2 (en) 2002-04-11 2002-04-11 Seismic isolation system

Publications (2)

Publication Number Publication Date
JP2003301625A true JP2003301625A (en) 2003-10-24
JP3734248B2 JP3734248B2 (en) 2006-01-11

Family

ID=29392394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108737A Expired - Fee Related JP3734248B2 (en) 2002-04-11 2002-04-11 Seismic isolation system

Country Status (1)

Country Link
JP (1) JP3734248B2 (en)

Also Published As

Publication number Publication date
JP3734248B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
WO1997006372A1 (en) Vibration isolation device
JP4308346B2 (en) Damper
US9399865B2 (en) Seismic isolation systems
US10619373B1 (en) Seismic damping systems and methods
JP2009162376A (en) Seismic isolation ball-support device and spherical laminated rubber base isolation ball for lightweight structure
JP2010190409A (en) Seismic isolation device and building
Konstantinidis et al. Two low-cost seismic isolation systems
Sone et al. Experimental verification of a tuned mass damper system with two‐phase support mechanism
JP2001182776A (en) Base isolation bearing unit
JP5763981B2 (en) Laminated rubber bearing
JP2013217483A (en) Laminated rubber bearing body
JP2003301625A (en) Seismic isolation system
JP2003147991A (en) Sliding bearing
JP2003148538A (en) Restorative rubber
Sukrawa et al. Comparative analysis and design of tower using diagrid, conventional moment frame and braced frame system of steel structures
JP3503712B2 (en) Lead encapsulated laminated rubber
JP2000064657A (en) Three-dimensional base isolation device and structure
JP2009256962A (en) Building prolonging natural period
JPH09196116A (en) Base isolator of structure
Aalami Vibration design of concrete floors for serviceability
JPH0960689A (en) Base isolation supporting body
JP3282801B2 (en) Seismic isolation bearing
JP4631274B2 (en) Laminated rubber seismic isolation device mounting structure
JPH11324397A (en) Elasticity-spherical slide base isolation device
JP2007205492A (en) Laminated rubber support and vibration-isolation vibration-resistant structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees