JP2003301295A - Microreactor furnace constituent and its production method - Google Patents

Microreactor furnace constituent and its production method

Info

Publication number
JP2003301295A
JP2003301295A JP2002108763A JP2002108763A JP2003301295A JP 2003301295 A JP2003301295 A JP 2003301295A JP 2002108763 A JP2002108763 A JP 2002108763A JP 2002108763 A JP2002108763 A JP 2002108763A JP 2003301295 A JP2003301295 A JP 2003301295A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
anodic oxide
catalyst
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002108763A
Other languages
Japanese (ja)
Other versions
JP3899985B2 (en
Inventor
Naotada Ogura
直嗣 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2002108763A priority Critical patent/JP3899985B2/en
Publication of JP2003301295A publication Critical patent/JP2003301295A/en
Application granted granted Critical
Publication of JP3899985B2 publication Critical patent/JP3899985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To relatively increase the amount of a catalyst influencing the reaction rate in a channel in a microreactor furnace constituent (a small chemical reactor) for generating a desired fluid substance by a chemical reaction (a catalytic reaction) of a fluidized mixed substance by a catalyst placed in a minute channel. <P>SOLUTION: On the inner wall of a minute channel 22 formed on one side of an aluminum substrate 21, a porous anode oxidation film 23 is formed directly. Since the substrate 21 can be made relatively thick, the oxidation film 23 can be made relatively thick and hence can carry a relatively large amount of the catalyst. A photoresist 31 for forming the channel 22 is used also as a mask against anode oxidation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は微小反応炉構成体
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro reactor structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】化学反応の技術分野では、流体化された
混合物質を流路内に設けられた触媒による化学反応(触
媒反応)により、所望の流体物質を生成する化学反応装
置が知られている。従来のこのような化学反応装置に
は、半導体集積回路などの半導体製造技術で蓄積された
微細加工技術を用いて、シリコン基板上にミクロンオー
ダーあるいはミリメートルオーダーの流路を形成したも
のがある。
2. Description of the Related Art In the technical field of chemical reaction, there is known a chemical reaction apparatus for producing a desired fluid substance by a chemical reaction (catalytic reaction) of a fluidized mixed substance by a catalyst provided in a channel. There is. Some of such conventional chemical reaction devices have a flow path of micron order or millimeter order formed on a silicon substrate by using a fine processing technology accumulated in a semiconductor manufacturing technology such as a semiconductor integrated circuit.

【0003】図8は従来のこのような小型化学反応装置
(微小反応炉構成体)の一例の透過平面図を示し、図9
はその一部の断面図を示したものである。この小型化学
反応装置は小型のシリコン基板1を備えている。シリコ
ン基板1の一面には、半導体製造技術で蓄積された微細
加工技術を用いて、蛇行した微小な流路2が形成されて
いる。
FIG. 8 is a transparent plan view of an example of such a conventional small chemical reaction apparatus (microreactor structure), and FIG.
Shows a sectional view of a part thereof. This small chemical reactor comprises a small silicon substrate 1. A fine meandering channel 2 is formed on one surface of a silicon substrate 1 by using a fine processing technique accumulated in a semiconductor manufacturing technique.

【0004】流路2の内壁面にはアルミニウム膜3が設
けられている。アルミニウム膜3の表面には担体となる
多孔質の陽極酸化膜4が形成され、この多孔質の陽極酸
化膜4には化学反応を行うための触媒(図示せず)が担
持されている。この場合、陽極酸化膜4を多孔質とする
のは、触媒を担持させるための表面積を大きくするため
である。
An aluminum film 3 is provided on the inner wall surface of the channel 2. A porous anodic oxide film 4 serving as a carrier is formed on the surface of the aluminum film 3, and a catalyst (not shown) for carrying out a chemical reaction is carried on the porous anodic oxide film 4. In this case, the reason why the anodic oxide film 4 is made porous is to increase the surface area for supporting the catalyst.

【0005】シリコン基板1の一面にはガラス基板5が
接合されている。ガラス基板5の流路2の両端部に対応
する所定の2箇所には流入口6および流出口7が形成さ
れている。シリコン基板1の他面には、流路2に対応し
て蛇行した薄膜ヒータ8が設けられている。
A glass substrate 5 is bonded to one surface of the silicon substrate 1. An inflow port 6 and an outflow port 7 are formed at predetermined two locations corresponding to both ends of the flow path 2 of the glass substrate 5. On the other surface of the silicon substrate 1, a thin film heater 8 meandering corresponding to the flow path 2 is provided.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記従来の
小型化学反応装置では、アルミニウム膜3をスパッタリ
ング法によりシリコン基板1上に成膜しているので、ア
ルミニウム膜3の厚さとして0.5μm程度が限界であ
る。すなわち、スパッタリング法で成膜されたアルミニ
ウム膜3は緻密であるため、厚くしすぎると、薄膜ヒー
タ8の発熱や製造プロセスで発生する熱により、シリコ
ン基板1との間の熱膨張係数差に起因して生じる応力が
大きくなり、割れや剥がれなどが生じやすくなる。
By the way, in the above-mentioned conventional small chemical reaction apparatus, since the aluminum film 3 is formed on the silicon substrate 1 by the sputtering method, the thickness of the aluminum film 3 is about 0.5 μm. Is the limit. That is, since the aluminum film 3 formed by the sputtering method is dense, if it is made too thick, the thin film heater 8 generates heat and the heat generated in the manufacturing process causes a difference in the coefficient of thermal expansion with the silicon substrate 1. The resulting stress increases and cracks and peeling easily occur.

【0007】このため、スパッタリング法で成膜された
アルミニウム膜3の厚さは0.5μm程度が限界であ
り、このアルミニウム膜3の表面に形成される多孔質の
陽極酸化膜4の表面積にも限界があり、したがって多孔
質の陽極酸化膜4に付着させる触媒の量に限界があり、
ひいては触媒の量に大きく依存する流路2内での反応速
度をある程度以上に速くすることができないという問題
があった。
Therefore, the thickness of the aluminum film 3 formed by the sputtering method is limited to about 0.5 μm, and the surface area of the porous anodic oxide film 4 formed on the surface of the aluminum film 3 is also limited. There is a limit, and therefore there is a limit to the amount of catalyst that can be attached to the porous anodic oxide film 4,
As a result, there is a problem that the reaction rate in the flow channel 2 which largely depends on the amount of the catalyst cannot be increased to a certain degree or higher.

【0008】そこで、この発明は、多孔質の陽極酸化膜
の表面積をより一層大きくすることができ、且つ、多孔
質の陽極酸化膜を位置精度良く形成することができる微
小反応炉構成体およびその製造方法を提供することを利
点とする。
In view of this, the present invention provides a microreactor structure capable of further increasing the surface area of a porous anodic oxide film and forming a porous anodic oxide film with high positional accuracy, and the same. It is an advantage to provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明に
係る微小反応炉構成体は、陽極酸化可能な基板と、該基
板の一面に形成された微小な反応炉と、該反応炉内に形
成された多孔質の陽極酸化膜とを備えていることを特徴
とするものである。請求項4に記載の発明に係る微小反
応炉構成体の製造方法は、陽極酸化可能な基板の一面に
微小な反応炉を形成し、該反応炉内に陽極酸化処理によ
り多孔質の陽極酸化膜を形成することを特徴とするもの
である。そして、この発明によれば、陽極酸化可能な基
板の厚さは適宜に設定することができるため、この基板
の一面に形成された微小な反応炉内に直接形成された多
孔質の陽極酸化膜の表面積をより一層大きくすることが
できる。また、陽極酸化可能な基板の一面に形成された
微小な反応炉内に多孔質の陽極酸化膜を直接形成してい
るので、形成すべき多孔質の陽極酸化膜の反応炉に対す
る位置精度を全く考慮する必要がなく、したがって多孔
質の陽極酸化膜を位置精度良く形成することができる。
According to a first aspect of the present invention, there is provided a microreactor structure, an anodizable substrate, a microreactor formed on one surface of the substrate, and the inside of the reactor. And a porous anodic oxide film formed on the substrate. According to a fourth aspect of the present invention, there is provided a method for manufacturing a microreactor assembly, in which a microreactor is formed on one surface of an anodizable substrate, and a porous anodized film is formed in the reactor by anodizing treatment. Is formed. Further, according to the present invention, since the thickness of the anodizable substrate can be appropriately set, the porous anodized film directly formed in the minute reaction furnace formed on one surface of the substrate. Surface area can be further increased. Moreover, since the porous anodic oxide film is directly formed in the minute reaction furnace formed on one surface of the anodizable substrate, the positional accuracy of the porous anodic oxide film to be formed with respect to the reaction furnace is completely eliminated. It is not necessary to take this into consideration, and therefore the porous anodic oxide film can be formed with high positional accuracy.

【0010】[0010]

【発明の実施の形態】図1はこの発明の一実施形態とし
ての微小反応炉構成体の透過平面図を示し、図2はその
A−A線に沿う断面図を示したものである。この微小反
応炉構成体は陽極酸化可能な小型の基板、例えば、アル
ミニウム基板21を備えている。アルミニウム基板21
の寸法は、一例として、長さ25mm程度、幅17mm
程度、厚さ0.6〜1.0mm程度である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a transparent plan view of a micro reactor structure as an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA. This micro-reactor structure is provided with a small anodizable substrate, for example, an aluminum substrate 21. Aluminum substrate 21
The dimensions of, for example, length 25mm, width 17mm
The thickness is about 0.6 to 1.0 mm.

【0011】アルミニウム基板21の一面には、半導体
製造技術で蓄積された微細加工技術を用いて、蛇行した
微小な反応炉の一部となる流路22が形成されている。
流路22の寸法は、一例として、幅0.2〜0.8mm
程度、深さ0.2〜0.6mm程度であり、全長は30
〜1000mm程度である。
On one surface of the aluminum substrate 21, a flow path 22 which is a part of a meandering minute reaction furnace is formed by using the fine processing technology accumulated in the semiconductor manufacturing technology.
The dimension of the flow path 22 is, for example, a width of 0.2 to 0.8 mm.
The depth is about 0.2 to 0.6 mm, and the total length is 30.
It is about 1000 mm.

【0012】流路22の内壁面には担体となる多孔質の
陽極酸化膜23が直接形成され、この陽極酸化膜23に
は触媒(図示せず)が担持されている。この場合も、陽
極酸化膜23を多孔質とするのは、触媒を担持させるた
めの表面積を大きくするためである。また、この場合の
陽極酸化膜23は、後述の如く、比較的厚く形成されて
いる。
A porous anodic oxide film 23 serving as a carrier is directly formed on the inner wall surface of the channel 22, and a catalyst (not shown) is carried on the anodic oxide film 23. Also in this case, the reason why the anodic oxide film 23 is made porous is to increase the surface area for supporting the catalyst. Further, in this case, the anodic oxide film 23 is formed relatively thick as described later.

【0013】アルミニウム基板21の一面には厚さ0.
7mm程度のガラス基板24が接合されている。ガラス
基板24の流路22の両端部に対応する所定の2箇所に
は流入口25および流出口26が形成されている。
The aluminum substrate 21 has a thickness of 0.
A glass substrate 24 of about 7 mm is bonded. An inflow port 25 and an outflow port 26 are formed at two predetermined positions corresponding to both ends of the flow path 22 of the glass substrate 24.

【0014】アルミニウム基板21の他面には酸化シリ
コンや窒化シリコンなどからなる絶縁膜27が設けられ
ている。絶縁膜27の表面にはTaSiOxやTaSi
OxNなどの抵抗体薄膜からなる蛇行した薄膜ヒータ2
8が設けられている。薄膜ヒータ28は、この微小反応
炉構成体における化学反応(触媒反応)が所定の熱条件
による吸熱反応を伴うとき、化学反応時に流路22内の
触媒に所定の熱エネルギを供給するためのものである。
この場合、蛇行した薄膜ヒータ28は、蛇行した流路2
2と平面的に一致させているが、一致しないようにして
もよい。また、薄膜ヒータ28は流路22全面を覆うよ
うなべた状としてもよい。薄膜ヒータ28は、上下をT
i−W層に挟まれたAu層からなる三層構造の配線33
に接続され、この配線に電圧が印加されることにより加
熱する抵抗体である。
An insulating film 27 made of silicon oxide, silicon nitride, or the like is provided on the other surface of the aluminum substrate 21. TaSiOx or TaSi is formed on the surface of the insulating film 27.
A meandering thin film heater 2 made of a resistor thin film such as OxN.
8 are provided. The thin film heater 28 is for supplying a predetermined heat energy to the catalyst in the flow path 22 during the chemical reaction when the chemical reaction (catalytic reaction) in the micro reactor structure is accompanied by an endothermic reaction under a predetermined thermal condition. Is.
In this case, the meandering thin film heater 28 is connected to the meandering flow path 2
Although it is made to coincide with 2 in plan view, they may not coincide with each other. Further, the thin film heater 28 may be solid so as to cover the entire surface of the flow path 22. The thin film heater 28 has T
Wiring 33 having a three-layer structure composed of Au layers sandwiched between i-W layers
Is a resistor that is heated by being applied with a voltage to this wiring.

【0015】絶縁膜27の表面には、一面の中央部に座
ぐり加工により凹部30が形成された厚さ0.7mm程
度のガラス基板29の周辺部が接合されている。ガラス
基板29は、薄膜ヒータ28を保護するほかに、薄膜ヒ
ータ28の熱拡散を防止し、熱効率を良くするためのも
のである。また、凹部30内は、断熱性能を高めるた
め、ほぼ真空としてもよい。
On the surface of the insulating film 27, a peripheral portion of a glass substrate 29 having a thickness of about 0.7 mm and having a recessed portion 30 formed by spot facing at the central portion of the one surface is joined. The glass substrate 29 not only protects the thin film heater 28, but also prevents thermal diffusion of the thin film heater 28 and improves thermal efficiency. Further, the inside of the recess 30 may be substantially vacuum in order to enhance the heat insulating performance.

【0016】次に、この微小反応炉構成体の製造方法の
一例について説明する。まず、図3に示すように、小型
のアルミニウム基板21の他面に酸化シリコンや窒化シ
リコンなどからなる絶縁膜27が形成されたものを用意
する。そして、アルミニウム基板21の一面にフォトレ
ジスト31をパターン形成する。この場合、フォトレジ
スト31の流路形成領域に対応する部分には開口部32
が形成されている。次に、フォトレジスト31をマスク
としてアルミニウム基板21の一面側をハーフエッチン
グすると、図4に示すように、アルミニウム基板21の
一面の開口部32に対応する部分に蛇行した微小な流路
22が形成される。このときのエッチングはウェットエ
ッチでもドライエッチでもよい。
Next, an example of a method for manufacturing the micro reactor structure will be described. First, as shown in FIG. 3, a small aluminum substrate 21 having an insulating film 27 made of silicon oxide or silicon nitride formed on the other surface thereof is prepared. Then, a photoresist 31 is patterned on one surface of the aluminum substrate 21. In this case, the opening 32 is formed in the portion of the photoresist 31 corresponding to the flow path forming region.
Are formed. Next, by half-etching one surface side of the aluminum substrate 21 using the photoresist 31 as a mask, as shown in FIG. 4, a meandering minute channel 22 is formed in a portion corresponding to the opening 32 on the one surface of the aluminum substrate 21. To be done. The etching at this time may be wet etching or dry etching.

【0017】次に、図5に示すように、フォトレジスト
31を残存させた状態で、すなわち、流路22を形成す
るためのフォトレジスト31をそのまま陽極酸化用マス
クとして電解液に浸して陽極酸化処理を行うと、フォト
レジスト31から露出した流路22の内壁面に多孔質の
陽極酸化膜23が形成される。すなわち、アルミニウム
基板21の陽極酸化では、硫酸、しゅう酸、りん酸溶液
などの2塩基酸を含む酸性電解水溶液を用いると、厚い
ポーラス形の陽極酸化膜23が形成される。このように
流路22以外にもアルミニウム基板21の他の露出され
た面を陽極酸化してもよいが、流路22が形成される面
のうちガラス基板24と接合する部分はガラス基板24
と接合しやすいようにフォトレジスト31で覆うことで
平滑な状態を維持できる。
Next, as shown in FIG. 5, with the photoresist 31 left, that is, the photoresist 31 for forming the flow path 22 is directly immersed in an electrolytic solution as an anodizing mask and anodized. When the treatment is performed, a porous anodic oxide film 23 is formed on the inner wall surface of the channel 22 exposed from the photoresist 31. That is, in the anodic oxidation of the aluminum substrate 21, a thick porous anodic oxide film 23 is formed by using an acidic electrolytic aqueous solution containing a dibasic acid such as a sulfuric acid, oxalic acid or phosphoric acid solution. As described above, other exposed surface of the aluminum substrate 21 may be anodized in addition to the flow channel 22, but the portion of the surface where the flow channel 22 is formed that is joined to the glass substrate 24 is the glass substrate 24.
A smooth state can be maintained by covering with a photoresist 31 so that it can be easily joined.

【0018】この場合、アルミニウム基板21の厚さ
は、上述の如く、一例として、0.6〜1.0mm程度
と適宜に設定することができる上、かなり厚くすること
ができるので、多孔質の陽極酸化膜23の厚さをかなり
厚くすることができる。また、アルミニウム基板21の
一面に形成された流路22内に多孔質の陽極酸化膜23
を直接形成しているので、形成すべき多孔質の陽極酸化
膜23の流路22に対する位置精度を全く考慮する必要
がなく、したがって多孔質の陽極酸化膜23を位置精度
良く形成することができる。
In this case, the thickness of the aluminum substrate 21 can be appropriately set to, for example, about 0.6 to 1.0 mm as described above, and can be made considerably thick, so that it is porous. The thickness of the anodic oxide film 23 can be considerably increased. In addition, a porous anodic oxide film 23 is formed in the channel 22 formed on one surface of the aluminum substrate 21.
Since it is formed directly, there is no need to consider the positional accuracy of the porous anodic oxide film 23 to be formed with respect to the flow path 22, and therefore the porous anodic oxide film 23 can be formed with high positional accuracy. .

【0019】なお、アルミニウム基板21の他面には絶
縁膜27が設けられているので、アルミニウム基板21
の他面には陽極酸化膜は形成されない。そして、流路2
2を形成するためのフォトレジスト31をそのまま陽極
酸化用マスクとして用い、且つ、導電性を有するアルミ
ニウム基板21と薄膜ヒータ28との間を絶縁するため
の絶縁膜27も陽極酸化用マスクとして用いているた
め、製造工程数を少なくすることができる。
Since the insulating film 27 is provided on the other surface of the aluminum substrate 21, the aluminum substrate 21
No anodic oxide film is formed on the other surface. And the flow path 2
The photoresist 31 for forming 2 is used as it is as an anodizing mask, and the insulating film 27 for insulating between the conductive aluminum substrate 21 and the thin film heater 28 is also used as an anodizing mask. Therefore, the number of manufacturing steps can be reduced.

【0020】次に、図示していないが、フォトレジスト
31を残存させた状態で、多孔質の陽極酸化膜23に触
媒となる活性金属種を吸着させる。この活性金属種を吸
着させる方法としては、陽極酸化膜23を含むアルミニ
ウム基板21を金属塩水溶液に浸漬させることにより、
あるいは他の金属粒子や金属酸化物粒子をスラリー状に
したコーティング液に浸漬させることにより、1種類ま
たは複数種類の活性金属種を吸着させる方法がある。次
に、熱処理を行い、多孔質の陽極酸化膜23に触媒を焼
成して固定させる。
Next, although not shown, in the state where the photoresist 31 remains, an active metal species serving as a catalyst is adsorbed to the porous anodic oxide film 23. As a method for adsorbing the active metal species, the aluminum substrate 21 including the anodic oxide film 23 is immersed in an aqueous metal salt solution,
Alternatively, there is a method of immersing other metal particles or metal oxide particles in a slurry-like coating liquid to adsorb one or more kinds of active metal species. Next, heat treatment is performed to bake and fix the catalyst on the porous anodic oxide film 23.

【0021】この場合、多孔質の陽極酸化膜23の厚さ
がかなり厚く、その表面積もかなり大きいので、多孔質
の陽極酸化膜23に担持させる触媒の量、触媒の表面積
をかなり増大することができる。この結果、触媒の表面
積に大きく依存する流路22内での反応速度をより一層
速くすることができる。
In this case, since the thickness of the porous anodic oxide film 23 is considerably large and the surface area thereof is also considerably large, the amount of catalyst supported on the porous anodic oxide film 23 and the surface area of the catalyst can be considerably increased. it can. As a result, it is possible to further increase the reaction rate in the flow path 22, which greatly depends on the surface area of the catalyst.

【0022】次に、フォトレジスト31を剥離する。次
に、図1および図2に示すように、絶縁膜27の表面に
TaSiOxやTaSiOxNなどの抵抗体薄膜からな
る蛇行した薄膜ヒータ28を形成する。次に、アルミニ
ウム基板21の一面に、サンドブラスト法などにより流
入口25および流出口26が形成されたガラス基板24
を陽極接合法などにより接合する。アルミニウム基板2
1における剥離された面は陽極酸化膜23が形成されて
いないために平滑なのでガラス基板24と密着しやすく
良好に接合することができる。また、絶縁膜27の表面
周辺部に、座ぐり加工により凹部30が形成されたガラ
ス基板29の一面周辺部を陽極接合法などにより接合す
る。
Next, the photoresist 31 is peeled off. Next, as shown in FIGS. 1 and 2, a meandering thin film heater 28 made of a resistor thin film such as TaSiOx or TaSiOxN is formed on the surface of the insulating film 27. Next, the glass substrate 24 in which the inflow port 25 and the outflow port 26 are formed on one surface of the aluminum substrate 21 by the sandblast method or the like.
Are bonded by an anodic bonding method or the like. Aluminum substrate 2
Since the anodic oxide film 23 is not formed on the peeled surface of No. 1, it is easy to adhere to the glass substrate 24 and can be bonded well. Further, the peripheral portion of one surface of the glass substrate 29 in which the concave portion 30 is formed by spot facing is joined to the peripheral portion of the surface of the insulating film 27 by an anodic bonding method or the like.

【0023】次に、この発明に係る微小反応炉構成体を
燃料改質型の燃料電池を用いた燃料電池システムに適用
した場合について説明する。図6は燃料電池システム4
0の一例の要部のブロック図を示したものである。この
燃料電池システム40は、燃料部41、燃料気化部4
2、改質部43、一酸化炭素除去部44、発電部45、
充電部46などを備えている。
Next, the case where the microreactor structure according to the present invention is applied to a fuel cell system using a fuel reforming type fuel cell will be described. FIG. 6 shows a fuel cell system 4
0 is a block diagram of a main part of an example of No. 0. The fuel cell system 40 includes a fuel unit 41 and a fuel vaporization unit 4.
2, reforming section 43, carbon monoxide removing section 44, power generation section 45,
The charging unit 46 and the like are provided.

【0024】燃料部41は、発電用燃料(例えばメタノ
ール水溶液)が封入された燃料パックなどからなり、発
電用燃料を燃料気化部42に供給する。
The fuel section 41 is composed of a fuel pack or the like in which a fuel for power generation (for example, an aqueous methanol solution) is enclosed, and supplies the fuel for power generation to the fuel vaporization section 42.

【0025】燃料気化部42は、図1および図2に示す
ような構造となっている。ただし、この場合、多孔質の
陽極酸化膜23には触媒は担持されていない。そして、
燃料気化部42は、燃料部41からの発電用燃料が流入
口25を介して流路22内に供給されると、流路22内
において、薄膜ヒータ27の加熱(120℃程度)によ
り、発電用燃料を気化させ、この気化された発電用燃料
ガス(例えば発電用燃料がメタノール水溶液の場合、C
3OH+H2O)を流出口26から流出させる。
The fuel vaporizing section 42 has a structure as shown in FIGS. However, in this case, no catalyst is supported on the porous anodic oxide film 23. And
When the power generation fuel from the fuel unit 41 is supplied into the flow path 22 through the inflow port 25, the fuel vaporization section 42 generates power by heating the thin film heater 27 (about 120 ° C.) in the flow path 22. The fuel for vaporization is vaporized, and the vaporized fuel gas for power generation (for example, when the fuel for power generation is an aqueous methanol solution, C
H 3 OH + H 2 O) is discharged from the outlet 26.

【0026】この場合、陽極酸化膜23は多孔質で比較
的厚いので、薄膜ヒータ28の発熱により加熱された陽
極酸化膜23の比較的大きな表面積に流路22内を流れ
るメタノール水溶液が接触し、速やかに気化されるた
め、伝熱効率を増大することができる。また、シリコン
基板ではなく、熱伝導率の高いアルミニウム基板21を
用いているので、伝熱効率をより一層増大することがで
きる。
In this case, since the anodic oxide film 23 is porous and relatively thick, the methanol solution flowing in the channel 22 comes into contact with the relatively large surface area of the anodic oxide film 23 heated by the heat generated by the thin film heater 28. Since it is vaporized quickly, the heat transfer efficiency can be increased. Further, since the aluminum substrate 21 having a high thermal conductivity is used instead of the silicon substrate, the heat transfer efficiency can be further increased.

【0027】燃料気化部42で気化された発電用燃料ガ
ス(CH3OH+H2O)は改質部43に供給される。こ
の場合、改質部43も、図1および図2に示すような構
造となっている。ただし、この場合、多孔質の陽極酸化
膜23には、例えば、Cu、ZnO、Al23などから
なる改質触媒が担持されている。そして、改質部43
は、燃料気化部42からの発電用燃料ガス(CH3OH
+H2O)が流入口25を介して流路22内に供給され
ると、流路22内において、薄膜ヒータ27の加熱(2
80℃程度)により、次の式(1)に示すような吸熱反
応を引き起こし、水素と副生成物の二酸化炭素とを生成
する。 CH3OH+H2O→3H2+CO2……(1)
The power-generating fuel gas (CH 3 OH + H 2 O) vaporized in the fuel vaporization section 42 is supplied to the reforming section 43. In this case, the reforming section 43 also has a structure as shown in FIGS. However, in this case, the porous anodic oxide film 23 carries a reforming catalyst made of, for example, Cu, ZnO, or Al 2 O 3 . Then, the reforming section 43
Is a fuel gas (CH 3 OH) for power generation from the fuel vaporization section 42.
+ H 2 O) is supplied into the flow path 22 through the inflow port 25, the thin film heater 27 is heated (2
(About 80 ° C.) causes an endothermic reaction as shown in the following formula (1) to generate hydrogen and by-product carbon dioxide. CH 3 OH + H 2 O → 3H 2 + CO 2 (1)

【0028】この場合、陽極酸化膜23は多孔質で比較
的厚いので、薄膜ヒータ28の発熱により加熱された陽
極酸化膜23の比較的大きな表面積に担持された比較的
多い量の改質触媒に流路22内を流れる混合ガス(CH
3OH+H2O)が接触し、速やかに上記式(1)に示す
ような吸熱反応を引き起こすため、反応速度を比較的速
くすることができる。
In this case, since the anodic oxide film 23 is porous and relatively thick, a relatively large amount of the reforming catalyst carried on the relatively large surface area of the anodic oxide film 23 heated by the heat generated by the thin film heater 28 is used. Mixed gas (CH
(3 OH + H 2 O) comes into contact with each other and immediately causes an endothermic reaction as shown in the above formula (1), so that the reaction rate can be made relatively fast.

【0029】また、上記式(1)の左辺における水(H
2O)は、反応の初期では、燃料部41の燃料に含まれ
ているものでよいが、後述する発電部45の発電に伴い
生成される水を回収して改質部43に供給するようにし
てもよい。また、発電部45の発電中の上記式(1)の
左辺のおける水(H2O)の供給源は、発電部45のみ
でもよく、発電部45および燃料部41でも、また燃料
部41のみでもよい。なお、このとき微量ではあるが、
一酸化炭素が改質部43内で生成されることがある。
Further, water (H
2 O) may be contained in the fuel of the fuel section 41 at the initial stage of the reaction, but the water generated by the power generation of the power generation section 45 described later is collected and supplied to the reforming section 43. You may Further, the source of water (H 2 O) in the left side of the above equation (1) during power generation of the power generation unit 45 may be only the power generation unit 45, the power generation unit 45 and the fuel unit 41, or only the fuel unit 41. But it's okay. At this time, although it is a small amount,
Carbon monoxide may be generated in the reforming section 43.

【0030】そして、上記式(1)の右辺の生成物(水
素、二酸化炭素)および微量の一酸化炭素は改質部43
の流出口26から流出される。改質部43の流出口26
から流出された生成物のうち、気化状態の水素および一
酸化炭素は一酸化炭素除去部44に供給され、二酸化炭
素は分離されて大気中に放出される。
The products (hydrogen, carbon dioxide) on the right side of the above formula (1) and a trace amount of carbon monoxide are added to the reforming section 43.
Is discharged from the outlet 26 of the. Outlet 26 of reforming section 43
Hydrogen and carbon monoxide in a vaporized state among the products flown out of are supplied to the carbon monoxide removing unit 44, and carbon dioxide is separated and released into the atmosphere.

【0031】次に、一酸化炭素除去部44も、図1およ
び図2に示すような構造となっている。ただし、この場
合、陽極酸化膜23には、例えば、Pt、Al23など
からなる選択酸化触媒が担持されている。そして、一酸
化炭素除去部44は、改質部43からの気化状態の水素
および一酸化炭素が流入口25を介して流路22内に供
給されると、薄膜ヒータ27の加熱(180℃程度)に
より、流路22内に供給された水素、一酸化炭素、水の
うち、一酸化炭素と水とが反応し、次の式(2)に示す
ように、水素と副生成物の二酸化炭素とが生成される。 CO+H2O→H2+CO2……(2)
Next, the carbon monoxide removing portion 44 also has a structure as shown in FIGS. However, in this case, the anodic oxide film 23 carries a selective oxidation catalyst made of, for example, Pt, Al 2 O 3, or the like. Then, the carbon monoxide removing unit 44 heats the thin film heater 27 (about 180 ° C.) when vaporized hydrogen and carbon monoxide from the reforming unit 43 are supplied into the flow path 22 through the inflow port 25. ), Among the hydrogen, carbon monoxide, and water supplied into the flow path 22, carbon monoxide reacts with water, and as shown in the following formula (2), hydrogen and carbon dioxide as a by-product are reacted. And are generated. CO + H 2 O → H 2 + CO 2 (2)

【0032】この場合、陽極酸化膜24は多孔質で比較
的厚いので、薄膜ヒータ28の発熱により加熱された陽
極酸化膜24の比較的大きな表面積に担持された比較的
多い量の選択酸化触媒に流路22内を流れる一酸化炭素
および水が接触し、速やかに上記式(2)に示すような
吸熱反応を引き起こすため、反応速度を比較的速くする
ことができる。
In this case, since the anodic oxide film 24 is porous and relatively thick, a relatively large amount of selective oxidation catalyst supported on a relatively large surface area of the anodic oxide film 24 heated by the heat generated by the thin film heater 28 is used. Since carbon monoxide and water flowing in the flow path 22 come into contact with each other and immediately cause an endothermic reaction as shown in the above formula (2), the reaction rate can be made relatively fast.

【0033】また、上記式(2)の左辺における水(H
2O)は反応の初期では、燃料部41の燃料に含まれて
いるものでよいが、発電部45の発電に伴い生成される
水を回収して一酸化炭素除去部44に供給することが可
能である。また、一酸化炭素除去部44における反応式
(2)の左辺のおける水の供給源は、発電部45のみで
もよく、発電部45および燃料部41でも、また燃料部
41のみでもよい。
Further, water (H
2 O) may be contained in the fuel of the fuel section 41 at the initial stage of the reaction, but it is possible to collect the water generated by the power generation of the power generation section 45 and supply it to the carbon monoxide removal section 44. It is possible. Further, the water supply source on the left side of the reaction formula (2) in the carbon monoxide removing unit 44 may be only the power generation unit 45, the power generation unit 45 and the fuel unit 41, or only the fuel unit 41.

【0034】そして、最終的に一酸化炭素除去部44の
流出口26に到達する流体はそのほとんどが水素、二酸
化炭素となる。なお、一酸化炭素除去部44の流出口2
6に到達する流体に極微量の一酸化炭素が含まれている
場合、残存する一酸化炭素を大気中から逆止弁を介して
取り込まれた酸素に接触させることで、次の式(3)に
示すように、二酸化炭素が生成され、これにより一酸化
炭素が確実に除去される。 CO+(1/2)O2→CO2……(3)
Most of the fluid finally reaching the outflow port 26 of the carbon monoxide removing section 44 is hydrogen and carbon dioxide. The outlet 2 of the carbon monoxide removing unit 44
When the fluid reaching 6 contains a very small amount of carbon monoxide, the remaining carbon monoxide is brought into contact with oxygen taken in from the atmosphere through the check valve to obtain the following formula (3). As shown in, carbon dioxide is produced, which ensures removal of carbon monoxide. CO + (1/2) O 2 → CO 2 …… (3)

【0035】上記一連の反応後の生成物は水素および二
酸化炭素(場合によって微量の水を含む)で構成される
が、これらの生成物のうち、二酸化炭素は水素から分離
されて大気中に放出される。したがって、一酸化炭素除
去部44から発電部45には水素のみが供給される。な
お、一酸化炭素除去部44は、燃料気化部42と改質部
43との間に設けてもよい。
The product after the above series of reactions is composed of hydrogen and carbon dioxide (containing a trace amount of water in some cases). Of these products, carbon dioxide is separated from hydrogen and released into the atmosphere. To be done. Therefore, only hydrogen is supplied from the carbon monoxide removing unit 44 to the power generation unit 45. The carbon monoxide removing unit 44 may be provided between the fuel vaporizing unit 42 and the reforming unit 43.

【0036】次に、発電部45は、図6に示すように、
周知の固体高分子型の燃料電池からなっている。すなわ
ち、発電部45は、Pt、Cなどの触媒が担持された炭
素電極からなるカソード51と、Pt、Ru、Cなどの
触媒が担持された炭素電極からなるアノード52と、カ
ソード51とアノード52との間に介在されたフィルム
状のイオン導電膜53と、を有して構成され、カソード
51とアノード52との間に設けられた2次電池やコン
デンサなどからなる充電部46に電力を供給するもので
ある。
Next, the power generation unit 45, as shown in FIG.
It is a well-known polymer electrolyte fuel cell. That is, the power generation unit 45 includes a cathode 51 including a carbon electrode supporting a catalyst such as Pt and C, an anode 52 including a carbon electrode supporting a catalyst such as Pt, Ru and C, a cathode 51 and an anode 52. And a film-like ionic conductive film 53 interposed between the charging unit 46 and the charging unit 46 including a secondary battery and a capacitor provided between the cathode 51 and the anode 52. To do.

【0037】この場合、カソード51の外側には空間部
54が設けられている。この空間部54内には一酸化炭
素除去部44からの水素が供給され、カソード51に水
素が供給される。また、アノード52の外側には空間部
55が設けられている。この空間部55内には大気中か
ら逆止弁を介して取り込まれた酸素が供給され、アノー
ド52酸素が供給される。
In this case, a space 54 is provided outside the cathode 51. Hydrogen is supplied from the carbon monoxide removing unit 44 into the space 54, and hydrogen is supplied to the cathode 51. A space 55 is provided outside the anode 52. Oxygen taken from the atmosphere through the check valve is supplied into the space 55, and oxygen in the anode 52 is supplied.

【0038】そして、カソード51側では、次の式
(4)に示すように、水素から電子(e -)が分離した
水素イオン(プロトン;H+)が発生し、イオン導電膜
53を介してアノード52側に通過するとともに、カソ
ード51により電子(e-)が取り出されて充電部46
に供給される。 3H2→6H++6e-……(4)
Then, on the cathode 51 side,
As shown in (4), from hydrogen to electrons (e -) Separated
Hydrogen ion (proton; H+) Occurs, and the ionic conductive film
It passes through 53 to the anode 52 side and
The electronic signal (e-) Is taken out and the charging unit 46
Is supplied to. 3H2→ 6H++ 6e-…… (4)

【0039】一方、アノード52側では、次の式(5)
に示すように、充電部46を経由して供給された電子
(e-)とイオン導電膜53を通過した水素イオン
(H+)と酸素とが反応して副生成物の水が生成され
る。 6H++(3/2)O2+6e-→3H2O……(5)
On the other hand, on the anode 52 side, the following equation (5)
As shown in FIG. 5, the electrons (e ) supplied via the charging unit 46 react with the hydrogen ions (H + ) passing through the ion conductive film 53 and oxygen to generate by-product water. . 6H + + (3/2) O 2 + 6e → 3H 2 O (5)

【0040】以上のような一連の電気化学反応(式
(4)および式(5))は概ね室温〜80℃程度の比較
的低温の環境下で進行し、電力以外の副生成物は、基本
的に水のみとなる。発電部45で生成された電力は充電
部46に供給され、これにより充電部46が充電され
る。
The above series of electrochemical reactions (equations (4) and (5)) proceed in a relatively low temperature environment of about room temperature to 80 ° C., and byproducts other than electric power are basically It is only water. The electric power generated by the power generation unit 45 is supplied to the charging unit 46, which charges the charging unit 46.

【0041】発電部45で生成された副生成物としての
水は回収される。この場合、上述の如く、発電部45で
生成された水の少なくとも一部を改質部43や一酸化炭
素除去部44に供給するようにすると、燃料部41内に
当初封入される水の量を減らすことができ、また回収さ
れる水の量を減らすことができる。
Water as a by-product produced in the power generation section 45 is recovered. In this case, as described above, if at least a part of the water generated in the power generation unit 45 is supplied to the reforming unit 43 and the carbon monoxide removing unit 44, the amount of water initially enclosed in the fuel unit 41 will be increased. Can be reduced, and the amount of water recovered can be reduced.

【0042】ところで、現在、研究開発が行われている
燃料改質方式の燃料電池に適用されている燃料として
は、少なくとも、水素元素を含む液体燃料または液化燃
料または気体燃料であって、発電部45により、比較的
高いエネルギー変換効率で電気エネルギーを生成するこ
とができる燃料であればよく、上記のメタノールの他、
例えば、エタノール、ブタノールなどのアルコール系の
液体燃料や、ジメチルエーテル、イソブタン、天然ガス
(CNG)などの液化ガスなどの常温常圧で気化される
炭化水素からなる液体燃料、あるいは、水素ガスなどの
気体燃料などの流体物質を良好に適用することができ
る。
By the way, the fuel applied to the fuel cell of the fuel reforming system, which is currently being researched and developed, is at least a liquid fuel containing hydrogen element, a liquefied fuel or a gas fuel, and With 45, any fuel can be used as long as it can generate electric energy with relatively high energy conversion efficiency.
For example, alcohol-based liquid fuels such as ethanol and butanol, liquid fuels composed of hydrocarbons that are vaporized at room temperature and normal pressure such as liquefied gases such as dimethyl ether, isobutane, and natural gas (CNG), or gases such as hydrogen gas. Fluid materials such as fuel can be applied well.

【0043】[0043]

【発明の効果】以上説明したように、この発明によれ
ば、陽極酸化可能な基板の厚さは適宜に設定することが
できるため、この基板の一面に形成された微小な反応炉
内に直接形成された多孔質の陽極酸化膜の表面積をより
一層大きくすることができる。また、陽極酸化可能な基
板の一面に形成された微小な反応炉内に多孔質の陽極酸
化膜を直接形成しているので、形成すべき多孔質の陽極
酸化膜の反応炉に対する位置精度を全く考慮する必要が
なく、したがって多孔質の陽極酸化膜を位置精度良く形
成することができる。
As described above, according to the present invention, since the thickness of the anodizable substrate can be set appropriately, it can be directly placed in a minute reaction furnace formed on one surface of the substrate. The surface area of the formed porous anodic oxide film can be further increased. Moreover, since the porous anodic oxide film is directly formed in the minute reaction furnace formed on one surface of the anodizable substrate, the positional accuracy of the porous anodic oxide film to be formed with respect to the reaction furnace is completely eliminated. It is not necessary to take this into consideration, and therefore the porous anodic oxide film can be formed with high positional accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施形態としての微小反応炉構成
体の透過平面図。
FIG. 1 is a transparent plan view of a micro reactor structure as an embodiment of the present invention.

【図2】図1のA−A線に沿う断面図。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】図1および図2に示す微小反応炉構成体の製造
に際し、当初の工程の断面図。
FIG. 3 is a cross-sectional view of an initial step in manufacturing the micro reactor structure shown in FIGS. 1 and 2.

【図4】図3に続く工程の断面図。FIG. 4 is a sectional view of a step following FIG. 3;

【図5】図4に続く工程の断面図。5 is a sectional view of a step following FIG. 4; FIG.

【図6】この発明に係る微小反応炉構成体を備えた燃料
電池システムの一例の要部のブロック図。
FIG. 6 is a block diagram of a main part of an example of a fuel cell system including a micro reactor structure according to the present invention.

【図7】図6に示す燃料電池システムの発電部および充
電部の概略構成図。
7 is a schematic configuration diagram of a power generation unit and a charging unit of the fuel cell system shown in FIG.

【図8】従来の小型化学反応装置の一例の透過平面図。FIG. 8 is a transparent plan view of an example of a conventional small chemical reaction device.

【図9】図8に示す小型化学反応装置の一部の断面図。9 is a sectional view of a part of the small chemical reaction device shown in FIG.

【符号の説明】[Explanation of symbols]

21 アルミニウム基板 22 流路 23 陽極酸化膜 24 ガラス基板 25 流入口 26 流出口 27 絶縁膜 28 薄膜ヒータ 29 ガラス基板 30 凹部 21 Aluminum substrate 22 flow path 23 Anodized film 24 glass substrate 25 Inlet 26 Outlet 27 Insulating film 28 Thin film heater 29 glass substrates 30 recess

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25D 11/18 308 C25D 11/18 308 // H01M 8/06 H01M 8/06 A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C25D 11/18 308 C25D 11/18 308 // H01M 8/06 H01M 8/06 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 陽極酸化可能な基板と、該基板の一面に
形成された微小な反応炉と、該反応炉内に形成された多
孔質の陽極酸化膜とを備えていることを特徴とする微小
反応炉構成体。
1. An anodizable substrate, a minute reaction furnace formed on one surface of the substrate, and a porous anodic oxide film formed in the reaction furnace. Micro reactor structure.
【請求項2】 請求項1に記載の発明において、前記多
孔質の陽極酸化膜に触媒が担持されていることを特徴と
する微小反応炉構成体。
2. The microreactor structure according to claim 1, wherein a catalyst is supported on the porous anodic oxide film.
【請求項3】 請求項1または2に記載の発明におい
て、前記基板はアルミニウム基板であることを特徴とす
る微小反応炉構成体。
3. The microreactor structure according to claim 1 or 2, wherein the substrate is an aluminum substrate.
【請求項4】 陽極酸化可能な基板の一面に微小な反応
炉を形成し、該反応炉内に陽極酸化処理により多孔質の
陽極酸化膜を形成することを特徴とする微小反応炉構成
体の製造方法。
4. A microreactor structure characterized in that a minute reaction furnace is formed on one surface of an anodizable substrate, and a porous anodic oxide film is formed in the reaction furnace by anodizing treatment. Production method.
【請求項5】 請求項4に記載の発明において、前記多
孔質の陽極酸化膜に触媒を担持させることを特徴とする
微小反応炉構成体の製造方法。
5. The method according to claim 4, wherein a catalyst is supported on the porous anodic oxide film.
【請求項6】 請求項4または5に記載の発明におい
て、前記陽極酸化処理は、前記基板の一面に前記反応炉
を形成するためのフォトレジストパターンを残存させた
状態で行うことを特徴とする微小反応炉構成体の製造方
法。
6. The invention according to claim 4 or 5, wherein the anodizing treatment is performed with a photoresist pattern for forming the reaction furnace left on one surface of the substrate. Manufacturing method of micro reactor structure.
【請求項7】 請求項4〜6のいずれかに記載の発明に
おいて、前記基板はアルミニウム基板であることを特徴
とする微小反応炉構成体の製造方法。
7. The method for manufacturing a micro reactor structure according to any one of claims 4 to 6, wherein the substrate is an aluminum substrate.
JP2002108763A 2002-04-11 2002-04-11 Microreactor structure and manufacturing method thereof Expired - Fee Related JP3899985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108763A JP3899985B2 (en) 2002-04-11 2002-04-11 Microreactor structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108763A JP3899985B2 (en) 2002-04-11 2002-04-11 Microreactor structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003301295A true JP2003301295A (en) 2003-10-24
JP3899985B2 JP3899985B2 (en) 2007-03-28

Family

ID=29392413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108763A Expired - Fee Related JP3899985B2 (en) 2002-04-11 2002-04-11 Microreactor structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3899985B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009231A1 (en) * 2002-07-18 2004-01-29 National Institute Of Advanced Industrial Science And Technology Method of manufacturing microwave reaction device and microwave reaction device
JP2006239654A (en) * 2005-03-07 2006-09-14 Casio Comput Co Ltd Carbon monoxide remover
KR100696622B1 (en) 2005-10-19 2007-03-19 삼성에스디아이 주식회사 Micro reforming reactor for fuel cell and method for preparating the same
JP2007314353A (en) * 2006-05-23 2007-12-06 Toppan Printing Co Ltd Microreactor for hydrogen production and its manufacturing method
JP2007319769A (en) * 2006-05-31 2007-12-13 Casio Comput Co Ltd Reactor, dynamo using it and electronic device
WO2008026656A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Reaction device, fuel battery system, and electronic device
WO2008026654A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Reaction device, fuel cell system, and electronic apparatus
WO2008026655A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Reaction device, fuel battery system, and electronic device
JP2008056527A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic equipment
JP2008056525A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic equipment
JP2008059871A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor device, fuel cell system, and electronic equipment
JP2008056524A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic device
JP2008056526A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic device
JP2008059872A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor device, fuel cell system, and electronic equipment
US7740669B2 (en) 2004-05-13 2010-06-22 Samsung Sdi Co., Ltd. Reformer for fuel cell system, fabrication method therefor, and fuel cell system comprising the same
JP5196616B1 (en) * 2012-06-29 2013-05-15 アイシン軽金属株式会社 Partial anodizing apparatus and anodizing method using the same
WO2016034253A1 (en) 2014-09-05 2016-03-10 Jozef Stefan Institute Photocatalytic reactor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695689B2 (en) 2002-07-18 2010-04-13 National Institute Of Advanced Industrial Science And Technology Micro reactor device and method of manufacturing micro reactor device
WO2004009231A1 (en) * 2002-07-18 2004-01-29 National Institute Of Advanced Industrial Science And Technology Method of manufacturing microwave reaction device and microwave reaction device
US7740669B2 (en) 2004-05-13 2010-06-22 Samsung Sdi Co., Ltd. Reformer for fuel cell system, fabrication method therefor, and fuel cell system comprising the same
JP2006239654A (en) * 2005-03-07 2006-09-14 Casio Comput Co Ltd Carbon monoxide remover
KR100696622B1 (en) 2005-10-19 2007-03-19 삼성에스디아이 주식회사 Micro reforming reactor for fuel cell and method for preparating the same
US8486163B2 (en) 2005-10-19 2013-07-16 Samsung Sdi Co., Ltd. Micro reforming reactor for fuel cell and method of preparing the same
JP2007314353A (en) * 2006-05-23 2007-12-06 Toppan Printing Co Ltd Microreactor for hydrogen production and its manufacturing method
JP2007319769A (en) * 2006-05-31 2007-12-13 Casio Comput Co Ltd Reactor, dynamo using it and electronic device
WO2008026656A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Reaction device, fuel battery system, and electronic device
WO2008026655A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Reaction device, fuel battery system, and electronic device
JP2008059871A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor device, fuel cell system, and electronic equipment
JP2008056524A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic device
JP2008056526A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic device
JP2008059872A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor device, fuel cell system, and electronic equipment
JP2008056527A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic equipment
JP2008056525A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor, fuel cell system and electronic equipment
US8382866B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
US8382865B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
WO2008026654A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Reaction device, fuel cell system, and electronic apparatus
JP5196616B1 (en) * 2012-06-29 2013-05-15 アイシン軽金属株式会社 Partial anodizing apparatus and anodizing method using the same
WO2014002520A1 (en) * 2012-06-29 2014-01-03 アイシン軽金属株式会社 Partial anodic oxidation device, and anodic oxidation processing method using same
US9790611B2 (en) 2012-06-29 2017-10-17 Aisin Keikinzoku Co., Ltd. Partial anodizing apparatus and anodizing method using the same
WO2016034253A1 (en) 2014-09-05 2016-03-10 Jozef Stefan Institute Photocatalytic reactor

Also Published As

Publication number Publication date
JP3899985B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
TWI229013B (en) Chemical reaction apparatus and power supply system
JP2003301295A (en) Microreactor furnace constituent and its production method
JP3979219B2 (en) Small chemical reactor
JP3941632B2 (en) Reformer, reformer manufacturing method and power generation system
JP4774209B2 (en) MEMS fuel cell having integrated catalytic fuel processor and method thereof
JP4048864B2 (en) Small chemical reaction apparatus and manufacturing method thereof
JPH06111838A (en) Reformer, reforming system, and fuel cell system
TW592830B (en) Chemical reaction apparatus and power supply system
CN100394638C (en) Reactor and power generator
JP2003265949A (en) Micro flow passage structure and production method thereof
US20070087235A1 (en) Multi-layered thin film hydrogen fuel cell system
JP2004066008A (en) Chemical reaction apparatus
JP4366904B2 (en) Small chemical reactor
JP2003290649A (en) Compact chemical reaction apparatus
JP2004331434A (en) Microreacter for hydrogen production and its manufacturing method
JP2004063131A (en) Chemical reaction apparatus, fuel cell system and manufacturing method for them
JP2005126286A (en) Membrane reactor for hydrogen production
JP4054910B2 (en) Manufacturing method of small chemical reactor
JP4075435B2 (en) Chemical reactor and fuel cell system
JP2003306351A (en) Structure of anode junction and method for anode junction
KR100638814B1 (en) Small Fuel Reformer of Thin Film Type and Its Production Method
JP2005095829A (en) Catalytic reactor and producing method therefor
KR100616678B1 (en) Micro fuel cell and method for manufacturing the same
JP4643533B2 (en) Fuel cell reformer with excellent thermal characteristics
JP2003290653A (en) Fine reaction part constitution body and manufacture method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees