JP2003301175A - Process for producing low-alkali water glass, and graut for ground conditioning - Google Patents

Process for producing low-alkali water glass, and graut for ground conditioning

Info

Publication number
JP2003301175A
JP2003301175A JP2002109586A JP2002109586A JP2003301175A JP 2003301175 A JP2003301175 A JP 2003301175A JP 2002109586 A JP2002109586 A JP 2002109586A JP 2002109586 A JP2002109586 A JP 2002109586A JP 2003301175 A JP2003301175 A JP 2003301175A
Authority
JP
Japan
Prior art keywords
water glass
solution
water
acid
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002109586A
Other languages
Japanese (ja)
Other versions
JP2003301175A5 (en
JP4124611B2 (en
Inventor
Takaaki Onishi
高明 大西
Kanji Matsumoto
幹治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raito Kogyo Co Ltd
Original Assignee
Raito Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raito Kogyo Co Ltd filed Critical Raito Kogyo Co Ltd
Priority to JP2002109586A priority Critical patent/JP4124611B2/en
Publication of JP2003301175A publication Critical patent/JP2003301175A/en
Publication of JP2003301175A5 publication Critical patent/JP2003301175A5/ja
Application granted granted Critical
Publication of JP4124611B2 publication Critical patent/JP4124611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely obtain a low-alkali water glass solution at a low equipment cost and a low running cost. <P>SOLUTION: In a tank 1 for adding an acid, an acid is added to a water glass diluted with water to granulate silica particles in a neutral or alkaline state while fluidity is maintained. The silica content of the water glass is raised while the alkali ions in the solution are removed by membrane separation 4, giving a concentrated solution N1. The concentrated solution N1, mixed with water, is subjected to diafiltration to reduce the acid ion concentration. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低アルカリ水ガラ
ス溶液の製造方法及び地盤改良用注入材に関する。
TECHNICAL FIELD The present invention relates to a method for producing a low-alkali water glass solution and an injection material for ground improvement.

【0002】[0002]

【従来の技術】土木工事において、掘削等により崩壊の
おそれのある地盤、湧水等により掘削が困難な地盤等に
対して、地盤改良用注入材を注入して地盤を改良する薬
液注入工法が汎用さている。
2. Description of the Related Art In civil engineering work, a chemical solution injection method is used to improve the ground by injecting a ground improvement injection material into the ground that may collapse due to excavation, etc., or the ground that is difficult to excavate due to spring water, etc. It is versatile.

【0003】使用される地盤改良用注入材としては種々
のものが知られているが、水ガラスそのもののほか、最
近では、水ガラスに酸を加えて酸性にした非アルカリ系
シリカゾル系地盤改良用注入材が広く用いられている。
この地盤改良用注入材は、注入による固化体の強度が高
くその耐久性に優れる、注入液が一液でありゲルタイム
の調整も容易で取り扱いに便利である、改良すべき地盤
の土質の応用範囲が広い、地盤改良後の固化物から溶出
成分がほとんど無い、環境に与える影響が小さいなどの
さまざまな利点を有する。また、かかる地盤改良用注入
材は、原料として酸、特に安価な硫酸を用いるため、水
ガラス自体も安価であることとあいまって大変経済的な
ものとなる。
There are various known ground improvement injectable materials to be used. In addition to water glass itself, recently, non-alkali silica sol-based ground improvement method in which acid is added to water glass to make it acidic. Injection materials are widely used.
This ground improvement injection material has a high strength of the solidified body by injection and has excellent durability, the injection liquid is a single liquid, the gel time can be easily adjusted and it is easy to handle, the application range of the soil soil to be improved It has various advantages such as a wide range, almost no elution component from the solidified material after ground improvement, and a small effect on the environment. In addition, since the ground improvement injection material uses an acid, particularly inexpensive sulfuric acid, as a raw material, the water glass itself is very economical in combination with the fact that the water glass itself is inexpensive.

【0004】そして、近年では、さらに固結体(改良
体)の強度や耐久性をよりいっそう向上することができ
ないかが検討されはじめている。
In recent years, studies have begun on whether or not the strength and durability of the solidified body (improved body) can be further improved.

【0005】[0005]

【発明が解決しようとする課題】この観点から、水ガラ
スをイオン交換樹脂に通すことによりアルカリ分を除去
する手法が検討され、例えば特開平11−279552
号公報などに代表される種々の手法が提案されている。
しかしながら、水ガラスをイオン交換樹脂に通す手法
は、そのイオン交換樹脂の再生処理が必要となるため、
ランニングコストが嵩む。
From this point of view, a method of removing an alkali content by passing water glass through an ion exchange resin has been studied, and for example, JP-A-11-279552.
Various techniques represented by Japanese Patent Publications have been proposed.
However, the method of passing water glass through an ion exchange resin requires regeneration treatment of the ion exchange resin,
Running costs increase.

【0006】そこで、例えば特許第3104128号に
示されるような電解透析手法も提案され、実用化も図ら
れているが、電解透析手法は、装置コストがきわめて嵩
み、汎用性に欠ける。
Therefore, for example, an electrolytic dialysis method as disclosed in Japanese Patent No. 3104128 has been proposed and is being put to practical use, but the electrolytic dialysis method is extremely high in device cost and lacks versatility.

【0007】そこで、本発明の主たる課題は、装置自体
及びランニングのコストが低く、しかも確実にアルカリ
分の少ない低アルカリ水ガラス溶液を得ることができる
低アルカリ水ガラス溶液の製造方法及び地盤改良用注入
材を提供することにある。
Therefore, the main object of the present invention is to provide a method for producing a low-alkali water glass solution and a ground improvement method that can obtain a low-alkali water glass solution that is low in the cost of the apparatus itself and running and can surely obtain a low alkali content. It is to provide an injection material.

【0008】[0008]

【課題を解決するための手段】上記課題を解決した本発
明は、次のとおりである。 <請求項1記載の発明>水で希釈した水ガラスに酸を加
え、流動性を保った中性又はアルカリ性の状態でシリカ
粒子の造粒を行い、その後、膜分離により前記水ガラス
のシリカ濃度を高めるとともに、溶液中のアルカリイオ
ンを除去することを特徴とする低アルカリ水ガラス溶液
の製造方法。
The present invention, which has solved the above-mentioned problems, is as follows. <Invention of Claim 1> An acid is added to water glass diluted with water to granulate silica particles in a neutral or alkaline state in which fluidity is maintained, and thereafter, the silica concentration of the water glass is separated by membrane separation. And a method for producing a low-alkali water glass solution, which comprises removing alkali ions in the solution.

【0009】<請求項2記載の発明>水で希釈した水ガ
ラスに酸を加え、流動性を保った中性又はアルカリ性の
状態でシリカ粒子の造粒を行い、その後、膜分離により
前記水ガラスのシリカ濃度を高めるとともに、溶液中の
アルカリイオンを除去して濃縮液を得、この濃縮液に水
を添加してダイアフィルトレーション処理することによ
り前記酸イオン濃度の低下を図ることを特徴とする低ア
ルカリ水ガラス溶液の製造方法。
<Invention of Claim 2> Acid is added to water glass diluted with water to granulate silica particles in a neutral or alkaline state in which fluidity is maintained, and then the water glass is separated by membrane separation. In addition to increasing the silica concentration of, the alkali ion in the solution is removed to obtain a concentrated solution, water is added to the concentrated solution for diafiltration treatment to reduce the acid ion concentration. A method for producing a low-alkali water glass solution.

【0010】<請求項3記載の発明>請求項1又は請求
項2記載の低アルカリ水ガラス溶液を主材とした地盤改
良用の注入材であることを特徴とする地盤改良用注入
材。
<Invention of Claim 3> An injection material for improving the ground, which is an injection material for improving the ground, which is mainly composed of the low alkaline water glass solution according to claim 1 or 2.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を、図
1に示した処理フロー図を参照しながら説明する。 <水ガラス及びその希釈>本発明において使用しうる水
ガラスは、その種類が特に限定されるものではない。例
えば、JIS1408規定の珪酸ソーダ(XNa2O・
YSiO2)相当品、すなわち、JIS1号、2号、3
号水ガラスや、珪素を溶解させることによりモル比(N
2O:SiO2)4程度の高モル比とされた水ガラスな
どを使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the process flow chart shown in FIG. <Water glass and dilution thereof> The type of water glass that can be used in the present invention is not particularly limited. For example, JIS 1408 standard sodium silicate (XNa 2 O.
YSiO 2 ) equivalent product, ie JIS No. 1, No. 2, No. 3
No. water glass or the molar ratio (N
It is possible to use water glass having a high molar ratio of about a 2 O: SiO 2 ) 4.

【0012】ただし、ナトリウム(アルカリ)の除去と
いう観点からは、モル比の高い(Na2Oの少ない)水
ガラスを使用するのが好ましく、JIS3号水ガラス又
は高モル比水ガラスを使用するのが特に好ましい。本実
施の形態では、高モル比水ガラスを使用する。
However, from the viewpoint of removing sodium (alkali), it is preferable to use water glass having a high molar ratio (small amount of Na 2 O), and JIS No. 3 water glass or high molar ratio water glass is used. Is particularly preferable. In this embodiment, high molar ratio water glass is used.

【0013】なお、JIS3号水ガラスは、SiO
2(28〜30質量%)、Na2O(9〜10質量%)及
び水(残部)からなるものであり、モル比(SiO2
Na2O)が2.8〜3.33とされる。また、本実施
の形態の高モル比水ガラスは、SiO2(24±1質量
%)、Na2O(6.5±0.5質量%)及び水(残
部)からなるものであり、モル比(SiO2/Na2O)
が4±0.1とされる。
JIS No. 3 water glass is SiO
2 (28 to 30% by mass), Na 2 O (9 to 10% by mass) and water (the balance), and the molar ratio (SiO 2 /
Na 2 O) is a 2.8 to 3.33. Further, the high molar ratio water glass of the present embodiment is composed of SiO 2 (24 ± 1% by mass), Na 2 O (6.5 ± 0.5% by mass) and water (the balance). Ratio (SiO 2 / Na 2 O)
Is set to 4 ± 0.1.

【0014】上記水ガラスは、まず、水で希釈する。水
による希釈を行わない場合、水ガラスの種類により、酸
を添加したときに水ガラスがゲル化することがある。希
釈は、シリカ濃度4.0質量%以下、好ましくは3.5
質量%以下の水溶液にするのが望ましい。
First, the water glass is diluted with water. When not diluted with water, depending on the type of water glass, the water glass may gel when an acid is added. The dilution is carried out with a silica concentration of 4.0 mass% or less, preferably 3.5.
It is desirable to use an aqueous solution of not more than mass%.

【0015】<酸の添加>水で希釈した水ガラス水溶液
は、図1に示すように、例えば酸添加槽1に供給し、酸
性側にならないように、中性又はアルカリ性に、例えば
養生後にpH10未満とならないように酸を加える。水
ガラス水溶液に酸を加えるのは、そのままでは膜分離を
行い難いためである。酸の添加によりシリカ粒子の造粒
が図られ、もってシリカ分とナトリウム分(アルカリ
分)との膜分離が容易になる。また、酸添加により酸性
側にするほど、ゲル化が生じやすく、得られる注入材の
安定性が欠けるようになるので、中性又はアルカリ性
に、特に養生後にpH10以上となるようにするのが好
ましい。酸性側にならないように酸を添加することによ
り、水ガラス水溶液は、ゲル化が生じず、流動性が保た
れることになる。
<Addition of Acid> As shown in FIG. 1, a water glass aqueous solution diluted with water is supplied to, for example, an acid addition tank 1 and neutralized or alkalinized, for example, to a pH of 10 after curing so as not to be acidic. Add acid so that it is not less than 1. The reason why the acid is added to the aqueous solution of water glass is that it is difficult to perform membrane separation as it is. The addition of acid facilitates granulation of silica particles, which facilitates membrane separation of silica and sodium (alkali). Further, as the acid is added to the acid side, gelation is more likely to occur, and the stability of the obtained injectable material becomes poor. Therefore, it is preferable to adjust the pH to neutral or alkaline, particularly to pH 10 or more after curing. . By adding an acid so as not to be on the acidic side, the aqueous solution of water glass does not gel and the fluidity is maintained.

【0016】添加する酸としては、水珪酸H2SiO
2(OH)2の酸解離定数がpKa1=9.86、pKa2
=13.1であるので、その酸解離定数pKa1以下の
ものを使用すればよく、例えば、硫酸、塩酸、リン酸、
ギ酸、クエン酸などを使用することができる。実際に、
その種の酸について、シリカ粒子の造粒効果を確認済で
ある。コストの観点からは、硫酸を使用するのが好まし
く、本実施の形態では希硫酸を使用する。
As the acid to be added, hydrosilicic acid H 2 SiO
The acid dissociation constant of 2 (OH) 2 is pKa 1 = 9.86, pKa 2
= 13.1, the acid dissociation constant of pKa1 or less may be used. For example, sulfuric acid, hydrochloric acid, phosphoric acid,
Formic acid, citric acid and the like can be used. actually,
The granulation effect of silica particles has been confirmed for such acids. From the viewpoint of cost, it is preferable to use sulfuric acid, and dilute sulfuric acid is used in the present embodiment.

【0017】希釈した水ガラス水溶液と酸とは、撹拌翼
2によって均一に混合する程度に2〜5分間撹拌する。
The diluted water glass aqueous solution and the acid are agitated by the agitating blade 2 for 2 to 5 minutes until they are uniformly mixed.

【0018】撹拌後の液は、シリカモノマーの重合反応
に基づいてその粒子が造粒されるまで、好ましくは4時
間以上、より好ましくは8時間以上放置して養生する。
通常は、12時間放置すれば、シリカが完全に造粒され
膜分離が容易となる。液を加熱することにより造粒完了
時間を短くすることができる。例えば60〜70℃で加
熱すれば、3〜4時間程度でシリカが造粒され膜分離が
可能となる。
The liquid after stirring is left to cure for preferably 4 hours or longer, more preferably 8 hours or longer until the particles are granulated based on the polymerization reaction of the silica monomer.
Usually, if left for 12 hours, the silica is completely granulated and the membrane separation becomes easy. Granulation completion time can be shortened by heating the liquid. For example, if heating is performed at 60 to 70 ° C., silica is granulated in about 3 to 4 hours to enable membrane separation.

【0019】<濃縮工程>シリカ粒子が造粒されるまで
養生した液は、次いで、濃縮工程に送り、濃縮液を得る
ようにする。この濃縮工程は、酸添加槽1から造粒済原
液Gを受け入れて濃縮液N1を得るための処理槽3と、
この処理槽3からの液を膜分離する膜分離装置4と、そ
れらの間を液を全循環させるため送液路5A及び返送路
5Bと、膜分離装置4を透過した透過液R1を送液路7
を介して受け入れ貯留する透過液槽6とによって主に構
成される。
<Concentration Step> The liquid aged until the silica particles are granulated is then sent to a concentration step to obtain a concentrated liquid. In this concentration step, a treatment tank 3 for receiving the granulated stock solution G from the acid addition tank 1 to obtain a concentrated solution N1,
A membrane separation device 4 for membrane-separating the liquid from the treatment tank 3, a liquid feed path 5A and a return passage 5B for totally circulating the liquid between them, and a permeate R1 that has passed through the membrane separation device 4 Road 7
It is mainly configured by a permeated liquid tank 6 that receives and stores the liquid through.

【0020】膜分離装置4で使用する膜は、その形状が
何ら限定されるものではなく、例えば、スパイラル、キ
ャピラリー、チューブラー、カートリッジ、プレートな
どとすることもできる。また、濃縮液の流れと膜面との
接触方向も何ら限定されるものではなく、膜面に垂直に
被処理液を流す全量濾過方式とすることも、膜面と平行
に被処理液を流し被処理液の流れの側方で濾過を行うク
ロスフロー濾過方式とすることもできる。本実施の形態
では、平膜方式かつクロスフロー濾過方式とした。平膜
方式の膜は、安価でしかも取り扱いが容易であるという
利点を有する。また、クロスフロー濾過方式によると、
膜面へのゲル物質の蓄積が少なくなる。
The membrane used in the membrane separation device 4 is not limited in its shape, and may be, for example, a spiral, a capillary, a tubular, a cartridge or a plate. Further, the flow direction of the concentrated liquid and the contact direction with the film surface are not limited at all, and a total volume filtration method in which the liquid to be treated is caused to flow perpendicularly to the film surface, or the liquid to be treated is caused to flow in parallel with the film surface. It is also possible to adopt a cross-flow filtration system in which filtration is performed on the side of the flow of the liquid to be treated. In the present embodiment, the flat membrane method and the cross flow filtration method are used. The flat membrane type membrane has the advantage of being inexpensive and easy to handle. Also, according to the cross flow filtration method,
Less accumulation of gel material on the membrane surface.

【0021】膜分離装置4で使用する膜としては、ナト
リウムイオンは透過するがシリカ分は透過しない限外濾
過膜(UF)、ナノフィルトレーション膜(NF)など
を挙げることができる。ただし、ナトリウムイオンは透
過するといってもその阻止率が0%でなければならない
というものではなく、またシリカ分は透過しないといっ
てもその阻止率が100%でなければならないというも
のではないのは当然である。ナトリウムイオンの阻止率
は適宜選定できるが、後述する値を満たすものが望まし
い。
Examples of the membrane used in the membrane separation device 4 include an ultrafiltration membrane (UF) and a nanofiltration membrane (NF) which are permeable to sodium ions but impermeable to silica. However, it does not mean that the blocking rate of sodium ions must be 0% even if it permeates, and that the blocking rate must be 100% even if it does not permeate silica. Is natural. Although the rejection rate of sodium ions can be selected as appropriate, it is preferable that it satisfies the value described below.

【0022】このNF膜のNaCl透過阻止率は、40
%以下であるのが好ましく、5〜20%であるのがより
好ましい。また、UF膜の分画分子量は、150000
Da以下であるのが好ましく、50000Da以下であ
るのがより好ましい。かかるNaCl阻止率、分画分子
量では、先に述べたシリカの造粒を行わないと、シリカ
分の阻止率が低すぎるため効果的な分離が困難となり、
また、阻止率を高くすると、処理時間がかかる、膜表面
でゲルが発生しやすくなるといった問題が生じる。
The NaCl permeation inhibition rate of this NF membrane is 40.
% Or less, and more preferably 5 to 20%. The molecular weight cut-off of the UF membrane was 150,000.
It is preferably Da or less, and more preferably 50,000 Da or less. With such NaCl rejection and cut-off molecular weight, unless the above-mentioned silica granulation is performed, effective rejection becomes difficult because the silica rejection is too low,
Further, if the blocking rate is increased, there are problems that it takes a long processing time and gel is easily generated on the film surface.

【0023】以上ようなNaCl阻止率、分画分子量を
有する膜としては、例えば、NTR−7410(RO膜
(NF型))、NTR−7450(RO膜(NF
型))、NTU−2120(UF膜)(以上、日東電工
(株)製)、等がある。
Examples of the membrane having the above-mentioned NaCl inhibition rate and molecular weight cutoff are, for example, NTR-7410 (RO membrane (NF type)) and NTR-7450 (RO membrane (NF
Type)), NTU-2120 (UF membrane) (above, manufactured by Nitto Denko Corporation), and the like.

【0024】逆浸透膜を形成する材料としては、例え
ば、ポリスルホン、ポリビニルアルコール、酢酸セルロ
ース等を挙げることができる。また、限外濾過膜を形成
する材料としては、例えば、ポリエーテルスルホン、ポ
リスルホン、ポリビニルアルコール、ポリアミド、ポリ
フッ化ビニリデン、ポリテトラフルオロエチレン等の有
機高分子化合物や、多孔質ガラス、セラミックス等の無
機材料を挙げることができるが、水ガラスとの親和性、
耐塩基性を考慮すれば、ポリスルホン、ポリエーテルス
ルホンが好ましい。
Examples of the material for forming the reverse osmosis membrane include polysulfone, polyvinyl alcohol, cellulose acetate and the like. The material for forming the ultrafiltration membrane includes, for example, organic polymer compounds such as polyether sulfone, polysulfone, polyvinyl alcohol, polyamide, polyvinylidene fluoride, and polytetrafluoroethylene, and inorganic materials such as porous glass and ceramics. Materials can be mentioned, affinity with water glass,
Considering the basic resistance, polysulfone and polyether sulfone are preferable.

【0025】膜分離装置4による膜分離により、造粒済
原液G中のナトリウムイオンが、透過液Rとともに除去
される。また、この膜分離装置4は、シリカ分は透過さ
せないので、溶液自体の容量が減少することにより、シ
リカ濃度は上昇する。この膜分離は、シリカ濃度が6質
量%以上になるまで、好ましくは8〜14質量%になる
まで行う。たしかに、本発明に係る方法により製造され
た低アルカリ水ガラス溶液を、地盤改良用注入材の主材
と使用する場合は、シリカ濃度が6質量%程度であれば
足りるが、シリカ濃度を8質量%以上とする方が輸送コ
ストを考慮すればより好適である。
By the membrane separation by the membrane separator 4, sodium ions in the granulated stock solution G are removed together with the permeate R. Further, since the membrane separation device 4 does not allow the silica component to permeate, the volume of the solution itself decreases, and the silica concentration increases. This membrane separation is performed until the silica concentration reaches 6% by mass or more, preferably 8 to 14% by mass. Certainly, when the low alkaline water glass solution produced by the method according to the present invention is used as the main material of the ground improvement injecting material, the silica concentration of about 6% by mass is sufficient, but the silica concentration is 8% by mass. % Or more is more preferable in consideration of transportation cost.

【0026】ただし、あまりに高濃度とすると溶液の安
定性に欠けるので、14質量%以下とするのがよい。本
溶液は、シリカ濃度13質量%程度まで、安定して利用
に供すことができることが確認されている。
However, if the concentration is too high, the stability of the solution will be insufficient, so it is preferable to set it to 14% by mass or less. It has been confirmed that this solution can be stably used up to a silica concentration of about 13% by mass.

【0027】<脱塩工程>以上の濃縮工程によって、濃
縮された濃縮液N1は、酸イオンを、本実施の形態では
硫酸イオンを、少なからぬ量含有している。そして、硫
酸イオンが多いとシリカが不安定になり、溶液がたとえ
ば20日程度でゲル化してしまう。そこで、得られた濃
縮液N1は、さらに、ダイアフィルトレーション処理
し、硫酸イオン濃度を、好ましくは5000ppm以下
となるまで、より好ましくは2000ppm以下となる
まで低下させるのが好ましい。
<Desalination Step> The concentrated liquid N1 concentrated by the above-mentioned concentration step contains a considerable amount of acid ions, in the present embodiment, sulfate ions. When the amount of sulfate ions is large, silica becomes unstable and the solution gels in, for example, about 20 days. Therefore, it is preferable that the obtained concentrated liquid N1 is further subjected to a diafiltration treatment to reduce the sulfate ion concentration to preferably 5000 ppm or less, more preferably 2000 ppm or less.

【0028】この脱塩処理は、本実施の形態では、濃縮
工程において使用した装置をそのまま使用した。具体的
には、処理槽3に貯留された濃縮液N1に対して、図2
に示すように、水槽8から所定量の水Wを添加し、膜分
離装置4により膜分離する。膜分離は、添加した水の量
と同量の透過液R2が排出されるまで行う。同量の透過
液R2が排出され処理槽3における濃縮液N2が最初の
濃縮液N1の量と同量になったら、新たに濃縮液N1に
対して水槽8から所定量の水Wを添加する。以後、同様
の作業を所定回数繰り返す。
In this desalting process, the apparatus used in the concentration step was used as it is in this embodiment. Specifically, for the concentrated liquid N1 stored in the processing tank 3, as shown in FIG.
As shown in, a predetermined amount of water W is added from the water tank 8 and the membrane is separated by the membrane separation device 4. Membrane separation is performed until the same amount of permeated liquid R2 as the amount of added water is discharged. When the same amount of the permeated liquid R2 is discharged and the amount of the concentrated liquid N2 in the treatment tank 3 becomes equal to the amount of the first concentrated liquid N1, a predetermined amount of water W is newly added to the concentrated liquid N1 from the water tank 8. . After that, the same work is repeated a predetermined number of times.

【0029】水Wを供給するタイミングは、本実施の形
態のように供給された水Wの量と同量の透過液R2が排
出された時点に限られるものではなく、脱塩が限界とな
った時点とすることもでき、これによれば透過液Rの量
を最小限とすることができる。だだし、この方法は、膜
に対する負担が大きくなることに注意を要する。
The timing of supplying the water W is not limited to the time when the same amount of the permeated liquid R2 as the amount of the supplied water W is discharged as in the present embodiment, and desalination becomes the limit. Alternatively, the amount of the permeated liquid R can be minimized. However, it should be noted that this method puts a heavy burden on the membrane.

【0030】[0030]

【実施例】以下、本発明の実施例を説明する。4号水ガ
ラス12kgを水84Lで希釈することにより水溶液と
し、この水溶液に75%硫酸1410gを加え、3分間
撹拌した後、一晩放置した(以下、この状態の溶液を原
液という。)。次に、原液90Lを、実施の形態で示し
た方法により濃縮して、35Lの濃縮液とし、さらにこ
の濃縮液を実施の形態で示した方法により脱塩して低ア
ルカリ水ガラス溶液を得た。膜分離装置の膜としては、
膜面積1.8m2のRO膜(日東電工(株)製、NTU
−7410)を使用した。ろ過圧力は0.18MPaと
し、循環流量は10L/minとした。また、ダイアフ
ィルトレーション処理は、供給する水の量を1回につき
5Lとし、5回繰り返した。
EXAMPLES Examples of the present invention will be described below. An aqueous solution was prepared by diluting 12 kg of No. 4 water glass with 84 L of water, 1410 g of 75% sulfuric acid was added to this aqueous solution, stirred for 3 minutes, and then left overnight (hereinafter, the solution in this state is referred to as a stock solution). Next, 90 L of the stock solution was concentrated by the method described in the embodiment to obtain a 35 L concentrated solution, and this concentrated solution was desalted by the method described in the embodiment to obtain a low alkaline water glass solution. . As the membrane of the membrane separator,
RO membrane having a membrane area of 1.8 m 2 (manufactured by Nitto Denko Corporation, NTU
-7410) was used. The filtration pressure was 0.18 MPa, and the circulation flow rate was 10 L / min. The diafiltration treatment was repeated 5 times with the amount of water supplied being 5 L each.

【0031】低アルカリ水ガラス溶液の成分を、原液及
び透過液の成分とともに表1に示した。
The components of the low alkaline water glass solution are shown in Table 1 together with the components of the stock solution and the permeate.

【0032】[0032]

【表1】 [Table 1]

【0033】表1より、モル比7.4の低アルカリ水ガ
ラス溶液が生成されていることがわかる。
From Table 1, it can be seen that a low-alkali water glass solution having a molar ratio of 7.4 was produced.

【0034】[0034]

【発明の効果】以上のとおり、本発明によれば、装置自
体及びランニングのコストを低く、しかも確実にアルカ
リ分の少ない低アルカリ水ガラス溶液を得ることができ
る。
As described above, according to the present invention, it is possible to obtain a low-alkali water glass solution which is low in the cost of the apparatus itself and running and can reliably contain a small amount of alkali.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施の形態の濃縮処理工程のフロー図であ
る。
FIG. 1 is a flow chart of a concentration treatment process of the present embodiment.

【図2】脱塩処理工程のフロー図である。FIG. 2 is a flow chart of a desalination process step.

【符号の説明】[Explanation of symbols]

1…酸添加槽、3…処理槽、4…膜分離装置、6…透過
液槽、G…造粒済原液、N1,N2…濃縮液、R1,R
2…透過液。
1 ... Acid addition tank, 3 ... Treatment tank, 4 ... Membrane separation device, 6 ... Permeate tank, G ... Granulated stock solution, N1, N2 ... Concentrated solution, R1, R
2 ... Permeate.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2D040 AB01 CA02 CB03 CC05 4G073 BA04 BA63 CB06 CB09 FA12 FB19 FD05 FE03 FE20 UA10 UB46 4H026 CA03 CC04 CC06    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2D040 AB01 CA02 CB03 CC05                 4G073 BA04 BA63 CB06 CB09 FA12                       FB19 FD05 FE03 FE20 UA10                       UB46                 4H026 CA03 CC04 CC06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水で希釈した水ガラスに酸を加え、流動性
を保った中性又はアルカリ性の状態でシリカ粒子の造粒
を行い、 その後、膜分離により前記水ガラスのシリカ濃度を高め
るとともに、溶液中のアルカリイオンを除去することを
特徴とする低アルカリ水ガラス溶液の製造方法。
1. An acid is added to water glass diluted with water to granulate silica particles in a neutral or alkaline state in which fluidity is maintained, and thereafter, the silica concentration of the water glass is increased by membrane separation. A method for producing a low-alkali water glass solution, which comprises removing alkali ions in the solution.
【請求項2】水で希釈した水ガラスに酸を加え、流動性
を保った中性又はアルカリ性の状態でシリカ粒子の造粒
を行い、 その後、膜分離により前記水ガラスのシリカ濃度を高め
るとともに、溶液中のアルカリイオンを除去して濃縮液
を得、 この濃縮液に水を添加してダイアフィルトレーション処
理することにより前記酸イオン濃度の低下を図ることを
特徴とする低アルカリ水ガラス溶液の製造方法。
2. An acid is added to water glass diluted with water to granulate silica particles in a neutral or alkaline state where fluidity is maintained, and thereafter, the silica concentration of the water glass is increased by membrane separation. A low-alkali water glass solution characterized by reducing the acid ion concentration by removing alkali ions in the solution to obtain a concentrated solution, and adding water to the concentrated solution to carry out a diafiltration treatment. Manufacturing method.
【請求項3】請求項1又は請求項2記載の低アルカリ水
ガラス溶液を主材とした地盤改良用の注入材であること
を特徴とする地盤改良用注入材。
3. A ground improvement injection material comprising the low alkali water glass solution according to claim 1 or 2 as a main material for ground improvement.
JP2002109586A 2002-04-11 2002-04-11 Method for producing low alkaline water glass solution Expired - Lifetime JP4124611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109586A JP4124611B2 (en) 2002-04-11 2002-04-11 Method for producing low alkaline water glass solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109586A JP4124611B2 (en) 2002-04-11 2002-04-11 Method for producing low alkaline water glass solution

Publications (3)

Publication Number Publication Date
JP2003301175A true JP2003301175A (en) 2003-10-21
JP2003301175A5 JP2003301175A5 (en) 2005-07-28
JP4124611B2 JP4124611B2 (en) 2008-07-23

Family

ID=29393011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109586A Expired - Lifetime JP4124611B2 (en) 2002-04-11 2002-04-11 Method for producing low alkaline water glass solution

Country Status (1)

Country Link
JP (1) JP4124611B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346306A (en) * 2003-04-28 2004-12-09 Raito Kogyo Co Ltd Method for producing foundation-improving injection material
JP2006082990A (en) * 2004-09-14 2006-03-30 Raito Kogyo Co Ltd Method for producing low-alkali water glass, and method for producing ground-improving grout

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346306A (en) * 2003-04-28 2004-12-09 Raito Kogyo Co Ltd Method for producing foundation-improving injection material
JP2006082990A (en) * 2004-09-14 2006-03-30 Raito Kogyo Co Ltd Method for producing low-alkali water glass, and method for producing ground-improving grout

Also Published As

Publication number Publication date
JP4124611B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
CN1241675C (en) Process and apparatus for blending product liquid from different tfc membranes
US6187201B1 (en) System for producing ultra-pure water
Kryvoruchko et al. Purification of water containing heavy metals by chelating-enhanced ultrafiltration
CN107082522A (en) A kind of handling process and processing unit of phosphoric acid iron waste water
JP2010503762A5 (en)
WO2015037557A1 (en) Apparatus and method for treating organic-containing wastewater
US20140263056A1 (en) Process for water treatment prior to reverse osmosis
JP2000281638A (en) Separation of urea
JP2733573B2 (en) Ultrapure water production method and apparatus
JP3788145B2 (en) Water treatment method and water treatment apparatus
JPS59112890A (en) Desalination by reverse osmosis membrane device
JP2003301175A (en) Process for producing low-alkali water glass, and graut for ground conditioning
JPS6359389A (en) Treatment of dyeing waste water
US20040256322A1 (en) Method for preventing scaling of membranes in a one-step membrane process
US20160221846A1 (en) Process for water treatment prior to reverse osmosis
JPS59156402A (en) Concentration of organic substance by reverse osmosis membrane
JP2004323326A (en) Method of preparing low alkali water glass solution and material for civil engineering
JPH1199389A (en) Treatment of water containing organic component and manganese
US20050035060A1 (en) Process for purifying glyphosate solutions by nanofiltration
JP3525699B2 (en) Water treatment method containing organic components and manganese
JP7168324B2 (en) Silica-containing water treatment apparatus and treatment method
JP2003334566A (en) Method and device for treating drain containing fluorine
CN111051253A (en) Apparatus and method for treating silica-containing water
JP2002001069A (en) Method for producing pure water
JP4162197B2 (en) Method for producing dealkalized water glass solution and method for producing injection material for ground improvement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4124611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

EXPY Cancellation because of completion of term