JPS6359389A - Treatment of dyeing waste water - Google Patents

Treatment of dyeing waste water

Info

Publication number
JPS6359389A
JPS6359389A JP20455986A JP20455986A JPS6359389A JP S6359389 A JPS6359389 A JP S6359389A JP 20455986 A JP20455986 A JP 20455986A JP 20455986 A JP20455986 A JP 20455986A JP S6359389 A JPS6359389 A JP S6359389A
Authority
JP
Japan
Prior art keywords
wastewater
waste water
reverse osmosis
ultrafiltration
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20455986A
Other languages
Japanese (ja)
Inventor
Hitoshi Kobayashi
仁司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20455986A priority Critical patent/JPS6359389A/en
Publication of JPS6359389A publication Critical patent/JPS6359389A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the excessive load of a reverse osmosis membrane, by flocculating a suspended substance consisting of multifarous chemical component in dyeing waste water beforehand to grow the suspended substance and subjecting the dyeing waste water to ultrafiltration. CONSTITUTION:Waste water 10 to be treated is transmitted through a filter and the transmitted treated waste water 11 is sent to the flocculant reaction tank 31 of a flocculation apparatus 30 to be stored therein. Then, an inorg. flocculant 33 such as ferric chloride or aluminum sulfate is added to the waste water 11 to form flocculated particles. Subsequently, a base 37 is added to waste water from a base tank 36 to perform neutralization treatment. The treated water is sent into an ultrafiltration tank 50 to be stored therein and sent to an ultrafiltration apparatus 60 under pressure to separate and remove fine particles. By this method, treatment capacity is enhanced and the mass treatment of the dyeing waste water becomes possible.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は染色排水の処理方法に関し、特には凝集と濾
過とを併用する染色排水の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for treating dyeing wastewater, and particularly to a method for treating dyeing wastewater that uses both coagulation and filtration.

(従来の技術) 例えば繊維関係の染色工程においては各種の染料が大量
に使用されその排水の処理のために多くの費用と設備が
必要とされている。
(Prior Art) For example, in textile dyeing processes, large quantities of various dyes are used, and large amounts of expense and equipment are required to treat the wastewater.

この種の染色排水は、一般の生活排水と異なって多種か
つ大量の化学成分を含むために処理が複雑である一方に
おいて、公害等の関連で厳格な基準の下での処理がなさ
れなければならない。
Unlike general domestic wastewater, this type of dyeing wastewater is complicated to treat because it contains a wide variety of chemical components in large quantities, but it must also be treated under strict standards in order to prevent pollution. .

そこで開発された方法として、本出願人による特開昭8
1−1208811に開示されている染色排水の処理方
法がある。ち該方法は、被処理排水を酸と塩基によって
所定のPHe度に中和せしめた後、これを限外濾過膜を
設置した限外症過装置に圧送して第一次処理水を得、次
いで前記第一次処理水を逆浸透膜を設置した逆浸透装置
に該第一次処理水の浸透圧以上の圧力で圧送し、第二次
処理水(排水)を分離することを特徴としたものであっ
た。
As a method developed therein, Japanese Patent Application Laid-Open No.
There is a method for treating dyeing wastewater disclosed in Japanese Patent No. 1-1208811. In this method, the wastewater to be treated is neutralized to a predetermined PHe level with an acid and a base, and then the wastewater is pumped to an ultrafiltration device equipped with an ultrafiltration membrane to obtain primary treated water. Next, the primary treated water is pumped to a reverse osmosis device equipped with a reverse osmosis membrane at a pressure higher than the osmotic pressure of the primary treated water, and the secondary treated water (wastewater) is separated. It was something.

これは1粒径の比較的大きい粒子の分離に適する限外濾
過装置1粒径の小さな粒子の分離に適する逆浸透装置を
直列に配列し、併用することで分離処理能力をあげ排水
基準を十分に満たそうとするものである。
This system consists of an ultrafiltration device suitable for separating relatively large particles of one particle size and a reverse osmosis device suitable for separating small particles of one particle size, arranged in series, and used in combination to increase separation processing capacity and meet wastewater standards. The aim is to satisfy the following.

(従来技術の問題点) 上述した従来の染色排水の処理では、限外濾過膜は事前
に比較的大きな粒子を被処理排水より分離するために設
けられており、該染色排水の主要な処理は逆浸透膜に頼
っている。このため、染色排水の種類によって特に含有
する懸濁物質等が微細な場合、透過孔の比較的大きい限
外症過膜はその濾過効果をあげず、逆浸透膜に過度な処
理負荷がかかっていた。したがって逆浸透膜の透過量が
減少し、当該染色排水処理装置全体の処理能力が低下し
、また当然、逆浸透膜のメンテナンスはこれにより、必
要以上に大変なものとなっているのである。
(Problems with the prior art) In the conventional dyeing wastewater treatment described above, an ultrafiltration membrane is provided in advance to separate relatively large particles from the wastewater to be treated, and the main treatment of the dyeing wastewater is It relies on reverse osmosis membranes. For this reason, depending on the type of dyeing wastewater, especially when the suspended solids contained therein are fine, the ultrafiltration membrane with relatively large permeation pores will not have a good filtration effect, and the reverse osmosis membrane will be subject to an excessive processing load. Ta. Therefore, the amount of permeation through the reverse osmosis membrane is reduced, and the treatment capacity of the dyeing wastewater treatment apparatus as a whole is reduced, and of course, maintenance of the reverse osmosis membrane is made more difficult than necessary.

この発【JIは、このような状況に鑑みて提案されたも
のであり、主として染色排水における多種かつ大量の化
学成分等よりなる懸濁物質を事前に凝集して粒径を大き
くすることにより、透過速度の大きい限外濾過膜にて主
要処理を行ない、逆浸透膜の過度な負担をなくして、該
懸濁物質の確実で迅速な分離と当該装置のメンテナンス
を大幅°に軽減する排水処理方法を提供しようとするも
のである。
This development [JI] was proposed in view of this situation, and is mainly made by coagulating suspended solids consisting of various and large amounts of chemical components in dyeing wastewater in advance to increase the particle size. A wastewater treatment method that performs the main treatment using an ultrafiltration membrane with a high permeation rate, eliminates excessive burden on the reverse osmosis membrane, ensures reliable and quick separation of suspended solids, and significantly reduces maintenance of the equipment. This is what we are trying to provide.

(発明の手段) この発明の染色排水の処理方法は、凝集剤と塩基とが与
えられる凝集装置により、被処理排水に含有している化
学成分等による懸濁物質の微粒子を粒状化または固形状
物に凝集しかつ該被処理排水を所定のPH6度に中和せ
しめ凝集済中和排水を得、前記凝集済中和排水を限外濾
過膜を設置した限外症過装置に圧送して第一次処理水を
得1次いで前記第一次処理水を逆浸透膜を設置した逆浸
透装置に該第一次処理水の浸透圧以上の圧力で圧送し第
二次処理水を分離することを特徴とする。
(Means of the Invention) The method for treating dyeing wastewater of the present invention uses a flocculating device to which a flocculant and a base are applied to granulate or solidify fine particles of suspended matter due to chemical components, etc. contained in the wastewater to be treated. The wastewater to be treated is coagulated into substances and neutralized to a predetermined pH of 6 degrees to obtain coagulated neutralized wastewater, and the coagulated neutralized wastewater is pressure-fed to an ultrafiltration device equipped with an ultrafiltration membrane. First, the primary treated water is pumped to a reverse osmosis device equipped with a reverse osmosis membrane at a pressure higher than the osmotic pressure of the primary treated water to separate the secondary treated water. Features.

(作用) 被処理排水は、まず凝集装置へ送り込まれる。(effect) The wastewater to be treated is first sent to a coagulation device.

前記凝集袋ごでは、凝集剤の投与により懸濁物質を構成
する微粒子は凝集されより大きな粒径を有する粒子ある
いは固形状物となる。また被処理排水は、この段階で塩
基により所定の排水基準を満たすPH濃度に中和される
In the aggregation bag, fine particles constituting the suspended matter are agglomerated by administration of a coagulant, and become particles or solid substances having a larger particle size. Further, the wastewater to be treated is neutralized with a base at this stage to a pH concentration that satisfies predetermined wastewater standards.

こうして得られた凝集済中和排水は限外濾過膜を設置し
た限外症過装置に圧送され、凝集された粒子は限外濾過
膜により分離され、系外へ排出される。
The flocculated neutralized wastewater thus obtained is pumped to an ultrafiltration device equipped with an ultrafiltration membrane, and the flocculated particles are separated by the ultrafiltration membrane and discharged to the outside of the system.

一方、前記限外濾過膜を透過した未反応の微細な粒子を
含む第一次排水は、逆浸透膜を設置した逆浸透装置に該
第一次処理水の浸透圧以上の圧力で圧送され、当該逆浸
透膜によって微細な粒子が分離される。ここで、分離さ
れた微細な粒子は原水タンクに戻され非処理排水と混合
される。
On the other hand, the primary wastewater containing unreacted fine particles that has passed through the ultrafiltration membrane is pumped to a reverse osmosis device equipped with a reverse osmosis membrane at a pressure higher than the osmotic pressure of the primary treated water, Fine particles are separated by the reverse osmosis membrane. Here, the separated fine particles are returned to the raw water tank and mixed with untreated wastewater.

被処理排水に含まれていたほとんどの微粒子は凝集によ
り前記限外症過装置にてほとんど分離処理される。逆浸
透装置に供給される前記第一次処理水に含まれるのは非
常に微細な未反応の粒子である。そして、前記逆浸透膜
を透過した第二次処理水はト分に排水基準を満たすもの
であるので外部へ直接排出することができる。
Most of the fine particles contained in the wastewater to be treated are separated and treated by the above-mentioned ultrafiltration device due to coagulation. The primary treated water supplied to the reverse osmosis device contains very fine unreacted particles. The secondary treated water that has passed through the reverse osmosis membrane satisfies wastewater standards to a large extent and can be directly discharged to the outside.

(実施例) 以下添付の図面とともに実施例に従って説明すると、第
1図はこの発明方法の一例を示す処理設備の全体流れ図
である。
(Embodiment) The following embodiment will be described with reference to the accompanying drawings. FIG. 1 is an overall flowchart of a processing facility showing an example of the method of the present invention.

この装置は被処理排水10を凝集装置30の無機凝集剤
33により凝集済中和排水12とし、限外濾過膜216
0により第一次処理水14を得、ついで逆浸透膜218
0により第二次処理水16を最終的に得るものである。
This device converts wastewater 10 to be treated into coagulated neutralized wastewater 12 using an inorganic flocculant 33 of a coagulation device 30,
0 to obtain primary treated water 14, then reverse osmosis membrane 218
0, the secondary treated water 16 is finally obtained.

なお、被処理排水10の性状により、凝集済中和排木1
2を高分子凝集剤と90へ送り高分子凝集剤93の凝集
効果を利用して処理する場合もある。
In addition, depending on the properties of the wastewater 10 to be treated, the coagulated neutralized waste wood 1
In some cases, the polymer flocculant 2 is sent to the polymer flocculant 90 and treated using the flocculating effect of the polymer flocculant 93.

第1図の流れに沿ってこの発明の処理方法の説明をする
と、符号10は処理されるべき排水の原液を表わし、2
0はその原水タンクである。ここではブロア等によって
適宜曝気処理がなされる。
The treatment method of the present invention will be explained according to the flow shown in FIG.
0 is the raw water tank. Here, aeration treatment is performed as appropriate using a blower or the like.

被処理排水10はポンプ22によってフィルター装21
25に送り込まれる。当該フィルター装と25では事前
処理として被処理排水10が含有する比較的大きな粒子
を該排水10より分離し外部へ廃棄する。符号27はそ
の廃棄物人である。
The wastewater 10 to be treated is passed through a filter device 21 by a pump 22.
Sent to 25th. The filter device 25 separates relatively large particles contained in the waste water 10 to be treated from the waste water 10 as a preliminary treatment and disposes of the particles to the outside. Reference numeral 27 is the waste person.

前記フィルター装置25を透過した透過処理排水11は
凝集装2t30の凝集剤反応槽31へ送り込まれ貯水さ
れる。
The permeation treated wastewater 11 that has passed through the filter device 25 is sent to the flocculant reaction tank 31 of the flocculation device 2t30 and stored therein.

この凝集剤反応槽31へは、酸槽32に用意された酸性
の無a!2集剤33がポンプ34により送り込まれる。
The flocculant reaction tank 31 is supplied with an acidic aliquot prepared in an acid tank 32. A second concentration agent 33 is fed by a pump 34.

無機凝集剤による凝集作用は、微粒子の有する表面電荷
を凝集剤の有する反対の電荷によって中和し、該微粒子
の結合を促してより大きな粒径を有する粒子に凝集する
ことによるものである。この凝集作用により、前記透過
処理排水11が含有している微粒子(イオン)のうち塩
基のものは、前記無機凝集剤33により凝集されより大
きい粒径を有する粒子(イオン)となる。
The aggregation effect of the inorganic flocculant is due to the fact that the surface charge of the fine particles is neutralized by the opposite charge of the flocculant, promoting the bonding of the fine particles and aggregating them into particles having a larger particle size. Due to this aggregation effect, basic particles among the fine particles (ions) contained in the permeation treatment wastewater 11 are agglomerated by the inorganic flocculant 33 and become particles (ions) having a larger particle size.

この無a凝集剤33には、例えば塩化第二鉄、硫酸アル
ミニウム、硫酸第二鉄、アルミ酸ナトリウム、ポリ塩化
鉄等の使用が考えられる。
As the non-alpha flocculant 33, for example, ferric chloride, aluminum sulfate, ferric sulfate, sodium aluminate, polyferric chloride, etc. can be used.

また、塩基槽36に用意された中和剤である塩基37は
、PHコントローラ38により制御されるポンプ39に
より適宜、前記凝集剤反応槽31へ送り込まれる。これ
により、前記透過処理排水11は中和され、所定の排水
基準(PH6,8〜8)に合致するように中和される。
Further, the base 37, which is a neutralizing agent prepared in the base tank 36, is appropriately sent to the flocculant reaction tank 31 by a pump 39 controlled by a PH controller 38. As a result, the permeation treatment wastewater 11 is neutralized so as to meet a predetermined wastewater standard (PH6, 8 to 8).

この塩基37には苛性ソーダ等の使用が考えられる。As the base 37, caustic soda or the like may be used.

なお、無am集剤33の透過処理排水11に対しての混
合量はZoo〜50pp謹、11X基37の透過処理排
水11に対しての混合量は500〜250PP霞が適当
である。
In addition, the mixing amount of the non-am collecting agent 33 with respect to the permeation treatment wastewater 11 is appropriately from Zoo to 50 pp, and the mixing amount of the 11X group 37 with respect to the permeation treatment wastewater 11 is appropriately from 500 to 250 PP haze.

また、!/、該凝集剤反応槽31は、フィルター40に
より仕切られており、前記の粒子または固形状物のうち
特に大きなものは凝結中和排水12より分離され適宜外
部へ廃棄される。。
Also,! The flocculant reaction tank 31 is partitioned by a filter 40, and particularly large particles or solids are separated from the coagulated and neutralized wastewater 12 and disposed of appropriately to the outside. .

符号41は酸槽32の攪拌機、符号42は塩基槽36の
攪拌機、符号43は凝集剤反応槽31の攪拌機である。
Reference numeral 41 is a stirrer for the acid tank 32, reference numeral 42 is an agitator for the base tank 36, and reference numeral 43 is an agitator for the flocculant reaction tank 31.

所定のPH濃度に中和された凝結中和排水12は、次い
で限外濾過タンク50(または51)に送り込まれ貯水
される。限外濾過タンクが2基(複数)設けられている
のは、連続運転中に各タンクの濃縮物の廃棄または清掃
等を滞りなく行うため、およびタンクの許容能力を高め
保全効果を向上させるためにである。符号47は切替弁
である。
The condensed and neutralized wastewater 12 that has been neutralized to a predetermined pH concentration is then sent to the ultrafiltration tank 50 (or 51) and stored therein. The reason why two (multiple) ultrafiltration tanks are provided is to ensure that the concentrate in each tank can be disposed of or cleaned without any delay during continuous operation, and to increase the tank's tolerable capacity and improve the maintenance effect. It is. Reference numeral 47 is a switching valve.

限外濾過装置60は、限外濾過膜が内装された筒状本体
(いわゆるモジュール)から構成されている。限外症過
膜はポリエーテルサルフォン等からなる非常に均一な平
均孔径なもった膜状の濾材で、これに排水を圧送して通
過させることによって微細な粒子を分離除去することが
できる。
The ultrafiltration device 60 is composed of a cylindrical body (so-called module) in which an ultrafiltration membrane is housed. The ultrafiltration membrane is a membrane-like filter material made of polyether sulfone or the like with a very uniform average pore size, and by forcing wastewater to pass through it, fine particles can be separated and removed.

現在市販されている限外濾過膜では分子形状によっても
異なるが概ね基準分画分子量10,000以上の分子ま
たはコロイド粒子を含んだ溶液の分離除去が可ス駈であ
るとされる。したがって、被処理排水lOに含まれてい
た微粒子は、凝集剤反応槽31にて凝集されより大きな
粒子となり、当該限外濾過装こ60にて分離される。
Currently commercially available ultrafiltration membranes are said to be able to separate and remove solutions containing molecules or colloid particles with a standard molecular weight cutoff of 10,000 or more, although this varies depending on the molecular shape. Therefore, the fine particles contained in the wastewater 1O to be treated are flocculated into larger particles in the flocculant reaction tank 31, and separated in the ultrafiltration device 60.

なお、この限外濾過装置60に関しては、目通膜が水流
方向に筒状に保持されるいわゆる管型モジュールを用い
ることが望ましい、けだし、この管型モジュールを用い
るときには、第一に被処理液の流れが膜に対して平行と
なるから汚れの付着が少なく、第二に汚れが付着した際
にも例えばスポンジポール等による膜面の擦洗が容易に
できるからである。
Regarding this ultrafiltration device 60, it is preferable to use a so-called tubular module in which the membrane is held in a cylindrical shape in the direction of water flow. Since the flow is parallel to the membrane, less dirt adheres to the membrane, and secondly, even when dirt adheres, the membrane surface can be easily scrubbed with a sponge pole or the like.

また、符号13は該限外濾過装置60によって分離除去
された濃縮排水の流れで、これは再び限外目通タンク5
0(51)に循環送入される。符号符号52.53は切
替弁を示し、54.55は限外濾過装置の圧送ポンプで
実施例での圧力は約10kg/crn’である。
Further, reference numeral 13 indicates a flow of concentrated wastewater separated and removed by the ultrafiltration device 60, which is returned to the ultrafiltration tank 5.
0 (51). Reference numerals 52 and 53 indicate switching valves, and 54 and 55 indicate pressure pumps of the ultrafiltration device, and the pressure in the embodiment is about 10 kg/crn'.

上の限外−過装置60によって得られた第一次処理水1
4は次いで−H逆浸透タンク70(または71)に貯木
される。逆浸透タンクが2基設けられる理由は上で述べ
た限外濾過タンクの場合と全く同じで、処理イ七車上の
要請からである。符号67は切替弁である。
Primary treated water 1 obtained by the ultrafiltration device 60 above
4 is then stored in the -H reverse osmosis tank 70 (or 71). The reason why two reverse osmosis tanks are provided is exactly the same as in the case of the ultrafiltration tank described above, and is due to the requirements for processing speed. Reference numeral 67 is a switching valve.

逆浸透タンク70内の第一次処理水14は、逆浸透膜が
設置された逆浸透膜2180内へ該第−次処理化の浸透
圧以上の圧力で圧送される。逆浸透膜2180には、こ
こではスパイラル状の逆浸透膜が内装された管状体(モ
ジュール)からなるものを使用する。スパイラル状の膜
体は膜面積が大きいので透過水量の小さい逆浸透装置し
ては好適なものである。
The primary treated water 14 in the reverse osmosis tank 70 is pumped into a reverse osmosis membrane 2180 in which a reverse osmosis membrane is installed at a pressure higher than the osmotic pressure of the primary treatment. As the reverse osmosis membrane 2180, a tubular body (module) in which a spiral reverse osmosis membrane is installed is used here. Since the spiral membrane has a large membrane area, it is suitable for a reverse osmosis device with a small amount of permeated water.

逆浸透法は、既によく知られているように、酢酸セルロ
ーズ等の特殊な半透膜を使用して、溶液側に浸透圧以上
の圧力を加えると水分だけが該半透膜を通過して反対側
の淡水側に移動するという逆浸透現象を利用したもので
ある。この逆浸透法によれば前記の限外波過法では分離
することができないオングストローム単位の低分子の分
離が可能となる。
As is already well known, the reverse osmosis method uses a special semipermeable membrane such as cellulose acetate, and when a pressure higher than osmotic pressure is applied to the solution side, only water passes through the semipermeable membrane. This utilizes the reverse osmosis phenomenon in which water moves to the opposite side of the freshwater side. According to this reverse osmosis method, it is possible to separate low molecules in angstrom units, which cannot be separated by the ultraviolet osmosis method described above.

また符号15は分離除去された第1次処理水の濃縮液の
流れを示すもので、これは再び逆浸透タンク70(71
)に循環送入される。符号72゜73は切替弁を表わし
、74.75は逆浸透装置の圧送ポンプで実施例での圧
力は浸透圧を考慮して約30kg/crr+’に7A整
されている。
Further, reference numeral 15 indicates the flow of the concentrated liquid of the primary treated water that has been separated and removed, and this is again transferred to the reverse osmosis tank 70 (71
). Reference numerals 72 and 73 represent switching valves, and 74 and 75 are pressure pumps of the reverse osmosis device, and the pressure in the embodiment is adjusted to 7A at about 30 kg/crr+' in consideration of osmotic pressure.

なお、必要に応じ逆浸透タンク70(71)に送入され
た第一次処理排水と前記濃縮液は、図中符号17で示さ
れるフィードバック経路にしたがい原木タンク20へ循
環送入される。このフィードバックにより、逆浸透タン
ク70(71)に貯木されている一部の排水は再度当該
装置の主°要部分を循環し所定の処理をされ、当該装置
全体の処理効果を増幅することができる。符号76.7
7はその送ポンプであり、符号78.79は逆止め弁で
ある。
Note that the primary treated wastewater and the concentrated liquid sent to the reverse osmosis tank 70 (71) as needed are circulated and sent to the raw wood tank 20 according to a feedback path indicated by reference numeral 17 in the figure. Through this feedback, some of the wastewater stored in the reverse osmosis tank 70 (71) is circulated through the main parts of the device again and subjected to the prescribed treatment, thereby amplifying the treatment effect of the entire device. . Code 76.7
7 is its feeding pump, and numerals 78 and 79 are check valves.

上のように処理された第二次処理水16は−Hタンク等
に送り込まれ、最終のチェックを受けた後、放流または
循環使用される。
The secondary treated water 16 treated as above is sent to a -H tank or the like, and after undergoing a final check, is discharged or used for circulation.

この装置では上述の処理経路にしたがい被処理排水から
懸濁物質を分離していくのであるが、該懸濁物質の種類
、性状によっては、無機凝集剤ではあまり凝集効果があ
がらない場合がある。この際には上記の凝集装2230
の処理の後に、高分子凝集剤による高分子凝集剤M90
の処理を併用して行なう、高分子凝集剤による凝集作用
は、微粒子間に架橋してより大きな粒径を有する粒子に
凝集することによるものである。
This device separates suspended solids from the wastewater to be treated according to the treatment route described above, but depending on the type and properties of the suspended solids, inorganic flocculants may not have much of a flocculating effect. In this case, the above-mentioned agglomeration device 2230
After the treatment of polymer flocculant M90 with polymer flocculant
The flocculating effect of the polymer flocculant, which is carried out in conjunction with the above treatment, is due to crosslinking between fine particles and flocculation into particles having a larger particle size.

限外症過タンク50(または51)に送り込まれ貯水さ
れている凝結中和排水12は、送ポンプ56.57によ
り高分子凝集剤反応槽91へ送り込まれる。符号58.
59はその逆止め弁である。
The coagulated neutralized wastewater 12 that has been sent to and stored in the ultraviolet filtration tank 50 (or 51) is sent to the polymer flocculant reaction tank 91 by the feed pumps 56 and 57. Code 58.
59 is its check valve.

なお、凝結中和排水12はその性状により、限外症過タ
ンク50(または51)よりその大部分を高分子凝集剤
反応槽91へ送り込み高分子凝集剤の処理を行なう場合
もある。しかし、ち該装置の連続運転において、一部の
凝結中和排水12を高分子凝集剤反応槽91へ送り処理
を行なうことで、当該装置は効果的、経済的に排水基準
を満たす排水処理を行なうことが可能となる。
Depending on its properties, most of the coagulation-neutralized wastewater 12 may be sent from the ultrafiltration tank 50 (or 51) to the polymer flocculant reaction tank 91 to be treated with a polymer flocculant. However, during continuous operation of the device, by sending a portion of the coagulated neutralized wastewater 12 to the polymer flocculant reaction tank 91 for treatment, the device can effectively and economically process wastewater that satisfies the wastewater standards. It becomes possible to do so.

この高分子凝集剤反応槽91へは、高分子凝集剤槽92
に用、こされた高分子凝集剤93がポンプ94により送
り込まれる。これにより、前記凝結中和排水12が含有
している無機凝集剤反応槽で反応しなかった微粒子は、
ここで架橋され凝集する。
A polymer flocculant tank 92 is connected to this polymer flocculant reaction tank 91.
The strained polymer flocculant 93 is sent by a pump 94. As a result, the fine particles that did not react in the inorganic flocculant reaction tank contained in the coagulation neutralized wastewater 12 are
Here, they are crosslinked and aggregated.

使用する高分子凝集剤には公知のアニオン、ノニオン、
カチオン等がある。
The polymer flocculants used include known anions, nonions,
There are cations, etc.

高分子凝集剤93の凝結中和排水12に対する混合量は
lOO〜20pp■が適当である。
The appropriate amount of the polymer flocculant 93 to be mixed with the coagulated neutralized wastewater 12 is 100 to 20 pp.

また、塩基槽95に用意された中和剤である塩基96は
、ポンプ97により適宜、前記凝集剤反応槽91へ送り
込まれる。
Further, a base 96 which is a neutralizing agent prepared in a base tank 95 is sent to the flocculant reaction tank 91 by a pump 97 as appropriate.

なお、符号101は高分子凝集剤槽92の攪拌機、符号
102は塩基槽95の攪拌機、符号103は高分子凝集
剤反応槽91の攪拌機である。
Note that 101 is a stirrer for the polymer flocculant tank 92, 102 is a stirrer for the base tank 95, and 103 is a stirrer for the polymer flocculant reaction tank 91.

ここで得られた凝結処理排水18は切替弁105を介し
て濾過圧搾器110へ送り込まれる。前記濾過圧搾器1
10では、凝集された固形分を圧搾し、そのケークを外
部へ廃棄する。符号111はその廃棄切入である。また
、前記濾過圧搾器110の透過排水は前記フィードバッ
ク経路17により原水タンク20へ再度循環送入され、
以降の処理を受ける。このフィードバックの目的は、上
で述べた逆浸透タンク70(71)でのフィードバック
と同じで当該装置全体の処理効果を増幅するためである
The coagulated wastewater 18 obtained here is sent to the filter press 110 via the switching valve 105. The filtration press 1
At 10, the agglomerated solids are squeezed and the cake is disposed of outside. Reference numeral 111 is its discard incision. In addition, the permeated waste water from the filtration press 110 is circulated again to the raw water tank 20 via the feedback path 17,
undergo subsequent processing. The purpose of this feedback is the same as the feedback in the reverse osmosis tank 70 (71) described above, and is to amplify the processing effect of the entire device.

次に、上の実施例における各段階における処理水の分析
諸データと、従来の処理方法による各段階における処理
水の分析諸データとを比較してあげておく。
Next, the analysis data of the treated water at each stage in the above embodiment will be compared with the analysis data of the treated water at each stage according to the conventional treatment method.

従来方法 原排水 第一次処理水 第二次処理水 BOD  1000   570     54COD
   850   200     18実施例による
方法 原排水 第一次処理水 第二次処理水 11100 1000    31      7.7
COD    850      52       
   6.5本生位はすべてppm・ 分析方法は、BODがJIS−に−0101,21、C
ODがJIS−に−0101,17にそれぞれよるもの
である。
Conventional method raw wastewater Primary treated water Secondary treated water BOD 1000 570 54 COD
850 200 18 Examples Raw wastewater Primary treated water Secondary treated water 11100 1000 31 7.7
COD 850 52
All 6.5 pores are ppm. The analysis method is BOD to JIS-0101,21, C
The OD is based on JIS-0101 and 17, respectively.

上の各処理段階での分析データは、凝集による事前処理
と限外目通および逆浸透の両処理を行なうこの発明の実
施例装置では、排水基準の全般に渡っての極めて高い処
理結果が得られ、従来最も困難であるとされた染色の排
水処理を極めて有効に行なうことができることを示して
いる。
The analytical data at each treatment stage above shows that the apparatus according to the embodiment of the present invention, which performs both pre-treatment by coagulation and treatment by ultra-permeation and reverse osmosis, achieves extremely high treatment results across all wastewater standards. This shows that wastewater treatment for dyeing, which has traditionally been considered the most difficult process, can be carried out extremely effectively.

(効果) 以上図示説明したように、この方法によれば、被処理排
水が含有している懸濁物質である微粒子は、凝集剤によ
り大きな粒子に凝集されるため。
(Effects) As illustrated and explained above, according to this method, the fine particles, which are suspended substances contained in the wastewater to be treated, are flocculated into large particles by the flocculant.

透過孔が大きい限外濾過膜であっても、そのほとんどを
分離除去することができる。したがって逆浸透膜では、
特に微小な粒子のみを分離すればよく透過速度を小さく
することはない、つまり当該装置の透過速度(処理速度
)は主に透過孔が大きく透過速度の大きい限外濾過膜に
より決められるため、処理能率が向上し、非常に有利な
ものとなるのである。
Even if an ultrafiltration membrane has large permeation pores, most of it can be separated and removed. Therefore, in reverse osmosis membrane,
In particular, it is sufficient to separate only minute particles without reducing the permeation rate.In other words, the permeation rate (processing rate) of the device is mainly determined by the ultrafiltration membrane with large permeation pores and high permeation rate. This improves efficiency and is very advantageous.

したがって従来問題であった逆浸透膜での過度の処理負
荷は十分に抑えられるため、当該装置全体のメンテナン
スはこれまでよりも軽減され扱いやすくなる。また、分
析データからも明らかなとうり、処理能力も向上し、こ
の発明は大変意義のあるものとなる。
Therefore, the excessive processing load on the reverse osmosis membrane, which has been a problem in the past, can be sufficiently suppressed, making the overall maintenance of the device easier and easier to handle. Furthermore, as is clear from the analytical data, the processing capacity is also improved, making this invention very significant.

また最後に付は加えれば、この方法を貰現するに際して
実施例に述べたように、限外濾過装置を1!2′型のも
のとし逆浸透?t21をスパイラル型のものとするとき
には、被処理水と処理装置の大きな接触面積が確保され
、かつ汚れの付着等に関するメンテナンス上のメリット
があり、染色排水の大量処理にも適し実際的なものとす
ることができる。
Also, as a final note, when implementing this method, as described in the example, the ultrafiltration device should be of the 1!2' type and reverse osmosis? When T21 is of the spiral type, a large contact area between the water to be treated and the treatment equipment is ensured, and there are advantages in terms of maintenance in terms of dirt adhesion, etc., and it is suitable and practical for large-scale treatment of dyeing wastewater. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方法の一実施例を示す処理設備の全体
流れ図である。 10・・・被処理排水、12・・・凝結中和排水、14
・・・第一次処理水、16・・・第二次処理水、30・
・・凝集装置、33・・・無451凝集剤、60・・・
限外濾過装置、80・・・逆浸透5L21.90・・・
高分子凝集装置、93・・・高分子凝集剤、110・・
・濾過圧搾器。
FIG. 1 is an overall flowchart of a processing facility showing an embodiment of the method of this invention. 10...Wastewater to be treated, 12...Condensation neutralized wastewater, 14
...Primary treated water, 16...Secondly treated water, 30.
...Flocculating device, 33...No 451 Flocculant, 60...
Ultrafiltration device, 80... Reverse osmosis 5L 21.90...
Polymer flocculant, 93... Polymer flocculant, 110...
・Filtration press.

Claims (1)

【特許請求の範囲】 1、凝集剤と塩基とが与えられる凝集装置により、被処
理排水に含有している化学成分等による懸濁物質の微粒
子を粒状化または固形状物に凝集しかつ該被処理排水を
所定のPH濃度に中和せしめ凝集済中和排水を得、前記
凝集済中和排水を限外濾過膜を設置した限外濾過装置に
圧送して第一次処理水を得、次いで前記第一次処理水を
逆浸透膜を設置した逆浸透装置に該第一次処理水の浸透
圧以上の圧力で圧送し第二次処理水を分離することを特
徴とする染色排水の処理方法。 2、凝集装置において無機凝集剤を使用し、必要に応じ
て凝集済中和排水を高分子凝集剤を用いる凝集装置へ送
り高分子凝集剤により凝集した後、圧搾をしてケークと
排水とに分離する特許請求の範囲第1項記載の染色排水
の処理方法。 3、限外濾過装置が管型のものである特許請求の範囲第
1項記載の染色排水の処理方法。 4、逆浸透装置がスパイラル型のものである特許請求の
範囲第1項記載の染色排水の処理方法。
[Claims] 1. Fine particles of suspended matter due to chemical components, etc. contained in wastewater to be treated are granulated or agglomerated into a solid substance by a flocculating device provided with a flocculant and a base, and the The treated wastewater is neutralized to a predetermined pH concentration to obtain coagulated neutralized wastewater, the coagulated neutralized wastewater is pumped to an ultrafiltration device equipped with an ultrafiltration membrane to obtain primary treated water, and then A method for treating dyeing wastewater, comprising: pumping the primary treated water to a reverse osmosis device equipped with a reverse osmosis membrane at a pressure higher than the osmotic pressure of the primary treated water, and separating the secondary treated water. . 2. Use an inorganic flocculant in the flocculation device, and if necessary, send the flocculated neutralized wastewater to the flocculation device using a polymer flocculant, where it is flocculated by the polymer flocculant, and then compressed to form a cake and wastewater. A method for treating dyeing wastewater according to claim 1, which separates the dyeing wastewater. 3. The method for treating dyeing wastewater according to claim 1, wherein the ultrafiltration device is of a tube type. 4. The method for treating dyeing wastewater according to claim 1, wherein the reverse osmosis device is of a spiral type.
JP20455986A 1986-08-30 1986-08-30 Treatment of dyeing waste water Pending JPS6359389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20455986A JPS6359389A (en) 1986-08-30 1986-08-30 Treatment of dyeing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20455986A JPS6359389A (en) 1986-08-30 1986-08-30 Treatment of dyeing waste water

Publications (1)

Publication Number Publication Date
JPS6359389A true JPS6359389A (en) 1988-03-15

Family

ID=16492484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20455986A Pending JPS6359389A (en) 1986-08-30 1986-08-30 Treatment of dyeing waste water

Country Status (1)

Country Link
JP (1) JPS6359389A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000065511A (en) * 1999-04-06 2000-11-15 박창호 Disposal method dyeing wastewater
KR20010079319A (en) * 2001-07-06 2001-08-22 홍진의 Method of filtering wastewater from ammonium sulfate fertilizer procduction line using spiril wounded osmotic membrane
KR20010079251A (en) * 2001-06-27 2001-08-22 홍진의 Reuse process for hydroflouric acid waste water
KR20010079320A (en) * 2001-07-06 2001-08-22 홍진의 Method of converting municipal wastewater into industrial water
JP2002273424A (en) * 2001-03-21 2002-09-24 Toray Ind Inc Equipment and method for treating dye waste liquid
KR100479476B1 (en) * 2002-05-27 2005-03-31 미래환경기술(주) Apparatus for reusing waste water using drum filter and vortex filter
CN102548910A (en) * 2009-10-16 2012-07-04 株式会社御牧工程 Waste water cleaning system, washing device, and ink jet printer system
WO2012089102A1 (en) * 2010-12-30 2012-07-05 波鹰(厦门)科技有限公司 Recycling apparatus for waste water from printing and dyeing processes based on electrolysis in combination with membrane technology, and method therefor
CN102942267A (en) * 2012-11-21 2013-02-27 中国科学院生态环境研究中心 Method and device for advanced treatment of printing and dyeing wastewater
CN103570110A (en) * 2012-07-24 2014-02-12 上海纳米技术及应用国家工程研究中心有限公司 Efficient composite absorbing and flocculating agent used for printing and dyeing waste water treatment, preparation method thereof and applications thereof
CN105967440A (en) * 2016-06-01 2016-09-28 长兴新天龙印染有限公司 Printing and dyeing wastewater treatment process
CN107098497A (en) * 2017-04-28 2017-08-29 芜湖富春染织股份有限公司 The method of cheese dyeing coagulating waste water processing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000065511A (en) * 1999-04-06 2000-11-15 박창호 Disposal method dyeing wastewater
JP2002273424A (en) * 2001-03-21 2002-09-24 Toray Ind Inc Equipment and method for treating dye waste liquid
KR20010079251A (en) * 2001-06-27 2001-08-22 홍진의 Reuse process for hydroflouric acid waste water
KR20010079319A (en) * 2001-07-06 2001-08-22 홍진의 Method of filtering wastewater from ammonium sulfate fertilizer procduction line using spiril wounded osmotic membrane
KR20010079320A (en) * 2001-07-06 2001-08-22 홍진의 Method of converting municipal wastewater into industrial water
KR100479476B1 (en) * 2002-05-27 2005-03-31 미래환경기술(주) Apparatus for reusing waste water using drum filter and vortex filter
CN102548910A (en) * 2009-10-16 2012-07-04 株式会社御牧工程 Waste water cleaning system, washing device, and ink jet printer system
WO2012089102A1 (en) * 2010-12-30 2012-07-05 波鹰(厦门)科技有限公司 Recycling apparatus for waste water from printing and dyeing processes based on electrolysis in combination with membrane technology, and method therefor
CN103570110A (en) * 2012-07-24 2014-02-12 上海纳米技术及应用国家工程研究中心有限公司 Efficient composite absorbing and flocculating agent used for printing and dyeing waste water treatment, preparation method thereof and applications thereof
CN103570110B (en) * 2012-07-24 2015-02-18 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of efficient composite absorbing and flocculating agent used for printing and dyeing waste water treatment and applications thereof
CN102942267A (en) * 2012-11-21 2013-02-27 中国科学院生态环境研究中心 Method and device for advanced treatment of printing and dyeing wastewater
CN105967440A (en) * 2016-06-01 2016-09-28 长兴新天龙印染有限公司 Printing and dyeing wastewater treatment process
CN107098497A (en) * 2017-04-28 2017-08-29 芜湖富春染织股份有限公司 The method of cheese dyeing coagulating waste water processing

Similar Documents

Publication Publication Date Title
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
Kryvoruchko et al. Purification of water containing heavy metals by chelating-enhanced ultrafiltration
US20090039020A1 (en) Methods for reducing boron concentration in high salinity liquid
MX2008015301A (en) Method of improving performance of ultrafiltration or microfiltration membrane process in landfill leachate treatment.
CN106746115A (en) Desulfurization wastewater recycling processing method and processing system
WO2015037557A1 (en) Apparatus and method for treating organic-containing wastewater
JPS6359389A (en) Treatment of dyeing waste water
CN105461143A (en) Power plant desulfurization waste water membrane concentrating process and equipment
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
CN109248565B (en) Saline water recovery system based on bipolar membrane
CN105384279A (en) System and method for processing wastewater generated during regeneration of SCR denitration catalyst
Sharp et al. Effects of dynamic or secondary-layer coagulation on ultrafiltration
JPS59189987A (en) Circulative use of waste water used for grinding silicon wafer
JPS63100996A (en) Method for desalting brine
JPH1199389A (en) Treatment of water containing organic component and manganese
CN216337081U (en) Catalyst molecular sieve effluent disposal system
JP3622227B2 (en) Method for concentrating waste liquid containing photoresist
JPH09220564A (en) Removal of boron in reverse osmosis seawater desalting
JP2000263063A (en) Method and apparatus for treating fluorine-containing waste liquid
JPH10180008A (en) Membrane separation device
JPH11221579A (en) Treatment of fluorine-containing water
JPH0632834B2 (en) Organic wastewater treatment method
CN205635230U (en) Energy -efficient salt effluent disposal system that contains
JPH0647118B2 (en) Organic wastewater treatment method