JP2003300772A - METHOD FOR PRODUCING COMPOSITE REFRACTORY HAVING BN+TiC +TiB2 BOND, BN+TiB2 BOND AND BN+TiC BOND BY USING BORON CARBONITRIDE AND METAL TITANIUM AS RAW MATERIALS - Google Patents

METHOD FOR PRODUCING COMPOSITE REFRACTORY HAVING BN+TiC +TiB2 BOND, BN+TiB2 BOND AND BN+TiC BOND BY USING BORON CARBONITRIDE AND METAL TITANIUM AS RAW MATERIALS

Info

Publication number
JP2003300772A
JP2003300772A JP2002139261A JP2002139261A JP2003300772A JP 2003300772 A JP2003300772 A JP 2003300772A JP 2002139261 A JP2002139261 A JP 2002139261A JP 2002139261 A JP2002139261 A JP 2002139261A JP 2003300772 A JP2003300772 A JP 2003300772A
Authority
JP
Japan
Prior art keywords
tic
bond
tib
resistance
bcxn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002139261A
Other languages
Japanese (ja)
Inventor
Koji Saeki
剛二 佐伯
Akira Watanabe
明 渡邊
Yasuo Mizota
恭夫 溝田
Akifumi Miyanaga
晶史 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAYAMA CERAMICS GIJUTSU SHINK
Okayama Ceramics Research Foundation
Original Assignee
OKAYAMA CERAMICS GIJUTSU SHINK
Okayama Ceramics Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAYAMA CERAMICS GIJUTSU SHINK, Okayama Ceramics Research Foundation filed Critical OKAYAMA CERAMICS GIJUTSU SHINK
Priority to JP2002139261A priority Critical patent/JP2003300772A/en
Publication of JP2003300772A publication Critical patent/JP2003300772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve low resistance to oxidation of graphite, that is a serious weak point of the graphite, and to obtain a metal oxide-C-BN-TiC-TiB<SB>2</SB>-based, metal oxide-C-BN-TiB<SB>2</SB>-based, or metal oxide-C-BN-TiC-based composite refractory, having excellent oxidation resistance, excellent spalling resistance, high high-temperature strength, and high corrosion resistance. <P>SOLUTION: Various reactions as shown by following equations: aBCxN+bTi=cBN+dTiC+eTiB<SB>2</SB>+fN<SB>2</SB>...(1), 2BN+TiC=TiB<SB>2</SB>+C+N<SB>2</SB>...(2), and BCxN+xTi=BN+xTiC...(3) are allowed to occur in the matrix of each composite refractory by mixing a ZrO<SB>2</SB>-C-based, Al<SB>2</SB>O<SB>3</SB>-C-based, MgO-C-based or MgO-Al<SB>2</SB>O<SB>3</SB>-C- based raw material with a boron carbonitride, BCxN powder and a metal Ti powder, and reductively firing the resulting mixture at a high temperature under various conditions. Thereby, BN+TiC+TiB<SB>2</SB>bond, BN+TiB<SB>2</SB>bond, BN+TiC bond, and the like, are formed, and pores of the composite refractory are made fine. Accordingly, the composite refractory having oxidation resistance, spalling resistance, high high-temperature strength, and high corrosion resistance can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は連続鋳造用ノズルやスト
ッパーその他製鋼用取鍋容器の羽口れんが等に適した金
属酸化物−C−BN−TiC−TiB系、金属酸化物
−C−BN−TiB系及び金属酸化物−C−BN−T
iC系複合耐火物。(尚、焼成条件によっては一部、Z
rO、ZrCが生成することもある。) 【0002】 【従来の技術】従来、連続鋳造用ノズル等にはZrO
−C系やAl−C系耐火物等が使用されているが
酸化による損傷や、スラグの浸透による構造的スポーリ
ングを起こすため十分な耐用が得られていないのが実状
である。 【0003】この対策としてTiBやTiC、BN、
金属Si等の添加が検討されているが十分な結果が得ら
れていない。即ちTiBの場合は、耐酸化性は向上す
るものの、熱間強度の向上は少なく、TiCの場合は耐
酸化性が不十分で、熱間強度も低く、過剰に添加すると
耐スポーリング性及び、耐食性が低下する。BNの場合
は耐酸化性はあるが、熱間強度の上昇幅も小さく、耐ス
ポール性での向上が見られない。これらの理由によりい
ずれも従来品(添加剤無添加品)の耐用を延長させるに
到っていないのが実情である。 【0004】このように、いずれも耐スポール性に問題
があるため、その対策として、カーボン量が25%以上
の材質のものが主に使用されている。 【0005】しかしながら、 【0004】のような材質の浸浸ノズル等を使用し、極
低酸素鋼を鋳造すると、ノズル中のカーボンが鋼中に混
り込み、鋼に悪影響を及ぼし好ましくない。又、酸素を
多く含む鋼種の場合、この酸素による酸化ダメージも大
きく、耐食性の低下をきたす。 【0006】以上のような理由により、低カーボン量の
ものが望まれているが、カーボン量を少なくすると、耐
酸化性や耐スポーリング性が低下するため、低カーボン
指向に答えうるものが無いのが実状である。 【0007】 【発明が解決しようとする課題】従って、本発明の目的
は、低カーボン量で且つ、耐スポーリング及び耐食性に
優れた金属酸化物−C−BN−TiC−TiB、金属
酸化物−C−BN−TiB、金属酸化物−C−BN−
TiC系複合耐火物を提供することである。 【0008】 【課題を解決するための手段】このような現実に鑑み、
本発明は焼結体合成技術を、耐火物に応用し、耐火物の
マトリックスに強固な結合組織を形成させると共に、耐
火物内に含まれる気孔が微細化され、高熱間強度、耐酸
化性及び耐スポーリング性、耐食性に優れた複合耐火物
を得るものである。 【0009】即ち、炭窒化硼素BCxNと金属Tiを還
元雰囲気下で焼成すると 、aBCxN+bTi=cB
N+dTiC+eTiB+fN・・、2BN+T
iC=TiB+C+N・・、BCxN+xTi=
BN+xTiC・・なる各種反応を複合耐火物のマト
リックスに生じさせ、BN+TiC+TiB結合、B
N+TiB結合あるいはBN+TiC結合等を生じ、
強固な結合組織を生じると共に気孔が微細化されるこの
反応を金属酸化物−C系耐火物へ応用し、 【0008】項に述べた高熱間強度、耐酸化性及び耐ス
ポーリング性、耐食性に優れた複合耐火物を得るもので
ある。尚、通常、Ar雰囲気で一般の還元雰囲気炉やホ
ットプレスで焼成した場合、aBCxN+bTi=cB
N+dTiC+eTiB+fN・・の反応を生じ
る場合が普通であるが、一般の還元雰囲気炉、Ar雰囲
気で且つx値の低いBCxN(例えばx=0.17)を
用い高温焼成(例えば1850℃)すると、の反応で
生じたBNとTiCが再反応し2BN+TiC=TiB
+C+N・・となり、最終的に殆どBN+TiB
のみになる。又、一般の還元雰囲気炉やホットプレス
で窒素雰囲気で焼成するとBCxN+xTi=BN+x
TiC・・の反応を生じ、殆どBN+TiCとなる。 【0010】具体的にはBCxN0.1〜15wt%,
Ti0.1〜15wt%,C 1〜25wt%で、残り
がジルコニア、又はアルミナ、マグネシア、スピネル等
(尚、これらに一部少量の溶融シリカ、石英、けい石等
のシリカ原料を併用することも出来る)より構成され
る。 【0011】BCxNは0.1%未満では効果は殆どな
く、15%を越えると耐食性が低下し好ましくない。 【0012】Ti量は概略、化学量論的にBCxN量に
見合う量が望ましいが、 【0010】項の範囲内であれば問題ない。15%を越
えると過焼結状態になり、耐スポーリング性に悪影響を
及ぼすため好ましくない。又、0.1%未満では殆ど効
果が出ない。尚、BCxNのxは、0以上のさまざまな
値を取りうるが、その値に応じてTi量は、前述範囲内
で自由に調整すればよい。 【0013】C量については1%未満ではスラグの浸透
を十分に防ぎきれず、25%を越えると、炉材中のCの
鋼中への混り込みの悪影響が大きく、又、鋼中Oによ
る炉材中のCの酸化消耗が大きいため溶損が加速され好
ましくない。 【0014】ジルコニア原料としては、電融ジルコニ
ア、焼結ジルコニア、天然バデライト、又各原料のCa
O,Y,MgO等による安定化、部分安定化品及
び未安定化品が使用できる。アルミナ原料としては、電
融アルミナ、焼結アルミナ、ボーキサイト、ばん土頁
岩、シリマナイト、ムライト、アンダリュサイト等が使
用できる。更にマグネシア原料としては、電融マグネシ
ア、焼結マグネシア、天然マグネシア、海水マグネシ
ア、又、スピネル(MgO・Al)原料としては
焼結スピネル、電融スピネル、MgO:Al
1:1(モル比)スピネル、MgOリッチスピネル、A
リッチスピネル等が使用できる。 【0015】カーボン源としては、鱗状黒鉛、土状黒
鉛、人造黒鉛、カーボンブラック、各種ピッチ等の各種
カーボン原料を使用できる。 【0016】原料を秤量後、バインダー(限定はしない
がフェノール樹脂やピッチが望ましい)を添加し、混練
後、熱処理の後、アルゴン又は窒素、水素、CO、CO
、アンモニア、ヘリウム等の還元雰囲気にて焼成す
る。焼成温度は1000℃以上が望ましい。 【0017】 【作用】本発明の金属酸化物−C−BN−TiC−Ti
、金属酸化物−C−BN−TiB、金属酸化物−
C−BN−TiC系複合耐火物は、焼結体の合成技術を
耐火物の製造へ応用した新しい複合耐火物の製造方法に
関するものであり、従来のZrO−C質及びAl
−C質、MgO・Al−C質、MgO−C質耐
火物等の熱間強度、耐酸化性、耐スポーリング性、耐食
性を大きく改善するものである。 【0018】 【実施例】表1、2、3に実施例並びに比較例を示す。 サンプル作製条件:フェノール樹脂を添加し各配合をミ
キサーにて混練後、170×110×60mm形状にフ
リクションプレスにて成形した。成形後各サンプルを3
50℃にて熱処理後、アルゴン又は、窒素雰囲気中で1
500℃又は1850℃,2時間焼成した。実施例は金
属酸化物−C−BCxN−Ti,比較例は従来の無添加
品や第三成分単純添加品を示している。(BCxNとT
iのwt%はX線回折の強度比を基に求めた反応式から
計算により決定) 各試験条件 酸化試験:1400℃で2時間焼成(大気雰囲気)後切
断面の酸化深さを測定。 熱間曲げ試験:1400℃で測定(還元雰囲気) 熱膨張率:アルゴン雰囲気、1400℃での値。 弾性率:超音波法により測定した。 耐食性試験:中周波誘導炉にて1600℃、2時間加熱
し耐食性指数を求めた。溶鋼の上にスラグ(CaO/S
iO=1.1,主成分CaO39wt%,SiO
4%,MgO7%,Al5%,NaO4%)を
浮かべ実施した。BCxN+Tiから合成された生成物
は、実施例1〜4及び7〜11及び13は、BN−Ti
C−TiB、実施例5はBN−TiB、実施例6及
び12はBN−TiCが殆どである。又、比較例12,
13はBN−TiC−TiBである。 先ず、実施例1から4のZrO−C−BCxN−Ti
品を、BCxN及びTi無添加の比較例1と比較する
と、耐酸化性(酸化深さ)、熱間曲げ強度、耐スポール
指数(曲げ強度/熱膨張率・弾性率×100)、耐食性
のいずれの項目においても、実施例の方が非常に優れて
いる。実施例2と、同一カーボン量で各種添加剤が同一
添加量の比較例2から6を比較すると、まず比較例2の
BN及び比較例6のTiB+TiCの場合、耐酸化性
は同等であるが、熱間曲げ強度、耐スポール指数、耐食
性のいずれの項目においても、実施例2の方が優れてい
る。比較例3,4,5のTiC、TiB、Siの場
合、耐酸化性も含め、いずれの項目においても実施例2
の方が優れている。又、N雰囲気でBN−TiCを合
成させた実施例6を無添加でN雰囲気焼成した比較品
7と比較するとAr雰囲気焼成品同様、実施例6の方が
熱間曲げ強度、耐スポール指数、耐食性のいずれの項目
においても優れた結果を示している。Al−C−
BCxN−Ti品の場合、実施例11及び12は比較例
No.8の無添加品や、No.10のSi添加品等に比
べZrO−C−BCxN−Ti品の場合同様、熱間曲
げ強度、耐スポール指数、耐食性のいずれの項目におい
ても優れた結果を示している。MgO−C−BCxN−
Ti品の場合も実施例No.13と無添加品比較例9と
を比較するとZrO−C−BCxN−Ti品、Al
−C−BCxN−Ti品同様、熱間曲げ強度、耐ス
ポール指数、耐食性のいずれの項目においても優れた結
果を示した。又、Al添加比較品11と比較すると熱間
曲げ強度では比較品11も実施例No.13に近い値を
示してはいるが、耐スポール指数、耐食性の面で、比較
品11は大きく劣っている。BCxN+Ti量の変化に
ついて実施例1から4で比較すると、BCxN+Ti量
で3〜5%付近が最も良好な結果を示している。カーボ
ン量について実施例2,7,8で比較すると、いずれの
場合も熱間曲げ強度、耐スポール指数、耐食性の面で良
好な結果を示しているが、耐食性の面でみると15〜2
5%の所に最大ピーク値があるように思われる。 【0019】【0020】【0021】【0022】 【発明の効果】実施例に述べたように、本発明の方法
(耐火物を製造する段階にて、BCxN及びTiから、
aBCxN+bTi=cBN+dTiC+eTiB
fN・・、2BN+TiC=TiB+C+N
・、BCxN+xTi=BN+xTiC・・なる反
応を生じさせ、目標物であるBN+TiC+TiB
BN+TiBあるいはBN+TiCを合成させる)に
より、焼結体合成技術が耐火物に応用され、その結果と
して、従来の方法(目標物を単に最初から添加しておく
方法)に比べ、マトリックスの結合が強固になり、熱間
強度も高まり、低カーボン量でも耐スポール性及び耐食
性が大きく向上した。 【0023】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide -C-BN-TiC- suitable for a nozzle for continuous casting, a stopper, and a tuyere brick of a ladle container for steelmaking. TiB 2 system, metal oxide-C-BN-TiB 2 system and metal oxide-C-BN-T
iC composite refractories. (Depending on the firing conditions, part of Z
rO and ZrC may be generated. [0002] Conventionally, ZrO 2 has been used for continuous casting nozzles and the like.
-C systems and or damage Al 2 O 3 -C refractory material or the like is used but oxides, of not enough useful to obtain to cause structural spalling due penetration of slag is actual situation. As a countermeasure, TiB 2 , TiC, BN,
Although addition of metallic Si or the like has been studied, sufficient results have not been obtained. That is, in the case of TiB 2 , although the oxidation resistance is improved, the improvement in hot strength is small, and in the case of TiC, the oxidation resistance is insufficient and the hot strength is low. And the corrosion resistance is reduced. In the case of BN, although it has oxidation resistance, the increase in hot strength is small and no improvement in spall resistance is observed. For these reasons, none of the conventional products (without additives) have been extended in service life. [0004] As described above, since there is a problem in spall resistance, a material having a carbon content of 25% or more is mainly used as a countermeasure. However, if an extremely low oxygen steel is cast by using an immersion nozzle or the like made of the following material, carbon in the nozzle is mixed into the steel and adversely affects the steel. Further, in the case of a steel type containing a large amount of oxygen, the oxidation damage due to the oxygen is large, and the corrosion resistance is reduced. For the above reasons, a low carbon content is desired. However, if the carbon content is reduced, the oxidation resistance and the spalling resistance are reduced, and there is no one that can respond to the low carbon orientation. This is the actual situation. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a metal oxide having a low carbon content and having excellent spalling resistance and corrosion resistance: C-BN-TiC-TiB 2 , -C-BN-TiB 2, metal oxides -C-BN-
An object of the present invention is to provide a TiC-based composite refractory. [0008] In view of such a reality,
The present invention applies the sintered body synthesis technology to refractories, forms a strong bonding structure in the refractory matrix, reduces the pores contained in the refractories, and provides high hot strength, oxidation resistance and A composite refractory having excellent spalling resistance and corrosion resistance is obtained. That is, when boron carbonitride BCxN and metal Ti are fired in a reducing atmosphere, aBCxN + bTi = cB
N + dTiC + eTiB 2 + fN 2 ... 2BN + T
iC = TiB 2 + C + N 2 ..., BCxN + xTi =
Various reactions of BN + xTiC are caused in the matrix of the composite refractory, and BN + TiC + TiB 2 bond, B
An N + TiB 2 bond or a BN + TiC bond is generated,
This reaction, which produces a strong bond structure and makes pores finer, is applied to a metal oxide-C refractory to provide high hot strength, oxidation resistance, spalling resistance, and corrosion resistance as described in the section. An excellent composite refractory is obtained. In general, when firing in a general reducing atmosphere furnace or hot press in an Ar atmosphere, aBCxN + bTi = cB
Normally, a reaction of N + dTiC + eTiB 2 + fN 2 .. occurs, but when high-temperature sintering (for example, 1850 ° C.) is performed in a general reducing atmosphere furnace, in an Ar atmosphere, and using BCxN (for example, x = 0.17) having a low x value, BN and TiC re-react with each other, and 2BN + TiC = TiB
2 + C + N 2 .. and finally almost BN + TiB
Only 2 When baking in a nitrogen atmosphere in a general reducing atmosphere furnace or hot press, BCxN + xTi = BN + x
A reaction of TiC... Occurs and almost becomes BN + TiC. Specifically, BCxN 0.1 to 15 wt%,
Ti: 0.1 to 15 wt%, C: 1 to 25 wt%, the remainder being zirconia, alumina, magnesia, spinel, etc. (Some of these may be used in combination with a small amount of a silica raw material such as fused silica, quartz, silica, etc.) Can). If BCxN is less than 0.1%, there is almost no effect, and if it exceeds 15%, the corrosion resistance is undesirably reduced. The amount of Ti is desirably approximately stoichiometrically equivalent to the amount of BCxN, but there is no problem if it falls within the range of the following item. If it exceeds 15%, an over-sintering state occurs, which adversely affects spalling resistance, which is not preferable. If less than 0.1%, almost no effect is obtained. Note that x of BCxN can take various values of 0 or more, and the Ti amount may be freely adjusted within the above-described range according to the value. If the amount of C is less than 1%, the penetration of slag cannot be sufficiently prevented, and if it exceeds 25%, the adverse effect of the incorporation of C in the furnace material into steel is large, and the amount of O in steel is large. 2 is not preferable because the erosion loss of C in the furnace material is large due to large oxidative consumption. As the zirconia raw material, electrofused zirconia, sintered zirconia, natural baddelite, and Ca
Stabilized by O, Y 2 O 3 , MgO, etc., partially stabilized products and unstabilized products can be used. As the alumina raw material, electrofused alumina, sintered alumina, bauxite, clay shale, sillimanite, mullite, andalusite can be used. Further, as a magnesia material, electrofused magnesia, sintered magnesia, natural magnesia, seawater magnesia, and as a spinel (MgO.Al 2 O 3 ) material, sintered spinel, electrofused spinel, MgO: Al 2 O 3 =
1: 1 (molar ratio) spinel, MgO-rich spinel, A
l 2 O 3 rich spinel or the like can be used. As the carbon source, various carbon materials such as scaly graphite, earthy graphite, artificial graphite, carbon black, and various pitches can be used. After weighing the raw materials, a binder (preferably, but not limited to, a phenol resin or pitch) is added, and after kneading, after heat treatment, argon or nitrogen, hydrogen, CO, CO
2. Baking in a reducing atmosphere of ammonia, helium, etc. The firing temperature is desirably 1000 ° C. or higher. The metal oxide of the present invention -C-BN-TiC-Ti
B 2 , metal oxide —C—BN—TiB 2 , metal oxide—
The C-BN-TiC-based composite refractory relates to a new method for producing a composite refractory by applying a technique for synthesizing a sintered body to the production of a refractory, and uses a conventional ZrO 2 -C material and Al 2 O.
3 -C quality, MgO · Al 2 O 3 -C quality, hot strength, such as MgO-C refractories, oxidation resistance, spalling resistance, is intended to significantly improve corrosion resistance. EXAMPLES Examples 1, 2 and 3 show examples and comparative examples. Sample preparation conditions: A phenolic resin was added, each compound was kneaded with a mixer, and then formed into a 170 × 110 × 60 mm shape by a friction press. After molding, sample 3
After heat treatment at 50 ° C, 1 hour in argon or nitrogen atmosphere
It baked at 500 degreeC or 1850 degreeC for 2 hours. Examples show metal oxides-C-BCxN-Ti, and comparative examples show conventional non-added products and third-component simple added products. (BCxN and T
The wt% of i is determined by calculation from the reaction formula obtained based on the intensity ratio of X-ray diffraction.) Oxidation test under each test condition: After calcination at 1400 ° C for 2 hours (atmospheric atmosphere), the oxidation depth of the cut surface was measured. Hot bending test: measured at 1400 ° C. (reducing atmosphere) Thermal expansion coefficient: value at 1400 ° C. in an argon atmosphere. Elastic modulus: measured by an ultrasonic method. Corrosion resistance test: Heated at 1600 ° C. for 2 hours in a medium frequency induction furnace to determine a corrosion resistance index. Slag (CaO / S) on molten steel
iO 2 = 1.1, main component CaO 39 wt%, SiO 2 3
4%, MgO 7%, Al 2 O 3 5%, Na 2 O 4%). The products synthesized from BCxN + Ti are described in Examples 1-4 and 7-11 and 13 in BN-Ti
C-TiB 2, Example 5 BN-TiB 2, Examples 6 and 12 are mostly BN-TiC. Comparative Example 12,
13 is a BN-TiC-TiB 2. First, the ZrO 2 -C-BCxN-Ti of Examples 1 to 4
When the product was compared with Comparative Example 1 in which BCxN and Ti were not added, any of oxidation resistance (oxidation depth), hot bending strength, spall index (bending strength / coefficient of thermal expansion / elastic modulus × 100), and corrosion resistance In the item of (1), the embodiment is much better. Comparing Example 2 with Comparative Examples 2 to 6 in which the same amount of carbon and various additives are the same, first, in the case of BN of Comparative Example 2 and TiB 2 + TiC of Comparative Example 6, the oxidation resistance is equivalent. However, Example 2 is superior in any of the items of hot bending strength, spall resistance index, and corrosion resistance. In the case of TiC, TiB 2 , and Si of Comparative Examples 3, 4, and 5, Example 2 was applied to all items including oxidation resistance.
Is better. Further, Ar atmosphere firing products similar when compared to the comparative product 7 was N 2 atmosphere firing without adding Example 6 was synthesized BN-TiC in N 2 atmosphere, hot flexural strength towards the sixth embodiment, spalling Excellent results are shown in both the index and the corrosion resistance. Al 2 O 3 -C-
In the case of a BCxN-Ti product, Examples 11 and 12 are Comparative Example Nos. No. 8 additive and No. 8 As with the ZrO 2 -C-BCxN-Ti product, excellent results were obtained in all of the hot bending strength, the spall resistance index, and the corrosion resistance, as compared with the ZrO 2 -C-BCxN-Ti product. MgO-C-BCxN-
Also in the case of Example No. in the case of a Ti product. 13 and the additive-free comparative example 9 show that ZrO 2 -C-BCxN-Ti product, Al 2
O 3 -C-BCxN-Ti products similar, showing hot flexural strength, spalling index, excellent results in any of the items in the corrosion resistance. Also, in comparison with the Al-added comparative product 11, the comparative product 11 has a hot bending strength of Example No. 1. Although a value close to 13 is shown, the comparative product 11 is significantly inferior in spoil resistance index and corrosion resistance. When the changes in the amount of BCxN + Ti are compared in Examples 1 to 4, the best results are shown when the amount of BCxN + Ti is around 3 to 5%. When the amounts of carbon are compared in Examples 2, 7, and 8, in all cases, good results are shown in terms of hot bending strength, spall resistance index, and corrosion resistance.
There appears to be a maximum peak at 5%. [0019] [0020] [0021] As described in the examples, the method of the present invention (in the stage of producing a refractory, from BCxN and Ti,
aBCxN + bTi = cBN + dTiC + eTiB 2 +
fN 2 ..., 2BN + TiC = TiB 2 + C + N 2.
.., BCxN + xTi = BN + xTiC... And a target BN + TiC + TiB 2 ,
(BN + TiB 2 or BN + TiC is synthesized), the sintered body synthesis technology is applied to the refractory, and as a result, the matrix bonding is stronger than the conventional method (the method of simply adding the target from the beginning). , The hot strength was increased, and the spall resistance and corrosion resistance were greatly improved even with a low carbon content. [0023]

【図面の簡単な説明】 【図1】BCxN−Ti反応・・・BN及びTiC,T
iBが生成 BC0.49N:Ti=1.44:1.56(wt比、
X線回折結果を基に計算により求めた反応式 0.71BC0.49N+0.49Ti=0.35Ti
C+0.14TiB+0.42BN+0.14N
ら決定)で1500℃、Ar雰囲気、2hr焼成 【図2】BCxN−Ti反応・・・TiBが生成 BC0.49N:Ti=1.44:1.56(wt比、
X線回折結果を基に計算により求めた反応式 0.71BC0.49N+0.49Ti=0.35Ti
C+0.14TiB+0.42BN+0.14N
ら決定)で1850℃、Ar雰囲気、2hr焼成、一旦
生成したTiCとBNが再反応しTiBを生成しなが
らTiB比率が高くなっていった。 【図3】BCxN−Ti反応・・・TiCが生成 BC0.49N:Ti=1.7:1.3(wt比、BC
0.49N+0.49Ti=0.49TiC+BNより
決定)で1850℃、N雰囲気、2hr焼成、N
囲気下ではTiBは殆ど生じない。 【図4】実施例2のミクロ組織を示している。(矢印は
気孔)気孔が不連続に分断されて分散しているのがわか
る。 【図5】比較例1のミクロ組織を示している。(矢印は
気孔)気孔が連続して組織内を貫通しているのがわか
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 BCxN—Ti reaction—BN and TiC, T
iB 2 is generated BC0.49N: Ti = 1.44: 1.56 ( wt ratio,
Reaction formula 0.71BC 0.49 N + 0.49Ti = 0.35Ti obtained by calculation based on the result of X-ray diffraction
(Determined from C + 0.14TiB 2 + 0.42BN + 0.14N 2 ) at 1500 ° C. in an Ar atmosphere for 2 hours. [FIG. 2] BCxN-Ti reaction: TiB 2 is generated. BC 0.49N: Ti = 1.44: 1.56 (Wt ratio,
Reaction formula 0.71BC 0.49 N + 0.49Ti = 0.35Ti obtained by calculation based on the result of X-ray diffraction
C + 0.14 TiB 2 + 0.42BN + 0.14N 2 ) at 1850 ° C., baking for 2 hours in an Ar atmosphere, and the once generated TiC and BN react again to generate TiB 2 , and the TiB 2 ratio increased. FIG. 3 shows a BCxN-Ti reaction: TiC is generated. BC0.49N: Ti = 1.7: 1.3 (wt ratio, BC
0.49 N + 0.49Ti = 0.49TiC + BN than determined) at 1850 ° C., N 2 atmosphere, 2 hr firing, N under 2 atmosphere TiB 2 hardly occurs. FIG. 4 shows a microstructure of Example 2. It can be seen that the pores are discontinuously divided and dispersed. FIG. 5 shows a microstructure of Comparative Example 1. (The arrow is a pore.) It can be seen that the pores continuously penetrate the tissue.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/48 C04B 35/04 C (72)発明者 宮永 晶史 岡山県備前市浦伊部1175番地 九州耐火煉 瓦株式会社内 Fターム(参考) 4E014 DA00 4G030 AA07 AA17 AA36 AA45 AA46 AA50 AA54 AA60 AA61 AA67 BA28 BA29 BA30 CA01 GA01 GA04 GA09 GA14 GA22 GA24 GA27 4G031 AA03 AA12 AA29 AA36 AA37 AA38 AA39 BA25 CA01 GA01 GA02 GA04 GA10 GA11 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C04B 35/48 C04B 35/04 C (72) Inventor Akinori Miyanaga 1175 Uraibe, Bizen City, Okayama Prefecture Kyushu Fire Brick F term in Roofing Co., Ltd. (reference) 4E014 DA00 4G030 AA07 AA17 AA36 AA45 AA46 AA50 AA54 AA60 AA61 AA67 BA28 BA29 BA30 CA01 GA01 GA04 GA09 GA14 GA22 GA24 GA27 4G031 AA03 AA12 AA29 AA36 AA37 GA04 GA25

Claims (1)

【特許請求の範囲】 【請求項1】カーボン1〜25wt%、炭窒化硼素BC
xN 0.1〜15wt%及び金属チタン0.1〜15
wt%,残部を金属酸化物原料とした金属酸化物−C−
BN−炭化チタン−ホウ化チタン、金属酸化物−C−B
N−ホウ化チタン、金属酸化物−C−BN−炭化チタン
系複合耐火物の製造方法。 【請求項2】 【請求項1】の金属酸化物はジルコニア、アルミナ、マ
グネシア、スピネルなどである。
Claims: 1 to 25% by weight of carbon, boron carbonitride BC
xN 0.1-15 wt% and metallic titanium 0.1-15
wt%, the balance being metal oxide raw material -C-
BN-titanium carbide-titanium boride, metal oxide-CB
A method for producing an N-titanium boride, metal oxide-C-BN-titanium carbide composite refractory. 2. The metal oxide of claim 1 is zirconia, alumina, magnesia, spinel, or the like.
JP2002139261A 2002-04-05 2002-04-05 METHOD FOR PRODUCING COMPOSITE REFRACTORY HAVING BN+TiC +TiB2 BOND, BN+TiB2 BOND AND BN+TiC BOND BY USING BORON CARBONITRIDE AND METAL TITANIUM AS RAW MATERIALS Pending JP2003300772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002139261A JP2003300772A (en) 2002-04-05 2002-04-05 METHOD FOR PRODUCING COMPOSITE REFRACTORY HAVING BN+TiC +TiB2 BOND, BN+TiB2 BOND AND BN+TiC BOND BY USING BORON CARBONITRIDE AND METAL TITANIUM AS RAW MATERIALS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002139261A JP2003300772A (en) 2002-04-05 2002-04-05 METHOD FOR PRODUCING COMPOSITE REFRACTORY HAVING BN+TiC +TiB2 BOND, BN+TiB2 BOND AND BN+TiC BOND BY USING BORON CARBONITRIDE AND METAL TITANIUM AS RAW MATERIALS

Publications (1)

Publication Number Publication Date
JP2003300772A true JP2003300772A (en) 2003-10-21

Family

ID=29397596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002139261A Pending JP2003300772A (en) 2002-04-05 2002-04-05 METHOD FOR PRODUCING COMPOSITE REFRACTORY HAVING BN+TiC +TiB2 BOND, BN+TiB2 BOND AND BN+TiC BOND BY USING BORON CARBONITRIDE AND METAL TITANIUM AS RAW MATERIALS

Country Status (1)

Country Link
JP (1) JP2003300772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206122A (en) * 2018-10-30 2019-01-15 苏州佳耐材料科技有限公司 A method of improving Ultra-low carbon Magnesia-carbon material microstructure and thermal shock resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206122A (en) * 2018-10-30 2019-01-15 苏州佳耐材料科技有限公司 A method of improving Ultra-low carbon Magnesia-carbon material microstructure and thermal shock resistance

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
JP2003300772A (en) METHOD FOR PRODUCING COMPOSITE REFRACTORY HAVING BN+TiC +TiB2 BOND, BN+TiB2 BOND AND BN+TiC BOND BY USING BORON CARBONITRIDE AND METAL TITANIUM AS RAW MATERIALS
JP2002220290A (en) Castable refractory
JPS6119584B2 (en)
JP2001348272A (en) METHOD OF PRODUCING COMPOSITE REFRACTORY HAVING BN-SiC BOND
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JPH09295857A (en) Carbon-containing brick containing aluminum oxycarbide
JP2002080272A (en) Magnesia-spinel-carbonaceous brick
JP2951432B2 (en) Unfired refractory containing magnesia
JP2004059390A (en) Castable refractory for blast furnace trough
JPH0725669A (en) Castable refractory for lining of sintered-metal container
JP2868809B2 (en) Magnesia carbon brick
JPH09278540A (en) Corrosion-and oxidation-resistant amorphous refractory material
JPH1157957A (en) Sliding nozzle plate and its manufacture
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JPH06172020A (en) Magnesia component-containing refractory material
JP2947390B2 (en) Carbon containing refractories
JPH10251055A (en) Alumina-magnesia-carbon refractory material for heath of electric furnace
CN116396086A (en) Environment-friendly low-carbon aluminum magnesium spinel brick and preparation method thereof
JP2003306388A (en) Electromelted spinel raw material and refractory material using the same
JPH10236884A (en) Magnesia-carbon castable refractory
JP3400494B2 (en) Basic refractories for molten metal
JP3297308B2 (en) Amorphous refractories for scouring
JPH11147776A (en) Amorphous refractory
JPH03232762A (en) Magnesia-containig refractory