JP2003287620A - Polarization separation element - Google Patents

Polarization separation element

Info

Publication number
JP2003287620A
JP2003287620A JP2002088269A JP2002088269A JP2003287620A JP 2003287620 A JP2003287620 A JP 2003287620A JP 2002088269 A JP2002088269 A JP 2002088269A JP 2002088269 A JP2002088269 A JP 2002088269A JP 2003287620 A JP2003287620 A JP 2003287620A
Authority
JP
Japan
Prior art keywords
polarization separation
liquid crystal
separation element
degrees
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002088269A
Other languages
Japanese (ja)
Other versions
JP4304566B2 (en
Inventor
Hiroshi Hasebe
浩史 長谷部
Kiyobumi Takeuchi
清文 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002088269A priority Critical patent/JP4304566B2/en
Publication of JP2003287620A publication Critical patent/JP2003287620A/en
Application granted granted Critical
Publication of JP4304566B2 publication Critical patent/JP4304566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization separation element which can be made thin without coloring and which can decrease the wavelength dependence of the intensity of exiting light. <P>SOLUTION: An optical rotator is used instead of a quarter-wave plate. That is, the polarization separation element has a structure of two birefringent plates having a polarization separation function and the rotator which rotates the oscillation direction of linearly polarized light by 45° disposed between the birefringent plates. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は偏光分離素子、特に
光学ローパスフィルターとして有用な偏光分離素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization separation element, and more particularly to a polarization separation element useful as an optical low pass filter.

【0002】[0002]

【従来の技術】CCD撮像素子等を用いた離散的に画像入
力を行う光学系においては、モアレ縞を防止する目的で
光学ローパスフィルターが使用されている。このような
光学ローパスフィルターは、特開平10-186284号公報に
あるように水晶複屈折板とよばれる光軸が板平面に対し
て傾いた偏光分離素子の働きをする2枚の複屈折板と1/4
波長板を組み合わせた基本単位を有する偏光分離素子が
多用されている。この基本単位は図1に例示するよう
に、水晶複屈折板(a)で縦方向に常光oと異常光eに分離
し、1/4波長板で直線偏光を円偏光に変換し、さらに水
晶複屈折板(b)で横方向に常光o'、o''と異常光e'、e''
に分離して計4つの光線に分離するものである。
2. Description of the Related Art In an optical system for discretely inputting an image using a CCD image pickup device or the like, an optical low pass filter is used for the purpose of preventing moire fringes. Such an optical low-pass filter has two birefringent plates that function as a polarization separating element whose optical axis is tilted with respect to the plate plane, which is called a crystal birefringent plate as described in JP-A-10-186284. 1/4
A polarization separation element having a basic unit in which a wave plate is combined is often used. This basic unit is, as illustrated in FIG. 1, vertically separated into ordinary ray o and extraordinary ray e by a crystal birefringent plate (a), and converts linearly polarized light into circularly polarized light by a 1/4 wavelength plate, and further Ordinary rays o ', o''and extraordinary rays e', e '' in the lateral direction on the birefringent plate (b).
It is divided into 4 rays in total.

【0003】ここで1/4波長板としては通常水晶が用い
られているが、その厚みは500μm以上と厚くなってしま
うという問題があった。これを解決する手段として特開
平10-186284号公報には、1/4波長板として複屈折性を有
するポリイミド薄膜の利用が開示されているが、ポリイ
ミドは黄色に着色してしまうという問題があった。
Quartz is usually used as the quarter-wave plate, but there is a problem that its thickness becomes as thick as 500 μm or more. As a means for solving this, Japanese Patent Laid-Open No. 10-186284 discloses use of a polyimide thin film having birefringence as a quarter-wave plate, but there is a problem that polyimide is colored yellow. It was

【0004】また、水晶を用いた1/4波長板では可視光
波長領域全体にわたって位相差として1/4波長を確保す
るのは困難という問題がある。1/4波長の位相差が実現
されない波長領域では水晶板(b)に入射する光線は楕円
偏光となり、水晶板(b)から出射する常光と異常光の強
度が等しくならない。図2は、水晶板(b)から出射する常
光o'と異常光e'の強度の波長依存性を計算したものであ
る(波長589nmの光に対して1/4波長の位相差を設定し
た。また、水晶板(b)に入射した光線の強度を100%とし
て示した)。波長によっては強度に10倍以上の差がつい
てしまっており、このような偏光分離素子では、例えば
光学ローパスフィルターに使用した場合、十分なモアレ
防止機能が発揮することができなかった。
Further, there is a problem that it is difficult to secure a 1/4 wavelength as a phase difference over the entire visible light wavelength region with a 1/4 wavelength plate using quartz. In the wavelength region where the phase difference of 1/4 wavelength is not realized, the light ray incident on the crystal plate (b) becomes elliptically polarized light, and the ordinary light and the extraordinary light emitted from the crystal plate (b) are not equal in intensity. Figure 2 shows the calculation of the wavelength dependence of the intensities of the ordinary light o'and the extraordinary light e'which are emitted from the quartz plate (b) (the phase difference of 1/4 wavelength was set for the light of wavelength 589 nm). Also, the intensity of the light beam incident on the quartz plate (b) is shown as 100%). Depending on the wavelength, the intensity has a difference of 10 times or more, and such a polarization separation element could not exhibit a sufficient moire prevention function when used for an optical low-pass filter, for example.

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、偏光分離素子において、薄膜化可能で、色
づきがなく、かつ出射強度の波長依存性の低い偏光分離
素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polarization separation element which can be made into a thin film, has no coloring, and has low wavelength dependence of emission intensity. is there.

【0006】[0006]

【課題を解決するための手段】検討の結果、上記課題は
1/4波長板に変えて旋光子を使用することによって上記
課題を解決できることを見いだした。即ち、本発明は2
枚の偏光分離機能を有する複屈折板の間に、直線偏光の
振動方向を45度回転する旋光子を設けた構造を有する偏
光分離素子を提供する。
[Means for solving the problem] As a result of the examination,
It has been found that the above problems can be solved by using an optical rotator instead of a quarter wave plate. That is, the present invention is 2
Provided is a polarization separation element having a structure in which an optical rotator that rotates the vibration direction of linearly polarized light by 45 degrees is provided between two birefringent plates having a polarization separation function.

【0007】[0007]

【発明の実施の形態】本発明の態様は、入射光を一枚の
前記複屈折板で常光と異常光に分離し、前記旋光子で直
線偏光の振動方向を45度回転させ、さらにもう一枚の前
記複屈折板により、2つの常光と2つの異常光に分離する
偏光分離素子である。
BEST MODE FOR CARRYING OUT THE INVENTION According to an aspect of the present invention, incident light is separated into ordinary light and extraordinary light by one of the birefringent plates, and the vibration direction of linearly polarized light is rotated by 45 ° by the optical rotator. A polarization splitting element that splits into two ordinary rays and two extraordinary rays by means of a sheet of the birefringent plate.

【0008】本発明の偏光分離素子において利用する旋
光子としては、図3に例示するようにねじれネマチック
配向とよばれる液晶分子の配向状態において、ねじれの
角度を45度に設定して固定化された高分子フィルムを使
用するのが好ましい。このような高分子フィルムは、液
晶ディスプレイに用いられる低分子液晶と異なり流動性
がないために、ガラスセルに封じ込める必要がなく、ガ
ラスの厚みが必要無いので薄膜化が容易である。また、
このような高分子フィルムで黄色に着色していないもの
を入手するのは困難ではない。
The optical rotator used in the polarization beam splitting element of the present invention is fixed by setting the twist angle at 45 degrees in the alignment state of liquid crystal molecules called twisted nematic alignment as illustrated in FIG. It is preferable to use a polymer film. Unlike a low molecular weight liquid crystal used in a liquid crystal display, such a polymer film does not have fluidity, so that it does not need to be enclosed in a glass cell and does not require a glass thickness, and thus can be easily thinned. Also,
It is not difficult to obtain such a polymer film that is not colored yellow.

【0009】つまり、本発明の偏光分離素子で利用する
旋光子は、45度のねじれネマチック液晶配向を固定化し
た高分子フィルムであって、複屈折板により2つに分離
された一方の偏光の振動方向に対して、高分子フィルム
の入射面の液晶配向が水平もしくは垂直であり、2枚の
複屈折板の光軸が互いに直交していることが好ましい。
That is, the optical rotator used in the polarization splitting element of the present invention is a polymer film in which a twisted nematic liquid crystal orientation of 45 degrees is fixed, and one polarization of one polarization split by a birefringent plate is used. It is preferable that the liquid crystal orientation of the incident surface of the polymer film is horizontal or vertical with respect to the vibration direction, and the optical axes of the two birefringent plates are orthogonal to each other.

【0010】ねじれネマチック配向と2枚の偏光分離機
能を有する複屈折板の光軸との好ましい位置関係を図4
に示す。光がz軸と平行に進み、複屈折板(a)の遅相軸
がXZ平面に平行であり、複屈折板(b)の遅相軸がYZ平面
に平行である場合、旋光子の入射面側の液晶分子配向方
向は、x軸と平行もしくはy軸と平行になるように設定す
れば良い。旋光子内部における液晶分子のねじれ方向
は、入射面からみて、時計回りでも、反時計回りでもよ
く、入射側面での液晶分子配向方向と出射面側での液晶
配向方向となす角度が45度になれば良い。角度として
は、45度が最も好ましいが、40〜50度の範囲であれば、
本発明の目的とする効果は概ね達成することができる。
図4では、複屈折板(a)の遅相軸の方向はx軸と平行、複
屈折板(b)の遅相軸の方向はy軸と平行としたが、2枚の
複屈折板の位置を入れ替えて、複屈折板(a)の遅相軸がY
Z平面に平行で、複屈折板(b)の遅相軸がXZ平面に平行と
設定しても、上記の旋光子の2枚の偏光分離機能を有す
る複屈折板の光軸との好ましい位置関係は変わらず、そ
のまま利用することができる。
FIG. 4 shows a preferred positional relationship between the twisted nematic orientation and the optical axis of the two birefringent plates having a polarization separating function.
Shown in. When the light travels parallel to the z-axis, the slow axis of the birefringent plate (a) is parallel to the XZ plane, and the slow axis of the birefringent plate (b) is parallel to the YZ plane, the rotator's incidence The orientation direction of the liquid crystal molecules on the plane side may be set to be parallel to the x axis or the y axis. The twist direction of the liquid crystal molecules inside the optical rotator may be clockwise or counterclockwise as viewed from the incident surface, and the angle formed between the liquid crystal molecule orientation direction on the incident side surface and the liquid crystal orientation direction on the exit surface side is 45 degrees. It should be. The most preferable angle is 45 degrees, but if it is in the range of 40 to 50 degrees,
The effects aimed at by the present invention can be almost achieved.
In FIG. 4, the direction of the slow axis of the birefringent plate (a) is parallel to the x-axis, and the direction of the slow axis of the birefringent plate (b) is parallel to the y-axis. Swap the positions so that the slow axis of the birefringent plate (a) is Y.
Parallel to the Z plane, even if the slow axis of the birefringent plate (b) is set to be parallel to the XZ plane, the preferred position with the optical axis of the birefringent plate having the two polarization splitting functions of the optical rotator described above. The relationship does not change and can be used as is.

【0011】出射強度の波長依存性を低減する本発明の
目的から、本発明で用いる旋光子は可視光領域全体にわ
たって、振動方向を45度回転させる能力が求められる。
図5には、図6に示す構成の旋光子に対して、x軸に平行
方向に振動する直線偏光がz方向に進むように入射した
時、xy平面においてx軸から45度傾いた状態の直線偏光
の強度が2Δnd/λに対してどのように変化するかを計算
したものである(入射強度を100%として示した)。Δnは
高分子フィルムの複屈折率を表し、dは高分子フィルム
の厚みを表し、λは入射光線の波長を表す。2Δnd/λと
して、1.9μm、4.0μm、もしくは6μmに設定すると、良
い結果が得られることがわかる。2Δnd/λが6μm以上と
なると、強度の変化はほとんどなくなる。波長として50
0nmを選ぶと、Δndとして0.475μm、1.00μm、もしくは
1.50μmに設定すれば良い。また、波長として600nmを選
ぶと、Δndとして0.570μm、1.20μm、もしくは1.80μm
に設定すれば良い。人間の視感度を考慮すると中心波長
として550nmを考えれば良いので、550nmにおいて、Δnd
として0.475〜0.57、1.00〜1.20、1.50〜1.80の範囲に
設定すると良い。図4に示すように複屈折板(a)、旋光
子、複屈折板(b)を配置した時に、複屈折板(b)から出射
する常光o'と異常光e'の強度の波長依存性を計算した結
果を図7〜9に示す。図7は波長589nmにおけるΔndを0.56
μm、図8は波長589nmにおけるΔndを1.18μm、図9は波
長589nmにおけるΔndを1.77μmに設定し、複屈折板(b)
に入射した光線の強度を100%として示した。図2に示し
た水晶製1/4波長板を用いた場合と比較して、明らかに
本発明の旋光子を用いたものの方が、波長による常光と
異常光の強度の差が小さくなっていることがわかる。ま
た、図7〜9の比較からΔndが大きい方が、波長による常
光と異常光の強度の差が小さくなっていることがわか
る。
For the purpose of the present invention to reduce the wavelength dependence of the emission intensity, the optical rotator used in the present invention is required to have the ability to rotate the vibration direction by 45 degrees over the entire visible light region.
In FIG. 5, when linearly polarized light oscillating in a direction parallel to the x-axis is incident on the optical rotator having the configuration shown in FIG. 6 so as to proceed in the z-direction, a state of tilting 45 degrees from the x-axis in the xy plane is shown. This is a calculation of how the intensity of linearly polarized light changes with respect to 2Δnd / λ (incident intensity is shown as 100%). Δn represents the birefringence of the polymer film, d represents the thickness of the polymer film, and λ represents the wavelength of incident light. It can be seen that a good result can be obtained by setting 2Δnd / λ to 1.9 μm, 4.0 μm, or 6 μm. When 2Δnd / λ is 6 μm or more, there is almost no change in strength. 50 as wavelength
If 0nm is selected, Δnd will be 0.475μm, 1.00μm, or
It should be set to 1.50 μm. If 600 nm is selected as the wavelength, Δnd is 0.570 μm, 1.20 μm, or 1.80 μm.
You can set it to. Considering human visibility, we can consider 550 nm as the central wavelength, so at 550 nm, Δnd
It is good to set it in the range of 0.475 to 0.57, 1.00 to 1.20, 1.50 to 1.80. As shown in Fig. 4, when the birefringent plate (a), the optical rotator, and the birefringent plate (b) are arranged, the wavelength dependence of the intensities of the ordinary light o'and the extraordinary light e'which are emitted from the birefringent plate (b). The results of calculation of are shown in FIGS. Figure 7 shows a Δnd of 0.56 at a wavelength of 589 nm.
μm, FIG. 8 shows Δnd at wavelength 589 nm of 1.18 μm, and FIG. 9 shows Δnd at wavelength of 589 nm set to 1.77 μm.
The intensity of the light beam incident on is shown as 100%. Compared with the case of using the quartz 1/4 wavelength plate shown in FIG. 2, the difference between the intensity of the ordinary light and the intensity of the extraordinary light depending on the wavelength is obviously smaller in the case of using the optical rotator of the present invention. I understand. Further, from the comparison of FIGS. 7 to 9, it can be seen that the larger Δnd is, the smaller the difference between the intensities of the ordinary light and the extraordinary light due to the wavelength is.

【0012】本発明の偏光分離素子を用いれば、380〜7
80nmにおける偏光分離素子により出力される4つの光の
強度が、4つの光の平均値に対して±35%以内、好ましく
は±16%以内、さらに好ましくは±11%以内を達成するこ
とができる。
If the polarization splitting element of the present invention is used, it is
The intensity of the four lights output by the polarization splitting element at 80 nm can be achieved within ± 35%, preferably within ± 16%, and more preferably within ± 11% with respect to the average value of the four lights. .

【0013】以上のように、出射光強度の波長依存性を
小さくする観点からは、Δndは大きい方が好ましいが、
Δnが同じ高分子フィルムを用いる場合には、フィルム
の厚みdを大きくする必要があるため、厚みも考慮する
必要がある。Δnが0.15以上と大きい液晶材料を使用で
きる場合には、2Δnd/λとして4.0μmもしくは6μmとな
るよう設定するのが好ましい。Δnが0.15未満の液晶材
料を用いる場合には、2Δnd/λとして1.9μmもしくは4.
0μmとなるよう設定するのが好ましい。また、出射光の
常光と異常光の強度の波長依存性を小さくする観点から
は液晶材料の複屈折率の波長分散も重要である。波長38
0nmにおける複屈折率Δn(380)を波長589nmにおける複屈
折率Δn(589)で除した値、すなわちΔn(380)/Δn(589)
は、1.3以下であることが好ましく、1.25以下であるこ
とがさらに好ましく、1.15以下であることが特に好まし
い。
As described above, from the viewpoint of reducing the wavelength dependence of the intensity of emitted light, it is preferable that Δnd is large.
When a polymer film having the same Δn is used, the thickness d of the film needs to be increased, and thus the thickness also needs to be considered. When a liquid crystal material having a large Δn of 0.15 or more can be used, it is preferable to set 2Δnd / λ to 4.0 μm or 6 μm. When a liquid crystal material with Δn less than 0.15 is used, 2Δnd / λ is 1.9 μm or 4.
It is preferable to set it to 0 μm. In addition, the wavelength dispersion of the birefringence of the liquid crystal material is also important from the viewpoint of reducing the wavelength dependence of the intensities of the ordinary and extraordinary rays of the emitted light. Wavelength 38
A value obtained by dividing the birefringence Δn (380) at 0 nm by the birefringence Δn (589) at a wavelength of 589 nm, that is, Δn (380) / Δn (589)
Is preferably 1.3 or less, more preferably 1.25 or less, and particularly preferably 1.15 or less.

【0014】このように、本発明の偏光分離素子はロー
パスフィルターとして好適に使用することができる。
As described above, the polarization separation element of the present invention can be suitably used as a low pass filter.

【0015】光学素子として利用する観点から、本発明
で使用する旋光子の光散乱性は小さい方が好ましい。光
散乱性の指標となるヘイズ値で、1.0%以下であることが
好ましく、0.7%以下であることがさらに好ましく、0.5%
以下であることが特に好ましい。
From the viewpoint of use as an optical element, it is preferable that the optical rotator used in the present invention has a small light scattering property. Haze value as an index of light scattering property, preferably 1.0% or less, more preferably 0.7% or less, 0.5%
The following is particularly preferable.

【0016】旋光子の厚さとしては、2〜30μmにあるこ
とが好ましく、4〜20μmにあることがさらに好ましく、
6〜10μmにあることが特に好ましい。2μmより薄いと旋
光子の製造が困難になり、30μmより厚いとヘイズが大
きくなってしまう傾向がある。
The thickness of the optical rotator is preferably 2 to 30 μm, more preferably 4 to 20 μm,
It is particularly preferable that it is in the range of 6 to 10 μm. If the thickness is less than 2 μm, it becomes difficult to manufacture an optical rotator, and if the thickness is more than 30 μm, the haze tends to increase.

【0017】45度のねじれネマチック液晶配向を固定化
した高分子フィルムは、例えば、高分子液晶材料を用い
て作製することができる。まず、高分子液晶材料がネマ
チック液晶もしくはキラルネマチック材料を呈する温度
まで加熱し、液晶状態にて45度のねじれネマチック配向
を達成させる。この状態から、急冷することによってガ
ラス化させ、45度のねじれネマチック配向が固定化した
高分子フィルムを得ることができる。
The polymer film in which the twisted nematic liquid crystal orientation of 45 degrees is fixed can be produced by using, for example, a polymer liquid crystal material. First, a polymer liquid crystal material is heated to a temperature at which it exhibits a nematic liquid crystal or a chiral nematic material, and a twisted nematic alignment of 45 degrees is achieved in the liquid crystal state. From this state, it is possible to obtain a polymer film in which it is vitrified by rapid cooling and the twisted nematic orientation of 45 degrees is fixed.

【0018】45度のねじれネマチック液晶配向を固定化
した高分子フィルムは、反応性もしくは重合性液晶材料
を用いても作製することができる。まず、重合性液晶を
45度のねじれネマチック液晶配向させる。その状態で紫
外線もしくは電子線等の活性エネルギー線を照射するこ
とにより重合性液晶を重合・硬化させ、45度のねじれネ
マチック配向が固定化した高分子フィルムを得ることが
できる。
The polymer film in which the twisted nematic liquid crystal alignment of 45 degrees is fixed can also be prepared by using a reactive or polymerizable liquid crystal material. First, the polymerizable liquid crystal
45 degree twisted nematic liquid crystal alignment. In this state, the polymerizable liquid crystal is polymerized and cured by irradiating with active energy rays such as ultraviolet rays or electron rays, and a polymer film having a twisted nematic orientation of 45 degrees fixed can be obtained.

【0019】いずれにしても、本発明の偏光分離素子に
おいて、得られた高分子フィルムは、複屈折板材料と接
着剤で貼合しても良いし、例えば、複屈折板材料に配向
処理を施して複屈折板材料の上に直接作製しても良い。
また、これ以外の光学素子、例えば、赤外線カットフィ
ルターや、さらなる複屈折板を追加して用いても良い。
また赤外線カットフィルターに代えて、複屈折板表面に
赤外線カット機能を有する薄膜を形成しても良いし、複
屈折板表面に反射防止膜を形成するのが好ましい。
In any case, in the polarization beam splitting element of the present invention, the obtained polymer film may be bonded to the birefringent plate material with an adhesive. For example, the birefringent plate material may be subjected to orientation treatment. Alternatively, it may be directly formed on the birefringent plate material.
Further, an optical element other than this, for example, an infrared cut filter or a further birefringent plate may be added and used.
Further, instead of the infrared cut filter, a thin film having an infrared cut function may be formed on the surface of the birefringent plate, and it is preferable to form an antireflection film on the surface of the birefringent plate.

【0020】重合性液晶材料は、液晶の技術分野で反応
性の液晶材料もしくは重合性の液晶材料と認識される材
料であれば用いることができる。このような材料として
は、一般式(I)
As the polymerizable liquid crystal material, any material which is recognized as a reactive liquid crystal material or a polymerizable liquid crystal material in the technical field of liquid crystals can be used. As such a material, the general formula (I)

【0021】[0021]

【化1】 [Chemical 1]

【0022】[式中、X1は水素原子又はメチル基を表
し、sは0〜18の整数を表し、sが0のときtは0を表し、
sが1以上のときtは0又は1を表し、6員環A、環B及び環C
はそれぞれ独立的に、1,4-フェニレン基、隣接しないCH
基が窒素で置換された1,4-フェニレン基、1,4-シクロヘ
キシレン基、1つ又は隣接しない2つのCH2基が酸素若し
くは硫黄原子で置換された1,4-シクロヘキシレン基、又
は1,4-シクロヘキセニル基を表し、これらの6員環A、環
B及び環Cは、さらに炭素原子数1〜7のアルキル基、アル
コキシ基、アルカノイル基、シアノ基又はハロゲン原子
で一つ以上置換されていても良く、Y、Yはそれぞれ
独立的に単結合、-CH2CH2-、-CH2O-、-OCH2-、-COO-、-
OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH2)4-、-CH2CH2C
H2O-、-OCH2CH2CH2-、-CH=CH-CH2CH2-、-CH2CH2-CH=CH
-、-CH=CH-COO-、-OCO-CH=CH-、-CH2CH 2-COO-、-CH2CH2
-OCO-、-COO-CH2CH2-、-OCO-CH2CH2-を表し、Y3は単結
合、-O-、-OCO-、-COO-、-CH=CH-COO-又は式(II)
[Where X is1Represents a hydrogen atom or a methyl group
, S represents an integer of 0 to 18, t represents 0 when s is 0,
When s is 1 or more, t represents 0 or 1, and is a 6-membered ring A, ring B or ring C.
Are each independently a 1,4-phenylene group, non-adjacent CH
1,4-phenylene group whose group is substituted by nitrogen, 1,4-cyclohexene
Xylene group, one or two non-adjacent CH2The base is oxygen
1,4-cyclohexylene group substituted with a sulfur atom, or
Represents a 1,4-cyclohexenyl group, these 6-membered ring A, ring
B and ring C are each an alkyl group having 1 to 7 carbon atoms,
Coxy group, alkanoyl group, cyano group or halogen atom
May be replaced by more than one, Y1, YTwoAre each
Independently a single bond, -CH2CH2-, -CH2O-, -OCH2-, -COO-,-
OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH2)Four-, -CH2CH2C
H2O-, -OCH2CH2CH2-, -CH = CH-CH2CH2-, -CH2CH2-CH = CH
-, -CH = CH-COO-, -OCO-CH = CH-, -CH2CH 2-COO-, -CH2CH2
-OCO-, -COO-CH2CH2-, -OCO-CH2CH2Represents-, Y3Is single
, -O-, -OCO-, -COO-, -CH = CH-COO- or formula (II)

【0023】[0023]

【化2】 [Chemical 2]

【0024】(式中、Xは水素原子又はメチル基を表
し、vは0〜18の整数を表し、vが0のときwは0を表し、v
が1以上のときwは0又は1を表す。)を表し、Z1は水素原
子、ハロゲン原子、シアノ基、炭素原子数1〜20の炭化
水素基を表す。但しY3が式(II)を表すときは、Z1は水素
原子を表す。]で表される化合物を含有する重合性液晶
材料を挙げることができる。具体的な化合物の例として
は、以下のような化合物を挙げることができる。
(In the formula, X 2 represents a hydrogen atom or a methyl group, v represents an integer of 0 to 18, and when v is 0, w represents 0;
When is 1 or more, w represents 0 or 1. ), Z 1 represents a hydrogen atom, a halogen atom, a cyano group, or a hydrocarbon group having 1 to 20 carbon atoms. However, when Y 3 represents the formula (II), Z 1 represents a hydrogen atom. ] The polymerizable liquid crystal material containing the compound represented by these can be mentioned. The following compounds can be mentioned as an example of a concrete compound.

【0025】[0025]

【化3】 [Chemical 3]

【0026】(式中、s、vはそれぞれ独立的に1〜18の整
数を表し、Y3、Z1は一般式(I)におけるものと同じ意味
を表す)。
(In the formula, s and v each independently represent an integer of 1 to 18, and Y 3 and Z 1 have the same meanings as in formula (I)).

【0027】重合性液晶材料は、40℃以下の温度でもネ
マチック相を呈するものが好ましく、25℃においてネマ
チック相を呈するものがさらに好ましい。また、重合性
液晶材料の粘度は、40℃以下において500mPa・s以下が
好ましく、さらに好ましくは25℃において500mPa・s以
下であり、25℃において300mPa・s以下であり、特に好
ましくは25℃において200mPa・s以下である。このよう
な重合性液晶材料を用いると、配向欠陥が無く、ヘイズ
が小さい高分子フィルムを生産性良く製造することがで
きる。
The polymerizable liquid crystal material preferably exhibits a nematic phase even at a temperature of 40 ° C. or lower, and more preferably exhibits a nematic phase at 25 ° C. The viscosity of the polymerizable liquid crystal material is preferably 500 mPa · s or less at 40 ° C. or less, more preferably 500 mPa · s or less at 25 ° C., 300 mPa · s or less at 25 ° C., and particularly preferably at 25 ° C. It is 200 mPa · s or less. By using such a polymerizable liquid crystal material, a polymer film having no alignment defect and a small haze can be produced with high productivity.

【0028】偏光分離機能を有する複屈折板も、本発明
における旋光子と同様な方法で高分子液晶材料や重合性
液晶材料で作製すると、これらの材料は水晶と比較して
複屈折率Δnが大きいため、素子全体の厚みを著しく薄
くすることでき好ましい。
When a birefringent plate having a polarization separating function is made of a polymer liquid crystal material or a polymerizable liquid crystal material by the same method as that of the optical rotator in the present invention, these materials have a birefringence Δn as compared with quartz. Since it is large, the thickness of the entire device can be significantly reduced, which is preferable.

【0029】[0029]

【実施例】以下、実施例を挙げて本発明を更に詳述する
が、本発明はこれらの実施例に限定されるものではな
い。ヘイズはNDH2000(日本電色工業株式会社製)を用い
てJIS規格K7361に基づいて測定した。また、「%」は、「質
量%」を表す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. The haze was measured using NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.) based on JIS standard K7361. Further, “%” represents “mass%”.

【0030】(実施例1)厚み1.1mmで2cm角の正方形ガ
ラス基板の片面に、厚み約100nmのポリビニルアルコー
ル薄膜を形成しラビング処理して、ポリビニルアルコー
ル配向膜を形成したガラス基板を作製した。このように
してポリビニルアルコール配向膜を形成したガラス基板
2枚を、配向膜が内側になるようにして、お互いに平行
を保つように対向させてセルを作製した。このとき、2
枚の基板の間隙は19.6μmとなるよう、ラビング方向は
お互いに45度の角度をなすように設定した。
Example 1 A glass substrate having a polyvinyl alcohol alignment film was prepared by forming a polyvinyl alcohol thin film having a thickness of about 100 nm on one surface of a square glass substrate having a thickness of 1.1 mm and a size of 2 cm and rubbing the same. A glass substrate having a polyvinyl alcohol alignment film thus formed
Two cells were made to face each other so that the alignment films were on the inner side and kept parallel to each other to fabricate a cell. At this time, 2
The gap between the substrates was set to 19.6 μm, and the rubbing directions were set to form an angle of 45 degrees with each other.

【0031】次に、以下の重合性液晶組成物(A)を調製
した。
Next, the following polymerizable liquid crystal composition (A) was prepared.

【0032】[0032]

【化4】 [Chemical 4]

【0033】この重合性液晶組成物(A)は、室温(25℃)
でネマチック液晶相を呈した。ネマチック相−等方性液
体相転移温度は52℃であった。また、589nmで測定したn
e(異常光の屈折率)は1.664で、no(常光の屈折率)は1.50
5、複屈折率(Δn)は0.159であった。粘度は178mPa・sで
あった。この重合性液晶組成物(A)99質量部に、光重合
開始剤TPO(チバスペシャリティケミカルズ社製)0.1質量
部からなる重合性液晶組成物(A')を調製した。さらにこ
の組成物を孔径1μmのフッ素樹脂製メンブランフィルタ
ーで濾過した。この濾過した重合性液晶組成物(A')を作
製したセルに室温にて注入した。注入後、1時間室温で
暗所に放置してから、セルを偏光顕微鏡で観察したとこ
ろ、45度のねじれネマチック液晶配向状態が得られてお
り、配向欠陥も無いことが確かめられた。このセルに、
40mW/cm2の紫外線を12秒照射して重合性液晶組成物を硬
化させることにより、45度のねじれネマチック液晶配向
状態が固定化された高分子フィルムを得た。さらに得ら
れた高分子フィルムから2枚のガラス基板を剥離した
後、100℃で20時間エージングを行った。このようにし
て得られた高分子フィルムは、厚みが19.6μmで45度の
ねじれネマチック液晶配向をしており、波長589nmにお
けるΔnは0.090であり、色つきが無いものであった。従
って、Δndは1.76μmと計算される。また、ヘイズを測
定したところ0.7%であった。偏光分離距離が3.5μmの水
晶複屈折板2枚と、得られた高分子フィルムを、図4と同
じ位置関係を保つようにして、光硬化接着剤「V300」(ア
ーデル社製)を貼合して、本発明の偏光分離素子を得
た。得られた偏光分離素子を偏光顕微鏡を用いて観察し
たところ、可視光全域にわたって、入射光線を4つに、
ほぼ均等な強度で分割することを確かめることができ
た。
This polymerizable liquid crystal composition (A) has a room temperature (25 ° C.).
And exhibited a nematic liquid crystal phase. The nematic phase-isotropic liquid phase transition temperature was 52 ° C. Also, n measured at 589 nm
e (refractive index of extraordinary light) in 1.664, n o (refractive index of ordinary light) is 1.50
5, the birefringence (Δn) was 0.159. The viscosity was 178 mPa · s. A polymerizable liquid crystal composition (A ′) comprising 0.1 part by mass of a photopolymerization initiator TPO (manufactured by Ciba Specialty Chemicals) in 99 parts by mass of the polymerizable liquid crystal composition (A) was prepared. Further, the composition was filtered through a fluororesin membrane filter having a pore size of 1 μm. The filtered polymerizable liquid crystal composition (A ′) was injected into the prepared cell at room temperature. After the injection, the cell was left in a dark place at room temperature for 1 hour, and then the cell was observed with a polarization microscope. As a result, it was confirmed that a twisted nematic liquid crystal alignment state of 45 degrees was obtained and there was no alignment defect. In this cell,
The polymerizable liquid crystal composition was cured by irradiation with 40 mW / cm 2 ultraviolet rays for 12 seconds to obtain a polymer film in which the twisted nematic liquid crystal alignment state of 45 ° was fixed. Further, two glass substrates were peeled from the obtained polymer film, and then aging was performed at 100 ° C. for 20 hours. The polymer film thus obtained had a thickness of 19.6 μm and had a twisted nematic liquid crystal orientation of 45 degrees, and Δn at a wavelength of 589 nm was 0.090, indicating that there was no coloring. Therefore, Δnd is calculated to be 1.76 μm. The haze was measured and found to be 0.7%. The two polymer birefringent plates with a polarization separation distance of 3.5 μm and the obtained polymer film were attached with a photo-curing adhesive `` V300 '' (made by Adell) so that the same positional relationship as in Fig. 4 was maintained. Then, the polarization separation element of the present invention was obtained. When the obtained polarization separation element was observed using a polarization microscope, the incident light was changed to four over the entire visible light range.
We were able to confirm that the division was almost even.

【0034】(実施例2)1. 重合性液晶材料を用いた偏光分離機能を有する複屈
折板の作製 厚み1.1mmで2cm角の正方形ガラス基板の片面に、厚み約
100nmのポリビニルアルコール薄膜を形成しラビング処
理して、ポリビニルアルコール配向膜を形成したガラス
基板(1)を作製した。次に、厚み1.1mmで2cm角の正方形
ガラス基板の片面に、ポリイミド剤「AL-1051」(JSR社製)
を用いて厚み約100nmのポリイミド薄膜を形成しラブン
グ処理して、ポリイミド配向膜を形成したガラス基板
(2)を作製した。このようにして得られた2種のガラス基
板2枚を、配向膜が内側になるようにして、お互いに平
行を保つように対向させてセルを作製した。このとき、
2枚の基板の間隙は80μmとなるよう、ラビング方向はお
互いに反平行(アンチパラレル)になるように設定した。
これに実施例1で調製・濾過した重合性液晶組成物(A')
を室温にて注入した。これを、図10に示すように半径6c
mの円形磁極で、N極とS極が向かい合うように、又基板
の法線と磁場のなす角度が45度になるように電磁石を配
置して得られる5000Gの磁場に120秒間おいた後、この状
態で40mW/cm2の紫外線を12秒照射して重合性液晶組成物
を硬化させ、光軸(遅相軸)がフィルム厚み方向に45度傾
いた偏光分離機能を有する高分子製複屈折板を得た。こ
の高分子製複屈折板から、ガラス基板(1)のみを剥離し
て、ガラス基板上に坦持された高分子複屈折板を作製し
た。得られた高分子製複屈折板の偏光分離距離は5.5μm
であった。
Example 2 1. Birefringence using a polymerizable liquid crystal material and having a polarization separation function
Fabrication of folded plate About 1.1 mm thick on one side of a 2 cm square glass substrate.
A 100 nm polyvinyl alcohol thin film was formed and subjected to rubbing treatment to prepare a glass substrate (1) on which a polyvinyl alcohol alignment film was formed. Next, a polyimide agent "AL-1051" (manufactured by JSR) on one side of a 2 cm square glass substrate with a thickness of 1.1 mm.
A glass substrate on which a polyimide thin film with a thickness of about 100 nm is formed and subjected to a rub process to form a polyimide alignment film.
(2) was produced. Two cells of the two types of glass substrates thus obtained were made to face each other so that the alignment films were on the inside and kept parallel to each other, to fabricate a cell. At this time,
The gap between the two substrates was set to 80 μm, and the rubbing directions were set to be antiparallel to each other.
The polymerizable liquid crystal composition (A ') prepared and filtered in Example 1 was added to this.
Was injected at room temperature. As shown in Fig. 10, this is
With a circular magnetic pole of m, place an electromagnet so that the N pole and the S pole face each other, and the angle between the normal line of the substrate and the magnetic field is 45 degrees, and put it in a magnetic field of 5000 G obtained for 120 seconds, In this state, the polymerizable liquid crystal composition is cured by irradiating it with 40 mW / cm 2 of ultraviolet light for 12 seconds, and the optical axis (slow axis) is a polymer birefringence with a polarization separation function that is inclined by 45 degrees in the film thickness direction. I got a plate. From this polymer birefringent plate, only the glass substrate (1) was peeled off to prepare a polymer birefringent plate supported on the glass substrate. The polarization separation distance of the obtained polymer birefringent plate was 5.5 μm.
Met.

【0035】2. 2枚の高分子製複屈折板の間隙への高
分子製旋光子の作製 ガラス基板上に坦持された高分子複屈折板の、高分子膜
面にエポキシ接着剤「アラルダイト」(チバガイギー社製)
を厚み5μmで塗布し、80℃で20時間加熱して硬化させ
た。次に、硬化膜面を図11に示すように、高分子複屈折
板の遅相軸方向と平行にラビングした高分子複屈折板
(a)、遅相軸方向に対して45度の角度をなすようにラビ
ングした高分子複屈折板(b)を用意した。この2種の高分
子製複屈折板を、硬化膜面が内側になるよう、お互いに
平行を保つように対向させてセルを作製した。このと
き、2枚の基板の間隙は6.2μmとなるよう、ラビング方
向は45度の角度をなすように設定した。これに実施例1
で調製・濾過した重合性液晶組成物(A')を室温にて注入
した。注入後、1時間室温で暗所に放置してから、セル
を偏光顕微鏡で観察したところ、45度のねじれネマチッ
ク液晶配向状態が得られており、配向欠陥も無いことが
確かめられた。このセルに、40mW/cm2の紫外線を12秒照
射して重合性液晶組成物を硬化させることにより、2枚
の高分子複屈折板の間隙に、45度のねじれネマチック液
晶配向が固定化された高分子フィルムを作製した。さら
に、外側にあるガラス基板2枚も注意深く剥離した。得
られた偏光分離素子は、図4に示した位置関係を保って
いるものである。このようにして得られた本発明の偏光
分離素子を偏光顕微鏡を用いて観察したところ、可視光
全域にわたって、入射光線を4つにほぼ均等な強度で分
割することを確かめることができた。得られた本発明の
偏光分離素子の総厚みは、約180μmであった。
2. Height of gap between two polymer birefringent plates
Preparation of molecular optical rotator Epoxy adhesive "Araldite" on the polymer film surface of the polymer birefringent plate supported on the glass substrate (Ciba Geigy)
Was applied in a thickness of 5 μm and heated at 80 ° C. for 20 hours to cure. Next, as shown in FIG. 11, the cured film surface was rubbed in parallel with the slow axis direction of the polymer birefringent plate.
(a), a polymer birefringent plate (b) rubbed to form an angle of 45 degrees with respect to the slow axis direction was prepared. The two types of polymer birefringent plates were made to face each other so that the cured film surface was inside and kept parallel to each other to fabricate a cell. At this time, the gap between the two substrates was set to 6.2 μm, and the rubbing direction was set to form an angle of 45 degrees. Example 1
The polymerizable liquid crystal composition (A ′) prepared and filtered in (1) was injected at room temperature. After the injection, the cell was left in a dark place at room temperature for 1 hour, and then the cell was observed with a polarization microscope. As a result, it was confirmed that a twisted nematic liquid crystal alignment state of 45 degrees was obtained and there was no alignment defect. This cell was irradiated with 40 mW / cm 2 of ultraviolet light for 12 seconds to cure the polymerizable liquid crystal composition, whereby the twisted nematic liquid crystal alignment of 45 degrees was fixed in the gap between the two polymer birefringent plates. A polymer film was prepared. Furthermore, the two outer glass substrates were carefully peeled off. The obtained polarization separation element maintains the positional relationship shown in FIG. When the polarization separation element of the present invention thus obtained was observed with a polarization microscope, it was confirmed that the incident light beam was divided into four with almost equal intensity over the entire visible light region. The total thickness of the obtained polarization separation element of the present invention was about 180 μm.

【0036】[0036]

【発明の効果】本発明の旋光子を有する偏光分離素子
は、薄膜化可能で、色づきがなく、かつ出射強度の波長
依存性を低減可能である。従って、光学ローパスフィル
ター等への応用に適している。
The polarization splitting element having an optical rotator of the present invention can be made into a thin film, has no coloring, and can reduce the wavelength dependence of the emission intensity. Therefore, it is suitable for application to optical low-pass filters and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 2枚の水晶複屈折板と1枚の1/4波長板を用い
た偏光分離素子の配置例
[Fig.1] Example of arrangement of polarization separation element using two quartz birefringent plates and one 1/4 wavelength plate

【図2】 水晶製1/4波長板を使用した場合の水晶板(b)
からの出射光強度(常光、異常光)の波長依存性
[Fig. 2] Crystal plate (b) when using a quarter-wave plate made of crystal
Dependence of the intensity of light emitted from the laser (ordinary ray, extraordinary ray)

【図3】 45度のねじれネマチック液晶配向状態の模式
[Fig. 3] Schematic diagram of 45-degree twisted nematic liquid crystal alignment state

【図4】 2枚の複屈折板と1枚の45度のねじれネマチッ
ク液晶配向を固定化した高分子フィルムをもちいた偏光
分離素子の配置例
[Fig. 4] Layout example of polarization separation element using two birefringent plates and one polymer film with a twisted nematic liquid crystal alignment of 45 degrees fixed.

【図5】 45度のねじれネマチック液晶配向を固定化し
た高分子フィルムからの偏光の振動方向が45度回転した
出射光強度と2Δnd/λの関係
[Fig. 5] Relation between 2Δnd / λ and intensity of outgoing light when the vibration direction of polarized light from a polymer film in which a twisted nematic liquid crystal orientation of 45 ° is fixed is rotated by 45 °

【図6】 図5のグラフを計算するのに用いた配置FIG. 6 The arrangement used to calculate the graph of FIG.

【図7】 45度のねじれネマチック液晶配向を固定化し
た高分子フィルムを用いた場合の複屈折板(b)からの出
射光強度(常光、異常光)の波長依存性(波長589nmにおけ
るΔndを0.56μmに設定)
[Fig. 7] Wavelength dependence of the intensity of light emitted from the birefringent plate (b) (ordinary light, extraordinary light) when a polymer film with a twisted nematic liquid crystal orientation of 45 degrees is used (Δnd at 589 nm wavelength) (Set to 0.56 μm)

【図8】 45度のねじれネマチック液晶配向を固定化し
た高分子フィルムを用いた場合の複屈折板(b)からの出
射光強度(常光、異常光)の波長依存性(波長589nmにおけ
るΔndを1.18μmに設定)
FIG. 8 shows the wavelength dependence of the intensity of light emitted from the birefringent plate (b) (ordinary ray, extraordinary ray) (Δnd at a wavelength of 589 nm when a polymer film with a twisted nematic liquid crystal alignment of 45 degrees is used). (Set to 1.18 μm)

【図9】 45度のねじれネマチック液晶配向を固定化し
た高分子フィルムを用いた場合の複屈折板(b)からの出
射光強度(常光、異常光)の波長依存性(波長589nmにおけ
るΔndを1.77μmに設定)
FIG. 9 shows the wavelength dependence of the intensity of light emitted from the birefringent plate (b) (ordinary ray, extraordinary ray) (Δnd at a wavelength of 589 nm when a polymer film with a twisted nematic liquid crystal alignment of 45 degrees is used) (Set to 1.77 μm)

【図10】 重合性液晶材料を用いて偏光分離機能を有
する複屈折板を作製する際の磁場印加の配置図
FIG. 10 is a layout view of applying a magnetic field when a birefringent plate having a polarization separation function is manufactured using a polymerizable liquid crystal material.

【図11】 高分子複屈折板上に形成した硬化膜面のラ
ビング方向
FIG. 11: Rubbing direction of cured film surface formed on polymer birefringent plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 33:14 C08L 33:14 Fターム(参考) 2H049 BA05 BA06 BA07 BA08 BA42 BB03 BC04 BC21 2H090 HB07Y HC14 HD06 HD11 KA05 LA09 MA04 MB07 MB10 MB12 MB13 2H091 FA01X FA08X FA08Z FA12X FA12Z FB02 FC07 FC22 FD08 HA07 KA02 LA03 LA16 LA21 2H099 BA17 CA05 CA11 4F071 AA33 AE06 AF31 AF35 BA02 BB02 BC01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C08L 33:14 C08L 33:14 F term (reference) 2H049 BA05 BA06 BA07 BA08 BA42 BB03 BC04 BC21 2H090 HB07Y HC14 HD06 HD11 KA05 LA09 MA04 MB07 MB10 MB12 MB13 2H091 FA01X FA08X FA08Z FA12X FA12Z FB02 FC07 FC22 FD08 HA07 KA02 LA03 LA16 LA21 2H099 BA17 CA05 CA11 4F071 AA33 AE06 AF31 AF35 BA02 BB02 BC01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 2枚の偏光分離機能を有する複屈折板の
間に、直線偏光の振動方向を45度回転する旋光子を設け
た構造を有する偏光分離素子。
1. A polarization separation element having a structure in which an optical rotator that rotates the vibration direction of linearly polarized light by 45 degrees is provided between two birefringent plates having a polarization separation function.
【請求項2】 入射光を一枚の前記複屈折板で常光と異
常光に分離し、前記旋光子で直線偏光の振動方向を45度
回転させ、さらにもう一枚の前記複屈折板により、2つ
の常光と2つの異常光に分離する請求項1記載の偏光分離
素子。
2. The incident light is separated into ordinary light and extraordinary light by the one birefringent plate, the vibration direction of linearly polarized light is rotated by 45 degrees by the optical rotator, and the birefringent plate is further provided. 2. The polarization separation element according to claim 1, which separates into two ordinary rays and two extraordinary rays.
【請求項3】 前記旋光子が45度のねじれネマチック液
晶配向を固定化した高分子フィルムであって、前記複屈
折板により2つに分離された一方の偏光の振動方向に対
して、前記高分子フィルムの入射面の液晶配向が水平も
しくは垂直であり、2枚の前記複屈折板の光軸が互いに
直交した請求項1又は2記載の偏光分離素子。
3. The polymer film in which the optical rotator has a twisted nematic liquid crystal orientation of 45 degrees fixed, and the polarization direction is higher than the polarization direction with respect to one polarization direction separated by the birefringent plate. 3. The polarization separation element according to claim 1, wherein the liquid crystal alignment on the incident surface of the molecular film is horizontal or vertical, and the optical axes of the two birefringent plates are orthogonal to each other.
【請求項4】 波長550nmにおいて、高分子フィルムの
複屈折率Δnと厚みd(μm)の積が0.475〜0.57、1.00〜1.
20、1.50〜1.80(μm)である請求項3記載の偏光分離素
子。
4. The product of the birefringence Δn of the polymer film and the thickness d (μm) at a wavelength of 550 nm is 0.475 to 0.57, 1.00 to 1.
The polarization separation element according to claim 3, wherein the polarization separation element has a thickness of 20, 1.50 to 1.80 (μm).
【請求項5】 高分子フィルムのヘイズが1.0%以下であ
る請求項3もしくは4記載の偏光分離素子。
5. The polarization separation element according to claim 3, wherein the polymer film has a haze of 1.0% or less.
【請求項6】 高分子フィルムが、高分子液晶材料が液
晶を呈する温度まで昇温させた状態で45度のねじれネマ
チック配向を達成し、その後、急冷することによって45
度のねじれネマチック配向を固定化したものである請求
項3〜5いずれかに記載の偏光分離素子。
6. The polymer film achieves a twisted nematic orientation of 45 degrees in a state in which the polymer liquid crystal material is heated to a temperature at which the polymer liquid crystal exhibits liquid crystal, and then rapidly cooled to 45 degrees.
6. The polarized light separating element according to claim 3, wherein the twisted nematic orientation is fixed.
【請求項7】 高分子フィルムが、重合性液晶材料を45
度のねじれネマチック配向させ、その状態で紫外線もし
くは電子線照射により配向を固定化して得られた高分子
である請求項3〜5いずれかに記載の偏光分離素子。
7. The polymer film comprises a polymerizable liquid crystal material.
6. The polarization separation element according to claim 3, wherein the polarization separation element is a polymer obtained by aligning the orientation with a twisted nematic orientation and fixing the orientation in that state by irradiating an ultraviolet ray or an electron beam.
【請求項8】 偏光分離素子機能を有する複屈折板が、
高分子フィルムである請求項1〜7いずれかに記載の偏光
分離素子。
8. A birefringent plate having a polarization separation element function,
8. The polarization separation element according to claim 1, which is a polymer film.
【請求項9】 ローパスフィルターとして使用する請求
項1〜8のいずれかに記載の偏光分離素子。
9. The polarization separation element according to claim 1, which is used as a low-pass filter.
JP2002088269A 2002-03-27 2002-03-27 Polarization separation element Expired - Fee Related JP4304566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088269A JP4304566B2 (en) 2002-03-27 2002-03-27 Polarization separation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088269A JP4304566B2 (en) 2002-03-27 2002-03-27 Polarization separation element

Publications (2)

Publication Number Publication Date
JP2003287620A true JP2003287620A (en) 2003-10-10
JP4304566B2 JP4304566B2 (en) 2009-07-29

Family

ID=29234182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088269A Expired - Fee Related JP4304566B2 (en) 2002-03-27 2002-03-27 Polarization separation element

Country Status (1)

Country Link
JP (1) JP4304566B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171370A (en) * 2005-12-20 2007-07-05 Canon Inc Optical element and imaging apparatus having same
US7344762B2 (en) * 2002-11-02 2008-03-18 Merck Patent Gmbh Printable liquid crystal material
JP2010039217A (en) * 2008-08-05 2010-02-18 Nitto Denko Corp Liquid crystal panel and liquid crystal display device
WO2014084147A1 (en) * 2012-11-29 2014-06-05 富士フイルム株式会社 Composition, infrared pass filter and method for fabricating same, and infrared sensor
JPWO2012090785A1 (en) * 2010-12-27 2014-06-05 Dic株式会社 Birefringent lens material for stereoscopic image display device and method of manufacturing birefringent lens for stereoscopic image display device
JP2016045232A (en) * 2014-08-20 2016-04-04 大日本印刷株式会社 Optical low-pass filter and imaging device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344762B2 (en) * 2002-11-02 2008-03-18 Merck Patent Gmbh Printable liquid crystal material
JP2007171370A (en) * 2005-12-20 2007-07-05 Canon Inc Optical element and imaging apparatus having same
JP2010039217A (en) * 2008-08-05 2010-02-18 Nitto Denko Corp Liquid crystal panel and liquid crystal display device
JPWO2012090785A1 (en) * 2010-12-27 2014-06-05 Dic株式会社 Birefringent lens material for stereoscopic image display device and method of manufacturing birefringent lens for stereoscopic image display device
JP5553184B2 (en) * 2010-12-27 2014-07-16 Dic株式会社 Birefringent lens material for stereoscopic image display device and method of manufacturing birefringent lens for stereoscopic image display device
TWI500744B (en) * 2010-12-27 2015-09-21 Dainippon Ink & Chemicals Birefringent lens material used in three-dimensional image display device and method for producing birefringent lens used in three-dimensional image display device
US9599829B2 (en) 2010-12-27 2017-03-21 Dic Corporation Birefringent lens material for stereoscopic image display device and method for producing birefringent lens for stereoscopic image display device
US9927625B2 (en) 2010-12-27 2018-03-27 Dic Corporation Birefringent lens material for stereoscopic image display device and method for producing birefringent lens for stereoscopic image display device
WO2014084147A1 (en) * 2012-11-29 2014-06-05 富士フイルム株式会社 Composition, infrared pass filter and method for fabricating same, and infrared sensor
US10025011B2 (en) 2012-11-29 2018-07-17 Fujifilm Corporation Composition, infrared transmission filter and method for manufacturing the same, and infrared sensor
JP2016045232A (en) * 2014-08-20 2016-04-04 大日本印刷株式会社 Optical low-pass filter and imaging device

Also Published As

Publication number Publication date
JP4304566B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4321761B2 (en) Biaxial film
JP4847673B2 (en) Liquid crystal display using compensation plates containing positive and negative birefringence retardation films
TWI457420B (en) Polymerised liquid crystal film with retardation or orientation pattern
US8134659B2 (en) Elliptical polarizer and vertical alignment type liquid crystal display device using the same
CN111902749B (en) Method for producing cholesteric liquid crystal layer, liquid crystal composition, cured product, optically anisotropic body, and reflective layer
EP2083290A1 (en) Elliptic polarizing plate and vertically aligned liquid crystal display using the same
US20010022998A1 (en) Anisotropic polymer layer
EP3770657A1 (en) Cholesteric liquid crystal layer, laminated body, optically anisotropic body, reflective film, production method for cholesteric liquid crystal layer; forgery prevention medium, and determination method
JP2008505369A (en) Biaxial films with periodically different local birefringence
JP4681913B2 (en) Optical laminate, polarizing plate and liquid crystal display device
JP2007297606A (en) Ultraviolet-curable composition, retardation film and method for producing retardation film
KR101360715B1 (en) Film, process for producing the film, and use of the film
JP2008129175A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
JP2008009403A (en) Elliptical polarizing plate, method for production of the same, and liquid crystal display device
JP2004524568A (en) Combination of twisted A plate and optical film including polarizer
JP2014174468A (en) Circularly polarizing layer, laminate of circularly polarizing layer, spectacles, and 3d image appreciation system
JP2008209872A (en) Elliptically polarizing plate for vertically aligned liquid crystal display device and vertically aligned liquid crystal display device using the same
JP2009294521A (en) Retardation film, method for manufacturing retardation film, sheet polarizer and liquid crystal display device
JP2007114739A (en) Optical anisotropic polymer film, polarizing film, manufacturing method thereof and application use thereof
JP4304566B2 (en) Polarization separation element
JP5055864B2 (en) Polymerizable liquid crystal composition and optically anisotropic film
JP5202780B2 (en) Optical compensator and liquid crystal display
JP2008129176A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
JP2002296415A (en) Phase contrast film and circularly polarizing plate
WO2006064950A1 (en) Preparation of an optical compensation sheet using photosensitive compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4304566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees