JP2003287538A - Dna chip and dna testing method - Google Patents

Dna chip and dna testing method

Info

Publication number
JP2003287538A
JP2003287538A JP2002285845A JP2002285845A JP2003287538A JP 2003287538 A JP2003287538 A JP 2003287538A JP 2002285845 A JP2002285845 A JP 2002285845A JP 2002285845 A JP2002285845 A JP 2002285845A JP 2003287538 A JP2003287538 A JP 2003287538A
Authority
JP
Japan
Prior art keywords
dna
chip
islands
fixed
quartz substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002285845A
Other languages
Japanese (ja)
Other versions
JP4094922B2 (en
Inventor
Shigeyuki Miyazaki
茂行 宮崎
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2002285845A priority Critical patent/JP4094922B2/en
Publication of JP2003287538A publication Critical patent/JP2003287538A/en
Application granted granted Critical
Publication of JP4094922B2 publication Critical patent/JP4094922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily test DNA. <P>SOLUTION: A plurality of protrusion parts 102 are formed on a quartz substrate 101, and a desired DNA fragment 104 is fixed to each protrusion part 102. The quartz substrate 101 at a temperature of such a degree as to dissolve the double helix structure of the DNA is immersed in a solution containing a specimen DNA for a predetermined time. Then the temperature of the solution is lowered into a state in which the DNA forms a helix structure, and the quartz substrate is pulled up out of the solution, cleaned by pure water, and dried. The resonance frequency of each protrusion part 102 is measured before and after the immersion and the drying. By detecting the resonance frequency difference of each protrusion part 102 before and after the immersion and the drying, it is possible to detect the same base sequence as the known DNA fragment. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特定の塩基配列を
有するDNAを検出するDNAチップを用いたDNA検
査方法に関するものである。
TECHNICAL FIELD The present invention relates to a DNA inspection method using a DNA chip for detecting DNA having a specific base sequence.

【0002】[0002]

【従来の技術】近年、人の遺伝子構造がほぼ解明され、
医療などの応用のために解明された遺伝子の持つ機能の
調査,研究が本格化してきている。この遺伝子の機能解
明のために、DNAチップが用いられている。DNA
は、A(アデニン),T(チミン),C(シトシン),
G(グアニン)の4つの塩基により形成された2本の分
子鎖が、螺旋状に結合して形成されたものである。4つ
の塩基のうち、結合可能な組み合わせは、AとT、Cと
Gである。
2. Description of the Related Art In recent years, the genetic structure of humans has been elucidated,
Research and research into the functions of genes that have been elucidated for medical and other applications are in full swing. A DNA chip is used to elucidate the function of this gene. DNA
Is A (adenine), T (thymine), C (cytosine),
Two molecular chains formed by the four bases of G (guanine) are formed by helically binding. Among the four bases, combinations capable of binding are A and T and C and G.

【0003】DNAチップは、ガラスやシリコンなどの
基板上に、高密度にDNA分子の断片を固定したもので
ある。例えば、検体となるDNAを被検者の血液から抽
出し、抽出した溶液中のDNAを1本鎖に分解した後、
抽出した溶液をDNAチップの表面に滴下し、DNAチ
ップ上のDNA断片との結合を調べて検体の種類を判定
する。
A DNA chip is one in which fragments of DNA molecules are immobilized at high density on a substrate such as glass or silicon. For example, a sample DNA is extracted from the blood of a subject, and the DNA in the extracted solution is decomposed into single strands,
The extracted solution is dropped on the surface of the DNA chip, and the binding to the DNA fragment on the DNA chip is examined to determine the type of sample.

【0004】現在、開発され一部実用化されているDN
Aチップを用いた検出方式として、レーザを照射して蛍
光を測定する蛍光検出方式がある。この方式では、検体
となるDNAに予め蛍光色素で標識をつけ、DNAチッ
プ上のDNA断片に結合した検体DNAの有無を、レー
ザ光照射による蛍光色素の発光により検出している(非
特許文献1参照)。
Currently developed and partially put into practical use
As a detection method using the A chip, there is a fluorescence detection method in which a laser is irradiated to measure fluorescence. In this method, a sample DNA is labeled with a fluorescent dye in advance, and the presence or absence of the sample DNA bound to the DNA fragment on the DNA chip is detected by the emission of the fluorescent dye by laser light irradiation (Non-Patent Document 1). reference).

【0005】[0005]

【非特許文献1】原田 学,佐藤 高遠,米田 英克、
「DNAチップの現状と展望」、応用物理、第69巻、
第12号(2000)
[Non-Patent Document 1] Manabu Harada, Takatoshi Sato, Hidekatsu Yoneda,
"Current status and prospects of DNA chips", Applied Physics, Volume 69,
No. 12 (2000)

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
たような、従来の技術では、レーザ照射装置など大がか
りな装置が必要となり、システムが高価なものとなる。
また、定量的に検出することが容易ではなかった。本発
明は、以上のような問題点を解消するためになされたも
のであり、容易にDNAの検査ができるようにすること
を目的とする。
However, in the conventional technique as described above, a large-scale device such as a laser irradiation device is required, and the system becomes expensive.
Moreover, it was not easy to detect quantitatively. The present invention has been made to solve the above problems, and an object of the present invention is to enable easy DNA inspection.

【0007】[0007]

【課題を解決するための手段】本発明のDNAチップ
は、所定の間隔で各々分離した複数の例えば凸部や凹部
からなる島部を備えた水晶基板と、生化学物質のDNA
に特有な塩基配列から構成されて各々の島部の上に固定
された複数のDNA断片とから構成されたものである。
このDNAチップでは、各島部における共振周波数の変
化により、各島部上に固定されているDNA断片に結合
したDNAの有無を検出する。
The DNA chip of the present invention comprises a quartz substrate having a plurality of islands, each of which is composed of, for example, a convex portion and a concave portion, which are separated at a predetermined interval, and a DNA of a biochemical substance.
It is composed of a plurality of DNA fragments which are composed of a unique nucleotide sequence and are fixed on each island.
In this DNA chip, the presence or absence of DNA bound to the DNA fragment fixed on each island is detected by the change in resonance frequency at each island.

【0008】上記DNAチップにおいて、島部上に金薄
膜を形成し、DNA断片は、一端をSH基に置換し、こ
のSH基によりDNA断片を金薄膜に固定すればよい。
また、島部は、水晶基板の表面を親水性にする親水処理
を施した領域であってもよい。また、上記DNAチップ
において、複数の島部上に、各々異なる塩基配列のDN
A断片が固定されているようにしてもよい。
In the above DNA chip, a gold thin film may be formed on the island portion, one end of the DNA fragment may be replaced with an SH group, and the DNA fragment may be fixed to the gold thin film by this SH group.
Further, the island portion may be a region that has been subjected to a hydrophilic treatment to make the surface of the quartz substrate hydrophilic. In addition, in the above-mentioned DNA chip, DNs having different base sequences are provided on a plurality of islands.
The A fragment may be fixed.

【0009】また、本発明のDNA検査方法は、所定の
間隔で各々分離した複数の凸部や凹部などからなる島部
を備えた水晶基板を用意し、各々の島部上に生化学物質
のDNAに特有な塩基配列から構成された所望のDNA
断片を固定し、DNA断片が固定された各々島部の共振
周波数を測定して島部各々の第1の測定周波数とし、島
部上に固定されたDNA断片を、検体となるDNAを含
んだ溶液中に所定時間接触させた後で乾燥し、各々の島
部の共振周波数を測定して島部各々の第2の測定周波数
とし、第2の測定周波数と第1の測定周波数との差によ
り、検体となるDNAの中よりDNA断片と同じ塩基配
列を検出するようにしたものである。このDNA検査方
法によれば、各島部における第1の測定周波数と第2の
測定周波数との差により、各島部上に固定されているD
NA断片に結合したDNAの有無を検出する。
Further, in the DNA testing method of the present invention, a quartz substrate having an island portion composed of a plurality of convex portions and concave portions separated at a predetermined interval is prepared, and a biochemical substance is placed on each island portion. Desired DNA composed of a nucleotide sequence unique to DNA
The fragment was fixed, and the resonance frequency of each island where the DNA fragment was fixed was measured as the first measurement frequency of each island, and the DNA fragment fixed on the island contained the sample DNA. After being in contact with the solution for a predetermined time, it is dried, and the resonance frequency of each island is measured to obtain the second measurement frequency of each island, which is determined by the difference between the second measurement frequency and the first measurement frequency. The same base sequence as the DNA fragment is detected from the sample DNA. According to this DNA inspection method, D fixed on each island part is determined by the difference between the first measurement frequency and the second measurement frequency on each island part.
The presence or absence of DNA bound to the NA fragment is detected.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を参照して説明する。図1は、本発明の実施の形態
におけるDNAチップの構成を示す断面図(a)と平面
図(b)である。このDNAチップは、ATカットの水
晶基板101上に、直径1mm程度,高さ10μm程度
の複数の凸部(島部)102が、2mm間隔でマトリク
ス状に形成され、これら複数の凸部102上に形成され
た金薄膜103の表面に、所望とする複数のDNA断片
104が各々固定されているものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view (a) and a plan view (b) showing a configuration of a DNA chip according to an embodiment of the present invention. In this DNA chip, a plurality of convex portions (islands) 102 having a diameter of about 1 mm and a height of about 10 μm are formed in a matrix form at intervals of 2 mm on an AT-cut quartz crystal substrate 101. A plurality of desired DNA fragments 104 are immobilized on the surface of the gold thin film 103 formed in the above.

【0011】凸部102の上へのDNA断片104の固
定は、つぎに示すようにする。まず、所望とするDNA
断片の一端がSH基で置換された状態とする。次いで、
SH基で一端が置換されたDNA断片が分散している溶
媒中に、金薄膜103が各凸部102の表面に形成され
た水晶基板101を浸漬する。このことにより、金薄膜
103の上にSH基が引き寄せられて固着する。この結
果、金薄膜103の表面にSH基を介してDNA断片1
04が固定された状態となる。この後、水晶基板101
は、純水で洗浄してから乾燥すればよい。
The DNA fragment 104 is fixed on the convex portion 102 in the following manner. First, the desired DNA
It is assumed that one end of the fragment is replaced with the SH group. Then
The quartz substrate 101 on which the gold thin film 103 is formed on the surface of each convex portion 102 is immersed in a solvent in which a DNA fragment whose one end is replaced with an SH group is dispersed. As a result, the SH group is attracted and fixed on the gold thin film 103. As a result, the DNA fragment 1 is formed on the surface of the gold thin film 103 via the SH group.
04 is fixed. After this, the crystal substrate 101
May be washed with pure water and then dried.

【0012】以下に、この実施の形態におけるDNA検
査方法について説明する。まず、DNA断片104が固
定されていない状態の水晶基板101の各凸部102の
共振周波数(F0:基本振動数)を測定する。つぎに、
前述した方法により、所望のDNA断片104を各々異
なる凸部102上に固定し、水晶基板101を純水で洗
浄して乾燥した後、複数のDNA断片104が固定され
ている領域(島部)である各凸部102の共振周波数
(F1:第1の測定周波数)を測定する。
The DNA inspection method according to this embodiment will be described below. First, the resonance frequency (F0: fundamental frequency) of each convex portion 102 of the quartz substrate 101 in which the DNA fragment 104 is not fixed is measured. Next,
According to the method described above, desired DNA fragments 104 are fixed on different convex portions 102 respectively, and the quartz substrate 101 is washed with pure water and dried, and then a plurality of DNA fragments 104 are fixed (islands). The resonance frequency (F1: first measurement frequency) of each convex portion 102 is measured.

【0013】ここで、各凸部102上においてDNA断
片104が形成される領域の面積A、凸部102部分の
厚さt、水晶の密度ρ、共振周波数の変化ΔF、上記面
積Aの領域の上における質量変化Δm、とすると、これ
らの関係は、「−ΔF=(F0・Δm)/(ρ・A・
t)」で示される。したがって、各凸部102に固定さ
れたDNA断片104によって、質量変化Δm1が生
じ、共振周波数の変化(ΔF01=F0−F1)として検出
することができる。
Here, the area A of the region where the DNA fragment 104 is formed on each convex portion 102, the thickness t of the convex portion 102 portion, the density ρ of the crystal, the change ΔF of the resonance frequency, and the area of the above area A Assuming that the mass change Δm above, the relationship between them is “−ΔF = (F0 · Δm) / (ρ · A ·
t) ”. Therefore, the DNA fragment 104 fixed to each convex portion 102 causes a mass change Δm1, which can be detected as a change in resonance frequency (ΔF01 = F0−F1).

【0014】つぎに、DNAの2重螺旋構造が解ける程
度の温度とした状態で、検体となるDNAを含んだ溶液
中にDNA断片104が固定された水晶基板101を所
定時間浸漬するなどにより、DNA断片104部分を上
記溶液に接触させる。この後、溶液温度を低下させてD
NAが螺旋構造をとる状態としてから水晶基板を溶液中
より引き上げ、これを純水で洗浄して乾燥し、各凸部1
02の共振周波数(F2:第2の測定周波数)を測定す
る。
Next, by immersing the quartz substrate 101, on which the DNA fragment 104 is fixed, in a solution containing the sample DNA, for a predetermined time, at a temperature at which the double helix structure of the DNA can be unraveled. A portion of the DNA fragment 104 is brought into contact with the above solution. After this, the solution temperature is lowered and D
After the NA has a spiral structure, the quartz substrate is pulled out of the solution, washed with pure water and dried to form each convex portion 1
The resonance frequency of 02 (F2: second measurement frequency) is measured.

【0015】このとき、検体となるDNAの塩基配列の
中に、DNA断片104と同じ塩基配列が存在すると、
前述した水晶基板101の溶液に対する浸漬により、同
じ塩基配列が存在するDNAはDNA断片104に結合
する。DNA断片104に同じ塩基配列が存在するDN
Aが結合した場合、このDNA断片104が固定されて
いる凸部102上では、質量が増加(変化)したことに
なる。すなわち、検体となるDNAと同じ塩基配列を有
するDNA断片104が固定された凸部102における
質量変化(Δm2)は、固定されたDNA断片104お
よびこのDNA断片104に結合したDNAによるもの
である。
At this time, if the same base sequence as the DNA fragment 104 exists in the base sequence of the sample DNA,
By immersing the quartz substrate 101 in the solution described above, DNAs having the same base sequence are bound to the DNA fragments 104. DN in which the same nucleotide sequence exists in the DNA fragment 104
When A is bound, the mass increases (changes) on the convex portion 102 to which the DNA fragment 104 is fixed. That is, the mass change (Δm 2) in the convex portion 102 to which the DNA fragment 104 having the same base sequence as the sample DNA is fixed is due to the fixed DNA fragment 104 and the DNA bound to this DNA fragment 104.

【0016】したがって、水晶基板101を上記DNA
を含んだ溶液に浸漬する前後で、F1とF2との差があれ
ば、質量変化(Δm1,Δm2)に差があることになる。
よって、F1とF2とに差が発生した凸部102上におい
て、先に固定してあったDNA断片104に検体中のD
NAが結合することによる質量の変化(増加)が発生し
たことが検出できる。すなわち、DNA断片同士の結合
による質量増加が、凸部102毎の共振周波数の測定に
よりF1とF2との差として検出されるので、どの凸部1
02にF1とF2との差が生じたかを調べることにより、
検体となるDNAの中よりDNA断片104と同じ塩基
配列を検出することが可能となる。
Therefore, the crystal substrate 101 is replaced with the DNA described above.
If there is a difference between F1 and F2 before and after the immersion in the solution containing, there is a difference in the mass change (Δm1, Δm2).
Therefore, on the convex portion 102 where the difference between F1 and F2 occurs, the D fragment in the sample is fixed to the DNA fragment 104 previously fixed.
It can be detected that a change in mass (increase) due to NA binding occurs. That is, since the increase in mass due to the binding of DNA fragments to each other is detected as the difference between F1 and F2 by measuring the resonance frequency of each convex portion 102, which convex portion 1
By checking whether the difference between F1 and F2 occurred in 02,
It is possible to detect the same base sequence as the DNA fragment 104 from the sample DNA.

【0017】このように、基本振動数F0をもとに、F1
とF2との差から、水晶基板101を上記DNAを含ん
だ溶液に浸漬する前後における各々の凸部102上の質
量変化を検出し、各々の凸部102におけるF1とF2と
の差(質量変化)の有無により検体となるDNAの中よ
りDNA断片104と同じ塩基配列を検出する。また、
凸部102上のDNA断片104に結合した検体のDN
Aの質量は、Δm=−(F2−F1)・(ρ・A・t)/
F0により求めることができる。また、F0とF1の差か
ら、各々の凸部102上に固定されているDNA断片1
04の質量も得られるので、1個のDNA断片の質量が
判明していれば、凸部102上に固定されているDNA
断片104の数も求めることができる。
Thus, based on the fundamental frequency F0, F1
From the difference between F1 and F2, the change in mass on each convex portion 102 before and after the crystal substrate 101 is immersed in the solution containing the above DNA is detected, and the difference between F1 and F2 at each convex portion 102 (change in mass) ), The same base sequence as the DNA fragment 104 is detected from the sample DNA. Also,
DN of sample bound to DNA fragment 104 on convex portion 102
The mass of A is Δm =-(F2-F1) · (ρ · A · t) /
It can be obtained by F0. Further, from the difference between F0 and F1, the DNA fragment 1 fixed on each convex portion 102
Since the mass of 04 is also obtained, if the mass of one DNA fragment is known, the DNA fixed on the convex portion 102 can be obtained.
The number of fragments 104 can also be determined.

【0018】ここで、凸部102の共振周波数の測定に
ついて簡単に説明する。図2に示すように、下部電極2
01上に水晶基板101を載置し、水晶基板101上に
上部電極202が複数設けられた上部電極固定絶縁基板
203を対向配置し、上部電極202の各々が、各凸部
102上に配置された状態とする。なお、下部電極20
1は、水晶基板101の裏面全域にわたる大きさに形成
され、上部電極202は、凸部102と同一の間隔で、
上部電極固定絶縁基板203にマトリクス状に配置され
ている。
Here, the measurement of the resonance frequency of the convex portion 102 will be briefly described. As shown in FIG. 2, the lower electrode 2
01, the crystal substrate 101 is placed on the crystal substrate 101, and the upper electrode fixing insulating substrate 203 having a plurality of upper electrodes 202 provided on the crystal substrate 101 is opposed to each other. Each of the upper electrodes 202 is disposed on each convex portion 102. It will be in a state of The lower electrode 20
1 is formed to have a size over the entire back surface of the quartz substrate 101, and the upper electrodes 202 are arranged at the same intervals as the convex portions 102.
The upper electrode fixed insulating substrate 203 is arranged in a matrix.

【0019】以上に説明したように下部電極201およ
び上部電極202を配置したら、測定対象の凸部102
上に配置されている上部電極202と下部電極201と
の間に、発振回路204より所定の周波数の信号を供給
し、周波数カウンタ205により共振周波数を計測す
る。
When the lower electrode 201 and the upper electrode 202 are arranged as described above, the convex portion 102 to be measured is placed.
A signal having a predetermined frequency is supplied from the oscillation circuit 204 between the upper electrode 202 and the lower electrode 201 arranged above, and the resonance frequency is measured by the frequency counter 205.

【0020】また、図3に示すように、各上部電極20
2より各々配線を取り出し、切り替え器301により適
宜切り替えながら、各凸部102の共振周波数を逐次測
定するようにしてもよい。また、各々の凸部102上
に、各々異なる塩基配列のDNA断片を固定し、複数種
類の検体が同時に測定できるようにしてもよい。
Further, as shown in FIG. 3, each upper electrode 20
It is also possible to take out each wiring from No. 2 and sequentially measure the resonance frequency of each convex portion 102 while appropriately switching by the switch 301. Further, DNA fragments having different base sequences may be fixed on each convex portion 102 so that a plurality of types of samples can be simultaneously measured.

【0021】なお、上述した実施の形態では、水晶基板
上に、所定の間隔で各々分離した複数の凸部を備えるよ
うにしたが、これに限るものではない。例えば、図4に
示すように、水晶基板401の上に所定の間隔で各々分
離した複数の凹部402を備え、各々の凹部402の底
面上に金薄膜403を形成し、金薄膜403の表面にD
NA断片104を固定するようにしてもよい。
In the above-described embodiment, the quartz substrate is provided with a plurality of convex portions separated by a predetermined distance, but the present invention is not limited to this. For example, as shown in FIG. 4, a plurality of recesses 402 are provided on a quartz substrate 401, each recess 402 being separated by a predetermined distance, and a gold thin film 403 is formed on the bottom surface of each recess 402. D
The NA fragment 104 may be fixed.

【0022】ところで、上述した実施の形態では、水晶
基板に金属膜を形成してこの上にDNA断片を固定する
ようにしたが、図5に示すように、水晶基板に直接DN
A断片を固定してもよい。図5に示すDNAチップは、
ATカットの水晶基板101上に、直径1mm程度の円
形領域の親水処理部502が2mm間隔でマトリクス状
に形成され、これら複数の親水処理部502の上に、所
望とする複数のDNA断片104が各々固定されている
ものである。
By the way, in the above-mentioned embodiment, the metal film is formed on the crystal substrate and the DNA fragments are fixed on the metal film. However, as shown in FIG.
The A fragment may be fixed. The DNA chip shown in FIG.
On the AT-cut quartz crystal substrate 101, hydrophilic regions 502 having a circular area with a diameter of about 1 mm are formed in a matrix at intervals of 2 mm, and a plurality of desired DNA fragments 104 are formed on the plurality of hydrophilic regions 502. Each is fixed.

【0023】親水処理部502上へのDNA断片104
の固定は、親水処理がされた部分とDNAは容易に結合
することから、つぎに示すようにする。所望とするDN
A断片が分散している溶媒中に、親水処理部502が形
成された水晶基板101を浸漬する。このことにより、
親水処理部502の上にDNA断片104が引き寄せら
れて固着する。この結果、親水処理部502の表面にD
NA断片104が固定された状態となる。この後、水晶
基板101は、純水で洗浄してから乾燥すればよい。
DNA fragment 104 on hydrophilic treatment section 502
The immobilization is carried out as follows, because the hydrophilically treated portion and the DNA are easily bound to each other. Desired DN
The quartz substrate 101 on which the hydrophilic treatment portion 502 is formed is immersed in the solvent in which the A fragment is dispersed. By this,
The DNA fragment 104 is attracted and fixed on the hydrophilic treatment portion 502. As a result, D is formed on the surface of the hydrophilic treatment portion 502.
The NA fragment 104 is fixed. After that, the quartz substrate 101 may be washed with pure water and then dried.

【0024】図5のDNAチップにおいても、つぎに示
すことにより、親水処理部502における水晶基板10
1の共振周波数を測定することができる。まず、下部電
極201上に水晶基板101を載置し、水晶基板101
上に上部電極202が複数設けられた上部電極固定絶縁
基板203を対向配置し、上部電極202の各々が、所
定の間隔で各親水処理部502上に配置された状態とす
る。なお、下部電極201は、水晶基板101の裏面全
域にわたる大きさに形成され、上部電極202は、親水
処理部502と同一の間隔で、上部電極固定絶縁基板2
03にマトリクス状に配置されている。
Also in the DNA chip of FIG. 5, the quartz substrate 10 in the hydrophilic treatment portion 502 is shown as follows.
A resonant frequency of 1 can be measured. First, the quartz substrate 101 is placed on the lower electrode 201, and the quartz substrate 101
The upper electrode fixed insulating substrate 203 on which a plurality of upper electrodes 202 are provided is arranged so as to face each other, and each of the upper electrodes 202 is arranged on each hydrophilic treatment portion 502 at a predetermined interval. The lower electrode 201 is formed to have a size over the entire back surface of the quartz substrate 101, and the upper electrodes 202 are arranged at the same intervals as the hydrophilic treatment portion 502, and the upper electrode fixed insulating substrate 2 is provided.
03 are arranged in a matrix.

【0025】以上に説明したように下部電極201およ
び上部電極202を配置したら、測定対象の親水処理部
502上に配置されている上部電極202と下部電極2
01との間に、発振回路204より所定の周波数の信号
を供給し、周波数カウンタ205により共振周波数を計
測する。このようにして、親水処理部502の領域の共
振周波数を測定し、また、親水処理部502におけるD
NA断片104の有無およびDNA断片104に同じ塩
基配列が存在する検体のDNAが結合したの各々におい
て共振周波数を測定すれば、前述と同様にDNAの測定
検査が行える。
After the lower electrode 201 and the upper electrode 202 are arranged as described above, the upper electrode 202 and the lower electrode 2 arranged on the hydrophilic treatment section 502 to be measured.
01, a signal of a predetermined frequency is supplied from the oscillation circuit 204, and the resonance frequency is measured by the frequency counter 205. In this way, the resonance frequency in the area of the hydrophilic processing section 502 is measured, and D in the hydrophilic processing section 502 is measured.
If the resonance frequency is measured for each of the presence or absence of the NA fragment 104 and the DNA of the sample in which the same base sequence exists in the DNA fragment 104, the measurement test of the DNA can be performed as described above.

【0026】ところで、図5に示す実施の形態において
も、図1に示したように、水晶基板101に複数の凸部
を設け、この凸部の上面に親水処理を施し、親水処理さ
れた凸部の上面にDNA断片を固定するようにしてもよ
い。また、隣り合う親水処理部502の間に溝を設け、
親水処理部502と他の部分とに段差を設けるようにし
てもよい。これらのように、段差を設けることで、DN
A断片が固定されている島部が、段差が無く平坦な状態
より発振しやすい状態となる。
By the way, in the embodiment shown in FIG. 5 as well, as shown in FIG. 1, a plurality of convex portions are provided on the quartz substrate 101, and the upper surfaces of the convex portions are subjected to hydrophilic treatment, and the convex portions subjected to hydrophilic treatment are provided. You may make it fix a DNA fragment on the upper surface of a part. Further, a groove is provided between the adjacent hydrophilic treatment parts 502,
You may make it provide the level difference between the hydrophilic treatment part 502 and another part. By providing a step like this, DN
The island portion to which the A fragment is fixed becomes easier to oscillate than the flat state where there is no step.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
水晶基板上に複数の島部を形成し、各島部における第1
の測定周波数と第2の測定周波数との差により、各島部
上に固定されているDNA断片に結合したDNAの有無
を検出するようにしたので、DNAの検査がより容易に
行えるようになるというすぐれた効果が得られる。
As described above, according to the present invention,
A plurality of islands are formed on a quartz substrate, and the first of each island is formed.
Since the presence or absence of DNA bound to the DNA fragment fixed on each island is detected by the difference between the measurement frequency and the second measurement frequency, it becomes easier to inspect the DNA. That is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態におけるDNAチップの
構成例を示す概略的な断面図(a)と平面図(b)であ
る。
FIG. 1 is a schematic cross-sectional view (a) and a plan view (b) showing a configuration example of a DNA chip according to an embodiment of the present invention.

【図2】 本発明の実施の形態におけるDNA検査方法
を説明するための概略的な構成図である。
FIG. 2 is a schematic configuration diagram for explaining a DNA inspection method according to an embodiment of the present invention.

【図3】 本発明の他の形態におけるDNA検査方法を
説明するための概略的な構成図である。
FIG. 3 is a schematic configuration diagram for explaining a DNA inspection method according to another embodiment of the present invention.

【図4】 本発明の他の形態におけるDNAチップの構
成例を示す概略的な断面図である。
FIG. 4 is a schematic cross-sectional view showing a configuration example of a DNA chip according to another embodiment of the present invention.

【図5】 本発明の他の実施の形態におけるDNAチッ
プの構成例を示す概略的な断面図である。
FIG. 5 is a schematic cross-sectional view showing a configuration example of a DNA chip according to another embodiment of the present invention.

【符号の説明】 101…水晶基板、102…凸部(島部)、103…金
薄膜、104…DNA断片。
[Explanation of Codes] 101 ... Quartz substrate, 102 ... Convex part (island part), 103 ... Gold thin film, 104 ... DNA fragment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 37/00 102 C12N 15/00 F Fターム(参考) 4B024 AA11 CA01 CA09 HA14 4B029 AA07 BB20 CC03 FA15 4B063 QA01 QA13 QA18 QQ42 QR32 QR55 QR84 QS15 QS32 QS39 QX04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 37/00 102 C12N 15/00 FF term (reference) 4B024 AA11 CA01 CA09 HA14 4B029 AA07 BB20 CC03 FA15 4B063 QA01 QA13 QA18 QQ42 QR32 QR55 QR84 QS15 QS32 QS39 QX04

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 所定の間隔で各々分離した複数の島部を
備えた水晶基板と、 生化学物質のDNAに特有な塩基配列から構成されて各
々の前記島部の上に固定された複数のDNA断片とから
構成されたことを特徴とするDNAチップ。
1. A quartz substrate having a plurality of islands each separated at a predetermined interval, and a plurality of bases unique to DNA of a biochemical substance and fixed on the islands. A DNA chip comprising a DNA fragment.
【請求項2】 請求項1記載のDNAチップにおいて、 前記島部上には金薄膜が形成され、 前記DNA断片は、一端がSH基に置換され、 前記SH基により前記DNA断片が前記金薄膜に固定さ
れていることを特徴とするDNAチップ。
2. The DNA chip according to claim 1, wherein a gold thin film is formed on the island portion, one end of the DNA fragment is replaced with an SH group, and the DNA fragment is formed by the SH group. A DNA chip characterized by being fixed to.
【請求項3】 請求項1記載のDNAチップにおいて、 前記島部は、前記水晶基板の表面を親水性にする親水処
理を施した領域であることを特徴とするDNAチップ。
3. The DNA chip according to claim 1, wherein the island portion is a region subjected to a hydrophilic treatment to make the surface of the quartz substrate hydrophilic.
【請求項4】 請求項1〜3のいずれか1項に記載のD
NAチップにおいて、 複数の前記島部上に、各々異なる塩基配列のDNA断片
が固定されていることを特徴とするDNAチップ。
4. D according to any one of claims 1 to 3.
In the NA chip, a DNA chip in which DNA fragments having different base sequences are fixed on the plurality of islands.
【請求項5】 請求項1〜4のいずれか1項に記載のD
NAチップにおいて、 前記島部は、前記水晶基板上に形成された凸部であるこ
とを特徴とするDNAチップ。
5. D according to any one of claims 1 to 4.
In the NA chip, the island part is a convex part formed on the crystal substrate, and the DNA chip is characterized.
【請求項6】 請求項1〜4のいずれか1項に記載のD
NAチップにおいて、 前記島部は、前記水晶基板上に形成された凹部であるこ
とを特徴とするDNAチップ。
6. D according to any one of claims 1 to 4.
In the NA chip, the island part is a recess formed on the crystal substrate, and the DNA chip is characterized.
【請求項7】 所定の間隔で各々分離した複数の島部を
備えた水晶基板を用意し、 各々の前記島部上に生化学物質のDNAに特有な塩基配
列から構成された所望のDNA断片を固定し、 前記DNA断片が固定された各々前記島部の共振周波数
を測定して前記島部各々の第1の測定周波数とし、 前記島部上に固定された前記DNA断片を検体となるD
NAを含んだ溶液中に所定時間接触させた後で乾燥し、
各々の前記島部の共振周波数を測定して前記島部各々の
第2の測定周波数とし、 前記第2の測定周波数と第1の測定周波数との差によ
り、前記検体となるDNAの中より前記DNA断片と同
じ塩基配列を検出することを特徴とするDNA検査方
法。
7. A quartz substrate provided with a plurality of islands each separated at a predetermined interval, and a desired DNA fragment composed of a base sequence peculiar to a DNA of a biochemical substance is provided on each of the islands. And the resonance frequency of each of the islands to which the DNA fragment is fixed is measured to be the first measurement frequency of each of the islands, and the DNA fragment fixed on the island is used as a sample D
After contacting in a solution containing NA for a predetermined time, it is dried,
The resonance frequency of each of the islands is measured to obtain a second measurement frequency of each of the islands, and the difference between the second measurement frequency and the first measurement frequency is used to select the DNA from the DNA to be the sample. A method for testing DNA, which comprises detecting the same nucleotide sequence as a DNA fragment.
【請求項8】 請求項7記載のDNA検査方法におい
て、 前記島部は、前記水晶基板上に形成された凸部であるこ
とを特徴とするDNA検査方法。
8. The DNA inspection method according to claim 7, wherein the island portion is a convex portion formed on the quartz substrate.
【請求項9】 請求項7記載のDNA検査方法におい
て、 前記島部は、前記水晶基板上に形成された凹部であるこ
とを特徴とするDNA検査方法。
9. The DNA inspection method according to claim 7, wherein the island portion is a recess formed on the quartz substrate.
JP2002285845A 2002-01-28 2002-09-30 DNA chip and DNA testing method Expired - Fee Related JP4094922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285845A JP4094922B2 (en) 2002-01-28 2002-09-30 DNA chip and DNA testing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002018148 2002-01-28
JP2002-18148 2002-01-28
JP2002285845A JP4094922B2 (en) 2002-01-28 2002-09-30 DNA chip and DNA testing method

Publications (2)

Publication Number Publication Date
JP2003287538A true JP2003287538A (en) 2003-10-10
JP4094922B2 JP4094922B2 (en) 2008-06-04

Family

ID=29253242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285845A Expired - Fee Related JP4094922B2 (en) 2002-01-28 2002-09-30 DNA chip and DNA testing method

Country Status (1)

Country Link
JP (1) JP4094922B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264068A (en) * 2003-02-28 2004-09-24 Institute Of Tsukuba Liaison Co Ltd Bio-sensor chip
JP2005049329A (en) * 2003-07-14 2005-02-24 Toray Ind Inc Substrate for biochip, and biochip
JP2006133077A (en) * 2004-11-05 2006-05-25 Sony Corp Substrate for bioassey capable of preventing cross contamination
JP2006234686A (en) * 2005-02-25 2006-09-07 Kyocera Kinseki Corp Chip for detecting small mass
JP2006234687A (en) * 2005-02-25 2006-09-07 Kyocera Kinseki Corp Chip for detecting small mass
JP2006234685A (en) * 2005-02-25 2006-09-07 Kyocera Kinseki Corp Chip for detecting small mass
JP2007121246A (en) * 2005-10-31 2007-05-17 Kyocera Kinseki Corp Micro channel
JP2008032523A (en) * 2006-07-28 2008-02-14 Kyocera Kinseki Corp Composite sensor element
KR101293666B1 (en) 2011-03-07 2013-08-13 고려대학교 산학협력단 A Three-Dimensional Nanostructured Array of Protein Nanoparticles
JP2015072153A (en) * 2013-10-02 2015-04-16 神奈川県 Biosensor and method for manufacturing the same
WO2021005834A1 (en) * 2019-07-10 2021-01-14 株式会社村田製作所 Analysis device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264068A (en) * 2003-02-28 2004-09-24 Institute Of Tsukuba Liaison Co Ltd Bio-sensor chip
JP4492140B2 (en) * 2003-07-14 2010-06-30 東レ株式会社 Biochip substrate and biochip
JP2005049329A (en) * 2003-07-14 2005-02-24 Toray Ind Inc Substrate for biochip, and biochip
JP2006133077A (en) * 2004-11-05 2006-05-25 Sony Corp Substrate for bioassey capable of preventing cross contamination
JP4604662B2 (en) * 2004-11-05 2011-01-05 ソニー株式会社 Bioassay substrate that can prevent cross-contamination
JP2006234687A (en) * 2005-02-25 2006-09-07 Kyocera Kinseki Corp Chip for detecting small mass
JP2006234685A (en) * 2005-02-25 2006-09-07 Kyocera Kinseki Corp Chip for detecting small mass
JP4597711B2 (en) * 2005-02-25 2010-12-15 京セラキンセキ株式会社 Micro mass detection chip
JP4597710B2 (en) * 2005-02-25 2010-12-15 京セラキンセキ株式会社 Micro mass detection chip
JP2006234686A (en) * 2005-02-25 2006-09-07 Kyocera Kinseki Corp Chip for detecting small mass
JP2007121246A (en) * 2005-10-31 2007-05-17 Kyocera Kinseki Corp Micro channel
JP2008032523A (en) * 2006-07-28 2008-02-14 Kyocera Kinseki Corp Composite sensor element
KR101293666B1 (en) 2011-03-07 2013-08-13 고려대학교 산학협력단 A Three-Dimensional Nanostructured Array of Protein Nanoparticles
JP2015072153A (en) * 2013-10-02 2015-04-16 神奈川県 Biosensor and method for manufacturing the same
WO2021005834A1 (en) * 2019-07-10 2021-01-14 株式会社村田製作所 Analysis device
JPWO2021005834A1 (en) * 2019-07-10 2021-01-14
JP7239905B2 (en) 2019-07-10 2023-03-15 株式会社村田製作所 Analysis equipment

Also Published As

Publication number Publication date
JP4094922B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
Bolivar et al. Label-free probing of genes by time-domain terahertz sensing
CN100378451C (en) Microelectronic detector on chip
RU2617535C2 (en) Measuring and monitoring electrodes with aptamer coating and methods of their application for biomarkers recognition
JP2003287538A (en) Dna chip and dna testing method
CN112105929A (en) Proteomics assays using quantum sensors
MacKay et al. Developing trends in aptamer-based biosensor devices and their applications
JP2013140168A (en) Instrument and method for detecting nucleic acid in biological sample
JP2010523104A (en) Cancer cell detection method and use thereof for diagnosis of cancer disease and monitoring of treatment of cancer disease
JP2007508554A5 (en)
CN109337974A (en) It is a kind of detect psoriasis diagnosis marker reagent and its application
US20040023236A1 (en) Chemical and biological hazard sensor system and methods thereof
CN106253875B (en) High-flux piezoelectric resonance chip and measuring system
CN101201350A (en) Biochip system capable of rapidly hybridization and detection of biomolecule with high sensibility and method thereof
US6458600B1 (en) Method for producing laterally organized structures on supporting surfaces
Do et al. Anisotropic in situ-coated AuNPs on screen-printed carbon surface for enhanced prostate-specific antigen impedimetric aptasensor
CN110658154A (en) Preparation and application of reproducible terahertz biological sample detection cell
JP4376188B2 (en) Method and apparatus for PCR amplification and detection of nucleotide sequences
JP2004264023A (en) Reactive chip, and coupling detection method for target substance using the same
JP3841713B2 (en) Substance inspection equipment
Castillo et al. Impedimetric aptasensor for thrombin recognition based on CD support
JP3934609B2 (en) Method and biosensor for detecting high molecular weight biopolymers
CN1605861A (en) Preparation and detection method for electrochemical quantitative polymerase chain reaction detecting chip
Gao et al. A highly sensitive electrochemical aptasensor for vascular endothelial growth factor detection based on toehold-mediated strand displacement reaction
JPH0775598A (en) Gene sensor and method for diagnosing gene using the same
JP3759039B2 (en) Chemical sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350