JP2003286549A - High-purity ferroboron and production method therefor - Google Patents

High-purity ferroboron and production method therefor

Info

Publication number
JP2003286549A
JP2003286549A JP2002090651A JP2002090651A JP2003286549A JP 2003286549 A JP2003286549 A JP 2003286549A JP 2002090651 A JP2002090651 A JP 2002090651A JP 2002090651 A JP2002090651 A JP 2002090651A JP 2003286549 A JP2003286549 A JP 2003286549A
Authority
JP
Japan
Prior art keywords
iron
ferroboron
steel
mass
iron source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002090651A
Other languages
Japanese (ja)
Inventor
Jun Takeuchi
順 竹内
Yuichi Sato
有一 佐藤
Hiroaki Sakamoto
広明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002090651A priority Critical patent/JP2003286549A/en
Priority to KR10-2003-0019265A priority patent/KR100533129B1/en
Priority to CNB031211860A priority patent/CN1286998C/en
Priority to TW095120437A priority patent/TWI315347B/en
Priority to US10/401,063 priority patent/US20030183041A1/en
Priority to TW092106953A priority patent/TWI281504B/en
Publication of JP2003286549A publication Critical patent/JP2003286549A/en
Priority to US11/513,452 priority patent/US7704450B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost ferroboron for an iron-based amorphous alloy, using productive steel and waste iron as iron sources without using expensive electrolytic iron. <P>SOLUTION: The ferroboron is composed of, by wt.%, P of ≥0.02%, Al of ≤0.03% (and Ti of ≤0.03%), and the balance of Fe, B and inevitable impurities. This ferroboron is produced by feeding a boron raw material, an iron raw material and a carbon based reducing agent in an electric furnace. This iron raw material is steel obtained from a smelting furnace in a steel manufacturing process, wherein steel contains P of ≥0.01%, Al of ≤0.03% (and Ti of ≤0.03%). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄基非晶質合金の
原料などに使用されるフェロボロンであって、Pを含有
し、AlやTiの許容量を高めた高純度フェロボロンお
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroboron used as a raw material for an iron-based amorphous alloy, which contains P and has a high permissible amount of Al and Ti, and a method for producing the same. It is about.

【0002】[0002]

【従来の技術】フェロボロンの重要な用途として、Fe
−B−Si系など鉄基非晶質合金の原料がある。非晶質
合金は溶融状態から急冷凝固させることによって製造さ
れ、非晶質形成のためにBを主要な合金成分としてい
る。製造法としては単ロール法や双ロール法などが知ら
れている。これらの方法は、高速回転する金属製冷却ド
ラムの外周面に溶融合金をオリフィスなどから噴出さ
せ、急速に凝固させて薄帯や細線を鋳造するものであ
る。
Fe is an important application of ferroboron.
There are raw materials for iron-based amorphous alloys such as -B-Si. Amorphous alloys are produced by quenching and solidifying from a molten state, and B is a main alloying component for forming amorphous. Known manufacturing methods include a single roll method and a twin roll method. In these methods, a molten alloy is jetted from an orifice or the like onto the outer peripheral surface of a metal cooling drum rotating at a high speed, and rapidly solidified to cast a thin strip or a thin wire.

【0003】溶融合金は、所要組成に成分調整された母
合金と呼ばれる合金を溶融したものである。上記のよう
な鉄基非晶質合金の母合金は、B源のフェロボロンと希
釈鉄源とSiなどの副原料を配合し、成分調整して製造
される。母合金に不純物が含まれていると、急冷凝固の
際に非晶質が安定して形成されず、優れた特性が得られ
ないなどの理由から、母合金の原料にはいずれも高純度
のものが使用され、希釈鉄源には電解鉄が用いられてい
た。
The molten alloy is obtained by melting an alloy called a mother alloy whose composition is adjusted to the required composition. The master alloy of the iron-based amorphous alloy as described above is manufactured by blending ferroboron as a B source, a dilute iron source and an auxiliary raw material such as Si, and adjusting the components. If the master alloy contains impurities, amorphous materials are not stably formed during rapid solidification, and excellent properties cannot be obtained. The one used was the electrolytic iron used as the diluted iron source.

【0004】しかし電解鉄は高価であることから、本発
明者らは、電解鉄を用いず、通常の製鋼プロセスを経て
得られる鋼を希釈鉄源とした安価な母合金を発明し、特
開平9−263914号公報および特開2001−27
9387号公報により公開されている。すなわち、不純
物として質量%で、P:0.008〜0.1%、Mn:
0.15〜0.5%、S:0.004〜0.05%を含
有し、この微量のPにより、MnおよびSがこの程度含
まれても、鋳造される薄帯の特性劣化は生じないという
ものである。
However, since electrolytic iron is expensive, the inventors of the present invention invented an inexpensive mother alloy using a steel obtained through a normal steelmaking process as a dilute iron source without using electrolytic iron. 9-263914 and Japanese Patent Laid-Open No. 2001-27
Published in 9387. That is, P: 0.008-0.1%, Mn:
0.15 to 0.5%, S: 0.004 to 0.05%, and even if Mn and S are contained to this extent by the trace amount of P, the characteristics of the cast ribbon are deteriorated. There is no such thing.

【0005】また本発明者らは、鋳造後の薄帯を対象と
してはいるが、限られた組成範囲において、特定範囲の
Pを積極的に添加することにより、アニール中の鉄心各
部位に温度むらが生じても、広い温度範囲においてばら
つきの小さい優れた磁気特性を発現することのできる鉄
基非晶質合金薄帯を発明し、特願2001−12335
9により出願している。この合金においても上記程度の
MnおよびSを許容でき、通常の鋼を希釈鉄源とするこ
とができる。
Although the inventors of the present invention are intended for the thin ribbons after casting, by positively adding P in a specific range within a limited composition range, the temperature of each part of the iron core during annealing is increased. Inventing an iron-based amorphous alloy ribbon capable of exhibiting excellent magnetic characteristics with a small variation in a wide temperature range even if unevenness occurs, and Japanese Patent Application No. 2001-12335
9 is applied. Even in this alloy, Mn and S in the above-mentioned range can be tolerated, and ordinary steel can be used as the dilute iron source.

【0006】母合金のB源となるフェロボロンは、酸化
硼素や硼酸等の硼素源と、鉄源と、コークスや木炭、微
粉炭等の炭素系還元剤を原料として電気炉等の溶融還元
炉で製造される。上記のような鉄基非晶質合金用の高純
度フェロボロンでは、鉄源に電解鉄が使用されていた
が、ここでも、高価な電解鉄を使用せず、通常の鋼を鉄
源とすることが望まれる。
Ferroboron, which is the B source of the mother alloy, is a boron source such as boron oxide or boric acid, an iron source, and a carbon-based reducing agent such as coke, charcoal, or pulverized coal as a raw material in a melting reduction furnace such as an electric furnace. Manufactured. In the high-purity ferroboron for iron-based amorphous alloys as described above, electrolytic iron was used as the iron source, but again, expensive electrolytic iron is not used, and ordinary steel should be used as the iron source. Is desired.

【0007】このように、通常の製鋼プロセスで得られ
る鋼をフェロボロンの鉄源や母合金の希釈鉄源とする
際、不純物のAlが問題となる。多くの量産鋼ではAl
脱酸が採用され、Alは非晶質形成能を劣化させる元素
とされているためである。そこで低Alの高純度フェロ
ボロンに注目すると、電気炉にてB濃度が10〜20質
量%の低Alフェロボロンを得る方法が、特開昭59−
232250号公報および特開昭60−103151号
公報に開示されている。
As described above, when the steel obtained by the ordinary steelmaking process is used as the iron source of ferroboron or the dilute iron source of the master alloy, Al as an impurity becomes a problem. Al for most mass-produced steels
This is because deoxidation is adopted and Al is an element that deteriorates the amorphous forming ability. Focusing on low-purity high-purity ferroboron, a method for obtaining low-alloy ferroboron having a B concentration of 10 to 20 mass% in an electric furnace is disclosed in JP-A-59-59.
It is disclosed in Japanese Patent Laid-Open No. 232250 and Japanese Patent Laid-Open No. 60-103151.

【0008】しかし鉄源として鉄屑を使用した場合に
は、鉄屑に含まれるAl濃度が一定せず、Al保証値<
0.20質量%であった。このため、従来商業的に得ら
れる低Alの高純度フェロボロンは、Al保証値<0.
025質量%とするため、鉄源として電解鉄を用いてお
り高価であった。
However, when iron scrap is used as the iron source, the Al concentration contained in the iron scrap is not constant, and the guaranteed Al value <
It was 0.20% by mass. Therefore, conventionally, commercially available low-purity high-purity ferroboron has a guaranteed Al value of <0.
Since the content is 025 mass%, electrolytic iron is used as an iron source and it is expensive.

【0009】一方、現在の量産鋼は連続鋳造工程を経て
製造されている。連続鋳造ではかつての造塊工程より生
産性が高く、低コストだからである。造塊工程では鋳込
みが容易なため脱酸程度によりリムド鋼とキルド鋼の作
り分けが可能であったが、連続鋳造工程ではガス発生を
抑制するためキルド鋼が製造される。量産鋼においては
一般的に脱酸剤としてAlが採用されるので、鋼中に相
当程度のAlが含まれている。しかし、一部の量産鋼に
おいてはSiやMnを脱酸剤に用い、また精錬技術の進
歩によりAl脱酸でもAl含有量の低い鋼が量産される
ようになっている。
On the other hand, the current mass-produced steel is manufactured through a continuous casting process. This is because continuous casting has higher productivity and lower cost than the former ingot making process. Since it is easy to cast in the ingot making process, it is possible to separately produce rimmed steel and killed steel depending on the degree of deoxidization, but in the continuous casting process, killed steel is produced to suppress gas generation. Since Al is generally used as a deoxidizing agent in mass-produced steel, the steel contains a considerable amount of Al. However, in some mass-produced steels, Si and Mn are used as deoxidizers, and advances in refining technology have led to mass production of steels having a low Al content even with Al deoxidization.

【0010】[0010]

【発明が解決しようとする課題】そこで本発明が解決し
ようとする課題は、特にPを含有し優れた磁気特性を有
する鉄基非晶質合金の原料などに使用されるフェロボロ
ンにおいて、高価な電解鉄を用いず、安価な量産鋼を鉄
源に採用し、安定的に供給できるようにすることであ
る。
Therefore, the problem to be solved by the present invention is, in particular, in the case of ferroboron used as a raw material of an iron-based amorphous alloy containing P and having excellent magnetic properties, expensive electrolysis. It is to use inexpensive mass-produced steel as an iron source without using iron so that a stable supply can be achieved.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
の本発明フェロボロンは、質量%にて、0.02%以上
のP、および0.03%以下のAlを含有し、残部がF
e、Bおよび不可避的不純物よりなることを特徴とする
高純度フェロボロンである。
The ferroboron of the present invention for solving the above problems contains, in mass%, 0.02% or more of P and 0.03% or less of Al, and the balance of F.
It is a high-purity ferroboron characterized by comprising e, B and unavoidable impurities.

【0012】そしてこのフェロボロンを製造するための
本発明法は、硼素源と鉄源と炭素系還元剤を電気炉に装
入してフェロボロンを製造する方法において、鉄源が製
鋼プロセスの精錬炉により得られた鋼であり、該鋼が質
量%にて0.01%以上のP、および0.03%以下の
Alを含有する鋼であることを特徴とする高純度フェロ
ボロンの製造方法である。
The method of the present invention for producing ferroboron is the method of producing ferroboron by charging a boron source, an iron source and a carbon-based reducing agent into an electric furnace, wherein the iron source is produced by a refining furnace of a steelmaking process. The method for producing high-purity ferroboron is characterized in that the obtained steel is a steel containing 0.01% or more P by mass% and 0.03% or less Al.

【0013】また上記課題を解決するための本発明フェ
ロボロンは、質量%にて、0.02%以上のP、0.0
3%以下のAl、および0.03%以下のTiを含有
し、残部がFe、Bおよび不可避的不純物よりなること
を特徴とする高純度フェロボロンである。
Further, the ferroboron of the present invention for solving the above-mentioned problems is, in mass%, 0.02% or more of P, 0.0.
A high-purity ferroboron containing 3% or less of Al and 0.03% or less of Ti, and the balance being Fe, B and unavoidable impurities.

【0014】そしてこのフェロボロンを製造するための
本発明法は、硼素源と鉄源と炭素系還元剤を電気炉に装
入してフェロボロンを製造する方法において、鉄源が製
鋼プロセスの精錬炉により得られた鋼であり、該鋼が質
量%にて0.01%以上のP、0.03%以下のAl、
および0.03%以下のTiを含有する鋼であることを
特徴とする高純度フェロボロンの製造方法である。
The method of the present invention for producing ferroboron is the method of producing ferroboron by charging a boron source, an iron source and a carbon-based reducing agent into an electric furnace, wherein the iron source is produced by a refining furnace of a steelmaking process. The obtained steel is 0.01% or more of P in mass%, 0.03% or less of Al,
And a steel containing 0.03% or less of Ti, which is a method for producing high-purity ferroboron.

【0015】[0015]

【発明の実施の形態】本発明の高純度フェロボロンは、
上記のように、0.02質量%以上のPを含有するとと
もに、0.03%質量以下のAlを含有することができ
る。また0.03質量%以下のAlおよび0.03質量
%以下のTiを含有することができる。B含有量は限定
していないが、市販されている通常のフェロボロンには
10質量%以上のBが含まれており、この程度であれば
よい。
BEST MODE FOR CARRYING OUT THE INVENTION The high-purity ferrobolone of the present invention comprises
As described above, 0.02 mass% or more of P can be contained and 0.03 mass% or less of Al can be contained. Further, 0.03 mass% or less of Al and 0.03 mass% or less of Ti can be contained. Although the B content is not limited, 10% by mass or more of B is contained in ordinary commercially available ferroboron, and the content may be in this range.

【0016】B含有量は、鉄基非晶質合金用の場合、S
i等の副原料の添加によって薄められるので、対象の非
晶質合金よりも高くするが、比較的低BのFe−B−S
i−P系を対象とする場合は、5質量%以上であればよ
い。さらには、高Bの非晶質合金や、他の用途として製
鋼用の副原料や磁性材料用の原料もあるので、商業的見
地から在庫コストを抑え、これら用途にも転用可能とす
るため、B含有量は10質量%以上であるのがより好ま
しい。
The B content is S for an iron-based amorphous alloy.
Since it is thinned by the addition of auxiliary raw materials such as i, it is made higher than the target amorphous alloy, but Fe-B-S of relatively low B
When targeting an i-P system, it may be 5% by mass or more. Furthermore, since there are high-B amorphous alloys and other uses as raw materials for steelmaking auxiliary materials and magnetic materials, inventory costs can be reduced from a commercial standpoint, and they can be diverted to these uses. The B content is more preferably 10% by mass or more.

【0017】Pは0.02質量%以上とする。電炉法に
よりフェロボロンを製造すると、酸化硼素等の硼素源や
木炭等の還元剤からもPが混入するので、後記実施例1
のように、鉄源のP含有量よりも少し多くなることが認
められる。しかし、電炉法では鉄源の重量が最大であ
り、他の原料から混入するPは少量に限られている。鉄
源に電解鉄を用いた場合に不可避的に混入するPは、通
常、0.005〜0.019質量%である。したがっ
て、本発明フェロボロンのP含有量は0.02質量%以
上とした。また、P含有量の上限は特に規定するもので
はないが、通常は高々5質量%程度である。
P is set to 0.02 mass% or more. When ferroboron is produced by the electric furnace method, P is also mixed from a boron source such as boron oxide and a reducing agent such as charcoal.
It is recognized that the iron content is slightly higher than the P content of the iron source. However, in the electric furnace method, the weight of the iron source is the maximum, and the amount of P mixed from other raw materials is limited to a small amount. When electrolytic iron is used as the iron source, P, which is unavoidably mixed, is usually 0.005 to 0.019 mass%. Therefore, the P content of the ferroboron of the present invention is set to 0.02 mass% or more. Further, the upper limit of the P content is not particularly specified, but is usually about 5% by mass at most.

【0018】Alは0.03質量%まで許容できる。実
験結果によれば、Pを積極的に添加した鉄基非晶質合金
においては、実施例2および3に示すように、フェロボ
ロンにこの程度のAlが含まれていても母合金のAl含
有量は低減し、磁気的性質や機械的性質に優れた非晶質
合金が安定して得られる。Tiも同様の理由で0.03
質量%まで許容できる。TiはAlとともに含有してい
てもよく、それぞれが0.03質量%まで許容できる。
Al can be allowed up to 0.03% by mass. According to the experimental results, in the iron-based amorphous alloy to which P was positively added, as shown in Examples 2 and 3, even if ferroboron contained this amount of Al, the Al content of the master alloy was increased. And an amorphous alloy excellent in magnetic properties and mechanical properties can be stably obtained. Ti is 0.03 for the same reason.
Up to mass% is acceptable. Ti may be contained together with Al, and each of them can be allowed up to 0.03 mass%.

【0019】次に本発明法は、上記本発明フェロボロン
を製造するにあたり、電解鉄を使用せず、通常の製鋼プ
ロセスで得られる鋼を鉄源とし、該鋼のP、Alおよび
Tiの含有量を限定するものである。精錬炉としては転
炉や電気炉を対象とすることができ、さらに連続鋳造し
たものでもよい。
Next, in the method of the present invention, in producing the above-mentioned ferroboron of the present invention, the steel obtained by a usual steelmaking process is used as an iron source without using electrolytic iron, and the contents of P, Al and Ti in the steel are contained. Is limited. The refining furnace may be a converter or an electric furnace, and may be a continuous casting furnace.

【0020】Pは、鋼の性質に大きな影響を及ぼす不純
物元素であり、0.01質量%未満例えば数十ppm まで
徹底的に脱Pする鋼種と、0.01質量%以上でも許容
される鋼種がある。前者は、酸化精錬時に酸化物となっ
てスラグ中に取り込まれたPが溶鋼中に戻る復P現象を
防止する目的で、後者よりも多量のスラグを必要とする
ので脱Pコストが高い。このため、0.01質量%未満
まで脱Pした鋼種はフェロボロンのコスト低減目的に適
さない。したがって、鉄源の鋼のP含有量を0.01質
量%以上とする。そして上記のように、フェロボロン製
造時には他の原料からも混入して0.02質量%以上と
なる。
P is an impurity element that has a great influence on the properties of the steel, and steel types that thoroughly remove less than 0.01% by mass, for example, several tens of ppm, and steel types that are allowable even at 0.01% by mass or more. There is. The former requires a larger amount of slag than the latter for the purpose of preventing the P returning phenomenon in which P that has become an oxide during oxidative refining and is taken into the slag returns to the molten steel. For this reason, the steel type dePed to less than 0.01% by mass is not suitable for the purpose of reducing the cost of ferroboron. Therefore, the P content of the iron source steel is set to 0.01% by mass or more. Then, as described above, when ferroborone is produced, it is mixed with other raw materials to be 0.02 mass% or more.

【0021】AlおよびTiは、鋼の精錬時に脱酸剤と
して使用され、一部の鋼種では必要成分として添加され
る。SiやMnで脱酸した低Alの鋼を鉄源としたフェ
ロボロンでも、後記実施例1に示すように、他の原料か
らの混入によりAl含有量が増大する。また、0.03
質量%のAlを含有するAl脱酸鋼を鉄源とした場合の
フェロボロンでは、Al含有量がやや減少することを確
認している。Tiについても同様の傾向が認められる。
Al and Ti are used as deoxidizing agents during refining of steel, and are added as necessary components in some steel types. Even in the case of ferroboron using a low Al steel deoxidized with Si or Mn as an iron source, the Al content increases due to mixing from other raw materials, as shown in Example 1 below. Also, 0.03
It has been confirmed that in the ferroboron using an Al deoxidized steel containing mass% Al as the iron source, the Al content is slightly reduced. A similar tendency is observed for Ti.

【0022】したがって、鉄源の鋼のAlおよびTi含
有量は、それぞれ0.03質量%まで許容できるとす
る。そして本発明法により製造されたフェロボロンを使
用して、実施例2および3に示すように、優れた磁気特
性を有する鉄基非晶質合金を製造することができる。
Therefore, it is assumed that the Al and Ti contents of the iron source steel are each allowable up to 0.03% by mass. Then, using ferroboron produced by the method of the present invention, an iron-based amorphous alloy having excellent magnetic properties can be produced as shown in Examples 2 and 3.

【0023】[0023]

【実施例】(実施例1)表1に示す2種の鉄源と酸化硼
素と炭素系還元剤を電気炉で溶解し、フェロボロンを製
造した。各鉄源は、高炉で得られた銑鉄から、脱S工
程、脱Si工程、および転炉での酸素吹錬による脱Pお
よび脱C工程を経て製造された鋼である。鋼種AはSi
およびMnで脱酸し、鋼種BはMnで脱酸した。各鋼種
とも、連続鋳造によりスラブとした後、熱間圧延にて板
厚約3mmの熱延コイルとし、各熱延コイルからシャーに
て数cm四方程度に切出したものを鉄源として供した。
Example 1 Ferroborolone was produced by dissolving two kinds of iron sources shown in Table 1, boron oxide and a carbon-based reducing agent in an electric furnace. Each iron source is steel produced from pig iron obtained in the blast furnace through a de-S process, a Si-de-process, and a de-P and de-C process by oxygen blowing in a converter. Steel type A is Si
And Mn, and steel type B was deoxidized with Mn. For each steel type, a slab was formed by continuous casting, and then hot-rolled into a hot-rolled coil having a plate thickness of about 3 mm, and each hot-rolled coil was cut out by a shear to a size of several cm and used as an iron source.

【0024】電気炉には電気容量600KVA の3相エル
ー式電気炉を用いた。炉の操業は4日間連続して行い、
2日毎に鉄源をB、Aの順に切り替えた。タッピング間
隔は約2時間であり、鉄源の切替タイミングに当らない
フェロボロンを分析用に供した。原料の配合は、表2に
示す初期配合で操業を開始し、操業が安定したところで
安定化後配合に切替えた。
As the electric furnace, a three-phase Eru type electric furnace having an electric capacity of 600 KVA was used. Operate the furnace continuously for 4 days,
The iron source was switched to B and A every two days. The tapping interval was about 2 hours, and ferroboron, which did not meet the iron source switching timing, was used for analysis. As for the raw material composition, the operation was started with the initial composition shown in Table 2, and when the operation was stable, the composition was switched to the post-stabilization composition.

【0025】製造したフェロボロンの分析値を表3に示
す。鉄源を鋼種Aとした場合、鋼種Bとした場合とも、
Alの含有量は0.024質量%以下、Tiの含有量は
0.008質量%以下であり、非晶質合金用のフェロボ
ロンとして十分に高純度である。フェロボロンのAlお
よびTiの分析値は、表2に示す鉄源鋼種の値よりも高
くなっているが、これは、酸化硼素や還元剤からの混入
によるものである。なお、表中のT.Alは金属Alと
化合物Alの合計値を示す。
Table 3 shows the analytical values of the produced ferroboron. Whether the iron source is steel type A or steel type B,
The Al content is 0.024 mass% or less and the Ti content is 0.008 mass% or less, which is sufficiently high purity as ferroboron for amorphous alloys. The analysis values of Al and Ti of ferroboron are higher than the values of the iron source steel types shown in Table 2, but this is due to contamination from boron oxide and a reducing agent. In addition, T. Al represents the total value of metallic Al and compound Al.

【0026】(実施例2)実施例1で得られた表3のフ
ェロボロンと、希釈鉄源と、副原料としてFeP、炭材
およびSiを高周波誘導炉にて溶解し、鉄基非晶質合金
用母合金を製造した。フェロボロンは、実施例1にてタ
ップされ凝固したものを粉砕して使用した。希釈鉄源に
は、表1の各鋼種について実施例1と同様に切出したも
のを使用した。高周波誘導炉では、母合金の主要成分組
成が所定値となるように原料を配合し、完全に溶解する
まで昇温し、均一になるまで保定した後、凝固、粉砕し
て、その一部をサンプリングし分析した。
(Example 2) Ferroboron of Table 3 obtained in Example 1, a dilute iron source, FeP as a raw material, carbonaceous material and Si were melted in a high frequency induction furnace to obtain an iron-based amorphous alloy. A master alloy was manufactured. Ferroborone was tapped and solidified in Example 1 and crushed before use. As the dilute iron source, the one cut out from each steel type in Table 1 in the same manner as in Example 1 was used. In a high-frequency induction furnace, the raw materials are blended so that the main component composition of the mother alloy reaches a specified value, the temperature is raised until they are completely melted, the temperature is maintained until they are uniform, and then solidification and crushing are carried out. Sampled and analyzed.

【0027】フェロボロンを表3のFeB−Aとし、希
釈鉄源を表1の鋼種Aとした場合(組合せA−A)の原
料配合例を表4に示す。また、この配合例で得られた母
合金A−Aの成分分析値を表5に示す。表5の主要成分
分析値は、あらかじめ設定した所定値からほとんどずれ
ておらず、原料配合どおりの組成が得られることが確認
された。
Table 4 shows an example of the raw material mixture when ferroboron is FeB-A in Table 3 and the dilute iron source is Steel type A in Table 1 (combination AA). Table 5 shows the component analysis values of the mother alloy AA obtained in this formulation example. It was confirmed that the main component analysis values in Table 5 did not deviate from the predetermined values set in advance, and that the composition as the raw material composition was obtained.

【0028】表5に示す母合金A−Aは、Al含有量お
よびTi含有量が低く、鉄基非晶質合金用として適して
いる。また、フェロボロンをFeB−B、希釈鉄源を鋼
種Aとした組合せB−Aでも鉄基非晶質合金用に適した
AlおよびTi含有量の母合金が得られた。さらに、希
釈鉄源を鋼種Bとした場合の組合せA−BおよびB−B
についても、母合金のAl含有量は0.0050質量%
以下であり、鉄基非晶質合金用母合金として適してい
た。
The mother alloys AA shown in Table 5 have a low Al content and a Ti content and are suitable for iron-based amorphous alloys. Further, in the combination B-A in which FeB-B was used as the ferroboron and Steel A was used as the diluted iron source, a master alloy having Al and Ti contents suitable for the iron-based amorphous alloy was obtained. Further, combinations A-B and BB in which the diluted iron source is steel type B
Also, the Al content of the master alloy is 0.0050% by mass.
It was below, and was suitable as a mother alloy for iron-based amorphous alloys.

【0029】(実施例3)実施例2で得られた母合金A
−Aを再溶解し、単ロール法により急冷凝固して薄帯を
製造し、鉄心材料としての磁気特性を評価した。また薄
帯の成分を分析した結果、母合金との成分ズレはなかっ
た。なお、再溶解時にさらなる副原料を加えて成分調整
を行った場合でも、配合成分どおりの薄帯が得られた。
(Example 3) Mother alloy A obtained in Example 2
-A was redissolved and rapidly solidified by a single roll method to produce a ribbon, and the magnetic characteristics as an iron core material were evaluated. Moreover, as a result of analyzing the components of the thin ribbon, there was no component deviation from the mother alloy. Even when the components were adjusted by adding further auxiliary materials during re-dissolution, a ribbon as the blended component was obtained.

【0030】磁気特性の評価に際しては、薄帯を120
mm長さに切断して、360℃で窒素雰囲気中1時間、磁
場中でアニールした後、SST(単板磁気測定器)を用
いてB80および鉄損を測定した。B80は最大印加磁場が
80A/mのときの最大磁束密度、鉄損は最大磁束密度
1.3Tにおける値である。測定周波数は50Hzであ
る。測定結果は、B80=1.44Tの高い磁束密度が発
現し、鉄損は0.063W/kgと低く、優れた交流軟
磁気特性を有し、十分実用に供し得るものであった。
When evaluating the magnetic properties, a thin ribbon was applied to 120
After cutting to a length of mm and annealing at 360 ° C. in a nitrogen atmosphere for 1 hour in a magnetic field, B 80 and iron loss were measured using SST (single plate magnetometer). B 80 is the maximum magnetic flux density when the maximum applied magnetic field is 80 A / m, and the iron loss is the value at the maximum magnetic flux density of 1.3T. The measurement frequency is 50 Hz. As a result of the measurement, a high magnetic flux density of B 80 = 1.44T was developed, the iron loss was low at 0.063 W / kg, and the AC soft magnetic property was excellent, which was sufficiently practical.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【発明の効果】本発明によれば、Pを積極的に添加し、
AlおよびTiの許容量を高めたことにより、転炉や電
炉で精錬され、連続鋳造された多くの量産鋼や屑鉄を鉄
源として、安価なフェロボロンが安定提供できる。そし
て、このフェロボロンを使用して優れた磁気特性を有す
る鉄基非晶質合金を製造することができる。
According to the present invention, P is positively added,
By increasing the allowable amounts of Al and Ti, inexpensive ferroboron can be stably provided by using a large amount of mass-produced steel and scrap iron refined in a converter or an electric furnace and continuously cast as an iron source. Then, the ferroboron can be used to produce an iron-based amorphous alloy having excellent magnetic properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 広明 富津市新富20−1 新日本製鐵株式会社技 術開発本部内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroaki Sakamoto             20-1 Shintomi, Futtsu City Nippon Steel Co., Ltd.             Inside the surgical development headquarters

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%にて、0.02%以上のP、およ
び0.03%以下のAlを含有し、残部がFe、Bおよ
び不可避的不純物よりなることを特徴とする高純度フェ
ロボロン。
1. High-purity ferroboron, characterized in that it contains 0.02% or more of P and 0.03% or less of Al in mass% and the balance is Fe, B and unavoidable impurities.
【請求項2】 質量%にて、0.02%以上のP、0.
03%以下のAl、および0.03%以下のTiを含有
し、残部がFe、Bおよび不可避的不純物よりなること
を特徴とする高純度フェロボロン。
2. A mass percentage of 0.02% or more of P, 0.
A high-purity ferroboron, containing 03% or less Al and 0.03% or less Ti, and the balance being Fe, B and inevitable impurities.
【請求項3】 硼素源と鉄源と炭素系還元剤を電気炉に
装入してフェロボロンを製造する方法において、鉄源が
製鋼プロセスの精錬炉により得られた鋼であり、該鋼が
質量%にて0.01%以上のP、および0.03%以下
のAlを含有する鋼であることを特徴とする高純度フェ
ロボロンの製造方法。
3. A method for producing ferroboron by charging a boron source, an iron source and a carbon-based reducing agent into an electric furnace, wherein the iron source is steel obtained by a refining furnace in a steelmaking process, and the steel has a mass. % Is 0.01% or more of P, and 0.03% or less of Al containing steel, The manufacturing method of high purity ferroboron.
【請求項4】 硼素源と鉄源と炭素系還元剤を電気炉に
装入してフェロボロンを製造する方法において、鉄源が
製鋼プロセスの精錬炉により得られた鋼であり、該鋼が
質量%にて0.01%以上のP、0.03%以下のA
l、および0.03%以下のTiを含有する鋼であるこ
とを特徴とする高純度フェロボロンの製造方法。
4. A method for producing ferroboron by charging a boron source, an iron source and a carbon-based reducing agent into an electric furnace, wherein the iron source is steel obtained by a refining furnace of a steelmaking process, and the steel has a mass. %, P of 0.01% or more, A of 0.03% or less
1. A method for producing high-purity ferroboron, which is a steel containing 1 and 0.03% or less of Ti.
JP2002090651A 2002-03-28 2002-03-28 High-purity ferroboron and production method therefor Pending JP2003286549A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002090651A JP2003286549A (en) 2002-03-28 2002-03-28 High-purity ferroboron and production method therefor
KR10-2003-0019265A KR100533129B1 (en) 2002-03-28 2003-03-27 High-purity ferroboron, master alloy for fe-base amorphous alloy and fe-base amorphous alloy and methods for producing the same
CNB031211860A CN1286998C (en) 2002-03-28 2003-03-27 High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
TW095120437A TWI315347B (en) 2002-03-28 2003-03-27 A high-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
US10/401,063 US20030183041A1 (en) 2002-03-28 2003-03-27 High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
TW092106953A TWI281504B (en) 2002-03-28 2003-03-27 A high-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
US11/513,452 US7704450B2 (en) 2002-03-28 2006-08-30 High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090651A JP2003286549A (en) 2002-03-28 2002-03-28 High-purity ferroboron and production method therefor

Publications (1)

Publication Number Publication Date
JP2003286549A true JP2003286549A (en) 2003-10-10

Family

ID=29235930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090651A Pending JP2003286549A (en) 2002-03-28 2002-03-28 High-purity ferroboron and production method therefor

Country Status (1)

Country Link
JP (1) JP2003286549A (en)

Similar Documents

Publication Publication Date Title
KR101053220B1 (en) Manufacturing method of iron-based amorphous material
JP2003521582A (en) Steel grain refining method, steel grain refining alloy and method for producing grain refining alloy
CN110184548B (en) Method for refining solidification structure of high manganese steel continuous casting billet
JP7471520B2 (en) Manufacturing method for low carbon nitrogen containing austenitic stainless steel rod
CN107964630A (en) Microalloy containing Ti builds steel bar and its production method
CN112410573B (en) Slag system for smelting Ce-containing Fe-Ni soft magnetic alloy and use method thereof
WO2016027765A1 (en) Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
JP2003286533A (en) Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy
US20230257858A1 (en) Silicon based alloy, method for the production thereof and use of such alloy
US7704450B2 (en) High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
CN1995407A (en) Trace carbon Al-Mn-Fe alloy and its preparing process
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP2003286549A (en) High-purity ferroboron and production method therefor
JP4256617B2 (en) High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy
JP3105525B2 (en) Melting method of silicon steel material
JP4107801B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP3554283B2 (en) Fe-Ni alloy excellent in surface properties and method for producing the same
JP5215327B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
EP3802899B1 (en) Silicon based alloy, method for the production thereof and use of such alloy
JP3881626B2 (en) Refining method of Fe-Ni alloy
JP3726258B2 (en) Fe-Ce-Al alloy for steel making and method for adding Ce to molten steel
CN1029775C (en) Regenerating technique for waste material of silicon sheet
JP3722329B2 (en) Fe-La-Al alloy for steel making and La addition method to molten steel
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
CN102002619B (en) Rare-earth silicon alloy for silicon steel production and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Effective date: 20070601

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A02