JP2003286533A - Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy - Google Patents

Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy

Info

Publication number
JP2003286533A
JP2003286533A JP2002090649A JP2002090649A JP2003286533A JP 2003286533 A JP2003286533 A JP 2003286533A JP 2002090649 A JP2002090649 A JP 2002090649A JP 2002090649 A JP2002090649 A JP 2002090649A JP 2003286533 A JP2003286533 A JP 2003286533A
Authority
JP
Japan
Prior art keywords
iron
ferroboron
based amorphous
mass
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002090649A
Other languages
Japanese (ja)
Inventor
Jun Takeuchi
順 竹内
Yuichi Sato
有一 佐藤
Hiroaki Sakamoto
広明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002090649A priority Critical patent/JP2003286533A/en
Priority to CNB200610082571XA priority patent/CN100451155C/en
Priority to KR10-2003-0019265A priority patent/KR100533129B1/en
Priority to TW092106953A priority patent/TWI281504B/en
Priority to US10/401,063 priority patent/US20030183041A1/en
Priority to CNB031211860A priority patent/CN1286998C/en
Priority to TW095120437A priority patent/TWI315347B/en
Publication of JP2003286533A publication Critical patent/JP2003286533A/en
Priority to US11/513,452 priority patent/US7704450B2/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce highly pure ferroboron using inexpensive, mass-produced steel instead of expensive electrolytic iron as an iron source, and to produce an iron-based amorphous alloy and a mother alloy therefor having excellent properties using the ferroboron as a raw material. <P>SOLUTION: In the process for producing the highly pure ferroboron, mass-produced steel having an Al content of ≤0.03 mass% obtained in converters, electric furnaces, etc., is used as the iron source. In the process for producing the mother alloy, a diluted iron source and auxiliary materials are added to the obtained ferroboron to adjust its composition. Preferably, the diluted iron source is mass-produced steel having an Al content of ≤0.006 mass% obtained in converters or electric furnaces. In the process for producing the iron-based amorphous alloy, a molten metal of the obtained mother alloy is cast through rapid solidification. By using the mass-produced steel having appropriate Al contents as the iron source for the ferroboron and as the diluted iron source for the mother alloy, an iron-based amorphous alloy ribbon for an iron core having excellent magnetic properties such as a high magnetic flux density and a low iron loss can be inexpensively produced. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非晶質合金の原料
等に使用される高純度フェロボロンの製造方法、該フェ
ロボロンを使用する鉄基非晶質合金用母合金の製造方
法、および該母合金を使用する鉄基非晶質合金の製造方
法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing high-purity ferroboron used as a raw material for an amorphous alloy, a method for producing a master alloy for an iron-based amorphous alloy using the ferroboron, and the mother. The present invention relates to a method for producing an iron-based amorphous alloy using an alloy.

【0002】[0002]

【従来の技術】非晶質合金は磁気的性質や機械的性質に
優れ、多くの用途における工業材料として有望視されて
いる。なかでも、電力トランスや高周波トランスなどの
鉄心材料用として、鉄損が低く、かつ飽和磁束密度や透
磁率が高いなどの理由から、鉄基非晶質合金、例えばF
e−B−Si系やFe−B−Si−C系の非晶質合金が
採用されている。
2. Description of the Related Art Amorphous alloys have excellent magnetic properties and mechanical properties and are regarded as promising industrial materials for many applications. Among them, iron-based amorphous alloys such as F are used for iron core materials such as power transformers and high frequency transformers because of their low iron loss, high saturation magnetic flux density and high magnetic permeability.
An e-B-Si-based or Fe-B-Si-C-based amorphous alloy is used.

【0003】これら非晶質合金は、単ロール法や双ロー
ル法などにより、母合金を溶融状態から急冷凝固させて
製造される。これらの方法は、高速回転する金属製ドラ
ムの外周面に溶融金属をオリフィスなどから噴出させ、
急速に凝固させて薄帯や細線を鋳造するものである。母
合金は非晶質合金の組成に成分調整された合金である。
上記のような鉄基非晶質合金の場合、フェロボロンと希
釈鉄源とSiやCなどの副原料を配合し、成分調整して
製造される。
These amorphous alloys are produced by quenching and solidifying a mother alloy from a molten state by a single roll method or a twin roll method. These methods are to eject molten metal from an orifice or the like onto the outer peripheral surface of a metal drum rotating at high speed,
It rapidly solidifies and casts ribbons and thin wires. The mother alloy is an alloy whose composition is adjusted to the composition of an amorphous alloy.
In the case of the iron-based amorphous alloy as described above, it is manufactured by mixing ferroboron, a dilute iron source, and auxiliary materials such as Si and C, and adjusting the components.

【0004】ところで、母合金に不純物が含まれている
と、急冷凝固の際に非晶質が安定して形成されず優れた
特性が得られないなどの理由から、母合金の原料にはい
ずれも高純度のものが使用され、希釈鉄源には電解鉄が
使用されていた。フェロボロンは、酸化硼素や硼酸等の
硼素源と、鉄源と、コークスや木炭、微粉炭等の炭素系
還元剤を原料として電気炉等の溶融還元炉で製造され、
高純度フェロボロンの鉄源には電解鉄が使用されてい
た。
However, if impurities are contained in the master alloy, amorphous materials are not stably formed during rapid solidification and excellent characteristics cannot be obtained. Also, a high-purity product was used, and electrolytic iron was used as the dilute iron source. Ferroboron is produced in a smelting reduction furnace such as an electric furnace using a boron source such as boron oxide or boric acid, an iron source, and a carbon-based reducing agent such as coke, charcoal, or pulverized coal as a raw material,
Electrolytic iron was used as the iron source for high-purity ferroboron.

【0005】低Alの高純度フェロボロンの製造方法と
して、電気炉にてB濃度が10〜20質量%のフェロボ
ロンを得る方法が、特開昭59−232250号公報お
よび特開昭60−103151号公報に開示されてい
る。しかし鉄源として鉄屑を使用した場合には、鉄屑に
含まれるAl濃度が一定しないため、Al保証値<0.
20質量%であった。このため、従来商業的に得られる
低Alの高純度フェロボロンは、Al保証値<0.02
5質量%とするため、鉄源として電解鉄を用いており高
価であった。
As a method of producing low-purity high-purity ferroboron, a method of obtaining ferroboron having a B concentration of 10 to 20% by mass in an electric furnace is disclosed in JP-A-59-232250 and JP-A-60-103151. Is disclosed in. However, when iron scrap is used as the iron source, the Al concentration contained in the iron scrap is not constant, so the guaranteed Al value <0.
It was 20 mass%. Therefore, the conventional commercially available low-purity high-purity ferroboron has an Al guaranteed value of <0.02.
Since it is 5% by mass, electrolytic iron is used as an iron source and it is expensive.

【0006】鉄基非晶質合金用のフェロボロンを低コス
トで得るために、B濃度は低いが、電気炉を用いない溶
融還元法で得る方法が開示されている。特開昭58−7
7509号公報には、竪型炉で鉄鉱石および酸化硼素を
同時に還元して、B濃度が数質量%のフェロボロンを得
る方法が開示されており、特開昭58−197252号
公報には、取鍋精錬炉にて、溶鋼に酸化硼素と還元剤を
添加し、酸化硼素を還元して、B濃度が数質量%のフェ
ロボロンを得る方法が開示されている。
In order to obtain ferroboron for iron-based amorphous alloys at low cost, a method of obtaining it by a smelting reduction method which does not use an electric furnace but has a low B concentration is disclosed. JP-A-58-7
Japanese Patent No. 7509 discloses a method of simultaneously reducing iron ore and boron oxide in a vertical furnace to obtain ferroboron having a B concentration of several mass%. A method is disclosed in which boron oxide and a reducing agent are added to molten steel and boron oxide is reduced in a pot refining furnace to obtain ferroboron having a B concentration of several mass%.

【0007】[0007]

【発明が解決しようとする課題】しかし、これらの方法
は未還元の酸化硼素がスラグ中に残存し、Bの利用効率
が低い。酸化硼素は比較的高価な原料であり、これらの
方法は逆にコスト高となる。さらには、近年における環
境規制の厳格化により、Bを含むスラグの廃棄には高額
の処理費用を必要とし、ますます高コストな方法となっ
てきた。これらの方法はAl含有量の低減化には有用と
考えられるが、初期の目的である低コスト化が達成さな
い。したがって、これらの方法は現状では商業的には実
施されていない。
However, in these methods, unreduced boron oxide remains in the slag and the utilization efficiency of B is low. Boron oxide is a relatively expensive raw material, and these methods are conversely expensive. Furthermore, due to the stricter environmental regulations in recent years, the disposal of slag containing B requires a high treatment cost, and has become an increasingly expensive method. Although these methods are considered to be useful for reducing the Al content, they do not achieve the initial objective of cost reduction. Therefore, these methods are not currently practiced commercially.

【0008】一方、現在の量産鋼は連続鋳造工程を経て
製造されている。連続鋳造ではかつての造塊工程より生
産性が高く、低コストだからである。造塊工程では鋳込
みが容易なため脱酸程度によりリムド鋼とキルド鋼の作
り分けが可能であったが、連続鋳造工程ではガス発生を
抑制するためキルド鋼が製造される。量産鋼においては
一般的に脱酸剤としてAlが採用されるので、鋼中に相
当程度のAlが含まれている。したがって、鉄基非晶質
合金用の母合金や、その原料となる高純度フェロボロン
の鉄源には量産鋼は使用できないと考えられていた。
On the other hand, current mass-produced steel is manufactured through a continuous casting process. This is because continuous casting has higher productivity and lower cost than the former ingot making process. Since it is easy to cast in the ingot making process, it is possible to separately produce rimmed steel and killed steel depending on the degree of deoxidization, but in the continuous casting process, killed steel is produced to suppress gas generation. Since Al is generally used as a deoxidizing agent in mass-produced steel, the steel contains a considerable amount of Al. Therefore, it has been considered that mass-produced steel cannot be used as a mother alloy for iron-based amorphous alloys or an iron source of high-purity ferroboron as a raw material thereof.

【0009】しかし、一部の量産鋼においてはSiやM
nを脱酸剤に用い、また精錬技術の進歩によりAl脱酸
でもAl含有量の低い鋼が量産されるようになってい
る。そこで本発明が解決しようとする課題は、高価な電
解鉄を使用せずに、安価な量産鋼を鉄源として高純度フ
ェロボロンを製造し、また該フェロボロンを原料として
優れた特性を有する鉄基非晶質合金用母合金、および鉄
基非晶質合金を製造することである。
However, in some mass-produced steels, Si and M
With the use of n as a deoxidizer, and advances in refining technology, steel with a low Al content has been mass-produced even with Al deoxidation. Therefore, the problem to be solved by the present invention is to produce high-purity ferroboron using inexpensive mass-produced steel as an iron source without using expensive electrolytic iron, and to use iron-based non-ferrous materials having excellent properties as the raw material of ferroboron. To produce a master alloy for a crystalline alloy and an iron-based amorphous alloy.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明は、硼素源と鉄源と炭素系還元剤を溶融還元炉
に装入してフェロボロンを製造する方法において、鉄源
が製鋼プロセスの精錬炉により得られた鋼であり、該鋼
のAl含有量が0.03質量%以下であることを特徴と
する高純度フェロボロンの製造方法である。そして、前
記溶融還元炉が電気炉であることが好ましい。
The present invention for solving the above-mentioned problems is a method for producing ferroboron by charging a boron source, an iron source and a carbon-based reducing agent into a smelting reduction furnace, and the iron source is steelmaking. It is a steel obtained by a refining furnace of a process, and the Al content of the steel is 0.03 mass% or less. And, the smelting reduction furnace is preferably an electric furnace.

【0011】また、上記方法により製造された高純度フ
ェロボロンに希釈鉄源と副原料を加えて成分調整するこ
とを特徴とする鉄基非晶質合金用母合金の製造方法であ
る。そして、前記希釈鉄源が製鋼プロセスの精錬炉によ
り得られた鋼であり、該鋼のAl含有量が0.006質
量%以下であるのが好ましい。また上記方法により製造
された母合金の溶湯を、急冷凝固法により鋳造すること
を特徴とする鉄基非晶質合金の製造方法である。
Further, the present invention is a method for producing a master alloy for an iron-based amorphous alloy, which comprises adding a diluted iron source and auxiliary raw materials to the high-purity ferroboron produced by the above method to adjust the components. It is preferable that the diluted iron source is steel obtained by a refining furnace in a steelmaking process, and the Al content of the steel is 0.006 mass% or less. Further, it is a method for producing an iron-based amorphous alloy, characterized in that the molten metal of the mother alloy produced by the above method is cast by a rapid solidification method.

【0012】[0012]

【発明の実施の形態】本発明の高純度フェロボロン製造
法は、原料の鉄源に通常の製鋼プロセスで得られた鋼を
採用し、該鋼のAl含有量が0.03質量%以下であ
る。その他の原料は、酸化硼素や硼酸等の硼素源と、コ
ークス、木炭、微粉炭等の炭素系還元剤であり、これら
原料を溶融還元炉に装入してフェロボロンを製造する。
溶融還元炉としては、電気炉を採用するのが生産性やコ
スト面で好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing high-purity ferroboron according to the present invention, a steel obtained by an ordinary steelmaking process is used as an iron source material, and the Al content of the steel is 0.03 mass% or less. . Other raw materials are boron sources such as boron oxide and boric acid, and carbon-based reducing agents such as coke, charcoal, and pulverized coal. Ferroboron is produced by charging these raw materials into a smelting reduction furnace.
An electric furnace is preferably used as the smelting reduction furnace in terms of productivity and cost.

【0013】鉄源には高価な電解鉄を使用せず、安価な
量産鋼を使用できるので、安価なフェロボロンが製造可
能である。使用する鋼は、転炉、電炉などの精錬炉を経
て、連続鋳造などで鋳造された鋳片でもよく、さらに熱
間圧延や冷間圧延された板などでもよい。鉄源の鋼は、
Al脱酸した鋼であってもAl含有量が0.03質量%
以下であれば使用可能である。SiやMnで脱酸したよ
り低Alの鋼でもよい。
Since inexpensive mass-produced steel can be used as an iron source without using expensive electrolytic iron, inexpensive ferroboron can be manufactured. The steel used may be a slab cast by continuous casting or the like through a refining furnace such as a converter or an electric furnace, or may be a hot rolled or cold rolled plate. The iron source steel is
Al content is 0.03% by mass even for Al deoxidized steel
The following can be used. Lower Al steel deoxidized with Si or Mn may be used.

【0014】実験結果によれば、Al含有量が0.00
1質量%のMn脱酸鋼を鉄源としても、還元剤等からの
混入により、得られるフェロボロンのAl含有量が0.
02質量%のオーダーに上昇する場合がある。そして、
Al含有量が0.03質量%以下の鋼を鉄源とした高純
度フェロボロンを原料とすれば、磁気的性質や機械的性
質に優れた鉄基非晶質合金を安定して製造することがで
きる。本発明法で得られた高純度フェロボロンは、この
ほか、磁性材料の原料や製鋼添加剤等にも使用すること
ができる。
According to the experimental results, the Al content is 0.00
Even if 1% by mass of Mn deoxidized steel is used as an iron source, the Al content of ferroboron obtained by mixing from a reducing agent or the like is 0.
It may increase to the order of 02% by mass. And
If high-purity ferroboron with an Al content of 0.03 mass% or less as an iron source is used as a raw material, an iron-based amorphous alloy excellent in magnetic properties and mechanical properties can be stably produced. it can. The high-purity ferroboron obtained by the method of the present invention can also be used as a raw material for magnetic materials, a steelmaking additive, and the like.

【0015】次に、本発明の鉄基非晶質合金用母合金の
製造法は、上記本発明法により製造された高純度フェロ
ボロンに希釈鉄源と副原料を加えて成分調整する方法で
ある。希釈鉄源としては、高価な電解鉄を使用せず、製
鋼プロセスの精錬炉により得られた量産鋼を使用するこ
とができ、その場合、鋼のAl含有量を0.006質量
%以下とするのが好ましい。副原料は、SiやC等、対
象とする鉄基非晶質合金の構成成分の原料である。高純
度フェロボロンは、上記方法により得られた溶融状態の
ものを使用することもでき、固体のものを溶解すること
もできる。溶解には高周波誘導炉等を使用することがで
きる。
Next, the method for producing the mother alloy for iron-based amorphous alloys of the present invention is a method of adjusting the composition by adding a diluted iron source and an auxiliary raw material to the high-purity ferroboron produced by the above-mentioned method of the present invention. . As the diluted iron source, it is possible to use mass-produced steel obtained by a refining furnace in the steelmaking process without using expensive electrolytic iron, and in that case, the Al content of the steel is 0.006 mass% or less. Is preferred. The auxiliary raw material is a raw material of constituent components of the target iron-based amorphous alloy such as Si and C. As the high-purity ferroboron, the molten one obtained by the above method can be used, or the solid one can be dissolved. A high frequency induction furnace or the like can be used for melting.

【0016】母合金の成分組成は、対象とする鉄基非晶
質合金の成分組成と実質的に一致したものとする。製造
に際しては、この所定成分組成となるように、組成のわ
かっている原料を配合する。実験結果によれば、製造し
た母合金の分析結果は、あらかじめ設定した所定成分組
成からほとんどずれていない。
The component composition of the master alloy is substantially the same as that of the target iron-based amorphous alloy. At the time of production, raw materials whose composition is known are blended so as to have the predetermined composition. According to the experimental results, the analysis result of the manufactured master alloy shows almost no deviation from the predetermined component composition set in advance.

【0017】母合金の成分組成を設定する際、Fe、B
などの主要成分について原料配合比を定める。このと
き、Al含有量については、優れた特性を有する非晶質
合金が安定的に得られる許容量以下となるように設定す
る。その場合、高純度フェロボロンのAl含有量は、鉄
源として使用した鋼の最大含有量0.03%を超えるこ
とがないので、これを希釈して母合金のAl含有量が上
記許容量以下となるように希釈鉄源のAl含有量を定め
ることができる。実験結果によれば、希釈鉄源の鋼にA
lが含まれていても、0.006質量%以下であれば、
対象とするほとんどの鉄基非晶質合金について安定的に
優れた特性が得られる。
When setting the composition of the mother alloy, Fe, B
The raw material mixing ratio is determined for major components such as. At this time, the Al content is set to be equal to or less than the allowable amount with which an amorphous alloy having excellent characteristics can be stably obtained. In that case, since the Al content of the high-purity ferroboron does not exceed the maximum content of the steel used as the iron source of 0.03%, it is diluted and the Al content of the master alloy is set to the above allowable amount or less. The Al content of the diluted iron source can be determined so that According to the experimental results, A
Even if 1 is included, if 0.006 mass% or less,
Stable and excellent characteristics can be obtained for most of the target iron-based amorphous alloys.

【0018】次に本発明の鉄基非晶質合金の製造方法
は、上記本発明法により製造された母合金の溶湯を、急
冷凝固法により鋳造するものである。母合金の溶湯は、
固体の母合金を高周波誘導炉等により再溶融したもので
あってもよく、また上記により製造した溶融状態のもの
であってもよい。
Next, in the method for producing an iron-based amorphous alloy of the present invention, the molten metal of the mother alloy produced by the method of the present invention is cast by the rapid solidification method. The melt of the mother alloy is
The solid master alloy may be remelted by a high-frequency induction furnace or the like, or may be the molten state manufactured as described above.

【0019】本発明法により、例えばFe−B−Si−
C−P系の鉄基非晶質合金において、Al含有量が0.
005質量%以下の薄帯が鋳造できる。この薄帯は優れ
た磁気特性を有していた。急冷凝固法としては、単ロー
ル法や双ロール法等を採用することができる。
According to the method of the present invention, for example, Fe-B-Si-
In a CP type iron-based amorphous alloy, the Al content is 0.
A ribbon of 005 mass% or less can be cast. This ribbon had excellent magnetic properties. As the rapid solidification method, a single roll method, a twin roll method or the like can be adopted.

【0020】[0020]

【実施例】(実施例1)表1に示す4種の鉄源と酸化硼
素と炭素系還元剤を電気炉で溶解し、フェロボロンを製
造した。各鉄源は、高炉で得られた銑鉄から、脱S工
程、脱Si工程、および転炉での酸素吹錬による脱Pお
よび脱C工程を経て製造された鋼である。鋼種AはSi
およびMnで脱酸し、鋼種BおよびDはMnで脱酸し、
鋼種CはAlで脱酸した。各鋼種とも、連続鋳造により
スラブとした後、熱間圧延にて板厚約3mmの熱延コイル
とし、各熱延コイルからシャーにて数cm四方程度に切出
したものを電気炉に装入した。
Example 1 Four types of iron sources shown in Table 1, boron oxide, and a carbon-based reducing agent were melted in an electric furnace to produce ferroboron. Each iron source is steel produced from pig iron obtained in the blast furnace through a de-S process, a Si-de-process, and a de-P and de-C process by oxygen blowing in a converter. Steel type A is Si
And Mn deoxidize, steel types B and D deoxidize with Mn,
Steel type C was deoxidized with Al. For each steel type, after slabs were made by continuous casting, hot-rolled coils with a plate thickness of about 3 mm were hot-rolled, and each hot-rolled coil was cut into a few cm square with a shear and charged into an electric furnace. .

【0021】電気炉には電気容量600KVA の3相エル
ー式電気炉を用いた。炉の操業は8日間連続して行い、
2日毎に鉄源をB、D、A、Cの順に切り替えた。タッ
ピング間隔は約2時間であり、鉄源の切替タイミングに
当らないフェロボロンを分析用に供した。原料の配合
は、表2に示す初期配合で操業を開始し、操業が安定し
たところで安定化後配合に切替えた。
As the electric furnace, a three-phase Eru type electric furnace having an electric capacity of 600 KVA was used. Operate the furnace continuously for 8 days,
The iron source was switched in the order of B, D, A and C every two days. The tapping interval was about 2 hours, and ferroboron, which did not meet the iron source switching timing, was used for analysis. As for the raw material composition, the operation was started with the initial composition shown in Table 2, and when the operation was stable, the composition was switched to the post-stabilization composition.

【0022】製造したフェロボロンの分析値を表3のN
o. 1〜No. 4に示す。低Alの鋼種A、B、Dを鉄源
としたものは、還元剤からのAl混入によりAl含有量
が増加しているが0.03質量%以下となっている。A
l含有量0.03質量%の鋼種Cを鉄源としたもので
は、スラグ中にAlが入ったためAl含有量がやや低減
している。なお、表中のT.Alは金属Alと化合物A
lの合計値を示す。
The analytical values of the produced ferrobolone are N in Table 3.
Shown in o. 1 to No. 4. In the case of using the low Al steel types A, B, and D as the iron source, the Al content increases due to the incorporation of Al from the reducing agent, but it is 0.03 mass% or less. A
In the case where the steel source C having a 1 content of 0.03 mass% was used as the iron source, the Al content was slightly reduced because Al was contained in the slag. In addition, T. Al is metal Al and compound A
The total value of 1 is shown.

【0023】表3のNo. 1〜No. 4の各フェロボロン
は、いずれも不純物としてAlを含有しているが、その
含有量は0.03質量%以下であり、これを原料として
母合金を製造し、さらに鉄基非晶質合金を鋳造した結
果、いずれからも、後述のような優れた磁気特性を有す
る薄帯が得られた。
Each of ferrobolones No. 1 to No. 4 in Table 3 contains Al as an impurity, but its content is 0.03 mass% or less. As a result of production and casting of an iron-based amorphous alloy, a ribbon having excellent magnetic properties as described below was obtained from each of them.

【0024】(実施例2)次に、フェロボロンの製造を
誘導溶解炉で行った例を示す。鉄源として表1の鋼種A
を950g、造滓剤としてCaOを20g、および還元
剤として炭材を300g、ルツボに装入し、誘導炉にて
加熱し1700℃に保定した。その後、酸化硼素を60
0g上部よりルツボ内に供給し、1700℃に保定し
た。酸化硼素供給から60分後に誘導加熱を停止し、冷
却して得たフェロボロンを分析した。その結果を表3の
No. 5に示す。本例による不純物はAl、Tiとも十分
に低い。なお電気炉で製造したNo. 1〜No. 4に比べて
B含有量が低く、C含有量が高いが、高B−低Cフェロ
ボロンと組合せる等により鉄基非晶質合金用母合金の原
料として使用可能である。
(Example 2) Next, an example in which ferroborone is produced in an induction melting furnace is shown. Steel type A in Table 1 as an iron source
950 g, CaO 20 g as a slag forming agent, and carbon material 300 g as a reducing agent were charged in a crucible, heated in an induction furnace and kept at 1700 ° C. Then, boron oxide 60
It was fed into the crucible from 0 g above and kept at 1700 ° C. The induction heating was stopped 60 minutes after the supply of boron oxide, and the ferroboron obtained by cooling was analyzed. The results are shown in Table 3.
No. 5 shows. The impurities according to this example are sufficiently low in both Al and Ti. Although the B content is lower and the C content is higher than No. 1 to No. 4 produced in the electric furnace, it is possible to obtain a master alloy for iron-based amorphous alloys by combining with a high B-low C ferroboron. It can be used as a raw material.

【0025】(実施例3)実施例1で得られた表3のN
o. 1〜No. 4のフェロボロンと、希釈鉄源と、副原料
としてFeP、炭材およびSiを高周波誘導炉にて溶解
し、Fe−B−Si−P系の鉄基非晶質合金用母合金を
製造した。フェロボロンは、実施例1にてタップされ凝
固したものを粉砕して使用した。希釈鉄源には、実施例
1で使用した表1の鋼種A〜Dを使用した。
(Example 3) N in Table 3 obtained in Example 1
For Fe-B-Si-P based iron-based amorphous alloys, o. 1 to No. 4 ferroboron, diluted iron source, FeP, carbon material and Si as auxiliary materials are melted in a high frequency induction furnace. A mother alloy was produced. Ferroborone was tapped and solidified in Example 1 and crushed before use. The steel types A to D of Table 1 used in Example 1 were used as the diluted iron source.

【0026】高周波誘導炉では、母合金の主要成分組成
が所定値となるように原料を配合し、完全に溶解するま
で昇温し、均一になるまで保定した後、凝固、粉砕し
て、その一部をサンプリングし分析した。表3のNo. 1
のフェロボロンFeB−Aを原料とした場合の原料配合
例を表4に示す。母合金A−Aは希釈鉄源に鋼種Aを使
用した場合、母合金A−Cは希釈原料に鋼種Cを使用し
た場合の例である。
In the high-frequency induction furnace, the raw materials are mixed so that the main component composition of the mother alloy becomes a predetermined value, the temperature is raised until they are completely melted, the temperature is maintained until they are uniform, and the solidification and pulverization are performed. A portion was sampled and analyzed. No. 1 in Table 3
Table 4 shows an example of a raw material mixture when the ferroboron FeB-A is used as a raw material. The mother alloy A-A is an example when the steel type A is used as the diluted iron source, and the mother alloy A-C is the example when the steel type C is used as the diluted raw material.

【0027】この配合例で得られた母合金の成分分析値
を表5に示す。表5の主要成分分析値は、あらかじめ設
定した所定値からほとんどずれておらず、原料配合どお
りの組成が得られることが確認された。母合金A−A
は、不純物としてのAl含有量が0.0050質量%以
下であり、鉄基非晶質合金用として適している。しかし
母合金A−CはAl含有量が高く、さらにTi含有量も
高く、鉄基非晶質合金用として適さない。
Table 5 shows the component analysis values of the mother alloy obtained in this formulation example. It was confirmed that the main component analysis values in Table 5 did not deviate from the predetermined values set in advance, and that the composition as the raw material composition was obtained. Mother alloy A-A
Has an Al content of 0.0050 mass% or less as an impurity and is suitable for iron-based amorphous alloys. However, the mother alloys A to C have a high Al content and a high Ti content, and are not suitable for iron-based amorphous alloys.

【0028】希釈鉄源を鋼種A、鋼種B、鋼種Dとした
場合は、フェロボロンを表3のNo.1〜No. の何れとし
た場合も、母合金のAl含有量は0.0050質量%以
下であり、鉄基非晶質合金用として適していた。しかし
希釈鉄源を鋼種Cとした場合は、得られた母合金のAl
含有量が高く、鉄基非晶質母合金用として適さないもの
であった。
When the dilute iron sources are steel type A, steel type B, and steel type D, the Al content of the master alloy is 0.0050% by mass regardless of whether ferroboron is No. 1 to No. 3 in Table 3. It was below, and was suitable for iron-based amorphous alloys. However, when the diluted iron source is steel type C, Al of the obtained master alloy is
The content was high and it was not suitable for an iron-based amorphous master alloy.

【0029】(実施例4)実施例3で得られた表5の母
合金A−Aを再溶解して、単ロール法により急冷凝固し
て薄帯を製造し、鉄心材料としての磁気特性を評価し
た。また薄帯の成分を分析した結果、母合金との成分ズ
レはなかった。なお、再溶解時にさらなる副原料を加え
て成分調整を行った場合でも、配合成分どおりの薄帯が
得られた。
Example 4 The mother alloy AA of Table 5 obtained in Example 3 was redissolved and rapidly solidified by the single roll method to produce a ribbon, and the magnetic properties as an iron core material were measured. evaluated. Moreover, as a result of analyzing the components of the thin ribbon, there was no component deviation from the mother alloy. Even when the components were adjusted by adding further auxiliary materials during re-dissolution, a ribbon as the blended component was obtained.

【0030】磁気特性の評価に際しては、薄帯を120
mm長さに切断して、360℃で窒素雰囲気中1時間、磁
場中でアニールした後、SST(単板磁気測定器)を用
いてB80および鉄損を測定した。B80は最大印加磁場が
80A/mのときの最大磁束密度、鉄損は最大磁束密度
1.3Tにおける値である。測定周波数は50Hzであ
る。測定結果は、B80=1.44Tの高い磁束密度が発
現し、鉄損は0.063W/kgと低く、優れた交流軟
磁気特性を有し、十分実用に供し得るものであった。
When evaluating the magnetic properties, a thin ribbon was applied to 120
After cutting to a length of mm and annealing at 360 ° C. in a nitrogen atmosphere for 1 hour in a magnetic field, B 80 and iron loss were measured using SST (single plate magnetometer). B 80 is the maximum magnetic flux density when the maximum applied magnetic field is 80 A / m, and the iron loss is the value at the maximum magnetic flux density of 1.3T. The measurement frequency is 50 Hz. As a result of the measurement, a high magnetic flux density of B 80 = 1.44T was developed, the iron loss was low at 0.063 W / kg, and the AC soft magnetic property was excellent, which was sufficiently practical.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【発明の効果】本発明法によれば、高価な電解鉄を使用
せず、Al脱酸鋼等の量産鋼を鉄源として高純度フェロ
ボロンを製造し、また該フェロボロンを原料として優れ
た特性を有する鉄基非晶質合金用母合金、および鉄基非
晶質合金を製造することができる。フェロボロン用の鉄
源および母合金用の希釈鉄源に、それぞれ適正なAl含
有量の量産鋼を使用することで、たとえば、高磁束密度
でかつ低鉄損の優れた磁気特性を有する鉄心用の鉄基非
晶質合金薄帯が、安価に製造できる。
According to the method of the present invention, high-purity ferroboron is produced by using mass-produced steel such as Al deoxidized steel as an iron source without using expensive electrolytic iron, and excellent properties are obtained by using ferroboron as a raw material. It is possible to produce the iron-based amorphous alloy master alloy and the iron-based amorphous alloy. By using mass-produced steel with an appropriate Al content for the iron source for ferroboron and the diluted iron source for the master alloy, for example, for iron cores having high magnetic flux density and excellent magnetic properties with low iron loss, The iron-based amorphous alloy ribbon can be manufactured at low cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/153 H01F 1/14 C (72)発明者 坂本 広明 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 4E004 DB02 NB07 NC06 TA03 4K012 CA09 DE06 EA04 5E041 AA11 BD03 CA02 HB15 HB19 NN01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 1/153 H01F 1/14 C (72) Inventor Hiroaki Sakamoto 20-1 Shintomi, Futtsu-shi Nippon Steel Stock Company Technology Development Headquarters F term (reference) 4E004 DB02 NB07 NC06 TA03 4K012 CA09 DE06 EA04 5E041 AA11 BD03 CA02 HB15 HB19 NN01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 硼素源と鉄源と炭素系還元剤を溶融還元
炉に装入してフェロボロンを製造する方法において、鉄
源が製鋼プロセスの精錬炉により得られた鋼であり、該
鋼のAl含有量が0.03質量%以下であることを特徴
とする高純度フェロボロンの製造方法。
1. A method for producing ferroboron by charging a boron source, an iron source, and a carbon-based reducing agent into a smelting reduction furnace, wherein the iron source is steel obtained by a refining furnace of a steelmaking process. Al content is 0.03 mass% or less, The manufacturing method of high-purity ferroboron.
【請求項2】 前記溶融還元炉が電気炉であることを特
徴とする請求項1記載の高純度フェロボロンの製造方
法。
2. The method for producing high-purity ferroboron according to claim 1, wherein the smelting reduction furnace is an electric furnace.
【請求項3】 請求項1または2記載の方法により製造
された高純度フェロボロンに希釈鉄源と副原料を加えて
成分調整することを特徴とする鉄基非晶質合金用母合金
の製造方法。
3. A method for producing a master alloy for an iron-based amorphous alloy, which comprises adding a diluted iron source and an auxiliary raw material to the high-purity ferroboron produced by the method according to claim 1 or 2 to adjust the components. .
【請求項4】 前記希釈鉄源が製鋼プロセスの精錬炉に
より得られた鋼であり、該鋼のAl含有量が0.006
質量%以下であることを特徴とする請求項3記載の鉄基
非晶質合金用母合金の製造方法。
4. The dilute iron source is steel obtained by a refining furnace of a steelmaking process, and the Al content of the steel is 0.006.
The method for producing a master alloy for iron-based amorphous alloys according to claim 3, wherein the content is not more than mass%.
【請求項5】 請求項3または4記載の方法により製造
された鉄基非晶質合金用母合金の溶湯を、急冷凝固法に
より鋳造することを特徴とする鉄基非晶質合金の製造方
法。
5. A method for producing an iron-based amorphous alloy, characterized in that the molten metal of the master alloy for iron-based amorphous alloy produced by the method according to claim 3 or 4 is cast by a rapid solidification method. .
JP2002090649A 2002-03-28 2002-03-28 Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy Pending JP2003286533A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002090649A JP2003286533A (en) 2002-03-28 2002-03-28 Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy
CNB200610082571XA CN100451155C (en) 2002-03-28 2003-03-27 High-purity ferroboron
KR10-2003-0019265A KR100533129B1 (en) 2002-03-28 2003-03-27 High-purity ferroboron, master alloy for fe-base amorphous alloy and fe-base amorphous alloy and methods for producing the same
TW092106953A TWI281504B (en) 2002-03-28 2003-03-27 A high-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
US10/401,063 US20030183041A1 (en) 2002-03-28 2003-03-27 High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
CNB031211860A CN1286998C (en) 2002-03-28 2003-03-27 High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
TW095120437A TWI315347B (en) 2002-03-28 2003-03-27 A high-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
US11/513,452 US7704450B2 (en) 2002-03-28 2006-08-30 High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090649A JP2003286533A (en) 2002-03-28 2002-03-28 Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy

Publications (1)

Publication Number Publication Date
JP2003286533A true JP2003286533A (en) 2003-10-10

Family

ID=29235928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090649A Pending JP2003286533A (en) 2002-03-28 2002-03-28 Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy

Country Status (2)

Country Link
JP (1) JP2003286533A (en)
CN (1) CN100451155C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014477A (en) * 2013-01-16 2013-04-03 青岛云路新能源科技有限公司 Method for smelting iron-based nanocrystalline master alloy
CN103667855A (en) * 2013-12-13 2014-03-26 青岛云路新能源科技有限公司 Method for smelting iron-based amorphous master alloy with waste strips

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880785A (en) * 2010-06-29 2010-11-10 山东理工大学 Preparation method of boron-nickel alloys
CN102134676A (en) * 2011-03-01 2011-07-27 杭州寰宇粉体科技有限公司 Iron-based special alloy powder and production method thereof
CN103938127B (en) * 2014-04-23 2015-06-17 兆晶股份有限公司 Method for preparing iron-based amorphous broadband
CN106853533B (en) * 2015-12-09 2018-07-27 苏州纳朴材料科技有限公司 A method of preparing high-purity ferro-boron superfine powder
CN113528983B (en) * 2021-01-15 2022-03-25 武汉科技大学 Iron-based amorphous soft magnetic alloy and preparation method thereof
CN116904839B (en) * 2023-09-12 2023-11-24 内蒙古永磊材料科技有限公司 High-purity ferroboron and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232250A (en) * 1983-06-14 1984-12-27 Nippon Denko Kk High purity ferroboron and its production
CN1029412C (en) * 1993-07-17 1995-08-02 辽阳铁合金厂 Carbon heating process for producing ferroboron from premade boron coke

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014477A (en) * 2013-01-16 2013-04-03 青岛云路新能源科技有限公司 Method for smelting iron-based nanocrystalline master alloy
CN103667855A (en) * 2013-12-13 2014-03-26 青岛云路新能源科技有限公司 Method for smelting iron-based amorphous master alloy with waste strips

Also Published As

Publication number Publication date
CN100451155C (en) 2009-01-14
CN1854322A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
KR101053220B1 (en) Manufacturing method of iron-based amorphous material
CN113528984A (en) FeSiPC amorphous soft magnetic alloy and preparation method thereof
CN106636982B (en) A kind of Fe-based amorphous alloy and preparation method thereof
JP2003286533A (en) Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy
CN112410573B (en) Slag system for smelting Ce-containing Fe-Ni soft magnetic alloy and use method thereof
CN111001767B (en) High-saturation magnetic induction intensity iron-based amorphous soft magnetic alloy and preparation method thereof
US20060292027A1 (en) High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
JP4256617B2 (en) High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy
JP2001316716A (en) Method for producing base material for amorphous iron alloy
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP2023526128A (en) Low-cost non-oriented electrical steel sheet with extremely low aluminum content and method for producing the same
JP3105525B2 (en) Melting method of silicon steel material
JP4107801B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP2003049216A (en) Method for producing molten steel
JP3179530B2 (en) Melting method of extremely low Ti steel
JP5215327B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JPS61174355A (en) Manufacture of mother alloy for amorphous alloy
CN1029775C (en) Regenerating technique for waste material of silicon sheet
JP2003286549A (en) High-purity ferroboron and production method therefor
JPS6151020B2 (en)
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
CN102002619B (en) Rare-earth silicon alloy for silicon steel production and preparation method thereof
CN117265370A (en) High-purity silicon-manganese alloy for silicon steel and preparation method thereof
JPH0619101B2 (en) Method for removing Cr from molten steel
JPS63262445A (en) Production of boron containing base alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106