JP2003284958A - Hydrodesulfurization catalyst of heavy fuel oil and manufacturing method therefor, and method for hydrodesulfurization of heavy fuel oil - Google Patents

Hydrodesulfurization catalyst of heavy fuel oil and manufacturing method therefor, and method for hydrodesulfurization of heavy fuel oil

Info

Publication number
JP2003284958A
JP2003284958A JP2002092686A JP2002092686A JP2003284958A JP 2003284958 A JP2003284958 A JP 2003284958A JP 2002092686 A JP2002092686 A JP 2002092686A JP 2002092686 A JP2002092686 A JP 2002092686A JP 2003284958 A JP2003284958 A JP 2003284958A
Authority
JP
Japan
Prior art keywords
catalyst
mass
hydrodesulfurization
group
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002092686A
Other languages
Japanese (ja)
Other versions
JP4047044B2 (en
Inventor
Nobumasa Nakajima
信昌 中嶋
Toshiyuki Hirose
敏之 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2002092686A priority Critical patent/JP4047044B2/en
Publication of JP2003284958A publication Critical patent/JP2003284958A/en
Application granted granted Critical
Publication of JP4047044B2 publication Critical patent/JP4047044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a hydrodesulfurization catalyst capable of removing a sulfur compound in a heavy oil fraction over a long period of time with high efficiency, to provide a manufacturing method therefor, and a method for hydrodesulfurization using the catalyst. <P>SOLUTION: The catalyst carries at least 8-25 mass% of one kind of metal selected from the group 6 elements of the Periodic Table on a catalyst basis in terms of the oxide, at least 1-8 mass% of one kind of metal selected from the group 8 elements of the Periodic Table, 0.5-6 mass% of phosphorus, and 1-14 mass% of carbon on the catalyst basis on an alumina carrier. Physical properties of the catalyst after baked at 500°C are as follows: the specific surface area is 180-330 m<SP>2</SP>/g, the pore volume is 0.4-0.7 ml/g, and the average pore diameter is 7-12 nm. A solution containing the above components is carried on the alumina carrier, and is dried at 200°C or lower. The raw material oil is contacted with the catalyst on the condition that 4-18 MPa of the hydrogen partial pressure, 320-410°C of the temperature, and 0.1-4.0 h<SP>-1</SP>of the liquid space velocity are satisfied. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、重質油留分(すな
わち、常圧残渣油又は減圧残渣油)中の硫黄化合物を長
期間に渡って高い効率で除去することができる重質油の
水素化脱硫触媒、その触媒の製造方法、及びその触媒を
用いる重質油の水素化脱硫方法に関する。
TECHNICAL FIELD The present invention relates to a heavy oil fraction capable of removing sulfur compounds in a heavy oil fraction (that is, atmospheric residue oil or vacuum residue oil) with high efficiency over a long period of time. The present invention relates to a hydrodesulfurization catalyst, a method for producing the catalyst, and a method for hydrodesulfurizing heavy oil using the catalyst.

【0002】[0002]

【技術背景】原油を常圧蒸留装置により処理して得られ
る常圧残渣油(AR)や、ARをさらに減圧蒸留装置で
処理することにより得られる減圧残渣油(VR)等の重
質油には、多量の硫黄化合物が含有されている。これら
の重質油を脱硫処理することなく燃料として用いる場
合、硫黄酸化物(SOx)が大気中に排出される。
[Technical Background] Heavy oil such as atmospheric residual oil (AR) obtained by treating crude oil with an atmospheric distillation apparatus or reduced pressure residual oil (VR) obtained by further treating AR with a vacuum distillation apparatus Contains a large amount of sulfur compounds. When these heavy oils are used as fuels without desulfurization, sulfur oxides (SOx) are discharged into the atmosphere.

【0003】そこで、従来、原油から種々の石油製品を
製造する工程中に、直接脱硫装置による重質油留分の水
素化脱硫処理工程が組み入れられ、硫黄化合物の除去が
行われている。この重質油中の硫黄化合物を除去するこ
とを目的とする水素化脱硫触媒は、周期律表第6族のモ
リブデン、タングステン、第8族のコバルト、ニッケル
を活性発現成分とし、これらをアルミナ、マグネシア、
シリカ、チタニア等の無機酸化物担体に担持させたもの
が開発されている。
Therefore, conventionally, a hydrodesulfurization treatment step of a heavy oil fraction by a direct desulfurization apparatus has been incorporated into the step of producing various petroleum products from crude oil to remove sulfur compounds. The hydrodesulfurization catalyst intended to remove the sulfur compounds in the heavy oil is molybdenum, tungsten of group 6 of the periodic table, cobalt of group 8 and nickel as active expression components, and these are alumina, Magnesia,
Those supported on an inorganic oxide carrier such as silica or titania have been developed.

【0004】また、触媒の水素化脱硫性能を改善する技
術として、幾つかの提案がなされている。例えば、特開
昭58−146445号公報等では、アルミナ担体にゼ
オライトを加え、水素化脱硫性能の向上を図っている。
特許第2832033号公報では、活性金属化合物を含
む溶液にクエン酸を添加し、担体に担持した後、焼成し
て水素化脱硫性能の向上を図っている。特許第2900
771号公報では、活性金属化合物を含む溶液にジオー
ル又はエーテルを添加し、担体に担持した後、乾燥させ
ることで水素化脱硫性能の向上を図っている。
Several proposals have been made as techniques for improving the hydrodesulfurization performance of catalysts. For example, in JP-A-58-146445, etc., zeolite is added to an alumina carrier to improve the hydrodesulfurization performance.
In Japanese Patent No. 2832033, citric acid is added to a solution containing an active metal compound, and the solution is supported on a carrier and then calcined to improve hydrodesulfurization performance. Patent No. 2900
In Japanese Patent Publication No. 771), a diol or ether is added to a solution containing an active metal compound, and the solution is supported on a carrier and then dried to improve the hydrodesulfurization performance.

【0005】しかし、重質油中には水素化脱硫反応の障
害となるアスファルテン、あるいは触媒活性を低下させ
る有機金属化合物や芳香族性に富む巨大分子が存在し、
上記の触媒では、水素化脱硫活性を長期に渡って維持す
ることが難しく、更なる技術の進歩が要求されている。
However, heavy oil contains asphaltene, which interferes with the hydrodesulfurization reaction, or organometallic compounds or aromatic macromolecules, which reduce the catalytic activity.
With the above catalyst, it is difficult to maintain the hydrodesulfurization activity for a long period of time, and further technological advances are required.

【0006】[0006]

【発明の目的】本発明の目的は、直接脱硫装置による重
質油の水素化脱硫処理において、重質油留分中の硫黄化
合物を長期間に渡って高い効率で除去することができる
水素化脱硫触媒と、この触媒の製造方法と、この触媒を
用いた重質油の水素化脱硫法を提供することにある。
It is an object of the present invention to perform a hydrodesulfurization treatment of a heavy oil by a direct desulfurization apparatus, which is capable of efficiently removing a sulfur compound in a heavy oil fraction over a long period of time with high efficiency. It is to provide a desulfurization catalyst, a method for producing the catalyst, and a method for hydrodesulfurizing heavy oil using the catalyst.

【0007】[0007]

【発明の概要】上記目的を達成するために、本発明の触
媒は、常圧残渣油又は減圧残渣油を水素化脱硫する触媒
であって、〔1〕触媒基準、酸化物換算で、周期律表第
6族から選ばれる少なくとも1種の金属8〜25質量
%、周期律表第8族から選ばれる少なくとも1種の金属
1〜8質量%、リン0.5〜6質量%と、触媒基準で、
炭素1〜14質量%とを、アルミナ担体に担持してな
り、500℃で焼成した後の物理性状が、比表面積:1
80〜330m/g、細孔容積:0.4〜0.7m1
/g、平均細孔直径:7〜12nmであることを特徴と
する。この触媒は、500℃で焼成した後の物理性状
が、〔2〕比表面積:180〜300m/g、細孔容
積:0.55〜0.7m1/g、平均細孔直径:10〜
12nmであり、平均細孔直径±1.5nmの範囲にあ
る細孔容積が全細孔容積の40〜75%であってもよい
し、〔3〕比表面積:220〜330m/g、細孔容
積:0.4〜0.65m1/g、平均細孔直径:7nm
以上10nm未満であり、平均細孔直径±1.5nmの
範囲にある細孔容積が全細孔容積の50〜85%であっ
てもよい。また、これらの触媒は、周期律表第6族の金
属がモリブデン、タングステンの一方又は双方で、周期
律表第8族の金属がコバルト、ニッケルの一方又は双方
であることが好ましい。これら触媒の本発明に係る製造
方法は、周期律表第8族金属から選ばれる少なくとも1
種を含む化合物、周期律表第6族金属から選ばれる少な
くとも1種を含む化合物、リン酸及び有機酸を含有する
溶液を、比表面積が200〜500m/gのアルミナ
担体に担持させ、200℃以下で乾燥させることを特徴
とする。更に、本発明に係る重質油の水素化脱硫方法
は、水素分圧4〜18MPa、温度320〜410℃、
液空間速度0.1〜4.0h−1で、硫黄化合物を含む
常圧残渣油又は減圧残渣油を、本発明の触媒と接触させ
ることを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the catalyst of the present invention is a catalyst for hydrodesulfurizing atmospheric residual oil or reduced pressure residual oil, which is [1] catalyst standard, oxide conversion 8 to 25 mass% of at least one metal selected from Group 6 of the table, 1 to 8 mass% of at least one metal selected from Group 8 of the periodic table, and 0.5 to 6 mass% of phosphorus, based on catalyst so,
1 to 14% by mass of carbon is supported on an alumina carrier, and the physical property after firing at 500 ° C. is a specific surface area: 1
80 to 330 m 2 / g, pore volume: 0.4 to 0.7 m1
/ G, average pore diameter: 7 to 12 nm. The physical properties of this catalyst after calcining at 500 ° C. are [2] specific surface area: 180 to 300 m 2 / g, pore volume: 0.55 to 0.7 m1 / g, average pore diameter: 10
The pore volume in the range of 12 nm and the average pore diameter ± 1.5 nm may be 40 to 75% of the total pore volume, or [3] specific surface area: 220 to 330 m 2 / g, fine pore. Pore volume: 0.4 to 0.65 m1 / g, average pore diameter: 7 nm
The pore volume, which is not less than 10 nm and is within the range of the average pore diameter ± 1.5 nm, may be 50 to 85% of the total pore volume. Further, in these catalysts, it is preferable that the metal of Group 6 of the periodic table is one or both of molybdenum and tungsten, and the metal of Group 8 of the periodic table is one or both of cobalt and nickel. The method for producing these catalysts according to the present invention includes at least one selected from metals of Group 8 of the periodic table.
A compound containing a species, a compound containing at least one selected from Group 6 metals of the periodic table, a solution containing phosphoric acid and an organic acid is supported on an alumina carrier having a specific surface area of 200 to 500 m 2 / g, and 200 It is characterized by being dried at ℃ or less. Further, the method for hydrodesulfurizing heavy oil according to the present invention comprises a hydrogen partial pressure of 4 to 18 MPa, a temperature of 320 to 410 ° C,
It is characterized in that a normal pressure residual oil or a vacuum residual oil containing a sulfur compound is brought into contact with the catalyst of the present invention at a liquid hourly space velocity of 0.1 to 4.0 h -1 .

【0008】本発明における水素化脱硫の対象油は、原
油を常圧蒸留装置により処理して得られる常圧残渣油
(AR)や、ARを更に減圧蒸留装置で処理することに
より得られる減圧残渣油(VR)の重質油留分である。
The target oil for hydrodesulfurization in the present invention is an atmospheric residue oil (AR) obtained by treating crude oil with an atmospheric distillation apparatus, or a vacuum residue obtained by further treating AR with an atmospheric distillation apparatus. It is a heavy oil fraction of oil (VR).

【0009】本発明の触媒の担体となるアルミナは、種
々の方法で製造することができる。具体的には、水溶性
のアルミニウム化合物例えばアルミニウムの硫酸塩、硝
酸塩あるいは塩化物をアンモニアのような塩基で中和す
るか、またはアルカリ金属アルミン酸塩を酸性アルミニ
ウム塩または酸で中和する等して、生成したアルミニウ
ムヒドロゲル又はヒドロゾルを洗浄、熟成、成形、乾
燥、焼成等の一般的な処方を施して、製造することがで
きる。
Alumina, which is a carrier for the catalyst of the present invention, can be produced by various methods. Specifically, a water-soluble aluminum compound such as aluminum sulfate, nitrate or chloride is neutralized with a base such as ammonia, or an alkali metal aluminate is neutralized with an acidic aluminum salt or acid. Then, the produced aluminum hydrogel or hydrosol can be produced by subjecting it to a general formulation such as washing, aging, molding, drying and firing.

【0010】本発明における触媒の担体として好適な構
造物性を有するアルミナ担体を得るには、沈殿剤や中和
剤等を添加してアルミナゲルを作る際のpH、これら薬
剤の濃度、時間、温度等を適宜調整すればよく、例え
ば、ゲル生成の際のpHを酸性側で行えば、比表面積が
大きくなる。本発明では、pH約4〜8、温度約15〜
90℃とすることが好ましい。
In order to obtain an alumina carrier having suitable structural properties as a catalyst carrier in the present invention, the pH at which an alumina gel is prepared by adding a precipitating agent, a neutralizing agent, etc., the concentration of these agents, the time, and the temperature. Etc. may be appropriately adjusted. For example, if the pH at the time of gel formation is adjusted to the acidic side, the specific surface area increases. In the present invention, pH is about 4-8 and temperature is about 15-
The temperature is preferably 90 ° C.

【0011】ゲル生成後に、熟成、不純物の洗浄除去、
脱水乾燥を行う。熟成はpH4〜9、約15〜90℃
で、約1〜25時間で行うことが好ましい。これらの範
囲外では、熟成後にアルミナゲル中の不純物が除去し難
くなるのみならず、アルミナゲルの表面積が小さくな
る。また脱水乾燥は、アルミナゲルにできるだけ熱を加
えずに、含有水分量を調整することにより行う。例え
ば、約15〜90℃、約0. 01〜2MPaでの自然濾
過、吸引濾過、加圧濾過等による方法で脱水乾燥し、脱
水乾燥後の含有水分量が約60〜90質量%となるよう
にすることが好ましい。アルミナゲルに余分な熱を加え
ずに含有水分量を調整することで、アルミナの表面構造
の制御が可能となり、触媒の水素化脱硫活性を向上させ
ることができる。
After gel formation, aging, washing and removal of impurities,
Dehydrate and dry. Aging is pH 4-9, about 15-90 ° C
It is preferable to carry out the treatment in about 1 to 25 hours. Outside of these ranges, it becomes difficult to remove impurities in the alumina gel after aging, and the surface area of the alumina gel becomes small. The dehydration drying is performed by adjusting the water content of the alumina gel while applying as little heat as possible. For example, dehydration drying is performed by a method such as natural filtration at about 15 to 90 ° C. and about 0.01 to 2 MPa, suction filtration, and pressure filtration so that the water content after dehydration drying is about 60 to 90% by mass. Is preferred. By adjusting the water content without applying extra heat to the alumina gel, it becomes possible to control the surface structure of the alumina and improve the hydrodesulfurization activity of the catalyst.

【0012】脱水乾燥後に担体の成形を行う。成形方法
は特に限定せず、押出成形、打錠成形あるいは油中造粒
等の一般的な方法を用いることができる。なお、成形時
の圧力や速度を調整することによっても、アルミナの構
造物性である細孔容積や細孔分布等を制御することがで
きる。
After dehydration and drying, the carrier is molded. The molding method is not particularly limited, and a general method such as extrusion molding, tablet molding or granulation in oil can be used. The pore volume and pore distribution, which are the structural properties of alumina, can also be controlled by adjusting the pressure and speed during molding.

【0013】アルミナ担体の形状は、重質油留分の触媒
層の流通を考慮し、円柱状、三葉柱状、四葉柱状、ダン
ベル柱状あるいはリング状のペレット形状であることが
望ましく、これらの中から反応条件下で触媒層の圧力損
失(圧力差)が小さい形状が選ばれる。また、このペレ
ット径は、反応条件下で触媒層の前後で圧力損失が大き
くならないように、1/10〜1/36インチであるこ
とが望ましい。なお、ペレット径とは、ペレットの形状
が円柱であるもの以外は、その最も太い部分の断面の長
径を言う。
The shape of the alumina carrier is preferably a columnar shape, a trilobal pillar shape, a four-lobed pillar shape, a dumbbell pillar shape or a ring-shaped pellet shape in consideration of circulation of the catalyst layer of the heavy oil fraction. From the above, a shape with a small pressure loss (pressure difference) of the catalyst layer under the reaction conditions is selected. The pellet diameter is preferably 1/10 to 1/36 inch so that the pressure loss before and after the catalyst layer does not increase under the reaction conditions. The pellet diameter refers to the major axis of the cross section of the thickest portion, except that the pellet has a cylindrical shape.

【0014】成形後、常温〜約150℃で約3〜24時
間乾燥し、引き続き約200〜600℃で約3〜24時
間焼成することにより、アルミナ担体を得ることができ
る。
After forming, the alumina carrier can be obtained by drying at room temperature to about 150 ° C. for about 3 to 24 hours, and then calcining at about 200 to 600 ° C. for about 3 to 24 hours.

【0015】本発明の触媒におけるアルミナ担体の比表
面積は、200〜500m/gが好ましく、300〜
500m/gがより好ましい。
The specific surface area of the alumina carrier in the catalyst of the present invention is preferably 200 to 500 m 2 / g, and 300 to
500 m 2 / g is more preferable.

【0016】本発明の触媒は、上記担体に第6族から選
ばれる少なくとも1種の金属、第8族から選ばれる少な
くとも1種の金属、リン化合物、炭素を担持させたもの
である。第6族金属、第8族金属は脱硫活性金属として
作用する。脱硫活性点として第6族金属、第8族金属及
び硫黄が配位したCoMoS相、NiMoS相が高活性
を示すとされており、CoMoS相、NiMoS相の中
でもType2とよばれる積層化した二硫化モリブデン
層の2層目以上のエッジ部に存在するCo,Niに起因
する活性点と、Type1とよばれる二硫化モリブデン
層の1層目のエッジ部に存在するCo,Niに起因する
活性点とが存在し、Type2の方がより高活性を示す
とされている。炭素(有機酸)、リンの添加は、特に高
活性な脱硫活性点であるType2のCoMoS相、N
iMoS相の形成を促進させると考えられる。
The catalyst of the present invention comprises at least one metal selected from Group 6 and at least one metal selected from Group 8, a phosphorus compound and carbon supported on the carrier. The Group 6 metal and the Group 8 metal act as desulfurization active metals. It is said that the CoMoS phase and the NiMoS phase coordinated with a Group 6 metal, a Group 8 metal and sulfur as desulfurization active points exhibit high activity, and among the CoMoS phase and the NiMoS phase, a laminated disulfide called Type 2 An active point caused by Co and Ni existing in the edge portions of the second and higher layers of the molybdenum layer, and an active point caused by Co and Ni existing in the edge portion of the first layer of the molybdenum disulfide layer called Type 1 Is present, and Type 2 is said to exhibit higher activity. Addition of carbon (organic acid) and phosphorus is especially effective in the desulfurization active site of Type 2 CoMoS phase, N
It is believed to promote the formation of the iMoS phase.

【0017】第6族金属としては、クロム、モリブデ
ン、タングステンが用いられるが、モリブデン、タング
ステンが好ましい。これら第6族金属は1種又は適宜の
2種以上を組み合わせて用いることができる。第6族金
属の化合物としては、種々のものを用いることができ、
モリブデン化合物の具体例として、酸化モリブデン、モ
リブデン酸アンモニウム、モリブデン縮合酸塩等が挙げ
られるが、酸化モリブデン、モリブデン酸アンモニウ
ム、モリブドリン酸が好ましい。タングステン化合物の
具体例として、酸化タングステン、タングステン酸アン
モニウム、タングステン縮合酸塩等が挙げられるが、酸
化タングステン、タングステン酸アンモニウム、タング
ストリン酸が好ましい。これらの化合物は、1種又は2
種以上を適宜組み合わせて用いることができる。勿論、
モリブデン化合物とタングステン化合物を組み合わせて
用いることもできる。
As the Group 6 metal, chromium, molybdenum and tungsten are used, but molybdenum and tungsten are preferable. These Group 6 metals can be used alone or in combination of two or more kinds as appropriate. Various compounds can be used as the compound of the Group 6 metal,
Specific examples of the molybdenum compound include molybdenum oxide, ammonium molybdate, and molybdenum condensate, and molybdenum oxide, ammonium molybdate, and molybdophosphoric acid are preferable. Specific examples of the tungsten compound include tungsten oxide, ammonium tungstate, and tungsten condensate, and tungsten oxide, ammonium tungstate, and tungstophosphoric acid are preferable. These compounds may be one type or two types.
Any combination of at least one species can be used. Of course,
A molybdenum compound and a tungsten compound can also be used in combination.

【0018】第8族金属としては、ニッケル、コバルト
の一方又は双方が好ましく用いられる。第8族金属の化
合物としても、種々のものを用いることができ、ニッケ
ル化合物の具体例として、硝酸ニッケル、硫酸ニッケ
ル、炭酸ニッケル、酢酸ニッケル、シュウ酸ニッケル、
塩化ニッケル、クエン酸ニッケル等が挙げられるが、硝
酸ニッケル、炭酸ニッケル、酢酸ニッケル、クエン酸ニ
ッケルが好ましい。コバルト化合物の具体例として、硝
酸コバルト、硫酸コバルト、炭酸コバルト、酢酸コバル
ト、シュウ酸コバルト、塩化コバルト、クエン酸等が挙
げられるが、硝酸コバルト、炭酸コバルト、酢酸コバル
ト、クエン酸コバルトが好ましい。これらの化合物は、
1種又は2種以上を適宜組み合わせて用いることができ
る。勿論、ニッケル化合物とコバルト化合物を組み合わ
せて用いることもできる。
As the Group 8 metal, one or both of nickel and cobalt are preferably used. Various compounds can be used as the Group 8 metal compound, and specific examples of the nickel compound include nickel nitrate, nickel sulfate, nickel carbonate, nickel acetate, nickel oxalate,
Examples thereof include nickel chloride and nickel citrate, and nickel nitrate, nickel carbonate, nickel acetate and nickel citrate are preferable. Specific examples of the cobalt compound include cobalt nitrate, cobalt sulfate, cobalt carbonate, cobalt acetate, cobalt oxalate, cobalt chloride, and citric acid, but cobalt nitrate, cobalt carbonate, cobalt acetate, and cobalt citrate are preferable. These compounds are
One kind or two or more kinds may be appropriately combined and used. Of course, a nickel compound and a cobalt compound may be used in combination.

【0019】本発明における炭素は、有機酸由来のもの
であり、この有機酸としては、種々のものを用いること
ができる。具体例としては、酢酸、プロピオン酸、酪
酸、イソ酪酸、吉草酸、イソ吉草酸、シュウ酸、マロン
酸、コハク酸、グルタル酸、マレイン酸、フマル酸、シ
トラコン酸、イタコン酸、トリカルバリル酸、グリコー
ル酸、乳酸、グルコン酸、ピルビン酸、クエン酸1水和
物、無水クエン酸、イソクエン酸、アロイソクエン酸、
リンゴ酸、酒石酸等が挙げられるが、無水クエン酸、イ
ソクエン酸、クエン酸1水和物が好ましい。有機酸とし
てクエン酸を使用する場合は、クエン酸単独でもよい
し、上記したコバルトやニッケル(8族金属)とのクエ
ン酸化合物であってもよい。
The carbon in the present invention is derived from an organic acid, and various organic acids can be used. Specific examples include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, tricarballylic acid, Glycolic acid, lactic acid, gluconic acid, pyruvic acid, citric acid monohydrate, anhydrous citric acid, isocitric acid, alloisocitric acid,
Examples thereof include malic acid and tartaric acid, with citric acid anhydride, isocitric acid, and citric acid monohydrate being preferred. When citric acid is used as the organic acid, it may be citric acid alone or the above-mentioned citric acid compound with cobalt or nickel (group 8 metal).

【0020】リンとしても、種々の化合物を用いること
ができ、具体例として、オルトリン酸、メタリン酸、ピ
ロリン酸、三リン酸、四リン酸が挙げられるが、オルト
リン酸が好ましい。
As phosphorus, various compounds can be used, and specific examples thereof include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid, with orthophosphoric acid being preferred.

【0021】第6族金属の担持量は、触媒基準、酸化物
換算で、8〜25質量%、好ましくは12〜22質量
%、特に好ましくは12〜20質量%であり、第8族金
属の担持量は、1〜8質量%、好ましくは2〜5質量%
であり、リンの担持量は、0.5〜6質量%、好ましく
は2〜5質量%であり、炭素の担持量は、触媒基準で、
1〜14質量%、好ましくは1〜10質量%である。リ
ンの担持量が上記未満であると、脱硫活性点の高分散化
が図れず、上記より多いと、触媒表面に過剰なリンが存
在し、細孔容積の減少を生じ、触媒活性を低下させる。
炭素の担持量が上記未満であると、硫化工程において不
活性なCo,NiSを形成し、上記より多いと、
触媒表面に過剰な炭素が存在し、コーク劣化を引き起こ
すと考えられる。
The loading amount of the Group 6 metal is 8 to 25% by mass, preferably 12 to 22% by mass, particularly preferably 12 to 20% by mass, based on the catalyst, and calculated as oxide. The supported amount is 1 to 8% by mass, preferably 2 to 5% by mass
And the supported amount of phosphorus is 0.5 to 6% by mass, preferably 2 to 5% by mass, and the supported amount of carbon is, based on the catalyst,
It is 1 to 14% by mass, preferably 1 to 10% by mass. When the supported amount of phosphorus is less than the above, it is not possible to achieve high dispersion of desulfurization active points, and when it is more than the above, excessive phosphorus is present on the catalyst surface, reducing the pore volume and reducing the catalyst activity. .
When the supported amount of carbon is less than the above, inactive Co 9 S 8 , NiS is formed in the sulfurization step, and when it is more than the above,
It is considered that excess carbon is present on the surface of the catalyst and causes coke deterioration.

【0022】上記各成分の担持量に関し、「触媒基準、
酸化物換算で」とは、触媒中に含まれる金属種の質量を
金属それぞれの酸化物として算出し、炭素質量を含めた
その合計質量を各金属の酸化物質量で割った値で表示す
ることを意味する。なお、本発明では、アルミニウムは
3価、第6族金属は6価、第8族金属は2価、そしてリ
ンは5価の金属として求めた。
Regarding the supported amounts of the above respective components, "catalyst standard,
`` In terms of oxides '' means to calculate the mass of the metal species contained in the catalyst as the oxide of each metal and display the total mass including the mass of carbon divided by the mass of the oxide of each metal. Means In the present invention, aluminum is a trivalent metal, Group 6 metal is a hexavalent metal, Group 8 metal is a divalent metal, and phosphorus is a pentavalent metal.

【0023】金属質量の測定方法は、触媒を混酸に溶解
した後、ICP分光法(誘導結合高周波プラズマ分光
法)により分析する方法とした。炭素質量の測定方法
は、触媒を乳鉢にて粉砕した後、950℃程度で燃焼さ
せ、燃焼生成ガスを差動熱伝導度計で測定し、分析する
方法とした。
The metal mass was measured by dissolving the catalyst in a mixed acid and then analyzing by ICP spectroscopy (inductively coupled high frequency plasma spectroscopy). The carbon mass was measured by crushing the catalyst in a mortar, burning the catalyst at about 950 ° C., and measuring and analyzing the combustion product gas with a differential thermal conductivity meter.

【0024】本発明の触媒は、以下の方法により製造す
ることができる。先ず、水を溶媒とし、上記各成分を溶
解させ、含浸溶液を調製する。このときの温度は、0℃
を超え100℃以下でよく、この範囲内の温度であれ
ば、上記溶媒に上記各成分を良好に溶解させることがで
きる。
The catalyst of the present invention can be produced by the following method. First, the above components are dissolved in water as a solvent to prepare an impregnation solution. The temperature at this time is 0 ℃
The temperature may be higher than 100 ° C. and lower than 100 ° C., and if the temperature is within this range, the above components can be dissolved well in the solvent.

【0025】このようにして調製した含浸溶液を、次い
で、上記のアルミナ担体に含浸担持させる。含浸条件
は、種々の条件を採ることができるが、通常、含浸温度
は、好ましくは0℃を超え100℃未満、より好ましく
は10〜50℃、更に好ましくは15〜30℃であり、
含浸時間は、好ましくは15分〜3時間、より好ましく
は20分〜2時間、更に好ましくは30分〜1時間であ
る。温度が高すぎると、含浸中に乾燥が起こり、分散度
が偏ってしまう。含浸中は、攪拌することが好ましい。
The impregnating solution thus prepared is then impregnated and supported on the above alumina carrier. Although various conditions can be adopted as the impregnation condition, usually, the impregnation temperature is preferably higher than 0 ° C and lower than 100 ° C, more preferably 10 to 50 ° C, further preferably 15 to 30 ° C.
The impregnation time is preferably 15 minutes to 3 hours, more preferably 20 minutes to 2 hours, and further preferably 30 minutes to 1 hour. If the temperature is too high, drying will occur during impregnation and the degree of dispersion will be biased. It is preferable to stir during impregnation.

【0026】溶液含浸担持後、常温〜約80℃、窒素気
流中、空気気流中、あるいは真空中で、水分をある程度
(LOI《Loss on ignition》約50
%以下となるように)除去し、この後、空気気流中、窒
素気流中、あるいは真空中、200℃以下、好ましくは
約80〜200℃、約10分〜24時間、好ましくは約
100〜150℃で、約5〜20時間の乾燥を行う。乾
燥を200℃より高い温度で行うと、金属と錯体化して
いると思われる有機酸が触媒表面から離脱し、その結
果、高活性点の形成が困難になる。
After the solution impregnation is carried, the moisture content is kept to some extent (LOI << Loss on ignition >>) at room temperature to about 80 [deg.] C. in a nitrogen stream, an air stream or a vacuum.
% Or less), and thereafter, in an air stream, a nitrogen stream, or a vacuum, at 200 ° C. or less, preferably about 80 to 200 ° C., about 10 minutes to 24 hours, preferably about 100 to 150. Dry at 5 ° C for about 5-20 hours. When the drying is performed at a temperature higher than 200 ° C., the organic acid which is considered to be complexed with the metal is released from the catalyst surface, and as a result, it becomes difficult to form high active sites.

【0027】本発明の触媒は、以下の物理性状を有す
る。なお、これらの物理性状は、製造後の触媒を予めマ
ッフル炉中、空気流通下、500℃で4時間程度焼成し
たものを用いて測定したものである。500℃で焼成し
た触媒を用いる理由は、本発明の触媒には炭素が含まれ
ており、触媒上に炭素が含まれていると、この炭素によ
り物性が変化する。但し、この炭素は、物理性状測定前
に行う一般的な前処理により一部除去されるものの、そ
の除去量は前処理条件により影響を受ける。そこで、本
発明では、500℃で焼成して、この炭素を除去した後
に、物理性状を測定することとした。
The catalyst of the present invention has the following physical properties. Note that these physical properties were measured by using a manufactured catalyst that was previously calcined in a muffle furnace at 500 ° C. for about 4 hours in an air stream. The reason for using the catalyst calcined at 500 ° C. is that the catalyst of the present invention contains carbon, and if carbon is contained on the catalyst, the physical properties are changed by this carbon. However, although this carbon is partially removed by the general pretreatment performed before the physical property measurement, the amount of removal is affected by the pretreatment conditions. Therefore, in the present invention, the physical properties are measured after firing at 500 ° C. to remove the carbon.

【0028】500℃での焼成後において、窒素吸着法
で測定した比表面積は180〜330m/g、水銀圧
入法で測定した細孔容積は0.4〜0.7ml/g、同
じく水銀圧入法で測定した平均細孔径は7〜12nmで
ある。比表面積が上記より小さいと、脱硫活性点の高分
散化が図れず、上記より大きいと細孔径が小さくなり、
細孔内における反応基質(硫黄化合物)の拡散が十分で
なくなる。細孔容積が上記より小さいと、細孔内におけ
る反応基質の拡散が不十分となり、上記より大きいと、
比表面積が極度に小さくなり、脱硫活性点の高分散化が
図れなくなる。平均細孔径が上記より少ないと、細孔内
における反応基質の拡散が不十分であり、上記より大き
いと、比表面積が極度に小さくなり、高活性が得られな
くなる。
After firing at 500 ° C., the specific surface area measured by the nitrogen adsorption method was 180 to 330 m 2 / g, the pore volume measured by the mercury injection method was 0.4 to 0.7 ml / g, and the mercury injection method was also used. The average pore diameter measured by the method is 7 to 12 nm. When the specific surface area is smaller than the above, it is not possible to achieve high dispersion of desulfurization active points, and when the specific surface area is larger than the above, the pore size becomes small,
Diffusion of the reaction substrate (sulfur compound) in the pores becomes insufficient. If the pore volume is smaller than the above, diffusion of the reaction substrate in the pores becomes insufficient, and if larger than the above,
The specific surface area becomes extremely small, and it becomes impossible to achieve high dispersion of desulfurization active points. If the average pore diameter is smaller than the above, diffusion of the reaction substrate in the pores is insufficient, and if it is larger than the above, the specific surface area becomes extremely small and high activity cannot be obtained.

【0029】ところで、重質油中には、アスファルテ
ン、金属分(ニッケル、バナジウム等)等の巨大分子が
含まれているため、硫黄分を含め、これらの巨大分子を
効率良く除去するためには、数種の触媒を組み合わせて
使用することが好ましい。例えば、脱硫触媒層を前段
(上層部)、中段(中層部)、後段(下層部)に分割
し、上層部に脱メタル機能を有する触媒、中層部と下層
部に本発明のような脱硫触媒を充填する。この場合、本
発明の触媒のうち、平均細孔径が10〜12nmで、か
つ平均細孔径±1.5nmの範囲にある細孔容積が全細
孔容積の40〜75%の触媒(以下、第1の触媒と記
す)は、中層部に充填する触媒として好ましく用いるこ
とができ、また平均細孔径7nm以上10nm未満で、
かつ平均細孔径±1.5nmの範囲にある細孔容積が全
細孔容積の50〜85%の触媒(以下、第2の触媒と記
す)は、下層部に充填する触媒として好ましく用いるこ
とができる。
By the way, since heavy oil contains macromolecules such as asphaltene and metal components (nickel, vanadium, etc.), it is necessary to efficiently remove these macromolecules including sulfur components. It is preferable to use several kinds of catalysts in combination. For example, a desulfurization catalyst layer is divided into a front stage (upper layer portion), a middle stage (middle layer portion), and a rear stage (lower layer portion), a catalyst having a demetallizing function in the upper layer portion, and a desulfurization catalyst according to the present invention in the middle layer portion and the lower layer portion. To fill. In this case, among the catalysts of the present invention, a catalyst having an average pore diameter of 10 to 12 nm and a pore volume within the range of the average pore diameter ± 1.5 nm of 40 to 75% of the total pore volume (hereinafter referred to as 1) can be preferably used as a catalyst to be filled in the middle layer portion, and has an average pore diameter of 7 nm or more and less than 10 nm,
A catalyst having a pore volume in the range of average pore diameter ± 1.5 nm of 50 to 85% of the total pore volume (hereinafter referred to as a second catalyst) is preferably used as a catalyst to be filled in the lower layer portion. it can.

【0030】すなわち、上層部で金属分が除去された重
質油は、アスファルテン(n−ヘプタン不溶分)を多量
に含むため、中層部では、アスファルテンや、アスファ
ルテン中に含まれる硫黄分と金属分を除去することが重
要となり、中層部に充填する第1の触媒の平均細孔径が
上記より小さいと、細孔内におけるこれらの反応基質の
拡散が不十分となる。そして、下層部では、アスファル
テンが減少していることから、マルテン(n−ヘプタン
可溶分)中に含まれる硫黄分を除去することが重要とな
るため、第2の触媒の平均細孔径が上記より大きいと、
比表面積が低下して、マルテン中に含まれる硫黄分を効
率良く除去することができなくなる。
That is, since the heavy oil from which the metal components have been removed in the upper layer contains a large amount of asphaltene (n-heptane-insoluble component), the middle layer comprises asphaltene and the sulfur and metal components contained in the asphaltene. Is important, and if the average pore diameter of the first catalyst to be filled in the middle layer is smaller than the above, diffusion of these reaction substrates in the pores becomes insufficient. Since the asphaltene is reduced in the lower layer portion, it is important to remove the sulfur content contained in the martens (n-heptane-soluble content), so that the average pore diameter of the second catalyst is above. Greater than
The specific surface area decreases, and the sulfur content contained in martens cannot be efficiently removed.

【0031】また、中層部に充填する第1の触媒は、5
00℃での焼成後の上記のような細孔径特性の他に、比
表面積が180〜300m/gで、細孔容積が0.5
5〜0.7m1/gであることが好ましく、また下層部
に充填する第2の触媒は、比表面積が220〜330m
/gで、細孔容積が0.4〜0.65m1/gである
ことが好ましい。これらの範囲から外れる物性を有する
第1,第2の触媒を上記のように組み合わせて使用する
場合、実際の脱硫操作の際に、上記のような作用・効果
を得ることが困難となる。
The first catalyst packed in the middle layer is 5
In addition to the above pore size characteristics after firing at 00 ° C., the specific surface area is 180 to 300 m 2 / g and the pore volume is 0.5.
The specific surface area of the second catalyst to be filled in the lower layer is preferably 220 to 330 m.
The pore volume is preferably 0.4 to 0.65 m1 / g at 2 / g. When the first and second catalysts having physical properties out of these ranges are used in combination as described above, it becomes difficult to obtain the above-described action and effect in the actual desulfurization operation.

【0032】また、本発明の触媒は、硫化処理した後、
透過型電子顕微鏡で観察した場合における二硫化モリブ
デン層の積層数の平均値が2.5〜5であるものが好ま
しい。この二硫化モリブデンの積層は、アルミナ担体上
に形成されて、反応基質との接触効率を向上させる役割
をなすと共に、該層内にCoMoS相、NiMoS相等
の活性点を形成させるが、積層数の平均値が2.5未満
の触媒では、前述のType1のCoMoS相やNiM
oS相の割合がType2に比べて多くなるため、高活
性を発現せず、積層数の平均値が5より多い触媒では、
Type2のCoMoS相やNiMoS相の割合が多く
なるが、活性点の絶対数が少なくなるため、やはり高活
性を発現しない。
Further, the catalyst of the present invention, after being subjected to sulfurization treatment,
It is preferable that the average number of laminated layers of the molybdenum disulfide layer is 2.5 to 5 when observed with a transmission electron microscope. This layer of molybdenum disulfide is formed on the alumina support, plays a role of improving the contact efficiency with the reaction substrate, and forms active sites such as CoMoS phase and NiMoS phase in the layer, but For catalysts with an average value of less than 2.5, the Type 1 CoMoS phase and NiM
Since the ratio of oS phase is larger than that of Type2, a catalyst that does not exhibit high activity and has an average number of stacked layers of more than 5 is
The ratio of Type 2 CoMoS phase and NiMoS phase increases, but the absolute number of active sites decreases, so high activity is not expressed.

【0033】本発明の水素化脱硫触媒を用いて、重質油
の接触水素化処理を行うには、例えば、本発明の触媒を
直接脱硫装置等の反応器に充填し、反応器に原料油とし
ての重質油、本発明では常圧残渣油(AR)又は減圧残
渣油(VR)を導入し、高温・高圧の水素分圧の条件下
で行う。好ましい実施態様は、いわゆる固定床流通反応
方式である。すなわち、触媒を固定床として反応器に維
持し、原料油をこの固定床の上方から下方に通過させ
る。触媒は、単独の反応器に充填してもよいし、直列に
連結した複数の反応器のそれぞれに充填してもよい。特
に、AR,VRには高濃度のニッケル、バナジウム等の
金属分、アスファルテン分が含まれているので、硫黄分
を含めこれらを効率良く除去するためには、脱硫触媒層
の前段に(上層部に)脱メタル機能を有する触媒、中段
に(中層部に)第1の触媒、後段に(下層部に)第2の
触媒を組み合わせた多段反応器(多段反応層)を用いる
ことが好ましい。
In order to carry out catalytic hydrotreating of heavy oil using the hydrodesulfurization catalyst of the present invention, for example, the catalyst of the present invention is directly charged into a reactor such as a desulfurizer, and the feedstock is fed to the reactor. As a heavy oil, in the present invention, atmospheric residual oil (AR) or reduced pressure residual oil (VR) is introduced, and it is carried out under conditions of high temperature and high pressure of hydrogen partial pressure. A preferred embodiment is a so-called fixed bed flow reaction system. That is, the catalyst is maintained in the reactor as a fixed bed, and the feedstock oil is passed from above the fixed bed to below. The catalyst may be packed in a single reactor or may be packed in each of a plurality of reactors connected in series. In particular, since AR and VR contain a high concentration of metal components such as nickel and vanadium, and asphaltene components, in order to efficiently remove these components including sulfur components, the upper part of the desulfurization catalyst layer (upper layer part It is preferable to use a multistage reactor (multistage reaction layer) in which a catalyst having a demetallizing function, a first catalyst in the middle stage (in the middle layer portion), and a second catalyst in the rear stage (in the lower layer portion) are combined.

【0034】なお、本発明の触媒(第1,第2の触媒を
含む、単に触媒と記すときはこれを意味する)は、重質
油の水素化脱硫を行う前に、反応装置中で硫化処理を施
し、活性金属を酸化物から硫化物へと変換させておく。
この硫化処理は、約200〜400℃、好ましくは約2
50〜350℃、常圧あるいはそれ以上の水素分圧の水
素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジ
メチルジスルファイドや二硫化炭素等の硫化剤を加えた
もの、あるいは硫化水素を流通させることにより実施す
る。この硫化処理により、本発明の触媒は、前述したよ
うに、平均積層数で2.5〜5の二硫化モリブデンの層
を形成し、この二硫化モリブデンのエッジ部分に、高活
性なCoMoS相やNiMoS相の活性点を形成するこ
ととなる。
The catalyst of the present invention (including the first and second catalysts, which means simply when referred to as a catalyst) is sulfurized in a reactor before hydrodesulfurization of heavy oil. A treatment is applied to convert the active metal from an oxide to a sulfide.
This sulfurization treatment is performed at about 200 to 400 ° C., preferably about 2
In a hydrogen atmosphere at 50 to 350 ° C., atmospheric pressure or higher hydrogen partial pressure, petroleum distillates containing sulfur compounds, sulfides such as dimethyldisulfide and carbon disulfide, or hydrogen sulfide are added. Implement by distributing. By this sulfurization treatment, as described above, the catalyst of the present invention forms a layer of molybdenum disulfide having an average stacking number of 2.5 to 5, and a highly active CoMoS phase or a highly active CoMoS phase is formed on the edge portion of the molybdenum disulfide. The active points of the NiMoS phase will be formed.

【0035】AR留分やVR留分等を接触水素化脱硫す
る場合における反応条件は、水素分圧4〜18Mpa、
原料油温度320〜410℃、液空間速度0.1〜4.
0h −1とする。この反応条件で上記の原料油の水素化
処理を行うとき、本発明の触媒は、従来の触媒と比較
し、非常に高活性であり、長期間に渡り、低硫黄重油を
生産することができる。
Catalytic hydrodesulfurization of AR fraction, VR fraction, etc.
The reaction conditions in this case are: hydrogen partial pressure 4 to 18 MPa,
Feed oil temperature 320-410 ° C, liquid space velocity 0.1-4.
0h -1And Hydrogenation of the above feedstock under these reaction conditions
When carried out, the catalyst of the present invention is compared to conventional catalysts.
However, it has a very high activity, and it can
Can be produced.

【0036】[0036]

【実施例】〔触媒の調製〕 実施例1 イオン交換水27gにモリブドリン酸7.8g、クエン
酸ニッケル4.1g及びオルトリン酸1.5gを溶解さ
せた。この水溶液の全てをナス型フラスコ中で、比表面
積320m/gのアルミナペレット30gに滴下した
後、室温で3時間浸漬した。この後、窒素気流中で風乾
し、マッフル炉中120℃で約16時間乾燥させ、触媒
Aを得た。
EXAMPLES [Preparation of Catalyst] Example 1 7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was added dropwise to 30 g of alumina pellets having a specific surface area of 320 m 2 / g in an eggplant-shaped flask, and then immersed at room temperature for 3 hours. Then, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain a catalyst A.

【0037】実施例2 イオン交換水27gにモリブドリン酸7.8g、炭酸ニ
ッケル1.9g、オルトリン酸1.5g及びクエン酸1
水和物2.1gを溶解させた。この水溶液の全てをナス
型フラスコ中で、比表面積320m/gのアルミナペ
レット30gに滴下した後、室温で3時間浸漬した。こ
の後、窒素気流中で風乾し、マッフル炉中120℃で約
16時間乾燥させ、触媒Bを得た。
Example 2 In 27 g of ion-exchanged water, molybdophosphoric acid 7.8 g, nickel carbonate 1.9 g, orthophosphoric acid 1.5 g and citric acid 1
2.1 g of the hydrate was dissolved. All of this aqueous solution was added dropwise to 30 g of alumina pellets having a specific surface area of 320 m 2 / g in an eggplant-shaped flask, and then immersed at room temperature for 3 hours. Then, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain a catalyst B.

【0038】実施例3 イオン交換水27gにモリブドリン酸7.8g、クエン
酸ニッケル4.1g及びオルトリン酸1.5gを溶解さ
せた。この水溶液の全てをナス型フラスコ中で、比表面
積358m/gのアルミナペレット30gに滴下した
後、室温で3時間浸漬した。この後、窒素気流中で風乾
し、マッフル炉中120℃で約16時間乾燥させ、触媒
Cを得た。
Example 3 7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was added dropwise to 30 g of alumina pellets having a specific surface area of 358 m 2 / g in an eggplant-shaped flask and then immersed at room temperature for 3 hours. Then, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain a catalyst C.

【0039】実施例4 イオン交換水27gにモリブドリン酸7.8g、クエン
酸ニッケル4.1g及びオルトリン酸1.5gを溶解さ
せた。この水溶液の全てをナス型フラスコ中で、比表面
積305m/gのアルミナペレット30gに滴下した
後、室温で3時間浸漬した。この後、窒素気流中で風乾
し、マッフル炉中120℃で約16時間乾燥させ、触媒
Dを得た。
Example 4 7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was added dropwise to 30 g of alumina pellets having a specific surface area of 305 m 2 / g in an eggplant-shaped flask and then immersed at room temperature for 3 hours. Then, it was dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain a catalyst D.

【0040】実施例5 イオン交換水27gにモリブドリン酸7.8g、クエン
酸ニッケル4.1g及びオルトリン酸1.5gを溶解さ
せた。この水溶液の全てをナス型フラスコ中で、比表面
積338m/gのアルミナペレット30gに滴下した
後、室温で3時間浸漬した。この後、窒素気流中で風乾
し、マッフル炉中120℃で約16時間乾燥させ、触媒
Eを得た。
Example 5 7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was added dropwise to 30 g of alumina pellets having a specific surface area of 338 m 2 / g in an eggplant-shaped flask and then immersed at room temperature for 3 hours. Then, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain a catalyst E.

【0041】比較例1 イオン交換水27gにモリブドリン酸7.8g、クエン
酸ニッケル4.1g及びオルトリン酸1.5gを溶解さ
せた。この水溶液の全てをナス型フラスコ中で、比表面
積320m/gのアルミナペレット30gに滴下した
後、室温で3時間浸漬した。この後、窒素気流中で風乾
し、マッフル炉中500℃で焼成を行い、触媒aを得
た。
Comparative Example 1 7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was added dropwise to 30 g of alumina pellets having a specific surface area of 320 m 2 / g in an eggplant-shaped flask, and then immersed at room temperature for 3 hours. Then, it was air-dried in a nitrogen stream and calcined at 500 ° C. in a muffle furnace to obtain a catalyst a.

【0042】比較例2 イオン交換水27gにモリブドリン酸7.8g、クエン
酸ニッケル4.1g及びオルトリン酸1.5gを溶解さ
せた。この水溶液の全てをナス型フラスコ中で、比表面
積252m/gのアルミナペレット30gに滴下した
後、室温で3時間浸漬した。この後、窒素気流中で風乾
し、マッフル炉中120℃で約16時間乾燥させ、触媒
bを得た。
Comparative Example 2 7.8 g of molybdophosphoric acid, 4.1 g of nickel citrate and 1.5 g of orthophosphoric acid were dissolved in 27 g of ion-exchanged water. All of this aqueous solution was added dropwise to 30 g of alumina pellets having a specific surface area of 252 m 2 / g in an eggplant-shaped flask, and then immersed at room temperature for 3 hours. Then, it was dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain a catalyst b.

【0043】〔触媒の性状〕実施例1〜5及び比較例
1,2で得た触媒の化学性状を表1に、500℃で4時
間焼成後の物理性状を表2に示す。なお、これらの性状
を分析する方法等を以下に示す。
[Properties of Catalyst] The chemical properties of the catalysts obtained in Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1, and the physical properties after calcination at 500 ° C. for 4 hours are shown in Table 2. The method for analyzing these properties is shown below.

【0044】〔化学性状、物理性状の分析〕 ・炭素質量は、触媒を乳鉢にて粉砕した後、(株)柳本
株式会社製、CHN分析計(MT−5)を用い、950
℃で燃焼させ、燃焼生成ガスを差動熱伝導度計で測定し
た。 ・比表面積は、触媒を400℃で1時間真空脱気した
後、日本ベル(株)製の表面積測定装置(ベルソープ2
8)を用い窒素吸着法(BET法)で測定し、細孔容積
と平均細孔径は同様に処理した触媒につき(株)島津製
作所製(AUTOPORE−9520)を用い水銀圧入
法で測定した。 ・二硫化モリブデン層の積層数は、透過型電子顕微鏡
(TEM)(日本電子社製商品名“JEM−201
0”)を用いて、次の要領で測定した。 1.触媒を流通式反応管に詰め、室温で窒素気流中に5
分間保持し、雰囲気ガスをHS(5容量%)/H
切替え、速度5℃/minで昇温し、400℃に達した
後、1時間保持した。その後、同雰囲気下で200℃ま
で降温し、雰囲気ガスを窒素に切替え、常温まで降温
し、硫化処理を終了した。 2.この硫化処理後の触媒をメノウ乳鉢で粉砕した。 3.粉砕した触媒の少量をアセトン中に分散させた。 4.得られた懸濁液をマイクログリッド上に滴下し、室
温で乾燥して試料とした。 5.試料をTEMの測定部にセットし、加速電圧200
kVで測定した。直接倍率は20万倍で、5視野を測定
した。 6.写真を200万倍になるように引き延ばし(サイズ
16.8cm×16.8cm)、写真上で目視できる二
硫化モリブデン層の積層数を測り取った。
[Analysis of Chemical Properties and Physical Properties] The carbon mass was 950 using a CHN analyzer (MT-5) manufactured by Yanagimoto Co., Ltd. after crushing the catalyst in a mortar.
Combustion was carried out at 0 ° C., and the combustion product gas was measured by a differential thermal conductivity meter. -The specific surface area was measured by vacuum degassing the catalyst at 400 ° C for 1 hour, and then measuring the surface area by Bell Japan (Bellsoap 2).
8) was used to measure the nitrogen adsorption method (BET method), and the pore volume and average pore diameter of the catalyst treated in the same manner were measured by the mercury injection method using Shimadzu Corporation's (AUTOPORE-9520). -The number of laminated molybdenum disulfide layers is the transmission electron microscope (TEM) (trade name "JEM-201" manufactured by JEOL Ltd.).
0 ″) was used and the measurement was carried out in the following manner: 1. The catalyst was packed in a flow-type reaction tube and was placed in a nitrogen stream at room temperature for 5 minutes.
It was held for 1 minute, the atmosphere gas was switched to H 2 S (5% by volume) / H 2 , the temperature was raised at a rate of 5 ° C./min, and after reaching 400 ° C., it was held for 1 hour. Then, the temperature was lowered to 200 ° C. in the same atmosphere, the atmosphere gas was switched to nitrogen, the temperature was lowered to room temperature, and the sulfurating treatment was completed. 2. The catalyst after the sulfurization treatment was crushed in an agate mortar. 3. A small amount of ground catalyst was dispersed in acetone. 4. The obtained suspension was dropped on a microgrid and dried at room temperature to give a sample. 5. Set the sample in the measuring section of the TEM and set the acceleration voltage to 200
It was measured at kV. Direct magnification was 200,000 times and 5 fields of view were measured. 6. The photograph was stretched to 2 million times (size 16.8 cm × 16.8 cm), and the number of layers of molybdenum disulfide layers visible on the photograph was measured.

【0045】[0045]

【表1】(質量%) [Table 1] (% by mass)

【0046】[0046]

【表2】 細孔分布:全細孔容積のうち、平均細孔径±1.5nm
の範囲に有る細孔容積の割合
[Table 2] Pore distribution: Average pore size ± 1.5 nm of the total pore volume
Ratio of pore volume in the range

【0047】以上の実施例1〜5及び比較例1,2で得
た触媒の水素化脱硫活性を、原料油にARを用い、下記
に示す方法で評価した。 (水素化脱硫活性の評価方法)ライトガスオイルと減圧
軽油で触媒を予備硫化処理した後、下記の運転条件下、
初期劣化が落ち着いた700時間後の生成油に含まれる
硫黄濃度を測定し、数1に示す計算式により反応速度定
数を求めることで評価した。原料油並びに生成油の硫黄
濃度の分析はニューリー(株)社製、X線硫黄分析計
(RX−610SA)で求めた。なお、反応速度定数が
高い程、触媒の水素化脱硫活性が優れていることを示
す。触媒A、B、C、D、E、a及びbの評価結果を、
触媒aにおける反応速度定数を100とした場合の相対
値で表3に示す。
The hydrodesulfurization activity of the catalysts obtained in the above Examples 1 to 5 and Comparative Examples 1 and 2 was evaluated by the following method using AR as the feed oil. (Evaluation method of hydrodesulfurization activity) After pre-sulfurizing the catalyst with light gas oil and vacuum gas oil, under the following operating conditions:
It was evaluated by measuring the concentration of sulfur contained in the produced oil after 700 hours after the initial deterioration was settled and obtaining the reaction rate constant by the calculation formula shown in Formula 1. The sulfur concentration of the raw oil and the produced oil was analyzed by an X-ray sulfur analyzer (RX-610SA) manufactured by Newry Co., Ltd. The higher the reaction rate constant, the better the hydrodesulfurization activity of the catalyst. The evaluation results of the catalysts A, B, C, D, E, a and b are
Table 3 shows the relative values when the reaction rate constant of the catalyst a is 100.

【0048】<脱硫活性評価の条件> 〔原料油:常圧残油〕 原油:アラビアンライト 密度:0.9713g/cm(15℃) 硫黄分:3.42質量% ニッケル、バナジウム分:計50質量ppm 蒸留性状:5容量%(留出温度367℃)、40容量%
(留出温度506℃)、50容量%(留出温度537
℃) 〔反応速度測定装置〕 固定床高圧流通式反応装置 〔反応条件〕 反応温度:380℃ 液空間速度:0.4h−1 水素分圧:10.3MPa 水素/油比:1690Nm/kl
<Conditions for Evaluation of Desulfurization Activity> [Raw oil: atmospheric residual oil] Crude oil: Arabian light density: 0.9713 g / cm 3 (15 ° C.) Sulfur content: 3.42% by mass Nickel and vanadium content: Total 50 Mass ppm Distillation properties: 5% by volume (distillation temperature 367 ° C.), 40% by volume
(Distillation temperature 506 ° C), 50% by volume (Distillation temperature 537
℃) [Reaction rate measuring device] Fixed bed high pressure flow type reaction device [Reaction conditions] Reaction temperature: 380 ° C Liquid space velocity: 0.4 h -1 Hydrogen partial pressure: 10.3 MPa Hydrogen / oil ratio: 1690 Nm 3 / kl

【0049】[0049]

【数1】反応速度定数=〔(1/生成油の硫黄濃度)−
(1/原料油の硫黄濃度)〕×液空間速度
## EQU1 ## Reaction rate constant = [(1 / sulfur concentration of produced oil)-
(1 / sulfur concentration of feed oil)] x liquid space velocity

【0050】[0050]

【表3】 [Table 3]

【0051】表3に示される結果から、本発明の触媒
は、水素化脱硫活性が高いことが判る。一方、活性金属
及び有機酸を含んだ含浸液をアルミナ担体に担持した後
に、焼成を行うことで炭素を含まなくなった比較例1の
触媒は、二硫化モリブデンの平均積層数が少なく、水素
化脱硫活性が低く、また比表面積の小さい比較例2の触
媒においても水素化脱硫活性が低いことが判る。
From the results shown in Table 3, it is understood that the catalyst of the present invention has high hydrodesulfurization activity. On the other hand, the catalyst of Comparative Example 1 in which the impregnating liquid containing the active metal and the organic acid was supported on the alumina carrier and then calcined to eliminate the carbon, the average number of laminated layers of molybdenum disulfide was small, and the catalyst was hydrodesulfurized. It can be seen that the catalyst of Comparative Example 2 having a low activity and a small specific surface area also has a low hydrodesulfurization activity.

【0052】実施例6 固定床高圧流通式反応装置の触媒層を前段・中段・後段
の3層に分け、前段に比表面積130m/gの脱メタ
ル触媒を全触媒量の10質量%、中段に触媒Dを45質
量%、後段に触媒Cを45質量%となるように充填して
多段触媒層を形成し、上記の「水素化脱硫活性の評価方
法」と同様の評価を行った(実施例6)。また、参考の
ために、中段と後段に充填する触媒を逆転させて、中段
に触媒Cを45質量%、後段に触媒Dを45質量%充填
させて多段触媒層を形成し、同様の評価を行った(参考
例)。なお、評価結果は、参考例における反応速度定数
を100とした場合の相対値で表4に示す。
Example 6 A catalyst bed of a fixed bed high pressure flow type reactor was divided into three layers of a front stage, a middle stage and a rear stage, and a demetalization catalyst having a specific surface area of 130 m 2 / g was 10 mass% of the total catalyst amount in the front stage, and a middle stage. Was filled with the catalyst D at 45 mass% and the catalyst C was packed at 45 mass% in the subsequent stage to form a multi-stage catalyst layer, and the same evaluation as the above-mentioned “method for evaluating hydrodesulfurization activity” was performed (implementation Example 6). Also, for reference, the catalysts charged in the middle and the latter stages are reversed to form 45% by mass of the catalyst C in the middle stage and 45% by mass of the catalyst D in the latter stage to form a multi-stage catalyst layer, and the same evaluation is performed. It did (reference example). The evaluation results are shown in Table 4 as relative values when the reaction rate constant in Reference Example is 100.

【0053】[0053]

【表4】 [Table 4]

【0054】表4から明らかなように、触媒層の中段に
第1の触媒、後段に第2の触媒を組み合わせて使用する
場合(実施例6)、これとは逆に中段に第2の触媒、後
段に第1の触媒を組み合わせて使用する場合(参考例)
に比して、水素化脱硫活性が高いことが判る。
As is apparent from Table 4, when the first catalyst is used in the middle stage of the catalyst layer and the second catalyst is used in the latter stage (Example 6), the second catalyst is used in the middle stage, conversely. , When using the first catalyst in combination in the latter stage (reference example)
It is understood that the hydrodesulfurization activity is higher than that of

【0055】[0055]

【発明の効果】以上のように、本発明の製造方法により
得られた本発明の水素化脱硫触媒を用いて重質油留分の
水素化脱硫反応を、本発明の処理方法で行うと、重質油
留分中の硫黄化合物を長期間に渡り、高効率で除去する
ことができる。特に、脱硫触媒層を前・中・後段に分
け、前段に脱メタル触媒、中段に本発明の第1の触媒、
後段に本発明の第2の触媒を充填することにより、重質
油の脱硫をより良好に行うことができる。
As described above, when the hydrodesulfurization reaction of the heavy oil fraction is carried out by the treatment method of the present invention using the hydrodesulfurization catalyst of the present invention obtained by the production method of the present invention, Sulfur compounds in heavy oil fractions can be removed with high efficiency over a long period of time. In particular, the desulfurization catalyst layer is divided into front, middle, and rear stages, the demetalization catalyst in the front stage, the first catalyst of the present invention in the middle stage,
By filling the second catalyst of the present invention in the latter stage, desulfurization of heavy oil can be more favorably performed.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA01A BA01B BA21A BA21B BB04A BB04B BC57A BC59A BC59B BC60A BC65A BC67A BC68A BC68B BC69A BD07A BD07B BE08A BE08B CC02 DA05 EA02Y EC03X EC03Y EC07X EC07Y EC14X EC14Y EC15X EC15Y FA01 FA02 FB14 FB50 FB57 FC07 FC08 4H029 CA00 DA00    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G069 AA03 AA08 BA01A BA01B                       BA21A BA21B BB04A BB04B                       BC57A BC59A BC59B BC60A                       BC65A BC67A BC68A BC68B                       BC69A BD07A BD07B BE08A                       BE08B CC02 DA05 EA02Y                       EC03X EC03Y EC07X EC07Y                       EC14X EC14Y EC15X EC15Y                       FA01 FA02 FB14 FB50 FB57                       FC07 FC08                 4H029 CA00 DA00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 常圧残渣油又は減圧残渣油を水素化脱硫
する触媒であって、 触媒基準、酸化物換算で、周期律表第6族から選ばれる
少なくとも1種の金属8〜25質量%、周期律表第8族
から選ばれる少なくとも1種の金属1〜8質量%、リン
0.5〜6質量%と、触媒基準で、炭素1〜14質量%
とを、アルミナ担体に担持してなり、 500℃で焼成した後の物理性状が、比表面積:180
〜330m/g、細孔容積:0.4〜0.7m1/
g、平均細孔直径:7〜12nmであることを特徴とす
る重質油の水素化脱硫触媒。
1. A catalyst for hydrodesulfurizing atmospheric residual oil or vacuum residual oil, which comprises, on a catalyst basis, oxide, at least one metal selected from Group 6 of the Periodic Table of 8 to 25% by mass. , 1 to 8 mass% of at least one metal selected from Group 8 of the periodic table, 0.5 to 6 mass% of phosphorus, and 1 to 14 mass% of carbon based on the catalyst.
And are supported on an alumina carrier, and the physical properties after firing at 500 ° C. are: specific surface area: 180
~330m 2 / g, pore volume: 0.4~0.7m1 /
g, average pore diameter: 7 to 12 nm, heavy oil hydrodesulfurization catalyst.
【請求項2】 500℃で焼成した後の物理性状が、比
表面積:180〜300m/g、細孔容積:0.55
〜0.7m1/g、平均細孔直径:10〜12nmであ
り、平均細孔直径±1.5nmの範囲にある細孔容積が
全細孔容積の40〜75%であることを特徴とする請求
項1記載の重質油の水素化脱硫触媒。
2. The physical properties after firing at 500 ° C. are as follows: specific surface area: 180 to 300 m 2 / g, pore volume: 0.55
˜0.7 m1 / g, average pore diameter: 10 to 12 nm, and the pore volume in the range of average pore diameter ± 1.5 nm is 40 to 75% of the total pore volume. The heavy oil hydrodesulfurization catalyst according to claim 1.
【請求項3】 500℃で焼成した後の物理性状が、比
表面積:220〜330m/g、細孔容積:0.4〜
0.65m1/g、平均細孔直径:7nm以上10nm
未満であり、平均細孔直径±1.5nmの範囲にある細
孔容積が全細孔容積の50〜85%であることを特徴と
する請求項1記載の重質油の水素化脱硫触媒。
3. The physical properties after firing at 500 ° C. are as follows: specific surface area: 220-330 m 2 / g, pore volume: 0.4-
0.65 m1 / g, average pore diameter: 7 nm or more, 10 nm
The hydrodesulfurization catalyst for heavy oil according to claim 1, characterized in that the pore volume in the range of average pore diameter ± 1.5 nm is 50 to 85% of the total pore volume.
【請求項4】 周期律表第6族の金属がモリブデン、タ
ングステンの一方又は双方で、周期律表第8族の金属が
コバルト、ニッケルの一方又は双方であることを特徴と
する請求項1〜3の何れかに記載の重質油の水素化脱硫
触媒。
4. The metal of Group 6 of the Periodic Table is one or both of molybdenum and tungsten, and the metal of Group 8 of the Periodic Table is one or both of cobalt and nickel. 3. The heavy oil hydrodesulfurization catalyst according to any one of 3 above.
【請求項5】 請求項1〜4の何れかに記載の水素化脱
硫触媒の製造方法であって、周期律表第8族金属から選
ばれる少なくとも1種を含む化合物、周期律表第6族金
属から選ばれる少なくとも1種を含む化合物、リン酸及
び有機酸を含有する溶液を、比表面積が200〜500
/gのアルミナ担体に担持させ、200℃以下で乾
燥させることを特徴とする重質油の水素化脱硫触媒の製
造方法。
5. The method for producing the hydrodesulfurization catalyst according to claim 1, wherein the compound contains at least one selected from metals of Group 8 of the periodic table, and Group 6 of the periodic table. A solution containing a compound containing at least one selected from metals, phosphoric acid and an organic acid has a specific surface area of 200 to 500.
A method for producing a hydrodesulfurization catalyst for heavy oil, which comprises supporting on an alumina carrier of m 2 / g and drying at 200 ° C. or lower.
【請求項6】 水素分圧4〜18MPa、温度320〜
410℃、液空間速度0.1〜4.0h−1で、硫黄化
合物を含む常圧残渣油又は減圧残渣油を請求項1〜4の
何れかに記載の触媒と接触させることを特徴とする重質
油の水素化脱硫方法。
6. A hydrogen partial pressure of 4 to 18 MPa and a temperature of 320 to
At 410 ° C. and a liquid hourly space velocity of 0.1 to 4.0 h −1 , atmospheric pressure residual oil or reduced pressure residual oil containing a sulfur compound is brought into contact with the catalyst according to claim 1. Method for hydrodesulfurization of heavy oil.
JP2002092686A 2002-03-28 2002-03-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil Expired - Fee Related JP4047044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092686A JP4047044B2 (en) 2002-03-28 2002-03-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092686A JP4047044B2 (en) 2002-03-28 2002-03-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil

Publications (2)

Publication Number Publication Date
JP2003284958A true JP2003284958A (en) 2003-10-07
JP4047044B2 JP4047044B2 (en) 2008-02-13

Family

ID=29237437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092686A Expired - Fee Related JP4047044B2 (en) 2002-03-28 2002-03-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil

Country Status (1)

Country Link
JP (1) JP4047044B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018097A1 (en) * 2002-08-20 2004-03-04 National Institute Of Advanced Industrial Science And Technology Catalyst for hydrodesulfurization of hydrocarbon
JP2005169232A (en) * 2003-12-10 2005-06-30 Petroleum Energy Center Hydrogenating/desulfurizing catalyst for hydrocarbon oil and its manufacturing method
JP2006000726A (en) * 2004-06-16 2006-01-05 Petroleum Energy Center Hydrogenation catalyst of hydrocarbon oil, manufacturing method therefor and hydrogenation method for hydrocarbon oil
JP2006341221A (en) * 2005-06-10 2006-12-21 Petroleum Energy Center Hydroprocessing catalyst for hydrocarbon oil, method for preparing the same, and method for hydroprocessing hydrocarbon oil
JP2006342288A (en) * 2005-06-10 2006-12-21 Petroleum Energy Center Method for hydrogenation-treating hydrocarbon oil
JP2009519815A (en) * 2005-12-14 2009-05-21 アドヴァンスト・リファイニング・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Production process of hydrotreating catalyst
WO2012133316A1 (en) * 2011-03-31 2012-10-04 独立行政法人石油天然ガス・金属鉱物資源機構 Hydrogenation refining catalyst and method for producing a hydrocarbon oil
US8697598B2 (en) 2005-04-21 2014-04-15 China Petroleum & Chemical Corporation Hydrogenation catalyst and use thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018097A1 (en) * 2002-08-20 2004-03-04 National Institute Of Advanced Industrial Science And Technology Catalyst for hydrodesulfurization of hydrocarbon
JP4493997B2 (en) * 2003-12-10 2010-06-30 財団法人石油産業活性化センター Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP2005169232A (en) * 2003-12-10 2005-06-30 Petroleum Energy Center Hydrogenating/desulfurizing catalyst for hydrocarbon oil and its manufacturing method
JP2006000726A (en) * 2004-06-16 2006-01-05 Petroleum Energy Center Hydrogenation catalyst of hydrocarbon oil, manufacturing method therefor and hydrogenation method for hydrocarbon oil
JP4689198B2 (en) * 2004-06-16 2011-05-25 財団法人石油産業活性化センター Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
US8697598B2 (en) 2005-04-21 2014-04-15 China Petroleum & Chemical Corporation Hydrogenation catalyst and use thereof
JP2006342288A (en) * 2005-06-10 2006-12-21 Petroleum Energy Center Method for hydrogenation-treating hydrocarbon oil
JP4519719B2 (en) * 2005-06-10 2010-08-04 財団法人石油産業活性化センター Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
JP2006341221A (en) * 2005-06-10 2006-12-21 Petroleum Energy Center Hydroprocessing catalyst for hydrocarbon oil, method for preparing the same, and method for hydroprocessing hydrocarbon oil
JP2009519815A (en) * 2005-12-14 2009-05-21 アドヴァンスト・リファイニング・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Production process of hydrotreating catalyst
US8877671B2 (en) 2005-12-14 2014-11-04 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
US9248438B2 (en) 2005-12-14 2016-02-02 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
US9566572B2 (en) 2005-12-14 2017-02-14 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
WO2012133316A1 (en) * 2011-03-31 2012-10-04 独立行政法人石油天然ガス・金属鉱物資源機構 Hydrogenation refining catalyst and method for producing a hydrocarbon oil
JP2012214604A (en) * 2011-03-31 2012-11-08 Japan Oil Gas & Metals National Corp Hydrogenation refining catalyst and method for producing hydrocarbon oil
US9475036B2 (en) 2011-03-31 2016-10-25 Japan Oil, Gas And Metals National Corporation Hydrogenation refining catalyst and method for producing a hydrocarbon oil
EA028397B1 (en) * 2011-03-31 2017-11-30 Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн Process for producing a hydrotreating catalyst and use thereof in a process for producing a hydrocarbon oil

Also Published As

Publication number Publication date
JP4047044B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
KR100755194B1 (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP5796871B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP4643805B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method
JP6307072B2 (en) Improved residual hydrotreating catalyst containing titania
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP4519719B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
KR100819630B1 (en) A new aluminum trihydroxide phase and catalysts made therefrom
JP2003284958A (en) Hydrodesulfurization catalyst of heavy fuel oil and manufacturing method therefor, and method for hydrodesulfurization of heavy fuel oil
JP4805211B2 (en) Heavy hydrocarbon oil hydrotreating catalyst, method for producing the same, and hydrotreating method
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4493997B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
JP2006306974A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
JP4519378B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same
JP5337978B2 (en) Hydrotreating catalyst and hydrotreating method of vacuum gas oil
JP2010069466A (en) Hydrogenation catalyst
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
KR20010111490A (en) Catalyst for hydrofining treatment, method for hydrofining treatment and method for preparing catalyst
JP2004016975A (en) Carrier containing titanium, its manufacturing method, and catalyst for hydrogenating hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061004

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4047044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees