JP2003282691A - Electrostatic chuck for holding wafer and wafer separating method - Google Patents

Electrostatic chuck for holding wafer and wafer separating method

Info

Publication number
JP2003282691A
JP2003282691A JP2002085674A JP2002085674A JP2003282691A JP 2003282691 A JP2003282691 A JP 2003282691A JP 2002085674 A JP2002085674 A JP 2002085674A JP 2002085674 A JP2002085674 A JP 2002085674A JP 2003282691 A JP2003282691 A JP 2003282691A
Authority
JP
Japan
Prior art keywords
wafer
cooling gas
gas
pressure
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002085674A
Other languages
Japanese (ja)
Inventor
Koichi Tsuzaki
浩一 津崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Kyushu Ltd
Original Assignee
NEC Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Kyushu Ltd filed Critical NEC Kyushu Ltd
Priority to JP2002085674A priority Critical patent/JP2003282691A/en
Publication of JP2003282691A publication Critical patent/JP2003282691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a wafer 21 leave an electrostatic stage 1 in an electrostatic chuck for holding the wafer and in a wafer separating method regardless of the thickness of an oxide film on the back side of the wafer 21, that of a metal interconnection layer on the front side thereof and output, pressure of process condition and further, an individual difference of electrodes. <P>SOLUTION: A pressure of a cooling gas is applied to a gap between the wafer 21 and the electrostatic stage 1 with a negative charge, which generates the residual absorbability of the wafer 21 and electrostatic stage 1, being neutralized by an ionizer 10, thus expanding the gap to make the wafer 21 leave the electrostatic stage 1. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ処理装置
など使用され、処理中にウェハを静電気で吸着保持する
とともにウェハの処理終了後にウェハを取り外すウェハ
保持用静電チャックおよびウェハの剥離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck for holding a wafer which is used in a plasma processing apparatus or the like and electrostatically holds a wafer during processing and removes the wafer after the wafer is processed, and a method for peeling the wafer.

【0002】[0002]

【従来の技術】通常、半導体製造装置であるエッチング
およびCVD装置では、半導体装置の集積度を高めるた
めプラズマを用いた処理がおこなわれている。その処理
において半導体基板であるウェハがプラズマから受ける
エネルギ−によって加熱される温度を所望の温度になる
ように冷却したり、あるいは高温に加熱しかつ温度の均
一性を保ちつつウェハを固定保持する方法として、従来
使用されてきたメカニカルクランプに代わって静電吸着
が使用されるように至った。
2. Description of the Related Art Generally, in an etching and CVD apparatus which is a semiconductor manufacturing apparatus, a process using plasma is performed in order to increase the degree of integration of the semiconductor device. A method of cooling the wafer, which is a semiconductor substrate in the process, by the energy received from the plasma to a desired temperature, or heating the wafer to a high temperature and fixing and holding the wafer while maintaining the temperature uniformity. As a result, electrostatic chuck has come to be used in place of the mechanical clamp that has been used conventionally.

【0003】この静電吸着は、導体金属製の電極板に所
望の厚さの誘電体を被せ、この誘電体にウェハを載せウ
ェハと電極板との間に電圧を印加し発生する静電力によ
りウェハを固定保持することである。また、この静電吸
着は、ウェハの全面吸着が可能であることから、大口径
ウェハの固定保持には適している。しかも、ウェハの処
理面に物理的に力が加えられないことから、処理室内の
低発塵化が図れるという利点がある。
In this electrostatic adsorption, an electrode plate made of a conductive metal is covered with a dielectric having a desired thickness, a wafer is placed on the dielectric, and a voltage is applied between the wafer and the electrode plate to generate electrostatic force. To hold the wafer fixed. Further, this electrostatic adsorption is suitable for fixing and holding a large-diameter wafer because it can adsorb the entire surface of the wafer. Moreover, since no physical force is applied to the processing surface of the wafer, there is an advantage that the dust generation in the processing chamber can be reduced.

【0004】しかしながら、この静電吸着によるウェハ
の固定保持方法にも唯一の欠点があった。それは、ウェ
ハの処理が終了し、ウェハを誘電体より取り外すのに電
極板に印加した電圧を解除しても電荷が残留し、この残
留電荷による残留吸着力が作用しウェハが誘電体より離
脱できないという問題があった。そして、リフトピンな
どにより強制的にウェハを誘電体から離脱させようとし
ても、ウェハの割れや欠けおよびスクラッチなど生じさ
せることになる。
However, this method of fixing and holding the wafer by electrostatic attraction has the only drawback. This is because even after the wafer processing is completed and the voltage applied to the electrode plate to remove the wafer from the dielectric is released, the electric charge remains, and the residual adsorption force due to this residual charge acts and the wafer cannot be separated from the dielectric. There was a problem. Even if the wafer is forcibly detached from the dielectric by lift pins or the like, the wafer will be cracked, chipped, or scratched.

【0005】かかる問題を解消する方法として、例え
ば、特開2000−31252号公報に開示されてい
る。この方法は、ウェハを処理室へ搬送途中でウェハの
裏面に施されたシリコン酸化膜に単色光を照射し、その
反射光の強度を測定することでシリコン酸化膜の厚さを
求め、その厚さに応じて二つの電極板(内側および外
側)のそれぞれに印加する電圧シ−ケンスによりウェハ
を離脱することを特徴としている。
A method for solving such a problem is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-31252. This method irradiates the silicon oxide film on the back surface of the wafer with monochromatic light while the wafer is being transferred to the processing chamber, and measures the intensity of the reflected light to determine the thickness of the silicon oxide film. The wafer is separated by a voltage sequence applied to each of the two electrode plates (inner side and outer side) according to the size.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た方法では、ウェハの裏面の酸化膜における厚さによっ
て電極に電圧シ−ケンスを印加しウェハの離脱を図って
いるが、ウェハの離脱を妨げる残留吸着力は、単にウェ
ハの裏面の酸化膜の厚さだけではなく、表面の金属配線
層の厚さや処理条件の出力および圧力と電極の個体差に
よって異なる。
However, in the above-mentioned method, the voltage sequence is applied to the electrodes by the thickness of the oxide film on the back surface of the wafer to separate the wafer. The adsorption force depends not only on the thickness of the oxide film on the back surface of the wafer, but also on the thickness of the metal wiring layer on the front surface, the output of processing conditions, the pressure, and the individual difference of the electrodes.

【0007】従って、本発明の目的は、ウェハの裏面の
酸化膜の厚さや表面の金属配線層の厚さ、処理条件の出
力および圧力と電極の個体差によらずウェハの割れやス
クラッチを発生させることなくウェハを離脱させること
ができるウェハ保持用静電チャックおよびウェハの剥離
方法を提供することにある。
Therefore, an object of the present invention is to generate a wafer crack or a scratch regardless of the thickness of the oxide film on the back surface of the wafer, the thickness of the metal wiring layer on the front surface, the output of the processing conditions, the pressure, and the individual difference of the electrodes. An object of the present invention is to provide an electrostatic chuck for holding a wafer and a method for peeling a wafer, which allows the wafer to be detached without causing it.

【0008】[0008]

【課題を解決するための手段】本発明の第1の特徴は、
プラズマ処理室に収納される上部電極に対向し配置され
る下部電極に固定保持されるとともにウェハを載置面を
もつ静電ステ−ジと、前記ウェハ載置台の載置面の前記
ウェハを突き上げたり下降したりする複数のリフトピン
と、前記ウェハと前記載置面との隙間に冷却ガスを供給
するガス供給装置と、供給される前記冷却ガスの圧力を
測定する圧力計と、前記隙間から前記冷却ガスが漏れる
量を検出する漏れ検出装置と、前記ウェハ載置台に埋設
される電極に電圧を印加する直流電源と、前記冷却ガス
の圧力を調節する圧力調節弁とを備えるウェハ保持用静
電チャックである。
The first feature of the present invention is to:
An electrostatic stage having a wafer mounting surface that is fixed and held by a lower electrode that faces the upper electrode housed in the plasma processing chamber, and pushes up the wafer on the mounting surface of the wafer mounting table. And a plurality of lift pins that descend and descend, a gas supply device that supplies a cooling gas to the gap between the wafer and the mounting surface, a pressure gauge that measures the pressure of the supplied cooling gas, and the gap from the gap. A wafer holding electrostatic device including a leak detection device that detects the amount of cooling gas leaked, a DC power supply that applies a voltage to an electrode embedded in the wafer mounting table, and a pressure control valve that controls the pressure of the cooling gas. It's a chuck.

【0009】また、前記冷却ガスの分子を解離させるイ
オナイザ−を備えることが望ましい。さらに、前記冷却
ガスは、ヘリウムガスであることが望ましい。そして、
好ましくは、前記漏れ検出装置は、前記ウェハと前記の
載置面との隙間から漏れる前記冷却ガスを収集するガス
収集管と、収集した前記冷却ガスの漏れ量を測定するガ
スデテクタとを備えることである。
Further, it is desirable to provide an ionizer for dissociating the molecules of the cooling gas. Further, the cooling gas is preferably helium gas. And
Preferably, the leak detection device includes a gas collection pipe that collects the cooling gas that leaks from a gap between the wafer and the mounting surface, and a gas detector that measures a leak amount of the collected cooling gas. is there.

【0010】本発明の第2の特徴は、プラズマ処理室に
収納される上部電極に対向し配置される下部電極に固定
保持されるとともにウェハを載置面をもつ静電ステ−ジ
と、前記ウェハ載置台の載置面の前記ウェハを突き上げ
たり下降したりする複数のリフトピンと、前記ウェハと
前記載置面との隙間に冷却ガスを供給するガス供給装置
と、供給される前記冷却ガスの圧力を測定する圧力計
と、前記隙間から前記冷却ガスが漏れる量を検出する漏
れ検出装置と、前記ウェハ載置台に埋設される電極に電
圧を印加する直流電源と、前記冷却ガスの圧力を調節す
る圧力調節弁と、前記冷却ガスの分子を解離させるイオ
ナイザ−とを備えるウェハ保持用静電チャックにおい
て、前記ウェハの処理後に、前記冷却ガスのガス圧を前
記プラズマ処理室の圧力より高めに設定し、前記隙間か
ら漏れる前記冷却ガスを検知し、前記冷却ガスの分子を
解離させガスのイオンにより前記静電ステ−ジの負電荷
を中和させながら前記冷却ガスの圧力により前記ウェハ
を前記静電ステ−ジから離脱させるウェハの剥離方法で
ある。
A second feature of the present invention is an electrostatic stage having a wafer mounting surface and being fixedly held by a lower electrode which is arranged so as to face an upper electrode housed in a plasma processing chamber. A plurality of lift pins that push up or lower the wafer on the mounting surface of the wafer mounting table, a gas supply device that supplies a cooling gas to the gap between the wafer and the mounting surface, and the cooling gas supplied. A pressure gauge for measuring the pressure, a leak detection device for detecting the amount of the cooling gas leaked from the gap, a DC power source for applying a voltage to an electrode embedded in the wafer mounting table, and a pressure for the cooling gas. In the electrostatic chuck for holding a wafer, which comprises a pressure control valve for controlling the temperature and an ionizer for dissociating the molecules of the cooling gas, after the processing of the wafer, the gas pressure of the cooling gas is set to the pressure of the plasma processing chamber. It is set to a higher value, the cooling gas leaking from the gap is detected, the molecules of the cooling gas are dissociated, and the negative charge of the electrostatic stage is neutralized by the ions of the gas, while the pressure of the cooling gas is used to neutralize the negative charges. It is a method of peeling a wafer that separates the wafer from the electrostatic stage.

【0011】[0011]

【発明の実施の形態】次に、本発明について図面を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0012】図1は本発明の一実施の形態におけるウェ
ハ保持用静電チャックを説明するための図である。この
ウェハ保持用静電チャックは、図1に示すように、処理
室17に収納される上部電極18に対向し配置される下
部電極2に固定保持されるとともにウェハ21を載置す
る載置面をもつ静電ステ−ジ1と、ウェハ21と静電ス
テ−ジ1との隙間に冷却ガスを供給する冷却ガス供給管
4と、ウェハ21を静電ステ−ジ1の上に突き上げるリ
フトピン5と、静電ステ−ジ1の電極に直流電圧を印加
するESC電源16とを備えている。
FIG. 1 is a diagram for explaining an electrostatic chuck for holding a wafer according to an embodiment of the present invention. As shown in FIG. 1, this wafer holding electrostatic chuck is fixedly held by a lower electrode 2 which is arranged so as to face an upper electrode 18 housed in a processing chamber 17, and on which a wafer 21 is placed. Of the electrostatic stage 1, a cooling gas supply pipe 4 for supplying a cooling gas to a gap between the wafer 21 and the electrostatic stage 1, and a lift pin 5 for pushing the wafer 21 onto the electrostatic stage 1. And an ESC power supply 16 for applying a DC voltage to the electrodes of the electrostatic stage 1.

【0013】また、静電ステ−ジ1に保持されたウェハ
21と載置面との隙間から漏れる冷却ガスを収集するリ
ング状のガス収集管3がウェハ21の周囲に配置され、
このガス収集管3は開閉弁6を介してガスディテクタ7
と配管により接続されている。さらに、冷却ガスは分子
量の小さいヘリウムガスが望ましく、そして、ヘリウム
ガスの漏れを検知するには、ガスディテクタ7として
は、市販のヘリウムリ−クディテクタを使用することが
望ましい。市販のリ−クディテクタとしては、例えば、
日本真空技術KK製のDUMS−TP3などがある。
A ring-shaped gas collecting pipe 3 for collecting the cooling gas leaking from the gap between the wafer 21 held on the electrostatic stage 1 and the mounting surface is arranged around the wafer 21.
This gas collecting pipe 3 is connected to a gas detector 7 via an opening / closing valve 6.
And connected by piping. Further, the cooling gas is preferably helium gas having a small molecular weight, and it is desirable to use a commercially available helium leak detector as the gas detector 7 in order to detect leakage of the helium gas. Examples of commercially available leak detectors include:
There is DUMS-TP3 manufactured by Nippon Vacuum Technology KK.

【0014】一方、冷却ガス供給管4には、管内の圧力
を測定する圧力計11と冷却ガスを電離させるイオナイ
ザ−10と冷却ガス供給装置9から圧送される冷却ガス
の圧力を調節する圧力調節弁8が備えられている。
On the other hand, in the cooling gas supply pipe 4, a pressure gauge 11 for measuring the pressure inside the pipe, an ionizer 10 for ionizing the cooling gas, and a pressure adjustment for adjusting the pressure of the cooling gas sent from the cooling gas supply device 9 are adjusted. A valve 8 is provided.

【0015】この静電チャックはドライエッチンブ装置
に適用したものとして説明する。このドライエッチング
装置によるウェハの処理動作を説明すると、まず、図1
に示すように、静電ステ−ジ1にウェハ21を載せる。
そして、処理室17を真空排気管14を介して真空排気
する。そして、処理室17の圧力が10-3P程度の圧力
にする。しかる後、ガス導入口15よりエッチングガス
を導入する。次に、圧力調整弁(図示せず)を調整し、
処理室17のガス圧を数P程度に維持する。次に、冷却
ガス供給装置9の開閉弁13を開きウェハ21と静電ス
テ−ジ1との隙間に冷却ガスを供給し、冷却ガスの圧力
が1kPになるように圧力調節弁8により調整する。
This electrostatic chuck will be described as being applied to a dry etching apparatus. The wafer processing operation by this dry etching apparatus will be described first with reference to FIG.
The wafer 21 is placed on the electrostatic stage 1 as shown in FIG.
Then, the processing chamber 17 is evacuated through the evacuation pipe 14. Then, the pressure of the processing chamber 17 is set to about 10 −3 P. Then, an etching gas is introduced through the gas inlet 15. Next, adjust the pressure control valve (not shown),
The gas pressure in the processing chamber 17 is maintained at about several P. Next, the opening / closing valve 13 of the cooling gas supply device 9 is opened to supply the cooling gas to the gap between the wafer 21 and the electrostatic stage 1, and the pressure of the cooling gas is adjusted to 1 kP by the pressure control valve 8. .

【0016】次に、ESC電源16により静電ステ−ジ
1の電極に負の電位を印加し、高周波電源12により静
電ステ−ジ1に高周波電力を印加する。このことによ
り、ウェハ21は静電ステ−ジ1に吸着保持され、上部
電極18と下部電極2との間にプラズマが発生しウェハ
21はエッチング処理される。このとき、プラズマによ
り加熱されたウェハ21は導入された冷却ガスにより冷
却され一定の温度を保つた状態で、ウェハ21はエッチ
ング処理される。エッチング処理が終了すると、高周波
電源12よる高周波電力およびESC電源16による下
部電極2および静電ステ−ジ1の電極への電圧の印加を
中止する。また、冷却ガスの供給も停止する。
Next, the ESC power supply 16 applies a negative potential to the electrode of the electrostatic stage 1, and the high frequency power supply 12 applies high frequency power to the electrostatic stage 1. As a result, the wafer 21 is adsorbed and held on the electrostatic stage 1, plasma is generated between the upper electrode 18 and the lower electrode 2, and the wafer 21 is etched. At this time, the wafer 21 heated by the plasma is cooled by the introduced cooling gas and kept at a constant temperature, and the wafer 21 is etched. When the etching process is completed, the high frequency power from the high frequency power supply 12 and the application of the voltage to the lower electrode 2 and the electrode of the electrostatic stage 1 by the ESC power supply 16 are stopped. Moreover, the supply of the cooling gas is also stopped.

【0017】図2はウェハを静電チャックを離脱させる
動作を説明するためのフロ−チャ−トである。次に、図
1および図2を参照してウェハの脱離動作を説明する。
まず、図2のステップAで、図1の冷却ガス供給装置9
からのヘリウムガスの圧力を処理室17内の圧力に対し
数kP高い陽圧に設定し、開閉弁13を開き、ウェハ2
1と静電ステ−ジ1との隙間に送り込む。これと同時
に、ステップBで、イオナイザ−10を動作させ、送り
込まれたヘリウムガスの分子が解離される。
FIG. 2 is a flow chart for explaining the operation of separating the wafer from the electrostatic chuck. Next, the wafer detaching operation will be described with reference to FIGS.
First, in step A of FIG. 2, the cooling gas supply device 9 of FIG.
The pressure of the helium gas from is set to a positive pressure several kP higher than the pressure in the processing chamber 17, the on-off valve 13 is opened, and the wafer 2
1 and the electrostatic stage 1. At the same time, in step B, the ionizer 10 is operated to dissociate the fed helium gas molecules.

【0018】解離されたヘリウムイオンは静電ステ−ジ
1の負電荷と結合し、一方、解離された電子はウェハ2
1の正電荷と結合し中和する。このことにより残留吸着
力を発生させるセルフバイアスによる負の電位は接地電
位に近づくことになる。
The dissociated helium ions combine with the negative charge of the electrostatic stage 1, while the dissociated electrons form the wafer 2.
It combines with the positive charge of 1 and neutralizes. As a result, the negative potential due to the self-bias that generates the residual attraction force approaches the ground potential.

【0019】次に、ステップCで、図1の開閉弁6を開
き、ガスディテクタ7の真空ポンプによりガス収集管3
を経てウェハ21と静電ステ−ジ1との隙間から漏れる
ヘリウムガスが吸い込まれる。もし、ガスディテクタ7
が検出するガス漏れ量が規定以上あれば、ステップD
で、ガス圧をやや高く再設定し、ウェハ21と静電ステ
−ジ1との隙間に送り込む。そして、開閉弁13を閉じ
る。このとき、必要ならば、ステップEで、スイッチ1
9aおよびスイッチ19bによりESC電源16の極性
を換え、静電ステ−ジ1の電極に正電位の電圧を印加し
ても良い。
Next, at step C, the on-off valve 6 shown in FIG. 1 is opened, and the gas collector 7 is opened by the vacuum pump of the gas detector 7.
The helium gas leaking through the gap between the wafer 21 and the electrostatic stage 1 through the above is sucked. If the gas detector 7
If the amount of gas leak detected by is greater than the specified amount, step D
Then, the gas pressure is reset to a slightly higher value and fed into the gap between the wafer 21 and the electrostatic stage 1. Then, the on-off valve 13 is closed. At this time, if necessary, in step E, switch 1
The polarity of the ESC power supply 16 may be changed by 9a and the switch 19b, and a positive potential voltage may be applied to the electrode of the electrostatic stage 1.

【0020】次に、ステップFで、供給されたヘリウム
ガスの圧力降下が数秒以下なら、ステップGで、図1の
エアシリンダ20を動作させリフトピン5を突き上げ、
ウェハ21を静電ステ−ジ1から離脱させる。もし、ス
テップCで、ガス漏れが規定量に達しなければ、ステッ
プAに戻り、ウェハ21と静電ステ−ジ1との隙間にさ
らにヘリウムガスを供給し、ガス漏れが規定量に達する
まで供給し続ける。同様にして、ステップFで、ガス圧
降下に時間がかかれば、ステップDに戻り、ガス圧を再
設定し、ウェハ21と静電ステ−ジ1との隙間にヘリウ
ムガスを供給し、ガス圧の降下速度を測定し、降下速度
が早くなるまで繰り返してヘリウムガスの供給を続け
る。
Next, if the pressure drop of the supplied helium gas is several seconds or less in step F, the air cylinder 20 of FIG. 1 is operated to push up the lift pin 5 in step G.
The wafer 21 is removed from the electrostatic stage 1. If the gas leakage does not reach the specified amount in step C, the process returns to step A, and helium gas is further supplied to the gap between the wafer 21 and the electrostatic stage 1 until the gas leakage reaches the specified amount. Keep doing Similarly, if it takes time for the gas pressure to drop in step F, the process returns to step D, the gas pressure is reset, helium gas is supplied to the gap between the wafer 21 and the electrostatic stage 1, and the gas pressure is reduced. The descent rate of is measured, and the helium gas is continuously supplied until the descent rate becomes faster.

【0021】以上説明したように、まず、ガス、のカセ
ット29にガラス基板30を収納する場合も、図2で説
明したように、ウェハ21と静電ステ−ジ1との隙間に
ガスを送り込み、ガス漏れがあれば、すなわち、ウェハ
21と静電ステ−ジ1との隙間があることを確認し、さ
らに、ガス圧を上げ、隙間をより拡げ完全にウェハ21
を静電ステ−ジ1より離脱させることである。
As described above, first, when the glass substrate 30 is housed in the gas cassette 29, the gas is fed into the gap between the wafer 21 and the electrostatic stage 1 as described with reference to FIG. If there is a gas leak, that is, it is confirmed that there is a gap between the wafer 21 and the electrostatic stage 1, the gas pressure is further increased to further widen the gap, and the wafer 21 is completely removed.
Is to be separated from the electrostatic stage 1.

【0022】[0022]

【発明の効果】以上説明したように本発明は、ウェハと
静電ステ−ジの残留吸着力を発生させる負電荷を中和さ
せながらウェハと静電ステ−ジとの隙間に冷却用ガスの
圧力を加えることによって、ウェハの裏面の酸化膜の厚
さや表面の金属配線層の厚さ、処理条件の出力および圧
力と電極の個体差にかかわらずウェハを静電ステ−ジか
ら離脱することができるので、ウェハの割れや欠けおよ
びスクラッチなど起こさず歩留まりが向上するという効
果がある。
As described above, according to the present invention, the cooling gas is provided in the gap between the wafer and the electrostatic stage while neutralizing the negative charges that generate the residual attraction force between the wafer and the electrostatic stage. By applying pressure, the wafer can be separated from the electrostatic stage regardless of the thickness of the oxide film on the back surface of the wafer, the thickness of the metal wiring layer on the front surface, the output of processing conditions, and the individual difference in pressure and electrodes. As a result, there is an effect that the yield is improved without causing cracks, chips or scratches on the wafer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態におけるウェハ保持用静
電チャックを説明するための図である。
FIG. 1 is a view for explaining a wafer holding electrostatic chuck according to an embodiment of the present invention.

【図2】ウェハを静電チャックを離脱させる動作を説明
するためのフロ−チャ−トである
FIG. 2 is a flow chart for explaining the operation of separating the wafer from the electrostatic chuck.

【符号の説明】[Explanation of symbols]

1 静電ステ−ジ 2 下部電極 3 ガス収集管 4 冷却ガス供給管 5 リフトピン 6,13 開閉弁 7 ガスディテクタ 8 圧力調節弁 9 冷却ガス供給装置 10 イオナイザ− 11 圧力計 12 高周波電源 14 真空排気管 13 上下動機構 15 ガス導入口 16 ESC電源 21 ウェハ 1 electrostatic stage 2 Lower electrode 3 gas collection tubes 4 Cooling gas supply pipe 5 lift pins 6,13 open / close valve 7 gas detector 8 Pressure control valve 9 Cooling gas supply device 10 Ionizer 11 pressure gauge 12 High frequency power supply 14 Vacuum exhaust pipe 13 Vertical movement mechanism 15 gas inlet 16 ESC power supply 21 wafers

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プラズマ処理室に収納される上部電極に
対向し配置される下部電極に固定保持されるとともにウ
ェハを載置面をもつ静電ステ−ジと、前記ウェハ載置台
の載置面の前記ウェハを突き上げたり下降したりする複
数のリフトピンと、前記ウェハと前記載置面との隙間に
冷却ガスを供給するガス供給装置と、供給される前記冷
却ガスの圧力を測定する圧力計と、前記隙間から前記冷
却ガスが漏れる量を検出する漏れ検出装置と、前記ウェ
ハ載置台に埋設される電極に電圧を印加する直流電源
と、前記冷却ガスの圧力を調節する圧力調節弁とを備え
ることを特徴とするウェハ保持用静電チャック。
1. An electrostatic stage having a wafer mounting surface fixedly held by a lower electrode arranged to face an upper electrode housed in a plasma processing chamber, and a mounting surface of the wafer mounting table. A plurality of lift pins that push up or down the wafer, a gas supply device that supplies a cooling gas to the gap between the wafer and the mounting surface, and a pressure gauge that measures the pressure of the supplied cooling gas. A leak detection device that detects the amount of the cooling gas leaked from the gap, a DC power supply that applies a voltage to an electrode embedded in the wafer mounting table, and a pressure control valve that controls the pressure of the cooling gas. An electrostatic chuck for holding a wafer, which is characterized in that
【請求項2】 前記冷却ガスの分子を解離させるイオナ
イザ−を備えることを特徴とする請求項1記載のウェハ
保持用静電チャック。
2. An electrostatic chuck for holding a wafer according to claim 1, further comprising an ionizer for dissociating molecules of the cooling gas.
【請求項3】 前記冷却ガスは、ヘリウムガスであるこ
とを特徴とする請求項1または請求項2記載のウェハ保
持用静電チャック。
3. The electrostatic chuck for holding a wafer according to claim 1, wherein the cooling gas is helium gas.
【請求項4】 前記漏れ検出装置は、前記ウェハと前記
の載置面との隙間から漏れる前記冷却ガスを収集するガ
ス収集管と、収集した前記冷却ガスの漏れ量を測定する
ガスデテクタとを備えることを特徴とする請求項1また
は請求項2記載のウェハ保持用静電チャック。
4. The leak detection device includes a gas collecting pipe for collecting the cooling gas leaking from a gap between the wafer and the mounting surface, and a gas detector for measuring a leak amount of the collected cooling gas. The electrostatic chuck for holding a wafer according to claim 1, wherein the electrostatic chuck is for holding a wafer.
【請求項5】 前記ガス供給装置のガス供給管と前記リ
フトピンのいずれかと接続し前記空間部に前記冷却ガス
を供給することを特徴とする請求項1、請求項2請求項
3または請求項4記載のウェハ保持用静電チャック。
5. The cooling gas is supplied to the space portion by connecting to any one of the gas supply pipe of the gas supply device and the lift pin. The electrostatic chuck for holding a wafer as described above.
【請求項6】 プラズマ処理室に収納される上部電極に
対向し配置される下部電極に固定保持されるとともにウ
ェハを載置面をもつ静電ステ−ジと、前記ウェハ載置台
の載置面の前記ウェハを突き上げたり下降したりする複
数のリフトピンと、前記ウェハと前記載置面との隙間に
冷却ガスを供給するガス供給装置と、供給される前記冷
却ガスの圧力を測定する圧力計と、前記隙間から前記冷
却ガスが漏れる量を検出する漏れ検出装置と、前記ウェ
ハ載置台に埋設される電極に電圧を印加する直流電源
と、前記冷却ガスの圧力を調節する圧力調節弁と、前記
冷却ガスの分子を解離させるイオナイザ−とを備えるウ
ェハ保持用静電チャックにおいて、前記ウェハの処理後
に、前記冷却ガスのガス圧を前記プラズマ処理室の圧力
より高めに設定し、前記隙間から漏れる前記冷却ガスを
検知し、前記冷却ガスの分子を解離させガスのイオンに
より前記静電ステ−ジの負電荷を中和させながら前記冷
却ガスの圧力により前記ウェハを前記静電ステ−ジから
離脱させることを特徴とするウェハの剥離方法。
6. An electrostatic stage having a wafer mounting surface fixedly held by a lower electrode arranged to face an upper electrode housed in a plasma processing chamber, and a mounting surface of the wafer mounting table. A plurality of lift pins that push up or down the wafer, a gas supply device that supplies a cooling gas to the gap between the wafer and the mounting surface, and a pressure gauge that measures the pressure of the supplied cooling gas. A leak detection device that detects the amount of the cooling gas leaking from the gap, a DC power supply that applies a voltage to an electrode embedded in the wafer mounting table, a pressure control valve that controls the pressure of the cooling gas, In an electrostatic chuck for holding a wafer, which comprises an ionizer for dissociating molecules of a cooling gas, the gas pressure of the cooling gas is set higher than the pressure of the plasma processing chamber after the processing of the wafer, and The cooling gas leaking from the gap is detected, the molecules of the cooling gas are dissociated, and the negative ions of the electrostatic stage are neutralized by the ions of the gas, while the pressure of the cooling gas moves the wafer to the electrostatic stage. A method for peeling a wafer, characterized in that the wafer is peeled off.
JP2002085674A 2002-03-26 2002-03-26 Electrostatic chuck for holding wafer and wafer separating method Pending JP2003282691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002085674A JP2003282691A (en) 2002-03-26 2002-03-26 Electrostatic chuck for holding wafer and wafer separating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002085674A JP2003282691A (en) 2002-03-26 2002-03-26 Electrostatic chuck for holding wafer and wafer separating method

Publications (1)

Publication Number Publication Date
JP2003282691A true JP2003282691A (en) 2003-10-03

Family

ID=29232548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002085674A Pending JP2003282691A (en) 2002-03-26 2002-03-26 Electrostatic chuck for holding wafer and wafer separating method

Country Status (1)

Country Link
JP (1) JP2003282691A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311462A (en) * 2006-05-17 2007-11-29 Disco Abrasive Syst Ltd Electrostatic chuck table mechanism
JP2010010477A (en) * 2008-06-27 2010-01-14 Sumitomo Heavy Ind Ltd Dechucking mechanism, vacuum device, dechucking method, and component for dechucking
JP2010021405A (en) * 2008-07-11 2010-01-28 Hitachi High-Technologies Corp Plasma processing apparatus
WO2014042174A1 (en) * 2012-09-12 2014-03-20 東京エレクトロン株式会社 Detachment control method and plasma processing device
JP2015216390A (en) * 2009-01-16 2015-12-03 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate support with gas introduction opening
JP2015225890A (en) * 2014-05-26 2015-12-14 パナソニックIpマネジメント株式会社 Plasma processing apparatus and method
JP2018186179A (en) * 2017-04-25 2018-11-22 東京エレクトロン株式会社 Substrate processing apparatus and substrate removal method
CN111006515A (en) * 2019-11-22 2020-04-14 北京北方华创微电子装备有限公司 Electrode assembly and high-temperature vacuum furnace
US10896843B2 (en) 2017-03-24 2021-01-19 Sumitomo Heavy Industries Ion Technology Co., Ltd. Wafer holding device and wafer chucking and dechucking method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311462A (en) * 2006-05-17 2007-11-29 Disco Abrasive Syst Ltd Electrostatic chuck table mechanism
JP2010010477A (en) * 2008-06-27 2010-01-14 Sumitomo Heavy Ind Ltd Dechucking mechanism, vacuum device, dechucking method, and component for dechucking
JP2010021405A (en) * 2008-07-11 2010-01-28 Hitachi High-Technologies Corp Plasma processing apparatus
JP2015216390A (en) * 2009-01-16 2015-12-03 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate support with gas introduction opening
WO2014042174A1 (en) * 2012-09-12 2014-03-20 東京エレクトロン株式会社 Detachment control method and plasma processing device
US9966291B2 (en) 2012-09-12 2018-05-08 Tokyo Electron Limited De-chuck control method and plasma processing apparatus
JP2015225890A (en) * 2014-05-26 2015-12-14 パナソニックIpマネジメント株式会社 Plasma processing apparatus and method
US10896843B2 (en) 2017-03-24 2021-01-19 Sumitomo Heavy Industries Ion Technology Co., Ltd. Wafer holding device and wafer chucking and dechucking method
JP2018186179A (en) * 2017-04-25 2018-11-22 東京エレクトロン株式会社 Substrate processing apparatus and substrate removal method
US10651071B2 (en) 2017-04-25 2020-05-12 Tokyo Electron Limited Substrate processing apparatus and substrate removing method
CN111006515A (en) * 2019-11-22 2020-04-14 北京北方华创微电子装备有限公司 Electrode assembly and high-temperature vacuum furnace
CN111006515B (en) * 2019-11-22 2022-05-27 北京北方华创微电子装备有限公司 Electrode assembly and high-temperature vacuum furnace

Similar Documents

Publication Publication Date Title
US8124539B2 (en) Plasma processing apparatus, focus ring, and susceptor
US7799238B2 (en) Plasma processing method and plasma processing apparatus
US20100307686A1 (en) Substrate processing apparatus
US8017525B2 (en) Processing method
JPH113878A (en) Method and device for controlling surface condition of ceramic substrate
TW200423212A (en) Method and apparatus for reducing substrate backside deposition during processing
US7335601B2 (en) Method of processing an object and method of controlling processing apparatus to prevent contamination of the object
US9530657B2 (en) Method of processing substrate and substrate processing apparatus
KR102114500B1 (en) Heat transfer sheet attachment method
JPH09326385A (en) Substrate cooling method
JP2004047511A (en) Method for releasing, method for processing, electrostatic attracting device, and treatment apparatus
JP2003282691A (en) Electrostatic chuck for holding wafer and wafer separating method
JP4322484B2 (en) Plasma processing method and plasma processing apparatus
US20090088041A1 (en) Display substrate manufacturing method and vacuum processing apparatus
TW200614350A (en) Apparatus for plasma chemical vapor deposition and method for fabricating semiconductor device by using the same
JP2009099957A (en) Display substrate manufacturing method and vacuum processing apparatus
JP6397680B2 (en) Plasma processing apparatus and method of operating plasma processing apparatus
JP3770740B2 (en) Substrate peeling device
JP2004319972A (en) Etching method and etching device
JP4602528B2 (en) Plasma processing equipment
JPH08195382A (en) Semiconductor manufacturing device
JPH0786382A (en) Substrate holding method and equipment
KR20150116003A (en) Apparatus, system, and metho for treating substrate
KR101337988B1 (en) plasma processing apparatus and method for processing substrate using thereof
JPH0786385A (en) Substrate holding method and device therefor