JP2003265385A - Wiping nonwoven fabric - Google Patents

Wiping nonwoven fabric

Info

Publication number
JP2003265385A
JP2003265385A JP2002071954A JP2002071954A JP2003265385A JP 2003265385 A JP2003265385 A JP 2003265385A JP 2002071954 A JP2002071954 A JP 2002071954A JP 2002071954 A JP2002071954 A JP 2002071954A JP 2003265385 A JP2003265385 A JP 2003265385A
Authority
JP
Japan
Prior art keywords
wiping
glass
fiber
composite
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002071954A
Other languages
Japanese (ja)
Inventor
Satoshi Demura
智 出村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002071954A priority Critical patent/JP2003265385A/en
Publication of JP2003265385A publication Critical patent/JP2003265385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wiping nonwoven fabric which is excellent in hydrophilitiy and wiping cleanability of hydrophilic material, has a high heat resistance and less changes dimensionally with heat and moisture absorption. <P>SOLUTION: The wiping nonwoven fabric contains fibers consisting of a composite of glass and polyamide as main fiber components, in which the glass included in the composite is particulates of a grain size below 300 nm and the fiber diameter of the fibers is below 50 μm and the wiping nonwoven fabric consists of the fibers consisting of the composite of the glass and the polyamide and aramid fibers, in which the content of the aramid fibers in the wiping nonwoven fabric is 5 to 30 mass%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラスとポリアミ
ドとの複合体から成る繊維を主たる繊維成分として含む
ワイピング用不織布に関する。本発明のワイピング用不
織布は、高い耐熱性と寸法安定性とを有し、親水性物質
と親油性物質の両物質に対する拭浄性に優れ、反応釜の
覗き窓のような高温下での拭浄や、合成樹脂等の成形に
使用する鏡面板や鋳型等に付着した樹脂汚れなどの高温
状態での拭浄等に好適に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-woven fabric for wiping, which contains a fiber composed of a composite of glass and polyamide as a main fiber component. The non-woven fabric for wiping of the present invention has high heat resistance and dimensional stability, is excellent in wiping property for both hydrophilic substance and lipophilic substance, and is wiped under high temperature such as a peep window of a reaction kettle. It is suitably used for cleaning and wiping in a high temperature state such as resin stains attached to a mirror plate or a mold used for molding synthetic resin or the like.

【0002】[0002]

【従来の技術】従来から汚損した物体の表面を清浄にす
る拭浄具として、天然繊維や合成繊維から成る不織布
や、これら繊維と樹脂との複合体から成る不織布が用い
られている。しかし、これら不織布は耐熱性の要求され
る用途、例えば、化学工場や製造所等において高温で使
用される反応釜に付帯の覗き窓の拭浄や、複写機内のト
ナーの拭浄、あるいは高温での樹脂成形後に鏡面板や鋳
型等に付着した樹脂の拭浄等の用途においては、繊維素
材自体の耐熱性の限界から、高温下で安定した拭浄性能
を発揮することは困難であった。
2. Description of the Related Art Conventionally, a non-woven fabric made of natural fibers or synthetic fibers, or a non-woven fabric made of a composite of these fibers and a resin has been used as a wiping tool for cleaning the surface of a soiled object. However, these non-woven fabrics are used for applications requiring heat resistance, for example, cleaning of the viewing window incidental to the reaction kettle used at high temperature in chemical factories and manufacturing plants, cleaning of toner in the copying machine, or at high temperature. In applications such as wiping and cleaning of resin adhering to the mirror plate or mold after the resin molding, it was difficult to exhibit stable wiping performance at high temperatures due to the heat resistance limit of the fiber material itself.

【0003】特開平6−346351号公報には、親水
性と親油性を兼備したアクリル系繊維不織布が開示され
ているが、該不織布の耐熱性は、繊維を構成するアクリ
ル系樹脂自体の耐熱性を越え得ず、200℃を越えるよ
うな高温では変形や溶融が生じる。
Japanese Unexamined Patent Publication (Kokai) No. 6-346351 discloses an acrylic fiber non-woven fabric having both hydrophilicity and lipophilicity. The heat resistance of the non-woven fabric is the heat resistance of the acrylic resin itself constituting the fiber. However, deformation and melting occur at a high temperature of more than 200 ° C.

【0004】本発明者らによる特開平10−17610
6号公報には、微細なガラス粒子が均一に複合してな
る、寸法安定性(低熱膨張性)に優れたポリアミドとガ
ラス微粒子との複合体が開示されているが、該複合体の
拭浄具としての有用性については全く言及されていな
い。
Japanese Patent Laid-Open No. 10-17610 by the present inventors
Japanese Unexamined Patent Publication No. 6 discloses a composite of fine glass particles uniformly composited with polyamide and glass fine particles having excellent dimensional stability (low thermal expansion). No mention is made of its usefulness as an ingredient.

【0005】特開2002−13055号公報には、ポ
リパラフェニレンテレフタルアミド、ポリメタフェニレ
ンイソフタルアミド、ポリベンゾイミダゾールアミド、
ポリベンゾイミダゾール、ポリメタフェニレンスルフィ
ド、ポリエーテルエーテルケトン等の耐熱性繊維から成
る不織布に、水性シリコン樹脂エマルジョンを付着させ
て耐熱性を向上させた樹脂複合耐熱性不織布が開示され
ているが、該不織布は例えば250℃を越えるような高
温では変形や溶融が生じ、安定に使用できない。
Japanese Unexamined Patent Publication No. 2002-13055 discloses polyparaphenylene terephthalamide, polymetaphenylene isophthalamide, polybenzimidazole amide,
Polybenzimidazole, polymetaphenylene sulfide, non-woven fabric made of heat-resistant fibers such as polyetheretherketone, a resin composite heat-resistant non-woven fabric having improved heat resistance by adhering an aqueous silicone resin emulsion is disclosed. A nonwoven fabric is deformed or melted at a high temperature exceeding 250 ° C., for example, and cannot be used stably.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、親水性及び親油性物質の拭浄性に優れ、か
つ高い耐熱性を有し、熱や吸湿に対する寸法変化が少な
いワイピング用不織布を得ることにある。
The problem to be solved by the present invention is that it has excellent wiping and cleaning properties for hydrophilic and lipophilic substances, has high heat resistance, and has little dimensional change due to heat and moisture absorption. To obtain a non-woven fabric.

【0007】[0007]

【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、ガラスとポリアミドとの複合体の繊維か
ら成る特定条件の不織布が、上記課題を解決できること
を見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a non-woven fabric under specific conditions, which is composed of fibers of a composite of glass and polyamide, can solve the above problems, and It came to completion.

【0008】すなわち本発明は、ガラスとポリアミドと
の複合体から成る繊維を主たる繊維成分として含み、前
記複合体に含まれるガラスが粒径300nm以下の微粒
子であり、かつ前記繊維の繊維径が50μm以下である
ワイピング用不織布を提供するものである。
That is, according to the present invention, a fiber composed of a composite of glass and polyamide is contained as a main fiber component, the glass contained in the composite is fine particles having a particle diameter of 300 nm or less, and the fiber diameter of the fiber is 50 μm. The following provides a non-woven fabric for wiping.

【0009】[0009]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。本発明のワイピング用不織布はガラスとポリアミド
との複合体から成る繊維(以降、単にポリアミド複合体
繊維という。)を主たる繊維成分とし、該複合体に含ま
れるガラスは300nm以下の微粒子であることが好ま
しい。ガラス微粒子の粒径が300nmを越えると、耐
熱性および寸法安定性等のガラス複合の効果が十分に得
られない。また、ポリアミドに対する接着性が不足し、
ガラス微粒子が脱落する問題が生じる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below. The non-woven fabric for wiping of the present invention has fibers composed of a composite of glass and polyamide (hereinafter simply referred to as polyamide composite fibers) as a main fiber component, and the glass contained in the composite is fine particles of 300 nm or less. preferable. If the particle size of the glass fine particles exceeds 300 nm, the effects of glass composite such as heat resistance and dimensional stability cannot be sufficiently obtained. Also, the adhesion to polyamide is insufficient,
There arises a problem that glass particles fall off.

【0010】本発明のワイピング用不織布の製造に用い
るポリアミド複合体繊維は、水ガラス及びジアミンを含
む水溶液相と、ジカルボン酸ハロゲン化物を含む有機溶
液相とを接触させ、その界面にてジアミンとジカルボン
酸ハロゲン化物の界面重縮合反応を行うことで簡便に得
ることができる。該水溶液相に水ガラスを共存させるこ
とにより、粒径300nm以下のガラス微粒子が均一に
分散した繊維状のガラスとポリアミドとの複合体が生成
する。得られたポリアミド複合体繊維は優れた耐熱性と
寸法安定性を発現し、250℃を越えるような高温でも
変形や溶融が生じない。
The polyamide composite fiber used in the production of the non-woven fabric for wiping of the present invention comprises contacting an aqueous solution phase containing water glass and a diamine with an organic solution phase containing a dicarboxylic acid halide, and at the interface thereof, the diamine and the dicarboxylic acid. It can be easily obtained by performing an interfacial polycondensation reaction of an acid halide. By allowing water glass to coexist in the aqueous phase, a composite of fibrous glass and polyamide in which fine glass particles having a particle diameter of 300 nm or less are uniformly dispersed is produced. The obtained polyamide composite fiber exhibits excellent heat resistance and dimensional stability, and does not deform or melt even at a high temperature exceeding 250 ° C.

【0011】水溶液相に含まれる水ガラスは、例えばJ
IS K−1408−1950に記載の水ガラス1号、
2号、3号、4号等のMO・nSiOの組成式で表
され、Mはアルカリ金属、1.2≦n≦4のものが挙げ
られる。水溶液相中の水ガラスの濃度としては4〜10
0g/Lの範囲が好ましい。水ガラスの濃度が4g/L
以上であれば、ガラス微粒子のポリアミドへの複合化が
十分に行なわれ、また、100g/L以下であれば適切
な溶液粘度で界面重縮合反応が進行し、粒径300nm
以下のガラス微粒子が均一に分散したポリアミド複合体
繊維が好適に得られる。
The water glass contained in the aqueous phase is, for example, J
Water glass No. 1 described in IS K-1408-1950,
It is represented by the composition formula of M 2 O · nSiO 2 such as No. 2, No. 3, No. 4, and the like, and M is an alkali metal and 1.2 ≦ n ≦ 4. The concentration of water glass in the aqueous solution phase is 4 to 10
The range of 0 g / L is preferable. Water glass concentration is 4g / L
If it is above, the glass fine particles are sufficiently compounded with polyamide, and if it is 100 g / L or less, the interfacial polycondensation reaction proceeds with an appropriate solution viscosity, and the particle diameter is 300 nm.
A polyamide composite fiber in which the following glass particles are uniformly dispersed can be suitably obtained.

【0012】ポリアミド複合体繊維中のガラス微粒子の
含有率は水ガラスの濃度の調製により制御することが可
能であり、ガラス微粒子の含有率は30〜70質量%の
範囲であれば、本発明のワイピング用不織布は耐熱性や
寸法安定性等のガラス複合の効果を好適に発現すること
ができる。
The content of fine glass particles in the polyamide composite fiber can be controlled by adjusting the concentration of water glass. If the content of fine glass particles is in the range of 30 to 70% by mass, the present invention can be used. The nonwoven fabric for wiping can suitably exhibit the effects of glass composite such as heat resistance and dimensional stability.

【0013】水溶液相に含まれるジアミンとしては、一
般に界面重縮合反応に適用可能なモノマーであれば特に
限定されず、例えば、1,4−ジアミノブタン、1,6
−ジアミノヘキサン、1,8−ジアミノオクタン等の脂
肪族ジアミンや、p−フェニレンジアミン、m−フェニ
レンジアミン、m−キシリレンジアミン、ジアミノジフ
ェニルエーテルなどの芳香族型ジアミンが挙げられる。
The diamine contained in the aqueous phase is not particularly limited as long as it is a monomer generally applicable to the interfacial polycondensation reaction, and examples thereof include 1,4-diaminobutane and 1,6.
Examples thereof include aliphatic diamines such as -diaminohexane and 1,8-diaminooctane, and aromatic diamines such as p-phenylenediamine, m-phenylenediamine, m-xylylenediamine, and diaminodiphenyl ether.

【0014】水溶液相中のジアミンの濃度としては、界
面重縮合反応が十分に進行すれば特に制限されないが、
0.01〜5モル/Lの濃度範囲であれば、ポリアミド
複合体繊維の収率を十分に得ることができ好ましい。ま
た、モノマーの重縮合反応を十分に促進させる目的で、
水酸化ナトリウム等の酸受容体やラウリル硫酸ナトリウ
ム等の界面活性剤が添加されてもよい。
The concentration of the diamine in the aqueous phase is not particularly limited as long as the interfacial polycondensation reaction proceeds sufficiently,
The concentration range of 0.01 to 5 mol / L is preferable because the yield of the polyamide composite fiber can be sufficiently obtained. Further, for the purpose of sufficiently promoting the polycondensation reaction of the monomer,
An acid acceptor such as sodium hydroxide and a surfactant such as sodium lauryl sulfate may be added.

【0015】有機溶液相に含まれる有機溶媒としては、
一般に界面重縮合反応に適用可能な有機溶媒であれば特
に限定されず、トルエン、キシレン等の芳香族炭化水素
類、クロロホルム、ジクロロメタン等のハロゲン化炭化
水素類、シクロヘキサン、シクロヘキサノン等の脂環式
炭化水素類、テトラヒドロフラン、1,3−ジオキソラ
ン等のエーテル類などが例としてあげられる。
The organic solvent contained in the organic solution phase includes
Generally, it is not particularly limited as long as it is an organic solvent applicable to the interfacial polycondensation reaction, and aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as chloroform and dichloromethane, alicyclic carbonization such as cyclohexane and cyclohexanone. Examples thereof include hydrogens, tetrahydrofuran, ethers such as 1,3-dioxolane, and the like.

【0016】有機溶液相に含まれるジカルボン酸ハロゲ
ン化物としては、一般に、界面重縮合反応に適用可能な
モノマーであれば特に限定されないが、例えば、アジピ
ン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン
酸のハロゲン化物、及びイソフタル酸、テレフタル酸等
の芳香族ジカルボン酸のハロゲン化物、及びこれら芳香
族環の一個以上の水素をハロゲン、ニトロ基、アルキル
基で置換した芳香族ジカルボン酸ハロゲン化物等が挙げ
られる。
The dicarboxylic acid halide contained in the organic solution phase is not particularly limited as long as it is a monomer applicable to the interfacial polycondensation reaction, and examples thereof include aliphatic dicarboxylic acids such as adipic acid, azelaic acid and sebacic acid. Acid halides, aromatic dicarboxylic acid halides such as isophthalic acid and terephthalic acid, and aromatic dicarboxylic acid halides in which one or more hydrogen atoms of these aromatic rings are substituted with halogen, nitro group or alkyl group. Can be mentioned.

【0017】有機溶液相中のジカルボン酸ハロゲン化物
の濃度としては、界面重縮合反応が十分に進行すれば特
に制限されないが、0.01〜5モル/Lの濃度範囲で
あれば、ポリアミド複合体繊維の収率を十分に得ること
ができ好ましい。
The concentration of the dicarboxylic acid halide in the organic solution phase is not particularly limited as long as the interfacial polycondensation reaction proceeds sufficiently, but is within the concentration range of 0.01 to 5 mol / L, the polyamide composite. This is preferable because a sufficient yield of fiber can be obtained.

【0018】界面重縮合反応時の反応温度としては、重
縮合反応の速度が極めて速いため、特に加熱設備を必要
とせずに常温反応させることができ、例えば、−5〜7
0℃の温度範囲で好ましく反応させることが可能であ
る。反応時間は、使用するモノマー種の反応速度にもよ
るが、通常水溶液相と有機溶液相を接触させることによ
り瞬時に沈殿が生成し、例えば2〜30分で反応操作を
終了させることができる。
Regarding the reaction temperature during the interfacial polycondensation reaction, since the rate of the polycondensation reaction is extremely high, the reaction can be carried out at room temperature without the need for heating equipment, for example, -5 to 7
It is possible to react preferably in the temperature range of 0 ° C. The reaction time depends on the reaction rate of the monomer species used, but usually the contact between the aqueous solution phase and the organic solution phase instantaneously produces a precipitate, and the reaction operation can be completed, for example, in 2 to 30 minutes.

【0019】本発明に用いるポリアミド複合体繊維の繊
維径は50μm以下であることが好ましく、25μm以
下であればより好ましい。繊維径が50μm以下のポリ
アミド複合体繊維を得るには、水溶液相と有機溶液相の
反応系を攪拌する際に、反応系に高いせん断力を与える
ことが重要であり、裁断能力を有する金属製の攪拌翼を
10m/秒以上の周速で回転させることが必要である。
The fiber diameter of the polyamide composite fiber used in the present invention is preferably 50 μm or less, more preferably 25 μm or less. In order to obtain a polyamide composite fiber having a fiber diameter of 50 μm or less, it is important to give a high shearing force to the reaction system when stirring the reaction system of the aqueous solution phase and the organic solution phase, and a metal material having cutting ability is used. It is necessary to rotate the stirring blade of No. 2 at a peripheral speed of 10 m / sec or more.

【0020】ポリアミド複合体繊維の繊維径が50μm
以下であれば、得られる不織布の繊維が容易に収束しな
いため、拭浄中でも非常に多くの繊維間空隙が維持で
き、不織布の外表面から内部までの物質移動が効率的で
ある。また、該繊維間空隙により、得られる不織布は窒
素吸着法にて求まる100〜200m/gの高表面積
を与え、その表面はポリアミドとガラス微粒子の共存に
より親水性物質と親油性物質の両方に相互作用すること
から、親水性物質、親油性物質の両物質に対する優れた
拭浄性が得られる。
The fiber diameter of the polyamide composite fiber is 50 μm
In the following, the fibers of the obtained nonwoven fabric do not easily converge, so that a large number of inter-fiber voids can be maintained even during wiping and the mass transfer from the outer surface to the inside of the nonwoven fabric is efficient. In addition, due to the inter-fiber voids, the resulting non-woven fabric gives a high surface area of 100 to 200 m 2 / g determined by the nitrogen adsorption method, and the surface becomes both a hydrophilic substance and a lipophilic substance due to the coexistence of polyamide and glass fine particles. Due to the interaction, excellent wiping properties for both hydrophilic and lipophilic substances can be obtained.

【0021】本発明に用いるポリアミド複合体繊維の繊
維長は任意に設定でき、30μm〜30cmとすること
が可能である。例えば、150〜10000μmの範囲
で複合体繊維長を調整することが容易で、なかでも20
0〜5000μmの範囲の複合体繊維長であれば抄紙性
がよく好ましい。
The fiber length of the polyamide composite fiber used in the present invention can be set arbitrarily and can be 30 μm to 30 cm. For example, it is easy to adjust the composite fiber length in the range of 150 to 10000 μm, and especially 20
A composite fiber length in the range of 0 to 5000 μm is preferable because of good papermaking properties.

【0022】重縮合反応後の水溶液相と有機溶液相の混
合液からポリアミド複合体繊維以外の成分を除去し、分
離したポリアミド複合体繊維を水浴に分散させた後、公
知慣用の連続式またはバッチ式の抄紙設備により、例え
ば10〜100μm程度の厚みを有するワイピング用不
織布を得ることができる。抄紙の際には、ポバール等の
繊維結合剤やアラミド、アクリル、ポリエステルなどの
他種の繊維が共存しても良い。
After removing the components other than the polyamide composite fibers from the mixed solution of the aqueous solution phase and the organic solution phase after the polycondensation reaction and dispersing the separated polyamide composite fibers in a water bath, a known continuous or batch method is used. A non-woven fabric for wiping having a thickness of, for example, about 10 to 100 μm can be obtained by the paper making equipment of the formula. In the papermaking process, a fiber binder such as Poval or another type of fiber such as aramid, acryl or polyester may coexist.

【0023】なかでも、ポリ(p−フェニレンテレフタ
ラミド)、ポリ(m−フェニレンイソフタラミド)など
のアラミド繊維は、ポリアミド複合体繊維との良好な混
抄性を示し、アラミド繊維とポリアミド複合体繊維との
混抄により得られる不織布は高い強度を示すため好まし
い。
Among them, aramid fibers such as poly (p-phenylene terephthalamide) and poly (m-phenylene isophthalamide) show good mixing properties with polyamide composite fibers, and aramid fibers and polyamide composites A non-woven fabric obtained by mixing paper with fibers exhibits high strength, which is preferable.

【0024】ポリアミド複合体繊維とアラミド繊維とか
ら成るワイピング用不織布中のアラミド繊維の含有率は
5〜30%が好ましい。不織布中のアラミド繊維の質量
分率が5%未満では強度が十分に向上せず、30%を超
えると、ポリアミド複合体繊維の良好な拭浄性が損なわ
れる。
The content of aramid fiber in the non-woven fabric for wiping composed of polyamide composite fiber and aramid fiber is preferably 5 to 30%. If the mass fraction of the aramid fiber in the nonwoven fabric is less than 5%, the strength is not sufficiently improved, and if it exceeds 30%, the good wiping property of the polyamide composite fiber is impaired.

【0025】本発明の不織布は優れた耐熱性を有し、熱
あるいは水や有機物の導入に対する寸法安定性にも優れ
ることから、高温または高湿下でのワイパーによる駆動
でも寸法変化がなく、反りやねじれによる被拭浄面との
接触不良もないため、反応釜に付帯の覗き窓の拭浄や、
合成樹脂等の成形に使用する鏡面板や鋳型等に付着した
樹脂汚れなどの高温状態での拭浄等、300℃での高温
下での用途にも好適に使用できる。
Since the non-woven fabric of the present invention has excellent heat resistance and is excellent in dimensional stability against heat or the introduction of water or organic substances, there is no dimensional change even when driven by a wiper under high temperature or high humidity, and the warp Since there is no poor contact with the surface to be cleaned due to twisting or twisting, cleaning of the viewing window attached to the reaction kettle,
It can also be suitably used for applications under high temperature of 300 ° C., such as wiping under high temperature condition such as resin stains adhered to a mirror plate or mold used for molding synthetic resin and the like.

【0026】[0026]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、実施例は本発明の代表的態様を例示するもの
であり、本発明の範囲を限定するものではない。実施例
における測定法及び評価法は以下の通りである。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the examples are not intended to limit the scope of the present invention but to illustrate representative aspects of the present invention. The measurement methods and evaluation methods in the examples are as follows.

【0027】(1)繊維長及び繊維径の測定法 光学顕微鏡(ニコン製OPTI−POL)を用い、10
0本のポリアミド複合体繊維を200倍の倍率で観察
し、繊維長と繊維径を平均値として求めた。
(1) Measuring method of fiber length and fiber diameter Using an optical microscope (OPTI-POL manufactured by Nikon), 10
Zero polyamide composite fibers were observed at a magnification of 200, and the fiber length and fiber diameter were determined as average values.

【0028】(2)ガラス微粒子の含有率測定法 ポリアミド複合体繊維を、空気中、800℃で3時間加
熱し、ポリアミド成分を完全に焼失させた後、残留した
ガラス灰分の質量を測定し、加熱前の試料との質量変化
から、ガラス微粒子の含有率を質量%として算出した。
(2) Method for measuring the content of fine glass particles The polyamide composite fiber was heated in air at 800 ° C. for 3 hours to completely burn off the polyamide component, and then the mass of the residual glass ash was measured. From the change in mass with that of the sample before heating, the content of the glass particles was calculated as mass%.

【0029】(3)ガラス微粒子の粒径測定法 マイクロトームを用い、厚み50nmの超薄切片の観察
用試料を調整した。得られた超薄切片を透過型電子顕微
鏡(日本電子製 JEM−200CX)にて10000
0倍の倍率で観察した。
(3) Method for Measuring Particle Size of Glass Fine Particles Using a microtome, an observation sample of an ultrathin section having a thickness of 50 nm was prepared. The obtained ultrathin section was 10,000 with a transmission electron microscope (JEM-200CX manufactured by JEOL Ltd.).
It was observed at a magnification of 0 times.

【0030】(4)不織布の寸法安定性測定法 <加熱時>熱機械特性測定機(セイコー電子工業製 T
MA/SS120C)を用い、空気中で2℃/分の速度
にて昇温し、20℃から250℃間の寸法変化(ワイピ
ング用不織布の一辺の長さの変化)を測定した。 <吸湿時>25℃、90%RHで40時間放置後の寸法
変化率を測定した。いずれも、寸法変化率は次式によ
る。 寸法変化率=[(試験後の寸法―試験前の寸法)/(試
験前の寸法)]×100%
(4) Method for measuring dimensional stability of non-woven fabric <At the time of heating> Thermomechanical property measuring machine (T manufactured by Seiko Denshi Kogyo)
MA / SS120C), the temperature was raised in air at a rate of 2 ° C./min, and the dimensional change (change in the length of one side of the non-woven fabric for wiping) was measured between 20 ° C. and 250 ° C. <At the time of moisture absorption> The dimensional change rate after standing for 40 hours at 25 ° C and 90% RH was measured. In both cases, the dimensional change rate is calculated by the following equation. Dimensional change rate = [(Dimension after test-Dimension before test) / (Dimension before test)] x 100%

【0031】(5)不織布の拭浄性試験 ガラス平板上に、3μm厚で5cm×5cmの面積を有
する、トルエン、メタノール、液状エポキシ樹脂(大日
本インキ化学工業製エピクロン850)、又は水の塗工
膜をアプリケーターで形成させ、該塗工膜を0.5kg
f/cmの圧力をかけながら0.1m/秒でワイピン
グ用不織布を移動させながら拭き取り、その残質量から
拭浄率を算出した。 塗工膜の拭浄率=[(拭取り前の質量―拭取り後の質
量)/(拭取り前の質量)]×100%
(5) Non-woven fabric wipe cleanability test Toluene, methanol, liquid epoxy resin (Epiclon 850 manufactured by Dainippon Ink and Chemicals, Inc.) or water having a thickness of 3 μm and an area of 5 cm × 5 cm is coated on a glass plate. A coating film is formed with an applicator, and the coating film is 0.5 kg.
The non-woven fabric for wiping was wiped off while moving it at 0.1 m / sec while applying a pressure of f / cm 2 , and the wiping efficiency was calculated from the remaining mass. Cleaning rate of coating film = [(mass before wiping-mass after wiping) / (mass before wiping)] x 100%

【0032】(実施例1)水ガラスの水溶液(キシダ化
学株式会社製、ケイ酸ナトリウム溶液(3号)組成式=
NaO・3.1SiO、水分=60質量%)30g
と、1,6−ジアミノヘキサン4.64gとを、室温で
蒸留水を加えながら攪拌し、均一透明な300mLの水
溶液相を得た。また、アジポイルジクロライド7.32
gに室温でトルエンを加えて攪拌し、均一透明な180
mLの有機溶液相を得た。
Example 1 An aqueous solution of water glass (Kishida Chemical Co., Ltd., sodium silicate solution (No. 3) compositional formula =
Na 2 O · 3.1SiO 2 , water content = 60% by mass) 30 g
And 4.64 g of 1,6-diaminohexane were stirred at room temperature while adding distilled water to obtain 300 mL of a uniform transparent aqueous solution phase. Also, adipoyl dichloride 7.32
Toluene is added to room temperature at room temperature and stirred to give a uniform and transparent 180
mL of organic solution phase was obtained.

【0033】2Lの容量のブレンダー瓶(Osteri
zer製)に水溶液相を入れ、付属の攪拌羽根を毎分5
000回転(周速=13m/秒)で攪拌しながら、30
℃にて有機溶液相を一度に加えた。混合溶液から直ちに
複合体が析出し、懸濁状態のまま2分間攪拌を続けた。
得られた複合体を濾別したのち、沸騰アセトン、次いで
水で洗浄後にヌッチェ型のろ過器に捕集して、含水率9
0質量%の白色の、ポリアミドとガラスとの複合体繊維
のウェットケーキを得た。
2 L capacity blender bottle (Osteri
(manufactured by zer) and put the attached stirring blade at 5 minutes per minute.
While stirring at 000 rotations (peripheral speed = 13 m / sec), 30
The organic solution phase was added in one portion at ° C. The complex immediately precipitated from the mixed solution, and stirring was continued for 2 minutes in a suspended state.
After filtering the obtained composite, it was washed with boiling acetone and then with water and collected in a Nutsche type filter to obtain a water content of 9
A 0 wt% white wet cake of polyamide-glass composite fibers was obtained.

【0034】前記した測定方法により測定した複合体繊
維の平均繊維長は400μm、平均繊維径は8μmであ
った。ガラス微粒子成分の質量分率は56.5%であっ
た。複合体繊維の透過型電子顕微鏡像からは、直径約1
0nmの球状のガラス微粒子がナイロン66(生成ポリ
アミド)中に均一に存在することが確認された。
The average fiber length of the composite fiber measured by the above-mentioned measuring method was 400 μm, and the average fiber diameter was 8 μm. The mass fraction of the glass fine particle component was 56.5%. From the transmission electron microscope image of the composite fiber, the diameter is about 1
It was confirmed that 0 nm spherical glass particles were uniformly present in nylon 66 (produced polyamide).

【0035】得られたウェットケーキの100gを3g
のアラミド繊維(平均繊維長が300μm、平均繊維径
が19μmのポリ(p−フェニレンテレフタラミド)繊
維)を含む1000gの水に分散、混合させ、100μ
m目開きを有するステンレス製ろ過器に通じてろ過し、
得られた繊維を80℃で4時間乾燥して、厚さが20μ
mのワイピング用不織布を得た。得られたワイピング用
不織布の寸法安定性を表1に、20℃におけるメタノー
ル、水、トルエン、エポキシ樹脂各々の塗工膜に対する
拭浄率の試験結果を表2に、100℃〜300℃におけ
るエポキシ樹脂の塗工膜に対する拭浄率の試験結果を表
3に示す。
3 g of 100 g of the obtained wet cake
Dispersed in 1000 g of water containing 100 μm of aramid fiber (poly (p-phenylene terephthalamide) fiber having an average fiber length of 300 μm and an average fiber diameter of 19 μm) to obtain 100 μm.
Filter through a stainless steel filter with m openings,
The obtained fiber is dried at 80 ° C for 4 hours to give a thickness of 20μ.
A non-woven fabric for wiping of m was obtained. The dimensional stability of the obtained non-woven fabric for wiping is shown in Table 1, the test results of the wiping rate for each coating film of methanol, water, toluene and epoxy resin at 20 ° C. are shown in Table 2, and the epoxy at 100 ° C. to 300 ° C. Table 3 shows the test results of the cleaning rate of the resin coating film.

【0036】(実施例2)実施例1において水ガラスの
水溶液30gを12gに代えた以外は実施例1と全く同
様の操作を行い、厚さが20μmのワイピング用不織布
を得た。尚、使用したポリアミドとガラスとの複合体繊
維の平均繊維長は500μm、平均繊維径は10μmで
あった。ガラス微粒子成分の質量分率は36.1%であ
った。複合体繊維の透過型電子顕微鏡像からは、直径約
10nmの球状のガラス微粒子がナイロン66中に均一
に存在することが確認された。試験結果を表1〜3に示
す。
Example 2 The same operation as in Example 1 was carried out except that 30 g of the aqueous solution of water glass was changed to 12 g in Example 1, and a nonwoven fabric for wiping having a thickness of 20 μm was obtained. The average fiber length of the used composite fiber of polyamide and glass was 500 μm, and the average fiber diameter was 10 μm. The mass fraction of the glass fine particle component was 36.1%. From the transmission electron microscope image of the composite fiber, it was confirmed that spherical glass fine particles having a diameter of about 10 nm were uniformly present in nylon 66. The test results are shown in Tables 1-3.

【0037】(実施例3)実施例1において、ポリ(p
−フェニレンテレフタラミド)繊維を用いない以外は実
施例1と全く同様の操作を行い厚さが20μmのワイピ
ング用不織布を得た。試験結果を表1〜3に示す。
(Example 3) In Example 1, poly (p
-Phenylene terephthalamide) The same operation as in Example 1 was conducted except that fibers were not used to obtain a wiping nonwoven fabric having a thickness of 20 μm. The test results are shown in Tables 1-3.

【0038】いずれの実施例においても本発明のワイピ
ング用不織布は、加熱や吸湿に対する寸法変化が小さ
く、親水性物質及び親油性物質に対する優れた拭浄性を
示した。
In any of the examples, the non-woven fabric for wiping of the present invention showed a small dimensional change due to heating and moisture absorption, and showed excellent wiping and wiping properties with respect to hydrophilic substances and lipophilic substances.

【0039】(比較例1)毎分5000回転(13m/
秒)の攪拌羽根の周速を、毎分1000回転(3m/
秒)とする以外は実施例1と同様にして、ポリアミドと
ガラスとの複合体繊維の平均繊維長が3200μm、平
均繊維径が75μmであるワイピング用不織布を得た。
試験結果を表1〜3に示す。平均繊維長が75μmであ
る該ワイピング用不織布は、良好な拭浄性が得られなか
った。
(Comparative Example 1) 5000 revolutions per minute (13 m /
The peripheral speed of the stirring blade is 1000 revolutions per minute (3 m /
The same procedure as in Example 1 except that the composite fiber of polyamide and glass had an average fiber length of 3200 μm and an average fiber diameter of 75 μm was obtained.
The test results are shown in Tables 1-3. The wiping non-woven fabric having an average fiber length of 75 μm could not obtain good wiping property.

【0040】(比較例2)実施例1において、水溶液相
に水ガラスの水溶液を全く添加せずに、ポリアミドのみ
からなる微繊維を調整し、これを用いてワイピング用不
織布を得た。尚、使用したポリアミドのみからなる微繊
維の平均繊維長は500μm、平均繊維径は10μmで
あった。試験結果を表1〜3に示す。該ポリアミドのみ
からなる微繊維を主成分とするワイピング用不織布は2
00℃で変形が生じ、安定して使用できなかった。
(Comparative Example 2) In Example 1, fine fibers made of only polyamide were prepared without adding an aqueous solution of water glass to the aqueous solution phase, and a nonwoven fabric for wiping was obtained by using the fine fibers. In addition, the average fiber length and the average fiber diameter of the used fine fibers made of only polyamide were 500 μm and 10 μm, respectively. The test results are shown in Tables 1-3. The non-woven fabric for wiping containing fine fibers composed of only the polyamide as a main component is 2
Deformation occurred at 00 ° C, and it could not be used stably.

【0041】(比較例3)アクリロニトリル75重量部
とメタクリル酸メチル25部を乳化重合させ、次いで、
ニードルパンチを行って得たアクリル系不織布を用い、
実施例1と同様にして試験を行った結果を表1〜3に示
す。該アクリル系不織布は200℃で変形が生じ、30
0℃では溶融して全く使用出来なかった。
(Comparative Example 3) 75 parts by weight of acrylonitrile and 25 parts of methyl methacrylate were emulsion polymerized, and then,
Using acrylic non-woven fabric obtained by needle punching,
The results of the tests conducted in the same manner as in Example 1 are shown in Tables 1 to 3. The acrylic non-woven fabric is deformed at 200 ° C.
It melted at 0 ° C and could not be used at all.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【発明の効果】本発明は、高い耐熱性を有し、熱や吸湿
に対する寸法変化が少なく、親水性及び親油性物質の拭
浄性に優れたワイピング用不織布を提供できる。
INDUSTRIAL APPLICABILITY The present invention can provide a non-woven fabric for wiping, which has high heat resistance, has little dimensional change due to heat and moisture absorption, and is excellent in hydrophilicity and wiping property of lipophilic substances.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D21H 15/12 D21H 15/12 27/00 27/00 Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) D21H 15/12 D21H 15/12 27/00 27/00 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラスとポリアミドとの複合体から成る
繊維を主たる繊維成分として含み、前記複合体に含まれ
るガラスが粒径300nm以下の微粒子であり、かつ前
記繊維の繊維径が50μm以下であるワイピング用不織
布。
1. A fiber comprising a composite of glass and polyamide as a main fiber component, the glass contained in the composite is fine particles having a particle diameter of 300 nm or less, and the fiber diameter of the fiber is 50 μm or less. Non-woven fabric for wiping.
【請求項2】 前記ガラスとポリアミドとの複合体から
成る繊維が、水ガラスとジアミンを含む水溶液と、ジカ
ルボン酸ハロゲン化物を含む有機溶液との界面重縮合反
応により得られたものである、請求項1に記載のワイピ
ング用不織布。
2. The fiber comprising a composite of glass and polyamide is obtained by an interfacial polycondensation reaction between an aqueous solution containing water glass and a diamine and an organic solution containing a dicarboxylic acid halide. Item 2. The non-woven fabric for wiping according to Item 1.
【請求項3】 ワイピング用不織布がガラスとポリアミ
ドとの複合体から成る繊維とアラミド繊維とから成り、
前記アラミド繊維の含有率が5〜30質量%である請求
項1に記載のワイピング用不織布。
3. A non-woven fabric for wiping comprises fibers made of a composite of glass and polyamide and aramid fibers,
The non-woven fabric for wiping according to claim 1, wherein the content of the aramid fiber is 5 to 30% by mass.
JP2002071954A 2002-03-15 2002-03-15 Wiping nonwoven fabric Pending JP2003265385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071954A JP2003265385A (en) 2002-03-15 2002-03-15 Wiping nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071954A JP2003265385A (en) 2002-03-15 2002-03-15 Wiping nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2003265385A true JP2003265385A (en) 2003-09-24

Family

ID=29202084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071954A Pending JP2003265385A (en) 2002-03-15 2002-03-15 Wiping nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2003265385A (en)

Similar Documents

Publication Publication Date Title
JP4651041B2 (en) Para-aramid film-like fibrid particles
Rajak et al. Controlled morphology of electrospun nanofibers from waste expanded polystyrene for aerosol filtration
US4337155A (en) Chemical-resistant wholly aromatic polyamide fiber material
CN101501577B (en) Process for production of cleaning web, cleaning web, image forming apparatus and fixing apparatus
KR101088312B1 (en) Non-fibrous polymer solution of para-aramid with high relative viscosity
TW201840807A (en) Treatment agent for treating fibers, fibers and production method therefor, and fiber sheet and production method therefor
JP2008221073A (en) Superfine fiber filter medium and its manufacturing method
Wang et al. One-step electrospinning PCL/ph-LPSQ nanofibrous membrane with excellent self-cleaning and oil-water separation performance
JP2003265385A (en) Wiping nonwoven fabric
JPWO2005026418A1 (en) Totally aromatic polyamide fiber and method for producing the same
JP2007204767A (en) Method for producing polyamide porous particle
US6063862A (en) Glass-polyamide composite and process for producing the same
JP2016098458A (en) Semi-aromatic polyamide nonwoven fabric
JP4834918B2 (en) Conductive polyamide composite and method for producing the same
JP4224884B2 (en) Composite pulp-like particles, composite paper, and methods for producing them
JP4129656B2 (en) Method for producing a composite of silica and polyamide
JP4320960B2 (en) Method for producing polyamide fibrous particles
JP4074916B2 (en) Organic-inorganic composite and method for producing the same
JP2004114474A (en) Method for manufacturing aramid molded product
JP2004114497A (en) Cushioning material for pressing
JPS61108511A (en) Degassing method of aromatic polyamide solution
CN109942810A (en) A kind of heteroaromatic polyamide laminated film and preparation method with high breakdown strength
JPH10176106A (en) Composite material of glass and polyamide and its preparation
JP2003268232A (en) Binder for use in powder molding and molded product containing the binder
JP2000219807A (en) Production of polyamide-based filter