JP2003264083A - Organic led element and production process thereof - Google Patents

Organic led element and production process thereof

Info

Publication number
JP2003264083A
JP2003264083A JP2002063814A JP2002063814A JP2003264083A JP 2003264083 A JP2003264083 A JP 2003264083A JP 2002063814 A JP2002063814 A JP 2002063814A JP 2002063814 A JP2002063814 A JP 2002063814A JP 2003264083 A JP2003264083 A JP 2003264083A
Authority
JP
Japan
Prior art keywords
electrode
film
organic
layer
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002063814A
Other languages
Japanese (ja)
Inventor
Kimitaka Ohata
公孝 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002063814A priority Critical patent/JP2003264083A/en
Publication of JP2003264083A publication Critical patent/JP2003264083A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the utilization efficiency of light and display quality and achieve a long life. <P>SOLUTION: The organic LED element comprises a metal electrode, a transparent electrode and an organic layer held between both electrodes, and at least one of a metal oxide and a metal salt is mixed into at least one of the metal electrode and the organic layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機LED素子と
その製造方法に関する。
TECHNICAL FIELD The present invention relates to an organic LED element and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電気信号に対して素早く応答し、多色化
が容易なカラー表示装置として有用な有機LED素子
は、近年実用化に向けて大きく前進している。有機LE
D素子は、自発光であるため視認性が高く、また有機材
料を主たる原料であるため分子設計が幅広く、多色化が
容易である。
2. Description of the Related Art Organic LED elements which respond quickly to electric signals and are useful as a color display device capable of easily producing multiple colors have made great progress in recent years toward practical use. Organic LE
Since the D element emits light by itself, it has high visibility, and since it is an organic material as a main raw material, it has a wide molecular design and is easily multicolored.

【0003】また、完全固体素子であるため、耐衝撃性
に優れるとともに取り扱いが容易であるなどの優れた特
性を有し、面光源やディスプレイ、プリンターの光源へ
の応用が進められている。
Further, since it is a completely solid element, it has excellent characteristics such as excellent impact resistance and easy handling, and is being applied to surface light sources, displays and light sources for printers.

【0004】一般的な有機LED素子は、陽極/発光層
/陰極を基本構造とし、さらに正孔輸送層や電子輸送層
を導入したもの、例えば陽極/正孔輸送層/発光層/陰
極や陽極/発光層/電子輸送層/陰極、あるいは、陽極
/正孔輸送層/発光層/電子輸送層/陰極などの構成が
知られている。これら有機材料は、一般に湿気や熱に対
して耐久性が低いため、信頼性向上のため封止工程を必
要とする。
A general organic LED element has a basic structure of an anode / a light emitting layer / a cathode, and further has a hole transport layer or an electron transport layer introduced therein, such as an anode / hole transport layer / light emitting layer / cathode or anode. The constitutions of / emission layer / electron transport layer / cathode or anode / hole transport layer / emission layer / electron transport layer / cathode are known. Since these organic materials generally have low durability against moisture and heat, a sealing process is required to improve reliability.

【0005】これらの有機LED素子は一般的に透明電
極(例えばITO)上に順に/正孔輸送層/発光層/電
子輸送層/陰極を形成する。
In these organic LED elements, generally, a hole transport layer / a light emitting layer / an electron transport layer / a cathode are sequentially formed on a transparent electrode (for example, ITO).

【0006】また、フルカラーディスプレイを作成する
にあたり、発光層をR,G,Bに塗分ける必要がある。
R,G,Bを塗り分ける方法としては、マスク蒸着法や
インクジェット法、印刷法、レーザー転写法などが知ら
れる。
Further, in producing a full-color display, it is necessary to separate the light emitting layer into R, G and B.
As a method of separately coating R, G, and B, a mask vapor deposition method, an inkjet method, a printing method, a laser transfer method, etc. are known.

【0007】[0007]

【発明が解決しようとする課題】有機LED素子をTF
T素子を有する基板に設けてアクティブ駆動を行なう場
合、従来の素子の形成では基板側から光を取り出すた
め、TFT素子付きの基板の開口率が小さい場合では、
1画素あたりの輝度を大きくする必要がある。この場
合、輝度を高めるための大きな電流値を必要としそれに
より寿命が短くなる欠点がある。
[Problems to be Solved by the Invention]
In the case where active driving is performed by providing it on a substrate having a T element, light is extracted from the substrate side in the formation of a conventional element. Therefore, when the aperture ratio of the substrate with the TFT element is small,
It is necessary to increase the brightness per pixel. In this case, there is a drawback that a large current value is required to increase the brightness, which shortens the life.

【0008】そのため、TFT素子付きの基板上に金属
電極を設け、かつ、基板と対向する側に透明電極を設け
て、透明電極側から光を取り出す方法が開示されている
(Asia Display/IDW'01p.p.1395-1398)。
Therefore, a method has been disclosed in which a metal electrode is provided on a substrate with a TFT element and a transparent electrode is provided on the side facing the substrate, and light is extracted from the transparent electrode side (Asia Display / IDW '). 01p.p.1395-1398).

【0009】しかしながら、TFT素子付き基板を用い
る場合、単に対向電極を透明し、従来の素子の作成順序
を変えただけでは、商品に耐えうるような良好な特性を
得ることが難しい。
However, when a substrate with a TFT element is used, it is difficult to obtain good characteristics that can endure a product simply by making the counter electrode transparent and changing the order of forming conventional elements.

【0010】例えば、TFT素子付きの基板に金属電極
を設け、この金属電極に電子輸送性発光層/ホール輸送
層をこの順に形成し、基板と対向する電極から光取り出
しを行なう場合、従来のように電子輸送性発光層が撥水
性、ホール輸送層が親水性である材料系では、疎水性で
ある電子輸送性発光層を先に成膜するため、スピンコー
ト法やインクジェット法では、水溶性ホール輸送層を均
一に成膜することができず、均一な発光を得ることがで
きない。また、電子輸送性発光層、ホール輸送層乾燥時
に金属電極が酸化する可能性がある。
For example, when a metal electrode is provided on a substrate with a TFT element, an electron-transporting light-emitting layer / hole-transporting layer is formed on this metal electrode in this order, and light is extracted from the electrode facing the substrate, the conventional method is used. In a material system in which the electron-transporting light-emitting layer is water-repellent and the hole-transporting layer is hydrophilic, the hydrophobic electron-transporting light-emitting layer is formed first. The transport layer cannot be formed uniformly and uniform light emission cannot be obtained. Further, the metal electrode may be oxidized when the electron transporting light emitting layer and the hole transporting layer are dried.

【0011】そこで、この発明では、転写用フィルム上
にホール輸送層、電子輸送性発光層をこの順に形成し、
レーザー転写方式を用いて、金属電極(陰極)上に少な
くとも有機層と透明電極の形成を行ない、金属電極上に
電子輸送性発光層/ホール輸送層をこの順に形成するこ
とを特徴とする。さらに、金属電極および有機層の少な
くとも一部に金属酸化物、金属塩を含めることにより、
特性の良好な有機LED素子を提供するものである。
Therefore, in the present invention, a hole transport layer and an electron transport light emitting layer are formed in this order on the transfer film,
At least an organic layer and a transparent electrode are formed on a metal electrode (cathode) using a laser transfer method, and an electron-transporting light-emitting layer / hole-transporting layer is formed in this order on the metal electrode. Furthermore, by including a metal oxide and a metal salt in at least a part of the metal electrode and the organic layer,
An organic LED device having excellent characteristics is provided.

【0012】[0012]

【課題を解決するための手段】この発明は、金属電極
と、透明電極と、両電極に挟まれた有機層とを備え、か
つ、少なくとも有機層の一部を転写法にて形成する有機
LED素子において、金属電極および有機層の少なくとも
一方に、金属酸化物および金属塩の少なくとも一方が混
合されてなることを特徴とする有機LED素子を提供す
る。
SUMMARY OF THE INVENTION The present invention is an organic device comprising a metal electrode, a transparent electrode, and an organic layer sandwiched between both electrodes, and at least a part of the organic layer is formed by a transfer method.
Provided is an LED element, wherein at least one of a metal electrode and an organic layer is mixed with at least one of a metal oxide and a metal salt.

【0013】金属電極が、金属材料と金属酸化物および
金属塩の少なくとも一方との混合物から形成されてもよ
い。有機層が少なくともその一部に金属酸化物および金
属塩の少なくとも一方を含んでもよい。
The metal electrode may be formed of a mixture of a metal material and at least one of a metal oxide and a metal salt. The organic layer may include at least one of a metal oxide and a metal salt in at least a part thereof.

【0014】金属電極および有機層が、それら一部に金
属酸化物および金属塩の少なくとも一方を含んでもよ
い。有機層が電子輸送層を備え、電子輸送層に金属酸化
物および金属塩の少なくとも一方が混合されてなること
が好ましい。
The metal electrode and the organic layer may partially include at least one of a metal oxide and a metal salt. It is preferable that the organic layer includes an electron transport layer, and the electron transport layer is a mixture of at least one of a metal oxide and a metal salt.

【0015】封止膜をさらに備え、封止膜は中空層を介
して透明電極の上に形成されてもよい。中空層は厚さが
5〜100μmであってもよい。
A sealing film may be further provided, and the sealing film may be formed on the transparent electrode via the hollow layer. The hollow layer may have a thickness of 5 to 100 μm.

【0016】複数の画素を形成するための隔壁を基板上
にさらに備え、封止膜が隔壁を支台として形成されてい
ることが好ましい。アクティブ駆動用素子を備えた基板
をさらに備え、金属電極と透明電極に挟まれた有機層が
その基板上に形成されてなることが好ましい。金属電極
が支持基板表面に形成され、有機層が金属電極側から疎
水性材料、親水性材料の順番で形成されてもよい。ま
た、この発明は、有機層を少なくとも親水性材料と疎水
性材料から形成し、疎水性材料の形成後に親水性材料を
形成することを特徴とする有機LED素子の製造方法を
提供するものである。
It is preferable that a partition for forming a plurality of pixels is further provided on the substrate, and the sealing film is formed using the partition as an abutment. It is preferable that a substrate further including an active driving element is further provided, and an organic layer sandwiched between the metal electrode and the transparent electrode is formed on the substrate. The metal electrode may be formed on the surface of the supporting substrate, and the organic layer may be formed in the order of the hydrophobic material and the hydrophilic material from the metal electrode side. The present invention also provides a method for manufacturing an organic LED element, which comprises forming an organic layer from at least a hydrophilic material and a hydrophobic material, and forming the hydrophilic material after forming the hydrophobic material. .

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を図面を用い
て説明する。図1は、本発明に係る有機EL素子の基本
的な構成を示す断面図である。同図に示すように、有機
EL素子は、隔壁3を有する支持基板1に第一電極(金
属電極)2を形成し、有機層14と、第二電極(透明電
極)10とを積層し、封止膜6により封止し、第二電極
10と封止膜6との間には中空のギャップ5を設けた構
成となっている。ここで、第二電極10と封止膜6との
中空のギャップは、有機層4と基板1との間の導波モー
ドと消滅させ、正面方向への光の取り出し効率を高める
構成となっている。そして、特にこの発明では、第1電
極2および有機層14の少なくとも一方に金属酸化物お
よび金属塩の少なくとも一方が混合される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing the basic structure of an organic EL element according to the present invention. As shown in the figure, in the organic EL element, a first electrode (metal electrode) 2 is formed on a supporting substrate 1 having a partition wall 3, an organic layer 14 and a second electrode (transparent electrode) 10 are laminated, It is configured to be sealed by a sealing film 6, and a hollow gap 5 is provided between the second electrode 10 and the sealing film 6. Here, the hollow gap between the second electrode 10 and the sealing film 6 disappears with the guided mode between the organic layer 4 and the substrate 1 to increase the light extraction efficiency in the front direction. There is. Then, particularly in the present invention, at least one of the metal oxide and the metal salt is mixed with at least one of the first electrode 2 and the organic layer 14.

【0018】支持基板1の材料は、従来の有機EL素子
用に使用されているものであれば特に限定されるもので
はない。また、支持基板1には、アクティブ駆動用素子
7(例えばTFT素子など)を備えてもよい。支持基板
1はコントラスト向上のため、黒色または可視光の吸収
が大きい基板が好ましい。
The material of the supporting substrate 1 is not particularly limited as long as it is used for the conventional organic EL device. Further, the support substrate 1 may be provided with active driving elements 7 (for example, TFT elements). The supporting substrate 1 is preferably a black substrate or a substrate having a large absorption of visible light in order to improve the contrast.

【0019】支持基板1の材料としては、例えば石英、
ソーダガラス、セラミック材料、シリコン基板等の無機
材料、ポリイミド、ポリエステル等の有機材料が挙げら
れる。
As the material of the support substrate 1, for example, quartz,
Examples include soda glass, ceramic materials, inorganic materials such as silicon substrates, and organic materials such as polyimide and polyester.

【0020】また、有機層4からの発光は支持基板1に
対して逆方向に取り出されるため、各画素における開口
率を稼ぐためのアクティブ駆動用素子の数や大きさ、配
置などの制約を受けないので、アクティブ駆動用素子7
をより自由に設計を行うことができる。また、支持基板
1に位置合わせ用のマーカーを付けておくと、より正確
に有機層4、電極2,10のパターニングができるため
特に好ましい。
Further, since the light emitted from the organic layer 4 is taken out in the opposite direction to the supporting substrate 1, there are restrictions such as the number, size and arrangement of active driving elements for increasing the aperture ratio in each pixel. Since there is no active drive element 7
You can design more freely. Further, it is particularly preferable to attach a positioning marker to the support substrate 1 because the organic layer 4 and the electrodes 2 and 10 can be patterned more accurately.

【0021】第一電極2は、特に限定するものではない
が、1種類以上の金属材料から形成され、例えば、マグ
ネシウム、リチウム、カルシウム、銀、アルミニウム、
インジウム、セシウム、銅などが挙げられる。
The first electrode 2 is formed of one or more kinds of metal materials, but is not particularly limited to, for example, magnesium, lithium, calcium, silver, aluminum,
Indium, cesium, copper, etc. may be mentioned.

【0022】また、第一電極2を構成する金属材料に混
合する金属酸化物、又は金属塩は、特に限定するのでは
なく、例えば、LiF,Li2O,CsFなどが挙げら
れる。支持基板1と対向する第二電極10は、可視光に
おける透過率が80%であることが好ましく、その材料
としては、インジウム−すず酸化物(ITO)やSnO
2、酸化亜鉛酸化インジウム、酸化亜鉛アルミニウム、
クロム、金などが挙げられる。
The metal oxide or metal salt mixed with the metal material forming the first electrode 2 is not particularly limited, and examples thereof include LiF, Li 2 O and CsF. The second electrode 10 facing the support substrate 1 preferably has a visible light transmittance of 80%, and its material is indium-tin oxide (ITO) or SnO.
2 , zinc oxide indium oxide, zinc aluminum oxide,
Examples include chrome and gold.

【0023】隔壁3は、上下リークやクロストークの防
止、画素間における有機材料混合防止のためのブロック
膜及び封止膜と第二電極との中空ギャップを設けるため
のスペーサーとして機能し、画素部の周囲または一部に
存在しすることが望ましい。隔壁3はその大きさ、形状
を限定するものではない。
The partition wall 3 functions as a spacer for providing a hollow gap between the block electrode and the sealing film and the second electrode for preventing vertical leakage and crosstalk, and for preventing mixing of organic materials between pixels, and the pixel portion. It is desirable to exist around or part of. The size and shape of the partition wall 3 are not limited.

【0024】また、隔壁3の高さは、第二電極10と封
止膜6との間に中空のギャップ5を得るために5〜10
0μmが好ましい。隔壁3の高さが5μmより小さいと
封止膜6の貼り付け工程時に第二電極10や有機層4に
傷を付ける可能性があり、好ましくない。また、その高
さが100μmより大きいと、封止膜6と第二電極10
との間に均一なギャップを得ることが困難になるだけ
で、光の取り出し効率はあまり変わらない。
The height of the partition wall 3 is 5 to 10 in order to obtain a hollow gap 5 between the second electrode 10 and the sealing film 6.
0 μm is preferable. If the height of the partition wall 3 is smaller than 5 μm, the second electrode 10 and the organic layer 4 may be damaged during the step of attaching the sealing film 6, which is not preferable. Further, when the height is larger than 100 μm, the sealing film 6 and the second electrode 10 are
It becomes difficult to obtain a uniform gap between and, and the light extraction efficiency does not change much.

【0025】このような、隔壁3の材料としては、Si
2,SiNなどの無機材料やポリイミドやフォトレジ
ストなどの有機材料が挙げられるが、これらを組みあわ
せて用いてもよい。さらに、隔壁3はブラックマトリッ
クスを兼ねていてもよい。また、隔壁3の形成工程は、
有機層4の形成前、形成後どちらでもよく、特に限定す
るものではない。
As a material for the partition wall 3 as described above, Si is used.
Inorganic materials such as O 2 and SiN and organic materials such as polyimide and photoresist can be used, but these materials may be used in combination. Furthermore, the partition 3 may also serve as a black matrix. The step of forming the partition 3 is
It may be either before or after formation of the organic layer 4, and is not particularly limited.

【0026】有機層14は単層構造でも多層構造でもよ
く、たとえば下記の構成が挙げられる。 (1)有機発光層 (2)ホール輸送層/有機発光層 (3)有機発光層/電子輸送層 (4)ホール輸送層/有機発光層/電子輸送層 (5)ホール注入層/ホール輸送層/有機発光層/電子
輸送層
The organic layer 14 may have a single-layer structure or a multi-layer structure, and examples thereof include the following structures. (1) Organic light emitting layer (2) Hole transport layer / organic light emitting layer (3) Organic light emitting layer / electron transport layer (4) Hole transport layer / organic light emitting layer / electron transport layer (5) Hole injection layer / hole transport layer / Organic light emitting layer / Electron transport layer

【0027】有機発光層は、単層、積層のどちらでも良
く、また低分子、高分子、低分子と高分子とのハイブリ
ットのいずれでもよい。また、注入材料、電荷制限材料
などの無機材料を挿入してもよい。
The organic light emitting layer may be a single layer or a laminated layer, and may be a low molecular weight, a high molecular weight, or a hybrid of a low molecular weight and a high molecular weight. Further, an inorganic material such as an injection material or a charge limiting material may be inserted.

【0028】有機発光材料としては、低分子発光材料と
して、8−ヒドロキシキノリロール誘導体やチアゾール
誘導体、ベンズオキサゾール誘導体、キナクリドン誘導
体、スチリルアリーレン誘導体、ペリレン誘導体、オキ
サゾール誘導体、オキサジアゾール誘導体、トリアゾー
ル誘導体、トリフェニルアミン誘導体、スピロ化合物、
蛍光性金属錯体、師ロール誘導体が挙げられる。
As the organic light emitting material, as a low molecular weight light emitting material, 8-hydroxyquinolinol derivative, thiazole derivative, benzoxazole derivative, quinacridone derivative, styrylarylene derivative, perylene derivative, oxazole derivative, oxadiazole derivative, triazole derivative, Triphenylamine derivative, spiro compound,
Examples include fluorescent metal complexes and menthol derivatives.

【0029】また、高分子発光材料としては、ポリパラ
フィニレンビニレン(PPV)誘導体やポリビニルカル
バゾール(PVK)、ポリフルオレン誘導体、ポリチオ
フェン誘導体が挙げられる。
Examples of the polymer light emitting material include polyparaphenylene vinylene (PPV) derivatives, polyvinylcarbazole (PVK), polyfluorene derivatives and polythiophene derivatives.

【0030】また、これらの材料を組み合わせたり、ド
ーバント材料、例えばクマリン誘導体やキナクリドン誘
導体、公知のレーザー用色素などの添加剤を組み合わせ
てもよい。
Further, these materials may be combined, or a dopant material such as a coumarin derivative, a quinacridone derivative, or a known additive for a laser may be combined.

【0031】ホール輸送層の材料としては、例えばトリ
フェニルアミン誘導体やPPV誘導体、PVK、ポリア
ニリン、PEDOT/PSSなどの導電性高分子、p型
半導体材料などが挙げられる。
Examples of materials for the hole transport layer include triphenylamine derivatives, PPV derivatives, PVK, polyaniline, conductive polymers such as PEDOT / PSS, and p-type semiconductor materials.

【0032】電子輸送層の材料としては、オキサジアゾ
ール誘導体や有機金属錯体、PPV誘導体などが挙げら
れる。なお、有機層14の一部に金属酸化物、および/
又は金属塩を混合する場合には、電子輸送層に混合する
ことが好ましい。
Examples of materials for the electron transport layer include oxadiazole derivatives, organic metal complexes, and PPV derivatives. In addition, a metal oxide and /
Alternatively, when a metal salt is mixed, it is preferably mixed in the electron transport layer.

【0033】封止膜6の封止方法は特に限定するもので
はなく、封止用キャップを貼り合わせたり、有機物や無
機物によるパシべーション、ラミネートによる封止など
が挙げられるが、封止膜6側から発光を得るために透明
性が高いことが好ましく、封止膜6の材料としては、ガ
ラス、PETフィルムなどが挙げられる。
The method of sealing the sealing film 6 is not particularly limited, and examples include sticking a sealing cap, passivation with an organic substance or an inorganic substance, and sealing with a laminate. It is preferably highly transparent in order to obtain light emission from the side, and examples of the material of the sealing film 6 include glass and PET film.

【0034】また、第二電極10と封止膜6との間にギ
ャップ5を設ける必要があり、このギャップ5は封止膜
6と隔壁3の頂部との間が5〜100μmとなるよう形
成される。封止時の環境は、そのまま、第二電極10と
封止膜6との中空のギャップ中を満たすことになるため
に、乾燥した不活性ガス中にて行なう必要がある。この
ような不活性ガスとして、窒素、アルゴン、ヘリウム等
が挙げられる。
Further, it is necessary to provide a gap 5 between the second electrode 10 and the sealing film 6, and the gap 5 is formed so that the distance between the sealing film 6 and the top of the partition 3 is 5 to 100 μm. To be done. The environment at the time of sealing must fill the hollow gap between the second electrode 10 and the sealing film 6 as it is, so that it is necessary to perform it in a dry inert gas. Examples of such an inert gas include nitrogen, argon and helium.

【0035】また、封止膜6は必要に応じて偏向板を兼
ねてもよい。さらに、防湿材などと組み合わせてもよ
い。
If necessary, the sealing film 6 may also serve as a deflecting plate. Further, it may be combined with a moistureproof material or the like.

【0036】図2は、この発明による有機LED素子の
一例を示す図1対応図である。図2の構成においては、
第一電極21は、従来の第1電極を形成する金属材料と
金属酸化物又は金属塩(LiF,Li2Oなど)とを混
合することにより形成される。図1に示す有機層14が
図2では有機発光層4とホール輸送層9から構成され
る。その他の構成は図1のものと同等である。
FIG. 2 is a view corresponding to FIG. 1 showing an example of the organic LED element according to the present invention. In the configuration of FIG.
The first electrode 21 is formed by mixing a conventional metal material forming the first electrode and a metal oxide or metal salt (LiF, Li 2 O, etc.). The organic layer 14 shown in FIG. 1 is composed of the organic light emitting layer 4 and the hole transport layer 9 in FIG. Other configurations are the same as those in FIG.

【0037】図3は、この発明による有機LED素子の
他の例を示す図1対応図である。図3の構成において
は、図1に示す有機層14が、電子輸送層22と、有機
発光層4と、ホール輸送層9から構成され、電子輸送層
22は、一般的な電子輸送層形成材料と金属酸化物又は
金属塩(LiF,Li2Oなど)とを混合することにより
形成される。その他の構成は図1のものと同等である。
FIG. 3 is a view corresponding to FIG. 1 showing another example of the organic LED element according to the present invention. In the configuration of FIG. 3, the organic layer 14 shown in FIG. 1 is composed of an electron transport layer 22, an organic light emitting layer 4, and a hole transport layer 9, and the electron transport layer 22 is a general electron transport layer forming material. And a metal oxide or a metal salt (LiF, Li 2 O, etc.) are mixed with each other. Other configurations are the same as those in FIG.

【0038】図4は、この発明による有機LED素子の
さらに他の例を示す図1対応図である。図4の構成にお
いては、第1電極21が図2に示す第1電極21と同等
の材料で形成され、有機層14が図3のものと同様に、
電子輸送層22と、有機発光層4と、ホール輸送層9か
ら構成され、電子輸送層22は、図3に示す電子輸送層
22と同等の材料で形成される。
FIG. 4 is a view corresponding to FIG. 1 showing still another example of the organic LED element according to the present invention. In the configuration of FIG. 4, the first electrode 21 is formed of the same material as the first electrode 21 shown in FIG. 2, and the organic layer 14 is the same as that of FIG.
It is composed of the electron transport layer 22, the organic light emitting layer 4, and the hole transport layer 9, and the electron transport layer 22 is formed of the same material as the electron transport layer 22 shown in FIG.

【0039】次に本発明による有機EL素子の製造方法
を図5を用いて説明する。まず、アクティブ駆動用素子
(TFT素子)7をガラス基板(支持基板上)1に公知
の方法にて形成する。このとき、アクティブ駆動用素子
7は有機、無機どちらでもよく特に限定するものではな
い。さらに第一電極21として、金属材料とそれに混合
させる金属酸化物又は金属塩とをスパッタ法、真空蒸着
法、MOCVD法など公知の方法にて形成する。
Next, a method for manufacturing an organic EL device according to the present invention will be described with reference to FIG. First, the active driving element (TFT element) 7 is formed on the glass substrate (on the supporting substrate) 1 by a known method. At this time, the active driving element 7 may be organic or inorganic and is not particularly limited. Further, as the first electrode 21, a metal material and a metal oxide or a metal salt to be mixed with the metal material are formed by a known method such as a sputtering method, a vacuum deposition method, or a MOCVD method.

【0040】つづいて、図5(a)に示すようにフォト
リソグラフィー法など公知の方法によりストライプ状な
どの所定の形状・サイズに第一電極21をパターニング
する。
Subsequently, as shown in FIG. 5A, the first electrode 21 is patterned into a predetermined shape and size such as a stripe by a known method such as a photolithography method.

【0041】続いて図5(b)に示すように隔壁3を、
例えばフォトリソグラフィー法、印刷法、レーザーによ
る転写法などにより形成する。ここで第一電極21と隔
壁3の形成順は特に限定するものではなく、隔壁3を形
成してから第一電極21を形成してもよい。
Subsequently, as shown in FIG. 5B, the partition wall 3 is
For example, it is formed by a photolithography method, a printing method, a laser transfer method, or the like. Here, the order of forming the first electrode 21 and the partition wall 3 is not particularly limited, and the partition wall 3 may be formed before the first electrode 21 is formed.

【0042】続いて、公知の方法にて基板洗浄を必要に
応じて行なう。これらの基板洗浄方法としては、例えば
超音波洗浄、シャワー洗浄、蒸気洗浄、UVオゾン洗
浄、プラズマ洗浄にて基板の洗浄を行なう。また、これ
らの洗浄工程において第一電極21の表面が酸化した場
合には、これらの金属酸化膜の膜厚が厚すぎると有機L
EDの駆動電圧が上昇するため、好ましくない。そのた
め、逆スパッタやエッチングなどにより酸化膜を剥離す
る必要がある。この時、必ずしも酸化膜すべてを剥離す
る必要はなく、酸化膜の膜厚は100Å以下であればよ
い。
Subsequently, the substrate is washed as necessary by a known method. As these substrate cleaning methods, for example, ultrasonic cleaning, shower cleaning, steam cleaning, UV ozone cleaning, and plasma cleaning are performed on the substrate. Further, when the surface of the first electrode 21 is oxidized in these cleaning steps, if the metal oxide film is too thick, the organic L
This is not preferable because the drive voltage of the ED increases. Therefore, it is necessary to remove the oxide film by reverse sputtering or etching. At this time, it is not always necessary to remove the entire oxide film, and the film thickness of the oxide film may be 100 Å or less.

【0043】次に、図1に示す有機層14の成膜を行な
う。有機層14の成膜は、真空蒸着法などの乾式法やス
ピンコート法、インクジェット法、印刷法などの塗布
法、レーザーなどを用いた転写法などの公知の方法にて
行ない、有機層14を積層とするのであれば、上記方法
繰り返して行なってもよいし、組み合わせて行なっても
よい。また、必要に応じてLiFやLi2O、CsFなど
の金属酸化物、金属塩を積層してもよい。
Next, the organic layer 14 shown in FIG. 1 is formed. The organic layer 14 is formed by a known method such as a dry method such as a vacuum deposition method, a spin coating method, an inkjet method, a coating method such as a printing method, or a transfer method using a laser. As long as the layers are laminated, the above methods may be repeated or combined. If necessary LiF or Li 2 O, metal oxides such as CsF, may be laminated metal salt.

【0044】ここで、ウェットプロセスにて有機LED
素子を作成する場合、有機材料を溶解させた塗液と電極
との反応や電極の酸化、疎水性材料と親水性材料との積
層では、濡れ性の違いによる膜厚むらが生じやすいた
め、スピンコート法やインクジェット法よりもレーザー
による転写法による形成が特に好ましい。
Here, in the wet process, the organic LED
When creating an element, spin-drying is likely to occur due to the difference in wettability due to the reaction between the coating liquid in which the organic material is dissolved and the electrode, the oxidation of the electrode, and the lamination of the hydrophobic material and the hydrophilic material. Formation by a laser transfer method is more preferable than a coating method or an inkjet method.

【0045】レーザーによる転写法では、まず有機層1
4を、少なくともベースフィルム、つまり熱伝播層、剥
離層を含む多層構成からなる転写用フィルムに、例えば
スピンコート法やインクジェット法、印刷法にて形成す
る。
In the transfer method using a laser, first, the organic layer 1
4 is formed on at least a base film, that is, a transfer film having a multilayer structure including a heat propagation layer and a release layer, by, for example, a spin coating method, an inkjet method, or a printing method.

【0046】この場合、転写フィルム上にホール輸送層
9、有機発光層4を形成するため、ホール輸送層9が親
水性、有機発光層4が撥水性であっても均一に成膜する
ことができる。
In this case, since the hole transport layer 9 and the organic light emitting layer 4 are formed on the transfer film, even if the hole transport layer 9 is hydrophilic and the organic light emitting layer 4 is water repellent, the film can be uniformly formed. it can.

【0047】形成した転写用フィルム11を最表面(こ
の場合有機発光層14)と第一電極21が接するように
基板1上に貼り合わせる。この時、基板1と転写用フィ
ルム11を貼り合わせる際に基板1と転写用フィルム1
1との間に気泡が残らないようにすることが好ましい。
気泡が残ってしまうと転写が旨くいかず、所望するパタ
ーン及び膜厚に転写が行われないことがある。脱気を行
う方法は、例えば基板1と転写用フィルム11との間を
真空ポンプにて脱気したり、基板1上に転写用フィルム
11をセットした後に転写用フィルム11上からローラ
ーを転がして脱気してもよく、これらを合わせて行うこ
とが好ましい(図4(c))。
The transfer film 11 thus formed is attached onto the substrate 1 so that the outermost surface (in this case, the organic light emitting layer 14) and the first electrode 21 are in contact with each other. At this time, when the substrate 1 and the transfer film 11 are bonded together, the substrate 1 and the transfer film 1
It is preferable that air bubbles do not remain between 1 and 1.
If the bubbles remain, the transfer may not be successful and the transfer may not be performed in a desired pattern and film thickness. The degassing can be performed by, for example, degassing between the substrate 1 and the transfer film 11 with a vacuum pump, or by setting the transfer film 11 on the substrate 1 and then rolling a roller on the transfer film 11. It may be degassed, and it is preferable to perform these together (FIG. 4 (c)).

【0048】続いてレーザー12を照射して、転写を行
う。このときレーザーは、転写を行う部分に照射する。
すなわち、レーザーが照射された所だけが転写される
(図4(d))。
Subsequently, the laser 12 is irradiated to perform transfer. At this time, the laser irradiates the portion to be transferred.
That is, only the portion irradiated with the laser is transferred (FIG. 4 (d)).

【0049】このとき、レーザーの出力は特に限定する
ものではないが、出力が大きいと有機材料にダメージを
与えてしまうので好ましくない。また、出力が小さすぎ
ると、転写が不十分でまだらに転写してしまったりする
可能性があり好ましくない。
At this time, the output of the laser is not particularly limited, but a large output is not preferable because it damages the organic material. On the other hand, if the output is too small, the transfer may be insufficient and uneven transfer may occur, which is not preferable.

【0050】また、用いるレーザーの種類は特に限定す
るものではなく、例えばYAGレーザーや半導体レーザ
ーなどが挙げられるが、レーザーの出力が安定している
ものが好ましく、用いるレーザーの波長においてもなん
ら限定するものではない。転写を部分にレーザーを照射
した後に転写用フィルムを剥離することにより有機層1
4の形成が終了する(図4(e))。
The type of laser used is not particularly limited, and examples thereof include a YAG laser and a semiconductor laser. However, it is preferable that the laser output is stable, and the wavelength of the laser used is also limited. Not a thing. The organic layer 1 is formed by peeling the transfer film after irradiating the transfer portion with a laser.
4 is completed (FIG. 4 (e)).

【0051】これらの転写工程は、電極の酸化や有機層
の劣化を抑えるために乾燥した不活性ガス中にて行なう
ことが特に好ましい。第一電極21と対向する第二電極
10(図1)は、レーザー12による転写法にて有機層
14と同時に形成しても良いし、有機層14を形成後、
例えば空蒸着法やスパッタ法、塗布法、印刷法など公知
の方法にて成膜してもよい。
It is particularly preferable that these transfer steps are carried out in a dry inert gas in order to suppress the oxidation of the electrodes and the deterioration of the organic layer. The second electrode 10 (FIG. 1) facing the first electrode 21 may be formed simultaneously with the organic layer 14 by a transfer method using a laser 12, or after the organic layer 14 is formed,
For example, the film may be formed by a known method such as a vapor deposition method, a sputtering method, a coating method, or a printing method.

【0052】封止膜6の形成は、絶縁膜の一部を支台と
して利用し、第二電極10と封止膜6との間に均一な中
空なギャップが生じるように行なわなければならない
(図4(f))。この時、封止膜固定用の接着剤には、
熱硬化性接着剤、紫外線硬化性接着剤などを使用でき
る。
The sealing film 6 must be formed by using a part of the insulating film as a support so that a uniform hollow gap is formed between the second electrode 10 and the sealing film 6 ( FIG. 4 (f)). At this time, for the adhesive for fixing the sealing film,
A thermosetting adhesive, an ultraviolet curable adhesive, etc. can be used.

【0053】[0053]

【実施例】以下、図1〜図4を参照してこの発明の実施
例を詳述する。これによって、この発明が限定されるも
のではない。実施例1 TFT素子付きのガラス基板(厚さ0.7mm)上に第
一電極2としてアルミニウムとLiF(10wt%)の
共蒸着膜(厚さ150nm)を抵抗加熱法にて成膜した
後、フォトリソグラフィー法にて画素を形成し、第一電
極付きの支持基板1を作成した。続いて、第一電極付き
支持基板1上に画素を囲うように隔壁3としてSiO2
をフォトリソグラフィー法にて7μmの厚さに成膜し
た。
Embodiments of the present invention will be described below in detail with reference to FIGS. This does not limit the present invention. Example 1 After co-depositing a film (thickness 150 nm) of aluminum and LiF (10 wt%) as a first electrode 2 on a glass substrate (thickness 0.7 mm) with a TFT element by a resistance heating method, Pixels were formed by the photolithography method to prepare the supporting substrate 1 with the first electrode. Then, SiO 2 is used as a partition wall 3 on the supporting substrate 1 with the first electrode so as to surround the pixel.
Was formed into a film having a thickness of 7 μm by a photolithography method.

【0054】一方、転写用フィルムとして、まず、ベー
スフィルム上に光一熱変換層としてカーボンを分散させ
たエポキシ樹脂層を5μmの厚さにスピンコート法にて
成膜し室温にて乾燥した。続いて、剥離層としてポリα
メチルスチレン膜を1μmの厚さにスピンコート法にて
成膜し室温乾燥を行なった。
On the other hand, as a transfer film, first, an epoxy resin layer in which carbon was dispersed was formed as a light-heat converting layer on a base film to a thickness of 5 μm by a spin coating method and dried at room temperature. Subsequently, poly α is used as a release layer.
A methylstyrene film having a thickness of 1 μm was formed by a spin coating method and dried at room temperature.

【0055】このようにして作成した転写用フィルム上
に第二電極10として酸化亜鉛酸化インジウム膜をDC
マグネトロンスパッタ法にて150nmの厚さに成膜し
た。このように転写用フィルム上に第二電極10を形成
した後、第二電極10の表面にUV−オゾン洗浄を15
分間施した。
A zinc indium oxide film was used as a second electrode 10 on the transfer film thus prepared by DC.
A film having a thickness of 150 nm was formed by a magnetron sputtering method. After the second electrode 10 is formed on the transfer film in this way, the surface of the second electrode 10 is subjected to UV-ozone cleaning 15 times.
I gave it for a minute.

【0056】続いてホール輸送層9としてPEDOT/
PSS(溶媒:水)を30nmの厚さにスピンコート法
にて成膜後、窒素雰囲気下において130℃の温度で5
分間乾燥した。
Then, as the hole transport layer 9, PEDOT /
After film formation of PSS (solvent: water) to a thickness of 30 nm by a spin coating method, the film is formed in a nitrogen atmosphere at a temperature of 130 ° C.
Dry for minutes.

【0057】その後、有機発光層4としてポリフルオレ
ン誘導体(溶媒:トルエン)を80nmの厚さにスピン
コート法にて成膜し、窒素雰囲気下において130℃の
温度で1時間乾燥し、転写用フィルムを作成した。
After that, a polyfluorene derivative (solvent: toluene) was formed into a film having a thickness of 80 nm by a spin coating method as the organic light emitting layer 4, and dried at a temperature of 130 ° C. for 1 hour in a nitrogen atmosphere, and a transfer film was formed. It was created.

【0058】このように作成した転写用フィルムを前記
のように準備した支持基板1にセットした後に転写用フ
ィルム上をローラーにて転写用フィルムと第一電極付き
基板1との間の脱気を行ないながら転写用フィルムと第
一電極付き基板1の間を真空ポンプにて脱気を行なっ
た。
The transfer film thus prepared is set on the support substrate 1 prepared as described above, and then the transfer film is deaerated between the transfer film and the first electrode-attached substrate 1 with a roller. While performing, degassing was performed between the transfer film and the substrate 1 with the first electrode by a vacuum pump.

【0059】その後、転写用レーザーを転写用フィルム
上から照射した。この時の転写用レーザーのパワーは、
16Wであった。レーザー照射後転写用フィルムを剥離
するとレーザーをスキャンさせた場所のみに有機層14
と第二電極10とが転写法にて形成されていた。
Then, a transfer laser was irradiated from above the transfer film. The power of the transfer laser at this time is
It was 16W. When the transfer film is peeled off after the laser irradiation, the organic layer 14 is formed only at the position where the laser is scanned.
And the second electrode 10 were formed by the transfer method.

【0060】転写法にて第二電極10を形成した支持基
板1に前もって洗浄しておいた封止ガラスを隔壁3と接
するように貼り付けて封止膜6を形成し、第二電極10
と封止ガラスとの間の中空ギャップが6μm以上になる
ように封止を行なった。なお、これら転写用フィルムと
第一電極の張り合わせから封止までの工程は乾燥した窒
素中にて行なった。
The sealing glass, which has been washed in advance, is attached to the supporting substrate 1 on which the second electrode 10 is formed by the transfer method so as to be in contact with the partition wall 3 to form the sealing film 6, and the second electrode 10 is formed.
The sealing was performed so that the hollow gap between the sealing glass and the sealing glass was 6 μm or more. The steps from bonding the transfer film and the first electrode to sealing were performed in dry nitrogen.

【0061】このようにして作成した有機LED素子に
駆動用電源及び信号を入力したところ動画表示が可能な
ディスプレイが完成し、画素に印加した電圧が5Vのと
き500cd/m2を得ることができた。
When a driving power source and a signal are input to the organic LED element thus produced, a display capable of displaying a moving image is completed, and 500 cd / m 2 can be obtained when the voltage applied to the pixel is 5V. It was

【0062】比較例1 第一電極2をアルミニウム単体としたこと以外は実施例
1と同様とした。この素子では、画素に印加した電圧が
10Vを超えたあたりで辛うじて発光を観察できる程度
の輝度しか得ることができなかった。
Comparative Example 1 The same as Example 1 except that the first electrode 2 was made of aluminum alone. With this element, it was only possible to obtain a luminance that barely allowed light emission to be observed when the voltage applied to the pixel exceeded 10V.

【0063】比較例2 隔壁3を形成しなかったことと、第二電極10と封止膜
6との中空ギャップをなしにしたこと以外は実施例1と
同様とした。このディスプレイでは、画素に印加した電
圧が8Vの時500cd/m2の輝度を得ることができ
たが、実施例1と比較して高電圧を必要とした。
Comparative Example 2 The procedure of Example 1 was repeated except that the partition wall 3 was not formed and that the hollow gap between the second electrode 10 and the sealing film 6 was omitted. With this display, a luminance of 500 cd / m 2 could be obtained when the voltage applied to the pixel was 8 V, but a high voltage was required as compared with Example 1.

【0064】比較例3 第一電極2をアルミニウムと酸化リチウム(10wt
%)との混合体としたこと以外は実施例1と同様とし
た。このパネルは実施例1と比べ何ら遜色のないパネル
が得られた。
Comparative Example 3 The first electrode 2 was made of aluminum and lithium oxide (10 wt.
%) Was the same as in Example 1 except that it was a mixture with This panel was comparable to that of Example 1, and a panel comparable to that of Example 1 was obtained.

【0065】実施例2 TFT素子付きのガラス基板(0.7mm)上に第一電
極2としてアルミニウムとLiF10wt%の共蒸着膜
(厚さ150nm)を抵抗加熱法にて成膜した後、フォ
トリソグラフィー法にて画素を形成し、第一電極付きの
支持基板1を作成した。続いて、第一電極付き支持基板
1上に画素を囲うように隔壁3としてSiO2をフォト
リソグラフィー法にて7μmの厚さに成膜した。
Example 2 A co-deposited film (thickness 150 nm) of aluminum and LiF 10 wt% was formed as a first electrode 2 on a glass substrate (0.7 mm) with a TFT element by a resistance heating method, and then photolithography. A pixel was formed by the method to prepare a supporting substrate 1 with a first electrode. Subsequently, SiO 2 was deposited to a thickness of 7 μm as a partition wall 3 on the support substrate 1 with the first electrode so as to surround the pixel by a photolithography method.

【0066】一方、転写用フィルムとして、まず、ベー
スフィルム上に光一熱変換層としてカーボンを分散させ
たエポキシ樹脂層を5μmの厚さにスピンコート法にて
成膜し、室温にて乾燥した。
On the other hand, as a transfer film, first, an epoxy resin layer in which carbon was dispersed as a light-to-heat conversion layer was formed on the base film to a thickness of 5 μm by a spin coating method and dried at room temperature.

【0067】続いて、剥離層としてポリαメチルスチレ
ン膜を1μmの厚さにスピンコート法にて成膜し、室温
乾燥を行なった。このようにして作成した転写用フィル
ム上にホール輸送層9としてPEDOT/PSS(溶
媒:水)を30nmの厚さにスピンコート法にて成膜
後、窒素雰囲気下において130℃の温度で5分間乾燥
した。
Subsequently, a poly-α-methylstyrene film was formed as a release layer to a thickness of 1 μm by spin coating and dried at room temperature. A film of PEDOT / PSS (solvent: water) was formed as a hole transport layer 9 on the transfer film thus formed by a spin coating method to a thickness of 30 nm, and then the film was formed in a nitrogen atmosphere at a temperature of 130 ° C. for 5 minutes. Dried.

【0068】その後、有機発光層4としてポリフルオレ
ン誘導体(溶媒:トルエン)を80nmの厚さにスピン
コート法にて成膜し、窒素雰囲気下において130℃の
温度で1時間乾燥し、転写用フィルムを作成した。
Then, a polyfluorene derivative (solvent: toluene) was formed into a film having a thickness of 80 nm by a spin coating method as the organic light emitting layer 4 and dried at a temperature of 130 ° C. for 1 hour in a nitrogen atmosphere to obtain a transfer film. It was created.

【0069】このように作成した転写用フィルムを前記
のように準備した支持基板にセットした後に転写用フィ
ルム上をローラーにて転写用フィルムと第一電極付き基
板1との間の脱気を行ないながら転写用フィルムと第一
電極付き基板1の間を真空ポンプにて脱気を行なった。
The transfer film thus prepared is set on the support substrate prepared as described above, and then the transfer film and the first electrode-attached substrate 1 are degassed by a roller on the transfer film. On the other hand, the space between the transfer film and the first electrode-attached substrate 1 was deaerated with a vacuum pump.

【0070】その後、転写用レーザーを転写用フィルム
上から照射した。この時の転写用レーザーのパワーは、
16Wであった。レーザー照射後転写用フィルムを剥離
するとレーザーをスキャンさせた場所のみに有機層14
が転写法にて形成されていた。
Then, a transfer laser was irradiated from above the transfer film. The power of the transfer laser at this time is
It was 16W. When the transfer film is peeled off after the laser irradiation, the organic layer 14 is formed only at the position where the laser is scanned.
Was formed by the transfer method.

【0071】この支持基板1をスパッタ装置にセット
し、所定の真空度時にDCマグネトロンスパッタ法にて
酸化亜鉛酸化インジウムの第二電極10を150nmの
厚さに成膜した。
This supporting substrate 1 was set in a sputtering apparatus, and a second electrode 10 of zinc oxide indium oxide was formed in a thickness of 150 nm by a DC magnetron sputtering method at a predetermined vacuum degree.

【0072】この第二電極10を形成した支持基板1に
前もって洗浄しておいた封止ガラスを隔壁3と接するよ
うに貼り付けて封止膜6を形成し、第二電極10と封止
ガラスとの間の中空ギャップが6μm以上になるように
封止を行なった。なお、これら転写用フィルムと第一電
極2の張り合わせから封止までの工程は乾燥した窒素中
にて行なった。
The sealing glass which has been washed in advance is attached to the supporting substrate 1 having the second electrode 10 formed thereon so as to be in contact with the partition walls 3 to form the sealing film 6, and the second electrode 10 and the sealing glass are formed. Sealing was performed so that the hollow gap between and was 6 μm or more. The steps from bonding the transfer film and the first electrode 2 to sealing were performed in dry nitrogen.

【0073】このようにして作成した有機LED素子に
駆動用電源及び信号を入力したところ動画表示が可能な
ディスプレイが完成し、画素に印加した電圧が5Vのと
き500cd/m2を得ることができた。
When a driving power source and a signal are input to the organic LED element thus produced, a display capable of displaying a moving image is completed, and 500 cd / m 2 can be obtained when the voltage applied to the pixel is 5V. It was

【0074】比較例4 有機層14の形成を、隔壁3を形成した第一電極付き支
持基板1上にインクジェット方式にて、まず有機発光層
4としてポリフルオレン誘導体(溶媒:トルエン)を塗
布し、窒素雰囲気中において130℃の温度で1時間乾
燥した後(膜厚80nm)、ホール輸送層9としてPE
DOT/PSSを塗布(膜厚30nm)した。その後1
30℃、5分乾燥を行なった。それ以外は実施例2と同
様とした。
Comparative Example 4 In order to form the organic layer 14, a polyfluorene derivative (solvent: toluene) was first applied as the organic light emitting layer 4 on the supporting substrate 1 with the first electrode on which the partition wall 3 was formed by an ink jet method. After drying for 1 hour at a temperature of 130 ° C. in a nitrogen atmosphere (film thickness 80 nm), PE is used as the hole transport layer 9.
DOT / PSS was applied (film thickness 30 nm). Then 1
It was dried at 30 ° C. for 5 minutes. The other conditions were the same as in Example 2.

【0075】この素子からは均一な面発光が得られない
だけではく、各画素内においても均一な発光が得られな
かった。これは、発光層4が疎水性に対し、PEDOT
/PSSが親水性のために発光層4上でPEDOT/P
SSが弾かれてしまい均一な成膜行なわれず、画素内に
おいて膜むらが生じ、これにより輝度むらが生じたと考
えられる。
Not only uniform surface emission was not obtained from this element, but uniform emission was not obtained even in each pixel. This is because the light emitting layer 4 is hydrophobic, whereas PEDOT is
/ PSS is hydrophilic, so PEDOT / P on the light emitting layer 4
It is considered that SS was repelled and uniform film formation was not performed, resulting in film unevenness in the pixel, which resulted in uneven brightness.

【0076】実施例3 TFT素子付きのガラス基板(厚さ0.7mm)上に第
一電極2として銀とLiF(10wt%)の共蒸着膜を
150nmの厚さに抵抗加熱法にて成膜した後、フォト
リソグラフィー法にて画素を形成し、第一電極付きの支
持基板1を作成した。
Example 3 A co-deposition film of silver and LiF (10 wt%) was formed as a first electrode 2 on a glass substrate (thickness 0.7 mm) with a TFT element to a thickness of 150 nm by a resistance heating method. After that, the pixels were formed by the photolithography method to prepare the supporting substrate 1 with the first electrode.

【0077】一方、有機層形成転写用フィルムとして、
まず、ベースフィルム上に光一熱変換層としてカーボン
を分散させたエポキシ樹脂層を5μmの厚さにスピンコ
ート法にて成膜し、室温にて乾燥した。
On the other hand, as an organic layer forming transfer film,
First, an epoxy resin layer in which carbon was dispersed was formed as a light-to-heat conversion layer on the base film by a spin coating method to a thickness of 5 μm, and dried at room temperature.

【0078】続いて、剥離層としてポリαメチルスチレ
ン膜を1μmの厚さにスピンコート法にて成膜し、室温
乾燥を行なった。このようにして作成した有機層形成転
写用フィルム上にホール輸送層9としてPEDOT/P
SS(溶媒:水)を30nmの厚さにスピンコート法に
て成膜後、窒素雰囲気下において130℃の温度で5分
間乾燥した。
Subsequently, a poly-α-methylstyrene film was formed as a release layer to a thickness of 1 μm by a spin coating method and dried at room temperature. As a hole transport layer 9, PEDOT / P was formed on the organic layer-forming transfer film thus prepared.
After forming a film of SS (solvent: water) to a thickness of 30 nm by a spin coating method, the film was dried in a nitrogen atmosphere at a temperature of 130 ° C. for 5 minutes.

【0079】その後、有機発光層4として赤色発光ポリ
フルオレン誘導体(溶媒:トルエン)を80nmの厚さ
にスピンコート法にて成膜し、窒素雰囲気下において1
30℃の温度で1時間乾燥し、有機層形成転写用フィル
ムを作成した。
Then, a red light emitting polyfluorene derivative (solvent: toluene) was formed as an organic light emitting layer 4 to a thickness of 80 nm by a spin coating method, and the film was formed in a nitrogen atmosphere at 1
It was dried at a temperature of 30 ° C. for 1 hour to prepare an organic layer-forming transfer film.

【0080】このように作成した転写用フィルムを前記
第一電極付き支持基板にセットした後に有機層形成転写
用フィルム上をローラーにて転写用フィルムと第一電極
付き基板1との間の脱気を行ないながら有機層形成転写
用フィルムと第一電極付き基板1の間を真空ポンプにて
脱気を行なった。
After the transfer film thus prepared is set on the support substrate with the first electrode, the transfer film and the substrate with the first electrode 1 are degassed with a roller on the organic layer forming transfer film. While performing the above, the space between the organic layer forming transfer film and the first electrode-attached substrate 1 was degassed by a vacuum pump.

【0081】その後、転写用レーザーを有機層形成転写
用フィルム上から赤色発光画素を形成する部位にレーザ
ー照射し、赤色発光画素を形成した。この時の転写用レ
ーザーのパワーは、16Wであった。レーザー照射後転
写用フィルムを剥離するとレーザーをスキャンさせた場
所のみに有機層14が転写法にて赤色発光画素を形成し
た。同様にして、青色発光画素、緑色発光画素を形成し
た。
After that, a laser for transfer was irradiated onto the portion for forming a red light emitting pixel on the transfer film for organic layer formation to form a red light emitting pixel. The power of the transfer laser at this time was 16 W. When the transfer film was peeled off after the laser irradiation, the organic layer 14 formed red light emitting pixels only by the laser scanning by the transfer method. In the same manner, blue light emitting pixels and green light emitting pixels were formed.

【0082】同様に、隔壁形成転写フィルムとして、ま
ず、ベースフィルム上に光一熱変換層としてカーボンを
分散させたエポキシ樹脂層を5μmの厚さにスピンコー
ト法にて成膜し、室温にて乾燥した。
Similarly, as a partition forming transfer film, first, an epoxy resin layer having carbon dispersed therein as a light-to-heat conversion layer was formed to a thickness of 5 μm by a spin coating method on a base film and dried at room temperature. did.

【0083】続いて、剥離層としてポリαメチルスチレ
ン膜を1μm、スピンコート法にて成膜し、室温乾燥を
行なった。このようにして形成したフィルム上に隔壁3
としてポリイミドをスピンコート法にて7μmの厚さに
成膜後、90℃の温度で1.5時間乾燥させ、隔壁形成
転写フィルムを作成した。
Subsequently, a poly-α-methylstyrene film having a thickness of 1 μm was formed as a release layer by a spin coating method and dried at room temperature. The partition wall 3 is formed on the film thus formed.
As a polyimide film, a film having a thickness of 7 μm was formed by a spin coating method, and then dried at a temperature of 90 ° C. for 1.5 hours to prepare a partition wall forming transfer film.

【0084】作成した隔壁形成転写フィルムを、有機層
14が形成された支持基板1にセットし有機層形成転写
フィルムと同様に脱気を行なった。その後、転写用レー
ザーにて画素を囲うようにレーザー照射し、有機層14
の上に隔壁3を形成した。レーザー照射後転写用フィル
ムを剥離するとレーザーをスキャンさせた場所のみに隔
壁3が転写法にて形成されていた。
The prepared partition wall forming transfer film was set on the supporting substrate 1 on which the organic layer 14 was formed, and deaeration was performed in the same manner as the organic layer forming transfer film. After that, a laser for transfer is irradiated so as to surround the pixel, and the organic layer 14 is irradiated.
The partition wall 3 was formed on the above. When the transfer film was peeled off after the laser irradiation, the partition wall 3 was formed by the transfer method only at the position where the laser was scanned.

【0085】続いて前もって洗浄を行なっておいた封止
ガラスを隔壁3の上に貼り付けることにより封止膜6を
形成し、第二電極10と封止ガラスとの間の中空ギャッ
プが7μmであるフルカラー有機LED素子を作成し
た。
Subsequently, a sealing glass which has been washed in advance is attached onto the partition wall 3 to form the sealing film 6, and the hollow gap between the second electrode 10 and the sealing glass is 7 μm. A full color organic LED device was created.

【0086】このようにして作成した有機LEDパネル
に駆動用電源及び信号を入力したところ動画表示が可能
なフルカラーディスプレイが完成した。
When a driving power source and a signal were input to the organic LED panel thus produced, a full color display capable of displaying a moving image was completed.

【0087】実施例4 TFT素子付きのガラス基板(0.7mm)上に第一電
極2として銀を150nmの厚さに抵抗加熱法にて成膜
した後、フォトリソグラフィー法にて画素を形成し、第
一電極付きの支持基板1を作成した。続いて、第一電極
付き支持基板上に画素を囲うように隔壁としてSiO2
をフォトリソグラフィー法にて7μmの厚さに成膜し、
この基板を真空蒸着機にセットし、電子輸送層22とし
てAlq 3とLi2O(5wt%)との混合層(厚さ20
nm)を形成した。
[0087]Example 4 On the glass substrate (0.7 mm) with TFT element,
Silver is formed as the pole 2 to a thickness of 150 nm by the resistance heating method.
After that, the pixel is formed by the photolithography method, and the
A supporting substrate 1 with one electrode was prepared. Then the first electrode
SiO 2 as a partition wall surrounding a pixel on a supporting substrate2
To a thickness of 7 μm by photolithography,
This substrate was set in a vacuum vapor deposition machine to form an electron transport layer 22.
Alq 3And Li2Mixed layer with O (5 wt%) (thickness 20
nm).

【0088】一方、転写用フィルムとして、まず、ベー
スフィルム上に光一熱変換層としてカーボンを分散させ
たエポキシ樹脂層を5μmの厚さにスピンコート法にて
成膜し、室温にて乾燥した。
On the other hand, as a transfer film, first, an epoxy resin layer in which carbon was dispersed as a light-to-heat conversion layer was formed on the base film by a spin coating method to a thickness of 5 μm, and dried at room temperature.

【0089】続いて、剥離層としてポリαメチルスチレ
ン膜を1μmの厚さにスピンコート法にて成膜し、室温
乾燥を行なった。このようにして作成した転写用フィル
ム上に第二電極として酸化亜鉛酸化インジウム膜をDC
マグネトロンスパッタ法にて150nm成膜した。
Subsequently, a poly-α-methylstyrene film was formed as a release layer to a thickness of 1 μm by a spin coating method and dried at room temperature. A zinc oxide indium oxide film was used as a second electrode on the transfer film thus formed by DC.
A 150 nm film was formed by the magnetron sputtering method.

【0090】このように転写用フィルム上に第二電極1
0を形成した後、第二電極10の表面をUV−オゾン洗
浄15分行なった。続いてホール輸送層9としてPED
OT/PSS(溶媒:水)を30nmの厚さにスピンコ
ート法にて成膜後、窒素雰囲気下において130℃の温
度で5分間乾燥した。
Thus, the second electrode 1 is formed on the transfer film.
After forming 0, the surface of the second electrode 10 was subjected to UV-ozone cleaning for 15 minutes. Then PED as the hole transport layer 9
OT / PSS (solvent: water) was formed into a film having a thickness of 30 nm by a spin coating method, and then dried in a nitrogen atmosphere at a temperature of 130 ° C. for 5 minutes.

【0091】その後、有機発光層4としてポリフルオレ
ン誘導体(溶媒:トルエン)を80nmの厚さにスピン
コート法にて成膜し、窒素雰囲気下において130℃の
温度で1時間乾燥し、転写用フィルムを作成した。
After that, a polyfluorene derivative (solvent: toluene) was formed into a film having a thickness of 80 nm by a spin coating method as the organic light emitting layer 4, and dried in a nitrogen atmosphere at a temperature of 130 ° C. for 1 hour to obtain a transfer film. It was created.

【0092】このように作成した転写用フィルムを、前
記のように準備した支持基板にセットした後に転写用フ
ィルム上をローラーにて転写用フィルムと第一電極付き
基板1との間の脱気を行ないながら、転写用フィルムと
第一電極付き基板1の間を真空ポンプにて脱気を行なっ
た。その後、転写用レーザーを転写用フィルム上から照
射した。この時の転写用レーザーのパワーは、16Wで
あった。レーザー照射後転写用フィルムを剥離すると、
レーザーをスキャンさせた場所のみに有機層14と第二
電極10とが転写法にて形成されていた。
The transfer film thus prepared is set on the supporting substrate prepared as described above, and then the transfer film is degassed between the transfer film and the first electrode-attached substrate 1 with a roller. While performing, degassing was performed between the transfer film and the substrate 1 with the first electrode by a vacuum pump. Then, the transfer laser was irradiated from above the transfer film. The power of the transfer laser at this time was 16 W. After peeling the transfer film after laser irradiation,
The organic layer 14 and the second electrode 10 were formed by the transfer method only in the place where the laser was scanned.

【0093】転写法にて第二電極10を形成した支持基
板1に前もって洗浄しておいた封止ガラス(d=1.
5)を隔壁3と接するように貼り付けて封止膜6を形成
し、第二電極10と封止ガラスとの間の中空ギャップが
6μm以上になるように封止を行なった。なお、これら
転写用フィルムと第一電極2の張り合わせから封止まで
の工程は乾燥した窒素中にて行なった。
The supporting glass 1 on which the second electrode 10 was formed by the transfer method was cleaned in advance with the sealing glass (d = 1.
5) was attached so as to be in contact with the partition walls 3 to form the sealing film 6, and sealing was performed so that the hollow gap between the second electrode 10 and the sealing glass was 6 μm or more. The steps from bonding the transfer film and the first electrode 2 to sealing were performed in dry nitrogen.

【0094】このようにして作成した有機LED素子に
駆動用電源及び信号を入力したところ動画表示が可能な
ディスプレイが完成し、画素に印加した電圧が5Vのと
き500cd/m2を得ることができた。
When a driving power source and a signal are input to the organic LED element thus produced, a display capable of displaying a moving image is completed, and 500 cd / m 2 can be obtained when the voltage applied to the pixel is 5V. It was

【0095】実施例5 TFT素子付きのガラス基板(0.7mm)上に第一電
極2としてアルミニウムとLiF(10wt%)との共
蒸着膜を150nmの厚さに抵抗加熱法にて成膜した
後、フォトリソグラフィー法にて画素を形成し、第一電
極付きの支持基板1を作成した。
Example 5 A co-deposited film of aluminum and LiF (10 wt%) was formed as a first electrode 2 on a glass substrate (0.7 mm) with a TFT element to a thickness of 150 nm by a resistance heating method. After that, pixels were formed by photolithography, and a supporting substrate 1 with a first electrode was prepared.

【0096】続いて、第一電極付き支持基板1上に画素
を囲うように隔壁3としてSiO2をフォトリソグラフ
ィー法にて7μmの厚さに成膜し、基板1を真空蒸着機
にセットし、電子輸送層22としてAlq3とLi2
(5wt%)との混合層(厚さ20nm)を形成した。
Then, a SiO 2 film was formed as a partition wall 3 on the supporting substrate 1 with the first electrode so as to surround the pixel to a thickness of 7 μm by a photolithography method, and the substrate 1 was set in a vacuum vapor deposition machine. As the electron transport layer 22, Alq 3 and Li 2 O
A mixed layer (thickness: 20 nm) with (5 wt%) was formed.

【0097】一方、転写用フィルムとして、まず、ベー
スフィルム上に光一熱変換層としてカーボンを分散させ
たエポキシ樹脂層を5μmの厚さにスピンコート法にて
成膜し、室温にて乾燥した。
On the other hand, as a transfer film, first, an epoxy resin layer in which carbon was dispersed was formed as a light-heat converting layer on a base film to a thickness of 5 μm by a spin coating method and dried at room temperature.

【0098】続いて、剥離層としてポリαメチルスチレ
ン膜を1μmの厚さにスピンコート法にて成膜し、室温
乾燥を行なった。このようにして作成した転写用フィル
ム上に第二電極10として酸化亜鉛酸化インジウム膜を
DCマグネトロンスパッタ法にて150nm成膜した。
Subsequently, a poly-α-methylstyrene film was formed as a release layer to a thickness of 1 μm by a spin coating method and dried at room temperature. A zinc oxide indium oxide film was formed as the second electrode 10 on the transfer film thus formed by the DC magnetron sputtering method to a thickness of 150 nm.

【0099】このように転写用フィルム上に第二電極1
0を形成した後、第二電極10の表面をUV−オゾン洗
浄15分行なった。続いてホール輸送層としてPEDO
T/PSS(溶媒:水)を30nmの厚さにスピンコー
ト法にて成膜後、窒素雰囲気下において130℃の温度
で5分間乾燥した。その後、有機発光層としてポリフル
オレン誘導体(溶媒:トルエン)を80nmスピンコー
ト法にて成膜し、窒素雰囲気下において130℃の温度
で1時間乾燥し、転写用フィルムを作成した。
Thus, the second electrode 1 is formed on the transfer film.
After forming 0, the surface of the second electrode 10 was subjected to UV-ozone cleaning for 15 minutes. Then PEDO as a hole transport layer
T / PSS (solvent: water) was formed into a film having a thickness of 30 nm by a spin coating method, and then dried in a nitrogen atmosphere at a temperature of 130 ° C. for 5 minutes. Then, a polyfluorene derivative (solvent: toluene) was formed as an organic light emitting layer by a spin coating method at 80 nm, and dried at 130 ° C. for 1 hour in a nitrogen atmosphere to prepare a transfer film.

【0100】このように作成した転写用フィルムを前記
のように準備した支持基板1にセットした後に転写用フ
ィルム上をローラーにて転写用フィルムと第一電極付き
基板1との間の脱気を行ないながら転写用フィルムと第
一電極付き基板1の間を真空ポンプにて脱気を行なっ
た。
The transfer film thus prepared is set on the supporting substrate 1 prepared as described above, and then the transfer film is degassed between the transfer film and the first electrode-attached substrate 1 with a roller. While performing, degassing was performed between the transfer film and the substrate 1 with the first electrode by a vacuum pump.

【0101】その後、転写用レーザーを転写用フィルム
上から照射した。この時の転写用レーザーのパワーは、
16Wであった。レーザー照射後転写用フィルムを剥離
するとレーザーをスキャンさせた場所のみに有機層14
と第二電極10とが転写法にて形成されていた。
After that, a transfer laser was irradiated from above the transfer film. The power of the transfer laser at this time is
It was 16W. When the transfer film is peeled off after the laser irradiation, the organic layer 14 is formed only at the position where the laser is scanned.
And the second electrode 10 were formed by the transfer method.

【0102】転写法にて第二電極10を形成した支持基
板1に前もって洗浄しておいた封止ガラスを隔壁と接す
るように貼り付けて封止膜6を形成し、第二電極10と
封止ガラスとの間の中空ギャップが6μm以上になるよ
う貼り付け、封止を行なった。なお、これら転写用フィ
ルムと第一電極2の張り合わせから封止までの工程は乾
燥した窒素中にて行なった。
The sealing glass, which has been washed in advance, is attached to the supporting substrate 1 on which the second electrode 10 is formed by the transfer method so as to be in contact with the partition wall to form the sealing film 6, and the second electrode 10 and the sealing film are sealed. It was adhered and sealed so that the hollow gap between it and the stop glass was 6 μm or more. The steps from bonding the transfer film and the first electrode 2 to sealing were performed in dry nitrogen.

【0103】このようにして作成した有機LED素子に
駆動用電振及び信号を入力したところ動画表示が可能な
ディスプレイが完成し、画素に印加した電圧が5Vのと
き500cd/m2を得ることができた。
When a driving vibration and a signal are input to the organic LED element thus produced, a display capable of displaying a moving image is completed, and 500 cd / m 2 can be obtained when the voltage applied to the pixel is 5V. did it.

【0104】実施例6TFT素子付きのガラス基板
(0.7mm)上に第一電極2としてアルミニウムとL
iF(10wt%)との混合膜を150nmの厚さに抵
抗加熱法にて成膜した後、フォトリソグラフィー法にて
画素を形成し、第一電極付きの支持基板1を作成した。
Example 6 Aluminum and L were used as the first electrode 2 on a glass substrate (0.7 mm) with a TFT element.
After forming a mixed film with iF (10 wt%) to a thickness of 150 nm by a resistance heating method, a pixel was formed by a photolithography method to prepare a supporting substrate 1 with a first electrode.

【0105】続いて、第一電極付き支持基板1上に画素
を囲うように隔壁としてSiO2をフォトリソグラフィ
ー法にて7μmの厚さに成膜し、この基板1を真空蒸着
機にセットし、電子輸送層22としてAlq3(厚さ2
0nm)を形成した。
Then, on the supporting substrate 1 with the first electrode, a film of SiO 2 was formed as a partition wall so as to surround the pixel by a photolithography method to a thickness of 7 μm, and this substrate 1 was set in a vacuum vapor deposition machine. As the electron transport layer 22, Alq 3 (thickness 2
0 nm) was formed.

【0106】一方、転写用フィルムとして、まず、ベー
スフィルム上に光一熱変換層としてカーボンを分散させ
たエポキシ樹脂層を5μmの厚さにスピンコート法にて
成膜し、室温にて乾燥した。続いて、剥離層としてポリ
αメチルスチレン膜を1μmの厚さにスピンコート法に
て成膜し、室温乾燥を行なった。
On the other hand, as a transfer film, first, an epoxy resin layer in which carbon was dispersed as a light-to-heat conversion layer was formed into a film of 5 μm in thickness by a spin coating method, and dried at room temperature. Subsequently, a poly-α-methylstyrene film was formed as a release layer to a thickness of 1 μm by a spin coating method, and dried at room temperature.

【0107】このようにして作成した転写用フィルム上
に第二電極10として酸化亜鉛酸化インジウム膜をDC
マグネトロンスパッタ法にて150nmの厚さに成膜し
た。このように転写用フィルム上に第二電極10を形成
した後、第二電極10の表面をUV−オゾン洗浄15分
行なった。続いてホール輸送層9としてPEDOT/P
SS(溶媒:水)を30nmの厚さにスピンコート法に
て成膜後、窒素雰囲気下において130℃の温度で5分
間乾燥した。
A zinc oxide indium oxide film was formed as a second electrode 10 on the transfer film thus formed by DC.
A film having a thickness of 150 nm was formed by a magnetron sputtering method. After the second electrode 10 was thus formed on the transfer film, the surface of the second electrode 10 was subjected to UV-ozone cleaning for 15 minutes. Then, PEDOT / P as the hole transport layer 9
After forming a film of SS (solvent: water) to a thickness of 30 nm by a spin coating method, the film was dried in a nitrogen atmosphere at a temperature of 130 ° C. for 5 minutes.

【0108】その後、有機発光層4としてポリフルオレ
ン誘導体(溶媒:トルエン)を80nmの厚さにスピン
コート法にて成膜し、窒素雰囲気下において130℃の
温度で1時間乾燥し、転写用フィルムを作成した。
After that, a polyfluorene derivative (solvent: toluene) was formed into a film having a thickness of 80 nm by a spin coating method as the organic light emitting layer 4, and dried at a temperature of 130 ° C. for 1 hour in a nitrogen atmosphere to form a transfer film. It was created.

【0109】このように作成した転写用フィルムを前記
のように準備した支持基板1にセットした後に転写用フ
ィルム上をローラーにて転写用フィルムと第一電極付き
基板1との間の脱気を行ないながら転写用フィルムと第
一電極付き基板1の間を真空ポンプにて脱気を行なっ
た。
The transfer film thus prepared is set on the supporting substrate 1 prepared as described above, and then the transfer film is degassed between the transfer film and the first electrode-attached substrate 1 with a roller. While performing, degassing was performed between the transfer film and the substrate 1 with the first electrode by a vacuum pump.

【0110】その後、転写用レーザーを転写用フィルム
上から照射した。この時の転写用レーザーのパワーは、
16Wであった。レーザー照射後転写用フィルムを剥離
するとレーザーをスキャンさせた場所のみに有機層14
と第二電極10とが転写法にて形成されていた。
Then, a transfer laser was irradiated from above the transfer film. The power of the transfer laser at this time is
It was 16W. When the transfer film is peeled off after the laser irradiation, the organic layer 14 is formed only at the position where the laser is scanned.
And the second electrode 10 were formed by the transfer method.

【0111】転写法にて第二電極10を形成した支持基
板1に前もって洗浄しておいた封止ガラスを隔壁と接す
るように貼り付けて封止膜6を形成し、第二電極と封止
ガラスとの間の中空ギャップが6μm以上になるように
封止を行なった。なお、これら転写用フィルムと第一電
極2の張り合わせから封止までの工程は乾燥した窒素中
にて行なった。
Sealing glass 6, which has been washed in advance, is attached to the supporting substrate 1 on which the second electrode 10 is formed by the transfer method so as to be in contact with the partition wall to form the sealing film 6, and the second electrode is sealed. Sealing was performed so that the hollow gap with the glass was 6 μm or more. The steps from bonding the transfer film and the first electrode 2 to sealing were performed in dry nitrogen.

【0112】このようにして作成した有機LED素子に
駆動用電源及び信号を入力したところ動画表示が可能な
ディスプレイが完成し、画素に印加した電圧が5Vのと
き500cd/m2を得ることができた。
When a driving power source and a signal are input to the organic LED element thus produced, a display capable of displaying a moving image is completed, and 500 cd / m 2 can be obtained when the voltage applied to the pixel is 5V. It was

【0113】実施例7 TFT素子付きのガラス基板(0.7mm)上に第一電
極2としてアルミニウムとLiF(10wt%)の共蒸
着膜を150nmの厚さに抵抗加熱法にて成膜した後、
フォトリソグラフィー法にて画素を形成し、第一電極付
きの支持基板1を作成した。続いて、第一電極付き支持
基板1上に画素を囲うように隔壁としてSiO2をフォ
トリソグラフィー法にて7μmの厚さに成膜した。
Example 7 After a co-deposition film of aluminum and LiF (10 wt%) was formed as a first electrode 2 on a glass substrate (0.7 mm) with a TFT element to a thickness of 150 nm by a resistance heating method. ,
Pixels were formed by the photolithography method to prepare the supporting substrate 1 with the first electrode. Subsequently, SiO 2 was deposited as a partition wall on the supporting substrate 1 with the first electrode so as to surround the pixel with a thickness of 7 μm by a photolithography method.

【0114】一方、転写用フィルムとして、まず、ベー
スフィルム上に光一熱変換層としてカーボンを分散させ
たエポキシ樹脂層を5μmの厚さにスピンコート法にて
成膜し、室温にて乾燥した。続いて、剥離層としてポリ
αメチルスチレン膜を1μmの厚さにスピンコート法に
て成膜し、室温乾煉を行なった。
On the other hand, as a transfer film, first, an epoxy resin layer in which carbon was dispersed was formed as a light-heat converting layer on a base film to a thickness of 5 μm by a spin coating method, and dried at room temperature. Subsequently, a poly-α-methylstyrene film was formed as a release layer to a thickness of 1 μm by a spin coating method, and dried at room temperature.

【0115】このようにして作成した転写用フィルム上
にホール輸送層9としてPEDOT/PSS(溶媒:
水)を30nmの厚さにスピンコート法にて成膜後、窒
素雰囲気下において130℃の温度で5分間乾燥した。
On the transfer film thus prepared, PEDOT / PSS (solvent:
Water) was formed into a film having a thickness of 30 nm by a spin coating method, and then dried in a nitrogen atmosphere at a temperature of 130 ° C. for 5 minutes.

【0116】その後、有機発光層4としてポリフルオレ
ン誘導体(溶媒:トルエン)を80nmの厚さにスピン
コート法にて成膜し、窒素雰囲気下において130℃の
温度で1時間乾煉し、転写用フィルムを作成した。
Thereafter, a polyfluorene derivative (solvent: toluene) was formed into a film having a thickness of 80 nm by a spin coating method as the organic light emitting layer 4, and was dried at 130 ° C. for 1 hour in a nitrogen atmosphere for transfer. I made a film.

【0117】このように作成した転写用フィルムを前記
のように準備した支持基板1にセットした後に転写用フ
ィルム上をローラーにて転写用フィルムと第一電極付き
基板1との間の脱気を行ないながら転写用フィルムと第
一電極付き基板1の間を真空ポンプにて脱気を行なっ
た。
The transfer film thus prepared is set on the supporting substrate 1 prepared as described above, and then the transfer film is deaerated between the transfer film and the first electrode-attached substrate 1 with a roller. While performing, degassing was performed between the transfer film and the substrate 1 with the first electrode by a vacuum pump.

【0118】その後、転写用レーザーを転写用フィルム
上から照射した。この時の転写用レーザーのパワーは、
16Wであった。レーザー照射後転写用フィルムを剥離
するとレーザーをスキャンさせた場所のみに有機層14
が転写法にて形成されていた。
Then, a transfer laser was irradiated from above the transfer film. The power of the transfer laser at this time is
It was 16W. When the transfer film is peeled off after the laser irradiation, the organic layer 14 is formed only at the position where the laser is scanned.
Was formed by the transfer method.

【0119】この支持基板1をスパッタ装置付き蒸着装
置にセットし、まず蒸着装置にてLi2Oを40Åの厚
さに成膜した後、DCマグネトロンスパッタ法にて酸化
亜鉛酸化インジウムの第二電極10を150nm成膜し
た。
This supporting substrate 1 was set in a vapor deposition apparatus equipped with a sputtering apparatus, and Li 2 O was first formed into a film having a thickness of 40 Å by the vapor deposition apparatus, and then a second electrode of zinc oxide indium oxide was formed by a DC magnetron sputtering method. 10 was deposited to a thickness of 150 nm.

【0120】この第二電極10を形成した支持基板1に
前もって洗浄しておいた封止ガラス(d=1.5)を隔
壁と接するように貼り付けて封止膜6を形成し、第二電
極と封止ガラスとの間の中空ギャップが6μm以上にな
るように封止を行なった。なお、これら転写用フィルム
と第一電極の張り合わせから封止までの工程は乾燥した
窒素中にて行なった。
A sealing glass (d = 1.5), which has been washed in advance, is attached to the supporting substrate 1 having the second electrode 10 formed thereon so as to be in contact with the partition wall to form a sealing film 6. The sealing was performed so that the hollow gap between the electrode and the sealing glass was 6 μm or more. The steps from bonding the transfer film and the first electrode to sealing were performed in dry nitrogen.

【0121】このようにして作成した有機LED素子に
駆動用電源及び信号を入力したところ動画表示が可能な
ディスプレイが完成し、画素に印加した電圧が5Vのと
き500cd/m2を得ることができた。
When a driving power source and a signal are input to the organic LED element thus produced, a display capable of displaying a moving image is completed, and 500 cd / m 2 can be obtained when the voltage applied to the pixel is 5V. It was

【0122】[0122]

【発明の効果】この発明によれば、金属電極と、透明電
極とに挟まれた有機層を有する有機LED素子におい
て、金属電極および/又は有機層の一部に金属酸化物お
よび/又は金属塩との混合層を設けることにより、光の
利用効率が高く、表示品位が高く、寿命が長い素子が得
られる。
According to the present invention, in an organic LED element having an organic layer sandwiched between a metal electrode and a transparent electrode, a metal oxide and / or a metal salt is partially formed in the metal electrode and / or the organic layer. By providing the mixed layer of and, it is possible to obtain an element having high light utilization efficiency, high display quality, and long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る有機LED素子の基本構成を示
す断面図である。
FIG. 1 is a sectional view showing a basic configuration of an organic LED element according to the present invention.

【図2】この発明に係る有機LED素子の一例を示す断
面図(第1電極が金属と金属酸化膜あるいは金属塩との
混合体にて形成されている場合)である。
FIG. 2 is a sectional view showing an example of an organic LED element according to the present invention (when the first electrode is formed of a mixture of a metal and a metal oxide film or a metal salt).

【図3】この発明に係る有機LED素子の他の例を示す
断面図(有機層の電子輸送層に金属酸化物あるいは金属
塩が混合されている場合)である。
FIG. 3 is a cross-sectional view showing another example of the organic LED element according to the present invention (when the electron transport layer of the organic layer is mixed with a metal oxide or a metal salt).

【図4】この発明に係る有機LED素子のさらに他の例
を示す断面図(第1電極が金属と金属酸化膜あるいは金
属塩混合体にて形成されてかつ、有機層の電子輸送層に
金属酸化物又は金属塩が混合されている場合)である。
FIG. 4 is a cross-sectional view showing still another example of the organic LED element according to the present invention (where the first electrode is formed of a metal and a metal oxide film or a metal salt mixture and the electron transport layer of the organic layer is a metal). When an oxide or a metal salt is mixed).

【図5】この発明に係る有機LEDデバイスの製造方法
の一例を示す工程説明図である。
FIG. 5 is a process explanatory view showing an example of a method for manufacturing an organic LED device according to the present invention.

【符号の説明】[Explanation of symbols]

1.支持基板 2.第一電極 3.隔壁 4.有機層 5.中空ギャップ 6.封止膜 7.TFT素子 9.ホール輸送層 10.第二電極 11.有機層形成用転写フィルム 12.レーザー 21.第一電極 22、電子輸送層 1. Support substrate 2. First electrode 3. Partition 4. Organic layer 5. Hollow gap 6. Sealing film 7. TFT element 9. Hall transport layer 10. Second electrode 11. Transfer film for organic layer formation 12. laser 21. First electrode 22, electron transport layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 33/22 H05B 33/22 Z 33/26 33/26 Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H05B 33/22 H05B 33/22 Z 33/26 33/26 Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 金属電極と、透明電極と、両電極に挟ま
れた有機層とを備え、金属電極および有機層の少なくと
も一方に、金属酸化物および金属塩の少なくとも一方が
混合されてなることを特徴とする有機LED素子。
1. A metal electrode, a transparent electrode, and an organic layer sandwiched between the electrodes, wherein at least one of the metal electrode and the organic layer is mixed with at least one of a metal oxide and a metal salt. An organic LED element characterized by:
【請求項2】 有機層が電子輸送層を備え、電子輸送層
に金属酸化物および金属塩の少なくとも一方が混合され
てなることを特徴とする請求項1記載の有機LED素
子。
2. The organic LED element according to claim 1, wherein the organic layer includes an electron transport layer, and the electron transport layer is a mixture of at least one of a metal oxide and a metal salt.
【請求項3】 封止膜をさらに備え、封止膜は中空層を
介して透明電極の上に形成されてなることを特徴とする
請求項1記載の有機LED素子。
3. The organic LED element according to claim 1, further comprising a sealing film, wherein the sealing film is formed on the transparent electrode via a hollow layer.
【請求項4】 中空層は厚さが5〜100μmであるこ
とを特徴とする請求項3記載の有機LED素子。
4. The organic LED device according to claim 3, wherein the hollow layer has a thickness of 5 to 100 μm.
【請求項5】 複数の画素を形成するための隔壁を基板
上にさらに備え、封止膜が隔壁を支台として形成されて
いることを特徴とする請求項3記載の有機LED素子。
5. The organic LED element according to claim 3, further comprising partition walls for forming a plurality of pixels on the substrate, wherein the sealing film is formed using the partition walls as an abutment.
【請求項6】 金属電極が支持基板表面に形成され、有
機層が金属電極側から疎水性材料、親水性材料の順番で
形成されてなることを特徴とする請求項1記載の有機L
ED素子。
6. The organic L according to claim 1, wherein the metal electrode is formed on the surface of the supporting substrate, and the organic layer is formed in the order of the hydrophobic material and the hydrophilic material from the metal electrode side.
ED element.
【請求項7】 請求項6記載の有機LED素子におい
て、有機層を少なくとも親水性材料と疎水性材料から形
成し、疎水性材料の形成後に親水性材料を形成すること
を特徴とする有機LED素子の製造方法。
7. The organic LED element according to claim 6, wherein the organic layer is formed of at least a hydrophilic material and a hydrophobic material, and the hydrophilic material is formed after the formation of the hydrophobic material. Manufacturing method.
【請求項8】 アクティブ駆動用素子を備えた基板をさ
らに備え、金属電極と透明電極に挟まれた有機層がその
基板上に形成されてなることを特徴とする請求項1記載
の有機LED素子。
8. The organic LED element according to claim 1, further comprising a substrate having an active driving element, wherein an organic layer sandwiched between a metal electrode and a transparent electrode is formed on the substrate. .
JP2002063814A 2002-03-08 2002-03-08 Organic led element and production process thereof Pending JP2003264083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002063814A JP2003264083A (en) 2002-03-08 2002-03-08 Organic led element and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002063814A JP2003264083A (en) 2002-03-08 2002-03-08 Organic led element and production process thereof

Publications (1)

Publication Number Publication Date
JP2003264083A true JP2003264083A (en) 2003-09-19

Family

ID=29196900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063814A Pending JP2003264083A (en) 2002-03-08 2002-03-08 Organic led element and production process thereof

Country Status (1)

Country Link
JP (1) JP2003264083A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066374A (en) * 2004-08-30 2006-03-09 Samsung Sdi Co Ltd Lamination equipment and laser thermal transfer method
JP2006228712A (en) * 2005-01-21 2006-08-31 Semiconductor Energy Lab Co Ltd Light-emitting apparatus
JP2007109524A (en) * 2005-10-14 2007-04-26 Fujifilm Corp Organic el material and its manufacturing method
JP2008243559A (en) * 2007-03-27 2008-10-09 Toppan Printing Co Ltd Manufacturing method of organic electroluminescent display device
JP2009164578A (en) * 2007-12-28 2009-07-23 Samsung Mobile Display Co Ltd Organic light-emitting device
JP2010147027A (en) * 2005-07-06 2010-07-01 Samsung Mobile Display Co Ltd Flat panel display device, and manufacturing method thereof
US7973467B2 (en) 2007-11-15 2011-07-05 Samsung Mobile Display Co., Ltd. Organic light emitting device
JP2011193002A (en) * 2004-03-19 2011-09-29 E I Du Pont De Nemours & Co Device for including buffer layer containing electrically conductive organic polymer and a plurality of nanoparticles
JP2011233480A (en) * 2010-04-30 2011-11-17 Ricoh Co Ltd Forming method of laminate structure and manufacturing method of organic electroluminescent device
WO2012017486A1 (en) * 2010-08-06 2012-02-09 パナソニック株式会社 Method for producing light-emitting elements
US8142910B2 (en) 2008-03-04 2012-03-27 Samsung Mobile Display Co., Ltd. Organic light-emitting device
US8241526B2 (en) 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives
US8274212B2 (en) 2007-12-28 2012-09-25 Samsung Mobile Display Co., Ltd. Organic light emitting device including first hole injection layer and second hole injection layer
JP2012231174A (en) * 2004-09-24 2012-11-22 Semiconductor Energy Lab Co Ltd Light-emitting device
US8318046B2 (en) 2002-09-24 2012-11-27 E I Du Pont De Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
US8409476B2 (en) 2005-06-28 2013-04-02 E I Du Pont De Nemours And Company High work function transparent conductors
US8455865B2 (en) 2002-09-24 2013-06-04 E I Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US8491819B2 (en) 2006-12-29 2013-07-23 E I Du Pont De Nemours And Company High work-function and high conductivity compositions of electrically conducting polymers
US8557398B2 (en) 2007-12-24 2013-10-15 Samsung Display Co., Ltd. Organic light emitting device
US8563994B2 (en) 2010-08-06 2013-10-22 Panasonic Corporation Light-emitting element, display device, and method for producing light-emitting element
US8585931B2 (en) 2002-09-24 2013-11-19 E I Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
US8664669B2 (en) 2010-06-24 2014-03-04 Panasonic Corporation Organic EL element, display apparatus, and light-emitting apparatus
USRE44853E1 (en) 2005-06-28 2014-04-22 E I Du Pont De Nemours And Company Buffer compositions
US8703530B2 (en) 2010-06-24 2014-04-22 Panasonic Corporation Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device
US8765022B2 (en) 2004-03-17 2014-07-01 E I Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US8822246B2 (en) 2009-02-10 2014-09-02 Panasonic Corporation Method for manufacturing a light-emitting element including a protective film for a charge injection layer
US8829510B2 (en) 2011-02-23 2014-09-09 Panasonic Corporation Organic electroluminescence display panel and organic electroluminescence display device
US8866160B2 (en) 2009-02-10 2014-10-21 Panasonic Corporation Light-emitting element, device, and manufacturing method including a charge injection layer having a recess for suppressing uneven luminance
US8872164B2 (en) 2009-08-19 2014-10-28 Panasonic Corporation Organic el element
US8884281B2 (en) 2011-01-21 2014-11-11 Panasonic Corporation Organic EL element
US8884276B2 (en) 2011-05-11 2014-11-11 Panasonic Corporation Organic EL display panel and organic EL display apparatus
US8890173B2 (en) 2009-02-10 2014-11-18 Panasonic Corporation Light-emitting element including a charge injection transport layer having a recess portion for accumulating ink, and display device and method for manufacturing thereof
US8890129B2 (en) 2010-08-06 2014-11-18 Panasonic Corporation Light emitting device, light emitting apparatus provided with a light emitting device, and method of manufacturing a light emitting device
US8921838B2 (en) 2010-08-06 2014-12-30 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8927975B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8927976B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Organic EL element and production method for same
US8946693B2 (en) 2010-08-06 2015-02-03 Panasonic Corporation Organic EL element, display device, and light-emitting device
US8981361B2 (en) 2011-02-25 2015-03-17 Panasonic Corporation Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device
US8999832B2 (en) 2010-08-06 2015-04-07 Panasonic Corporation Organic EL element
US9012897B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element, display device, and light-emitting device
US9012896B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element
US9029843B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element
US9029842B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9048448B2 (en) 2010-08-06 2015-06-02 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9130187B2 (en) 2010-08-06 2015-09-08 Joled Inc. Organic EL element, display device, and light-emitting device
US9490445B2 (en) 2010-07-30 2016-11-08 Joled Inc. Organic el element, organic el panel, organic el light-emitting apparatus, organic el display apparatus, and method of manufacturing organic el element
US9843010B2 (en) 2010-08-06 2017-12-12 Joled Inc. Light-emitting element, light-emitting device provided with light-emitting element, and light-emitting element production method

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318046B2 (en) 2002-09-24 2012-11-27 E I Du Pont De Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
US8784692B2 (en) 2002-09-24 2014-07-22 E I Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
US8585931B2 (en) 2002-09-24 2013-11-19 E I Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
US8455865B2 (en) 2002-09-24 2013-06-04 E I Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US8338512B2 (en) 2002-09-24 2012-12-25 E I Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and method for use thereof
US8765022B2 (en) 2004-03-17 2014-07-01 E I Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
JP2011193002A (en) * 2004-03-19 2011-09-29 E I Du Pont De Nemours & Co Device for including buffer layer containing electrically conductive organic polymer and a plurality of nanoparticles
JP2006066374A (en) * 2004-08-30 2006-03-09 Samsung Sdi Co Ltd Lamination equipment and laser thermal transfer method
US8723196B2 (en) 2004-09-24 2014-05-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2012231174A (en) * 2004-09-24 2012-11-22 Semiconductor Energy Lab Co Ltd Light-emitting device
US10333108B2 (en) 2005-01-21 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2006228712A (en) * 2005-01-21 2006-08-31 Semiconductor Energy Lab Co Ltd Light-emitting apparatus
US9905809B2 (en) 2005-01-21 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8409476B2 (en) 2005-06-28 2013-04-02 E I Du Pont De Nemours And Company High work function transparent conductors
USRE44853E1 (en) 2005-06-28 2014-04-22 E I Du Pont De Nemours And Company Buffer compositions
JP2010147027A (en) * 2005-07-06 2010-07-01 Samsung Mobile Display Co Ltd Flat panel display device, and manufacturing method thereof
JP2007109524A (en) * 2005-10-14 2007-04-26 Fujifilm Corp Organic el material and its manufacturing method
US8491819B2 (en) 2006-12-29 2013-07-23 E I Du Pont De Nemours And Company High work-function and high conductivity compositions of electrically conducting polymers
JP2008243559A (en) * 2007-03-27 2008-10-09 Toppan Printing Co Ltd Manufacturing method of organic electroluminescent display device
US8241526B2 (en) 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives
US7973467B2 (en) 2007-11-15 2011-07-05 Samsung Mobile Display Co., Ltd. Organic light emitting device
US8557398B2 (en) 2007-12-24 2013-10-15 Samsung Display Co., Ltd. Organic light emitting device
JP2009164578A (en) * 2007-12-28 2009-07-23 Samsung Mobile Display Co Ltd Organic light-emitting device
US8274212B2 (en) 2007-12-28 2012-09-25 Samsung Mobile Display Co., Ltd. Organic light emitting device including first hole injection layer and second hole injection layer
US8142910B2 (en) 2008-03-04 2012-03-27 Samsung Mobile Display Co., Ltd. Organic light-emitting device
US8890174B2 (en) 2009-02-10 2014-11-18 Panasonic Corporation Light-emitting element including a charge injection transport layer that includes a dissolvable metal compound, and display device and method for manufacturing thereof
US8890173B2 (en) 2009-02-10 2014-11-18 Panasonic Corporation Light-emitting element including a charge injection transport layer having a recess portion for accumulating ink, and display device and method for manufacturing thereof
US8822246B2 (en) 2009-02-10 2014-09-02 Panasonic Corporation Method for manufacturing a light-emitting element including a protective film for a charge injection layer
US8866160B2 (en) 2009-02-10 2014-10-21 Panasonic Corporation Light-emitting element, device, and manufacturing method including a charge injection layer having a recess for suppressing uneven luminance
US8872164B2 (en) 2009-08-19 2014-10-28 Panasonic Corporation Organic el element
JP2011233480A (en) * 2010-04-30 2011-11-17 Ricoh Co Ltd Forming method of laminate structure and manufacturing method of organic electroluminescent device
US8703530B2 (en) 2010-06-24 2014-04-22 Panasonic Corporation Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device
US8664669B2 (en) 2010-06-24 2014-03-04 Panasonic Corporation Organic EL element, display apparatus, and light-emitting apparatus
US9490445B2 (en) 2010-07-30 2016-11-08 Joled Inc. Organic el element, organic el panel, organic el light-emitting apparatus, organic el display apparatus, and method of manufacturing organic el element
US8852977B2 (en) 2010-08-06 2014-10-07 Panasonic Corporation Method for producing light-emitting elements
US9012897B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element, display device, and light-emitting device
US8563994B2 (en) 2010-08-06 2013-10-22 Panasonic Corporation Light-emitting element, display device, and method for producing light-emitting element
US8890129B2 (en) 2010-08-06 2014-11-18 Panasonic Corporation Light emitting device, light emitting apparatus provided with a light emitting device, and method of manufacturing a light emitting device
WO2012017486A1 (en) * 2010-08-06 2012-02-09 パナソニック株式会社 Method for producing light-emitting elements
US8921838B2 (en) 2010-08-06 2014-12-30 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8927975B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8927976B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Organic EL element and production method for same
US8946693B2 (en) 2010-08-06 2015-02-03 Panasonic Corporation Organic EL element, display device, and light-emitting device
JP5543599B2 (en) * 2010-08-06 2014-07-09 パナソニック株式会社 Method for manufacturing light emitting device
US8999832B2 (en) 2010-08-06 2015-04-07 Panasonic Corporation Organic EL element
US9843010B2 (en) 2010-08-06 2017-12-12 Joled Inc. Light-emitting element, light-emitting device provided with light-emitting element, and light-emitting element production method
US9012896B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element
US9029843B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element
US9029842B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9048448B2 (en) 2010-08-06 2015-06-02 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9130187B2 (en) 2010-08-06 2015-09-08 Joled Inc. Organic EL element, display device, and light-emitting device
US8884281B2 (en) 2011-01-21 2014-11-11 Panasonic Corporation Organic EL element
US8829510B2 (en) 2011-02-23 2014-09-09 Panasonic Corporation Organic electroluminescence display panel and organic electroluminescence display device
US8981361B2 (en) 2011-02-25 2015-03-17 Panasonic Corporation Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device
US8884276B2 (en) 2011-05-11 2014-11-11 Panasonic Corporation Organic EL display panel and organic EL display apparatus

Similar Documents

Publication Publication Date Title
JP2003264083A (en) Organic led element and production process thereof
JP4608170B2 (en) Active drive type organic EL display device and manufacturing method thereof
US6815141B2 (en) Organic Led display panel production method, organic Led display panel produced by the method, and base film and substrate for use in the method
JP5192828B2 (en) Organic electroluminescence display element and manufacturing method thereof
JPH1174083A (en) Electroluminescent element and manufacture thereof
JP2007220646A (en) Organic electroluminescent element
JP2002343564A (en) Transfer film and manufacturing method of organic electroluminescence element using the same
WO2001063975A1 (en) Organic el device and method of manufacture thereof
JP2003077658A (en) Donor film for manufacturing organic el element and substrate for organic el element
JP5092485B2 (en) Organic electroluminescence display and manufacturing method thereof
JP2010176851A (en) Method of manufacturing display panel, and substrate for display device
JP5199772B2 (en) Organic electroluminescence device and method for manufacturing the same
JP5239189B2 (en) Method for manufacturing organic electroluminescence display device
JP4736676B2 (en) Active matrix driving type organic electroluminescence display device
JP4131924B2 (en) Organic EL display device
JP2004031262A (en) Organic electroluminescence panel
JP4801382B2 (en) Self-luminous panel and manufacturing method thereof
JP2000323280A (en) Electroluminescent element and its manufacture
JP2010123474A (en) Method of manufacturing organic el element, and transcription device of organic el layer
JP2002280174A (en) Donor film and organic led display panel manufactured by using it
JP4004255B2 (en) Manufacturing method of organic LED display panel
JP2001195012A (en) Organic electroluminescence display device and method for manufacturing the same
JP4004254B2 (en) Manufacturing method of organic EL element
WO2002087287A1 (en) Electroluminescence display panel, image display, and method for manufacturing them
JP2003168559A (en) Organic led donor film and substrate, and organic led display panel using the same and its manufacturing method