JP2003249274A - Dye sensitized solar cell and its manufacturing method - Google Patents

Dye sensitized solar cell and its manufacturing method

Info

Publication number
JP2003249274A
JP2003249274A JP2002046803A JP2002046803A JP2003249274A JP 2003249274 A JP2003249274 A JP 2003249274A JP 2002046803 A JP2002046803 A JP 2002046803A JP 2002046803 A JP2002046803 A JP 2002046803A JP 2003249274 A JP2003249274 A JP 2003249274A
Authority
JP
Japan
Prior art keywords
dye
semiconductor layer
porous semiconductor
adsorbed
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002046803A
Other languages
Japanese (ja)
Other versions
JP4149714B2 (en
Inventor
Ryosuke Yamanaka
良亮 山中
Reigen Kan
礼元 韓
Nobuhiro Fukuya
信洋 福家
Takehito Mitachi
武仁 見立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002046803A priority Critical patent/JP4149714B2/en
Publication of JP2003249274A publication Critical patent/JP2003249274A/en
Application granted granted Critical
Publication of JP4149714B2 publication Critical patent/JP4149714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient solar cell of which the light absorption wavelength range is large, and the light absorption amount is much. <P>SOLUTION: With respect to the dye sensitized solar cell in which a porous photoelectric conversion layer that is constituted by making a porous semiconductor layer absorb coloring matter, a conductive layer, and a counter electrode are laminated one by one on a conductive substrate, the porous photoelectric conversion layer is formed by making absorb at least two kinds of coloring matters of which the optimum sensitivity wavelength range of an absorption spectrum differ. And also, the porous photoelectric conversion layer consists of the coloring matter adsorption ranges of at least three or more layers in the shape of layer parallel to the conductive substrate, and the coloring matter adsorption ranges of the upper and lower layers are the ranges in which one different kind of coloring matter is adsorbed, respectively. Moreover, the coloring matter adsorption range sandwiched by them is the range in which the coloring matter of the upper and lower layers are mixed and adsorbed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、色素増感型太陽電
池およびその製造方法に関する。さらに詳しくは、本発
明は、多孔性半導体層に少なくとも2種類の分光増感色
素を層状に吸着させた多孔性光電変換層を備えた、広い
光吸収波長領域を有する色素増感型太陽電池およびその
製造方法に関する。
TECHNICAL FIELD The present invention relates to a dye-sensitized solar cell and a method for manufacturing the same. More specifically, the present invention provides a dye-sensitized solar cell having a wide light absorption wavelength region, which includes a porous photoelectric conversion layer in which at least two kinds of spectral sensitizing dyes are adsorbed in a layered form on a porous semiconductor layer. The manufacturing method is related.

【0002】[0002]

【従来の技術】色素増感型太陽電池(以下、「太陽電
池」と称する)は、有機系太陽電池の中で高変換効率を
示すため、広く注目されている。この太陽電池の構造お
よび動作原理について、具体的に説明する。透明支持体
の表面に形成された透明導電体上に、酸化チタンなどの
多孔性半導体層を形成し、その多孔性半導体層に分光増
感色素(光増感剤として機能する色素であり、単に「色
素」とも称する)を吸着させる。他方、対極に白金など
の触媒をコーティングし、多孔性半導体層と白金とが対
向するように透明支持体と対極とを重ね合わせ、その間
に導電層として電解液を注入し、透明支持体と対極の側
面をエポキシ樹脂などの封止材で封止することにより、
太陽電池が得られる。
2. Description of the Related Art Dye-sensitized solar cells (hereinafter referred to as "solar cells") have been widely noticed because of their high conversion efficiency among organic solar cells. The structure and operating principle of this solar cell will be specifically described. On the transparent conductor formed on the surface of the transparent support, a porous semiconductor layer such as titanium oxide is formed, and the porous semiconductor layer has a spectral sensitizing dye (a dye that functions as a photosensitizer, (Also called "dye") is adsorbed. On the other hand, the counter electrode is coated with a catalyst such as platinum, the transparent support and the counter electrode are overlapped so that the porous semiconductor layer and the platinum face each other, and an electrolytic solution is injected as a conductive layer between the transparent support and the counter electrode. By encapsulating the side surface of the with an encapsulant such as epoxy resin,
A solar cell is obtained.

【0003】このようにして得られた太陽電池におい
て、多孔性半導体層と色素とからなる多孔性光電変換層
(半導体電極)に光が照射されると、多孔性光電変換層
で電子が発生し、この電子が電気回路を通って対極に移
動し、対極に移動した電子が導電層をイオンとして移動
して多孔性光電変換層に戻り、このようなサイクルが繰
り返されることにより電気エネルギーが取り出される。
In the solar cell thus obtained, when the porous photoelectric conversion layer (semiconductor electrode) composed of the porous semiconductor layer and the dye is irradiated with light, electrons are generated in the porous photoelectric conversion layer. , The electrons move to the counter electrode through the electric circuit, the electrons moved to the counter electrode move in the conductive layer as ions and return to the porous photoelectric conversion layer, and electrical energy is taken out by repeating such a cycle. .

【0004】太陽電池において光電変換に作用する多孔
性光電変換層としては、可視光領域に吸収をもつ色素を
表面に吸着させた多孔性半導体が用いられている。例え
ば、特許第2664194号公報には、遷移金属錯体か
らなる色素を半導体表面に吸着させた金属酸化物半導体
を用いた太陽電池が開示されている。しかし、この太陽
電池は、単一の色素を用いるために、光電交換に作用す
る色素の吸収波長領域が狭く、シリコン系太陽電池と比
較して光電交換効率が低いという問題があった。
As a porous photoelectric conversion layer which acts on photoelectric conversion in a solar cell, a porous semiconductor in which a dye having an absorption in the visible light region is adsorbed on the surface is used. For example, Japanese Patent No. 2664194 discloses a solar cell using a metal oxide semiconductor in which a dye composed of a transition metal complex is adsorbed on the semiconductor surface. However, since this solar cell uses a single dye, there is a problem that the absorption wavelength region of the dye acting on photoelectric exchange is narrow and the photoelectric exchange efficiency is lower than that of the silicon solar cell.

【0005】また、特開2000−243466号公報
には、複数の色素を層状に吸着させた構造の多孔性光電
変換層を有する太陽電池が開示されている。この太陽電
池は、次のようにして製造される。まず、オリゴフェニ
レン色素のポリフェニル(短波長吸収:紫外光〜可視
光)を酸化チタン粒子に吸着させ乾燥させたものを、ア
ルコールに溶解したバインダーと混合することによりペ
ースト化し、透明導電膜上にスクリーン印刷により成膜
し乾燥させる。その後、キサンテン系色素のローダミン
B(中波長吸収:可視光)を用いて、前記と同様にして
ペーストを調製し、前記の工程で形成した膜上に成膜し
乾燥させる。さらに、シアニン系色素のIR140(長
波長吸収:可視光〜赤外光)を用いて、前記と同様にし
てペーストを調製し、前記の工程で形成した膜上に成膜
し乾燥させる。このようにして、合計3種類の色素が層
状に吸着した多孔性光電変換層を有する太陽電池が得ら
れる。
Further, Japanese Patent Application Laid-Open No. 2000-243466 discloses a solar cell having a porous photoelectric conversion layer having a structure in which a plurality of dyes are adsorbed in layers. This solar cell is manufactured as follows. First, the oligophenylene dye polyphenyl (short wavelength absorption: ultraviolet light to visible light) is adsorbed on titanium oxide particles and dried, and the mixture is mixed with a binder dissolved in alcohol to form a paste, which is then formed on a transparent conductive film. A film is formed by screen printing and dried. Then, a paste is prepared in the same manner as above using the xanthene dye Rhodamine B (medium wavelength absorption: visible light), and the paste is formed on the film formed in the above step and dried. Further, a paste is prepared in the same manner as above using IR140 (long wavelength absorption: visible light to infrared light) which is a cyanine dye, and is formed on the film formed in the above step and dried. In this way, a solar cell having a porous photoelectric conversion layer in which a total of three types of dyes are adsorbed in layers is obtained.

【0006】この太陽電池の製造方法では、酸化物半導
体粒子に色素を吸着させ、乾燥させた後、アルコールに
溶解したバインダーと混合しペースト化したものを使用
して成膜・乾燥させる工程を繰り返すことにより、それ
ぞれの色素を吸着させた酸化物半導体層を形成してい
る。このような製造方法では、焼結工程が行えないた
め、酸化物半導体粒子間の接触が悪く(導電パスに大き
な抵抗が生じ)、それぞれの色素が光を吸収しても、有
効に光電流を取り出すことができなかった。また、作業
工程数が多く、それに伴って用いるペースト製造装置や
成膜装置などの数が多くなることから、コスト高になる
という問題もあった。
In this method of manufacturing a solar cell, the steps of adsorbing a dye on the oxide semiconductor particles, drying the mixture, forming a mixture by mixing with a binder dissolved in alcohol and forming a paste, and drying the film are repeated. Thus, the oxide semiconductor layer in which the respective dyes are adsorbed is formed. In such a manufacturing method, since the sintering step cannot be performed, the contact between the oxide semiconductor particles is poor (a large resistance occurs in the conductive path), and even if each dye absorbs light, the photocurrent is effectively generated. I couldn't take it out. In addition, the number of working steps is large, and the number of paste manufacturing apparatuses, film forming apparatuses, and the like used accordingly increases, which causes a problem of high cost.

【0007】また、複数の色素を層状に吸着させた構造
の多孔性光電変換層を有する太陽電池を得る方法とし
て、1種類の色素を吸着させた多孔性光電変換層上に、
電気化学的手法を用いて別の色素を吸着させる方法が考
えられる。しかし、この太陽電池の各層に吸着されたそ
れぞれの色素に、それぞれ固有の吸収波長領域の光を吸
収させるためには、多孔性光電変換層自体の膜厚が大き
くなり、酸化チタンなどの金属酸化物の電子輸送におい
て抵抗が大きくなり、有効に光電流を取り出せないとい
う問題があった。
Further, as a method for obtaining a solar cell having a porous photoelectric conversion layer having a structure in which a plurality of dyes are adsorbed in a layered manner, one type of dye is adsorbed on the porous photoelectric conversion layer.
A method of adsorbing another dye by using an electrochemical method can be considered. However, in order for each dye adsorbed in each layer of this solar cell to absorb light in its own absorption wavelength region, the film thickness of the porous photoelectric conversion layer itself becomes large, and metal oxides such as titanium oxide are oxidized. There has been a problem that the resistance becomes large in the electron transport of an object and the photocurrent cannot be effectively taken out.

【0008】[0008]

【発明が解決しようとする課題】本発明は、光吸収波長
領域が広く、かつ光吸収量が多い高性能な太陽電池を提
供することを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high performance solar cell having a wide light absorption wavelength region and a large light absorption amount.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を行った結果、導電性支持体上
に、多孔性半導体層に色素を吸着させた多孔性光電変換
層、導電層および対極が順次積層された太陽電池におい
て、多孔性光電変換層を、吸収スペクトルにおける最大
感度波長領域異なる少なくとも2種類の色素を吸着させ
て形成し、かつ多孔性光電変換層を、導電性支持体と平
行な層形状である少なくとも3層以上の色素吸着領域と
し、上下層の色素吸着領域がそれぞれ異なる1種類の色
素を吸着した領域とし、それらに挟持された色素吸着領
域が上下層の色素を混合吸着した領域とすることによ
り、光吸収波長領域が広く、かつ光吸収量が多い高性能
な太陽電池が得られることを見出し、本発明を完成する
に到った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a porous photoelectric conversion device in which a dye is adsorbed on a porous semiconductor layer on a conductive support is used. In a solar cell in which a layer, a conductive layer and a counter electrode are sequentially laminated, a porous photoelectric conversion layer is formed by adsorbing at least two kinds of dyes having different maximum sensitivity wavelength regions in an absorption spectrum, and a porous photoelectric conversion layer is formed. The dye adsorption region of at least three layers having a layer shape parallel to the conductive support is defined as a region in which the dye adsorption regions of the upper and lower layers adsorb different dyes, and the dye adsorption region sandwiched between them is the upper region. The inventors have found that a high-performance solar cell having a wide light absorption wavelength region and a large light absorption amount can be obtained by forming a region in which the lower layer dye is mixed and adsorbed, and has completed the present invention.

【0010】本発明によれば、導電性支持体上に、多孔
性半導体層に色素を吸着させた多孔性光電変換層、導電
層および対極が順次積層された色素増感型太陽電池にお
いて、多孔性光電変換層が、吸収スペクトルにおける最
大感度波長領域が異なる少なくとも2種類の色素を吸着
させることにより形成され、かつ導電性支持体と平行な
層形状である少なくとも3層以上の色素吸着領域からな
り、上下層の色素吸着領域がそれぞれ異なる1種類の色
素を吸着した領域であり、それらに挟持された色素吸着
領域が上下層の色素を混合吸着した領域であることを特
徴とする色素増感型太陽電池が提供される。
According to the present invention, in a dye-sensitized solar cell in which a porous photoelectric conversion layer having a dye adsorbed on a porous semiconductor layer, a conductive layer and a counter electrode are sequentially laminated on a conductive support, Photosensitive photoelectric conversion layer is formed by adsorbing at least two types of dyes having different maximum sensitivity wavelength regions in the absorption spectrum, and is composed of at least three or more dye adsorption regions in a layer shape parallel to the conductive support. A dye-sensitized type characterized in that the upper and lower layer dye adsorption regions are regions where one different type of dye is adsorbed, and the dye adsorption region sandwiched between them is a region where the upper and lower layer dyes are mixed and adsorbed. Solar cells are provided.

【0011】また、本発明によれば、(a)導電性支持
体上に多孔性半導体層を形成し、(b)吸収スペクトル
における最大感度波長領域が異なり、かつ多孔性半導体
層への吸着速度の異なる少なくとも2種類の色素を別々
に含む溶液を調製し、得られた溶液に多孔性半導体層を
順次浸漬して、多孔性半導体層に色素を順次吸着させる
ことにより多孔性光電変換層を形成するか、あるいは
(b’)吸収スペクトルにおける最大感度波長領域が異
なり、かつ多孔性半導体層への吸着速度の異なる少なく
とも2種類の色素を含む溶液を調製し、得られた溶液に
多孔性半導体層を浸漬して、多孔性半導体層に少なくと
も2種類の色素を同時に吸着させることにより多孔性光
電変換層を形成し、(c)導電性支持体の多孔性光電変
換層と対極とを対向させ、それらの間に導電層を充填
し、(d)任意に封止材を用いて導電層を封止して、太
陽電池を製造することを特徴とする太陽電池の製造方法
が提供される。
Further, according to the present invention, (a) a porous semiconductor layer is formed on a conductive support, (b) the maximum sensitivity wavelength region in the absorption spectrum is different, and the adsorption rate to the porous semiconductor layer is A solution containing at least two kinds of dyes different from each other is separately prepared, the porous semiconductor layer is sequentially immersed in the obtained solution, and the dyes are sequentially adsorbed to the porous semiconductor layer to form a porous photoelectric conversion layer. Alternatively, (b ′) a solution containing at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum and different adsorption rates to the porous semiconductor layer is prepared, and the obtained solution is added to the porous semiconductor layer. To form a porous photoelectric conversion layer by simultaneously adsorbing at least two kinds of dyes on the porous semiconductor layer, and (c) the porous photoelectric conversion layer of the conductive support and the counter electrode are opposed to each other. A solar cell is manufactured by filling the space between them with a conductive layer, and (d) sealing the conductive layer by optionally using a sealing material to manufacture a solar cell. .

【0012】[0012]

【発明の実施の形態】本発明の太陽電池は、導電性支持
体上に、多孔性半導体層に色素を吸着させた多孔性光電
変換層、導電層および対極が順次積層された色素増感型
太陽電池において、多孔性光電変換層が、吸収スペクト
ルにおける最大感度波長領域が異なる少なくとも2種類
の色素を吸着させることにより形成され、かつ導電性支
持体と平行な層形状である少なくとも3層以上の色素吸
着領域からなり、上下層の色素吸着領域がそれぞれ異な
る1種類の色素を吸着した領域であり、それらに挟持さ
れた色素吸着領域が上下層の色素を混合吸着した領域で
あることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The solar cell of the present invention is a dye-sensitized type in which a porous photoelectric conversion layer having a porous semiconductor layer adsorbing a dye, a conductive layer and a counter electrode are sequentially laminated on a conductive support. In the solar cell, the porous photoelectric conversion layer is formed by adsorbing at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum, and has at least three layers having a layer shape parallel to the conductive support. It is characterized in that it is composed of a dye adsorption region, and the dye adsorption regions of the upper and lower layers are regions where one different type of dye is adsorbed, and the dye adsorption region sandwiched between them is a region in which the dyes of the upper and lower layers are mixed and adsorbed. To do.

【0013】本発明における「最大感度波長領域」は、
色素の光吸収スペクトルのうち、最大の吸収感度を示す
ピーク波長(最大光吸収波長)において、ピーク波長を
中心として吸収感度がピーク波長の−20%となる波長
の領域、およびピーク波長を中心とする50nm幅の波
長領域のいずれか広い方を意味する。
The "maximum sensitivity wavelength region" in the present invention is
In the light absorption spectrum of the dye, at the peak wavelength (maximum light absorption wavelength) showing the maximum absorption sensitivity, the wavelength region in which the absorption sensitivity is −20% of the peak wavelength around the peak wavelength, and the peak wavelength Means the wider one of the wavelength regions of 50 nm width.

【0014】本発明の好適な実施形態について、図面を
用いて説明する。なお、この実施形態は一例であり、種
々の形態での実施が本発明の範囲内で可能である。図1
は、本発明の太陽電池の層構成を示す要部の概略断面図
である。図1において、1は透明支持体、2は透明導電
体、3は多孔性光電変換層、4は第1色素が主として吸
着した領域、5は第2色素が主として吸着した領域、6
は第1色素および第2色素が共に(混合して)吸着した
領域、7は導電層(酸化還元性電解液)、8は対極、9
は白金膜、10は封止材である。透明支持体1と透明導
電体2とを合わせて、導電性支持体11ともいう。
A preferred embodiment of the present invention will be described with reference to the drawings. It should be noted that this embodiment is an example, and various embodiments can be implemented within the scope of the present invention. Figure 1
FIG. 3 is a schematic cross-sectional view of a main part showing a layer structure of a solar cell of the present invention. In FIG. 1, 1 is a transparent support, 2 is a transparent conductor, 3 is a porous photoelectric conversion layer, 4 is a region where a first dye is mainly adsorbed, 5 is a region where a second dye is mainly adsorbed, 6
Is a region where both the first dye and the second dye are adsorbed (mixed) together, 7 is a conductive layer (oxidation-reduction electrolyte), 8 is a counter electrode, 9
Is a platinum film, and 10 is a sealing material. The transparent support 1 and the transparent conductor 2 are collectively referred to as a conductive support 11.

【0015】導電性支持体11と対極8は、少なくとも
一方が透明であり、金属板基板、またはガラス板および
透明プラスチックシートなどの基板上に金、銀、アルミ
ニウム、インジウム、酸化インジウムスズ(ITO膜)
および酸化スズなどの導電膜が形成されたものから構成
される。基板上に導電膜を形成する方法としては、材料
となる成分の真空蒸着法、スパッタリング法、CVD
法、PVD法などの気相法、ゾルゲル法によるコーティ
ング法などの公知の方法が挙げられる。図1における導
電性支持体11は透明であり、上記の基板からなる透明
支持体1と上記の導電膜からなる透明導電体2から構成
されている。また、対極8には、触媒として作用する白
金膜やカーボン膜などがコーティングされていてもよ
い。
At least one of the conductive support 11 and the counter electrode 8 is transparent, and gold, silver, aluminum, indium, indium tin oxide (ITO film) is formed on a metal plate substrate or a substrate such as a glass plate and a transparent plastic sheet. )
And a film on which a conductive film such as tin oxide is formed. As a method of forming a conductive film on a substrate, a vacuum evaporation method, a sputtering method, a CVD method of a component serving as a material are used.
Examples of the known method include a vapor phase method such as a PVD method, a PVD method, and a coating method using a sol gel method. The conductive support 11 in FIG. 1 is transparent and is composed of the transparent support 1 made of the above substrate and the transparent conductor 2 made of the above conductive film. Further, the counter electrode 8 may be coated with a platinum film or a carbon film which acts as a catalyst.

【0016】多孔性光電変換層3は、吸収スペクトルに
おける最大感度波長領域が異なり、かつ多孔性半導体層
への吸着速度の異なる少なくとも2種類の色素を吸着さ
せることにより形成されてなる。
The porous photoelectric conversion layer 3 is formed by adsorbing at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum and different adsorption rates to the porous semiconductor layer.

【0017】上記のように形成された多孔性光電変換層
3は、導電性支持体と平行な層形状である少なくとも3
層以上の色素吸着領域からなり、上下層の色素吸着領域
がそれぞれ異なる1種類の色素を吸着した領域であり、
それらに挟持された色素吸着領域が上下層の色素を混合
吸着した領域である。
The porous photoelectric conversion layer 3 formed as described above has a layer shape parallel to the conductive support and is at least 3.
It is composed of more than one layer of dye adsorption regions, and the upper and lower layers are each a region where one different type of dye is adsorbed,
The dye adsorption region sandwiched between them is a region where the dyes in the upper and lower layers are mixed and adsorbed.

【0018】多孔性半導体層は、例えば、TiO2、S
nO2、ZnO、Nb26、ZrO2、CeO2、WO3
SiO2、Al23、NiO、CuAlO2、SrCu2
2などの酸化物またはこれら複合酸化物から形成さ
れ、その形態としては粒子状、膜状などが挙げられ、導
電性支持体11上に形成された膜状の多孔性半導体が特
に好ましい。
The porous semiconductor layer is made of, for example, TiO 2 , S.
nO 2 , ZnO, Nb 2 O 6 , ZrO 2 , CeO 2 , WO 3 ,
SiO 2 , Al 2 O 3 , NiO, CuAlO 2 , SrCu 2
It is formed from an oxide such as O 2 or a composite oxide thereof, and its form includes a particle form, a film form, and the like, and a film-like porous semiconductor formed on the conductive support 11 is particularly preferable.

【0019】導電性支持体11上に膜状の多孔性半導体
層を形成する方法としては、特に限定されず、公知の方
法が挙げられる。具体的には、(1)半導体粒子を含有
する懸濁液を導電性支持体上に塗布し、乾燥および焼成
して多孔性半導体層を形成する方法、(2)所望の原料
ガスを用いたCVD法およびMOCVD法などにより、
導電性支持体上に多孔性半導体層を形成する方法、
(3)原料固体を用いたPVD法、蒸着法、スパッタリ
ング法などにより、導電性支持体上に多孔性半導体層を
形成する方法、(4)ゾルーゲル法、電気化学的な酸化
還元反応を利用した方法などにより、導電性支持体上に
多孔性半導体層を形成する方法などが挙げられる。
The method for forming the film-like porous semiconductor layer on the conductive support 11 is not particularly limited, and a known method can be used. Specifically, (1) a method of forming a porous semiconductor layer by applying a suspension containing semiconductor particles on a conductive support, and drying and firing the solution, (2) using a desired source gas By the CVD method and the MOCVD method,
A method of forming a porous semiconductor layer on a conductive support,
(3) A method of forming a porous semiconductor layer on a conductive support by a PVD method, a vapor deposition method, a sputtering method, etc. using a raw material solid, (4) a sol-gel method, and an electrochemical redox reaction were used. Examples of the method include a method of forming a porous semiconductor layer on a conductive support by a method.

【0020】多孔性半導体層の形成は、上記の方法の組
み合わせによっても可能であるが、製造工程の単純化お
よび製造コスト低減の観点から、単一の方法(単一工
程)で多孔性半導体層を形成するのが好ましい。
The porous semiconductor layer can be formed by combining the above methods, but from the viewpoint of simplifying the manufacturing process and reducing the manufacturing cost, the porous semiconductor layer is formed by a single method (single step). Are preferably formed.

【0021】多孔性半導体層の膜厚は、特に限定される
ものではないが、光透過性、光電変換効率などの観点か
ら、0.5〜20μm程度が好ましい。また、光電変換
効率を向上させるためには、より多くの色素を多孔性半
導体層に吸着させることが必要であり、このために多孔
性半導体の比表面積は大きなものが好ましく、10〜2
00m2/g程度が好ましい。
The thickness of the porous semiconductor layer is not particularly limited, but is preferably about 0.5 to 20 μm from the viewpoint of light transmittance, photoelectric conversion efficiency and the like. Further, in order to improve the photoelectric conversion efficiency, it is necessary to adsorb a larger amount of dye onto the porous semiconductor layer. Therefore, it is preferable that the porous semiconductor has a large specific surface area.
It is preferably about 00 m 2 / g.

【0022】上記の多孔性半導体層の形成方法(1)に
ついて、具体的に説明する。材料となる半導体粒子を分
散剤、溶剤などに加え、分散させて懸濁液を調製し、そ
の懸濁液を導電性支持体11上に塗布する。塗布方法と
しては、ドクターブレード法、スキージ法、スピンコー
ト法、スクリーン印刷法など公知の方法が挙げられる。
その後、塗膜を乾燥および焼成することにより、多孔性
半導体層が得られる。乾燥・焼成においては、使用する
導電性支持体や半導体粒子の種類により、温度、時間、
雰囲気などの条件を適宜調整する必要がある。焼成は、
例えば、大気雰囲気下または不活性ガス雰囲気下、50
〜800℃程度の範囲内で、10秒〜12時間程度で行
うことができる。この乾燥および焼成は、単一の温度で
1回または温度を変化させて2回以上行うことができ
る。
The method (1) for forming the above-mentioned porous semiconductor layer will be specifically described. The semiconductor particles to be the material are added to a dispersant, a solvent, etc. and dispersed to prepare a suspension, and the suspension is applied onto the conductive support 11. Examples of the coating method include known methods such as a doctor blade method, a squeegee method, a spin coating method, and a screen printing method.
Then, the coating film is dried and baked to obtain a porous semiconductor layer. In the drying and firing, depending on the type of conductive support and semiconductor particles used, temperature, time,
It is necessary to appropriately adjust the conditions such as the atmosphere. Firing
For example, in an air atmosphere or an inert gas atmosphere, 50
It can be performed within a range of about 800 ° C. for about 10 seconds to 12 hours. This drying and baking can be performed once at a single temperature or twice or more at different temperatures.

【0023】半導体粒子としては、市販されているもの
のうち適当な平均粒径、例えば1〜500nm程度の平
均粒径を有する、前記のような単一または化合物半導体
の粒子などが挙げられる。また、この半導体粒子を分散
するために使用される溶剤は、エチレングリコールモノ
メチルエーテルなどのグライム系溶剤、イソプロピルア
ルコール、テルピネオールなどのアルコール系溶剤、イ
ソプロピルアルコール/トルエンなどの混合溶剤、水な
どが挙げられる。
Examples of the semiconductor particles include particles of the above-mentioned single or compound semiconductor having an appropriate average particle diameter of commercially available particles, for example, an average particle diameter of about 1 to 500 nm. The solvent used to disperse the semiconductor particles includes a glyme solvent such as ethylene glycol monomethyl ether, an alcohol solvent such as isopropyl alcohol and terpineol, a mixed solvent such as isopropyl alcohol / toluene, and water. .

【0024】多孔性半導体層に吸着して光増感剤として
機能する色素としては、種々の可視光領域および/また
は赤外光領域に吸収をもつものであって、多孔性半導体
層に色素を強固に吸着させるために、色素分子中にカル
ボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキ
シル基、ヒドロキシアルキル基、スルホン酸基、エステ
ル基、メルカプト基、ホスホニル基などのインターロッ
ク基を有するものが好ましく、これらの中でも、カルボ
ン酸基およびカルボン酸無水基が特に好ましい。なお、
インターロック基は、励起状態の色素と多孔性半導体の
導電帯との間の電子移動を容易にする電気的結合を提供
するものである。
The dye that functions as a photosensitizer by being adsorbed on the porous semiconductor layer has absorption in various visible light regions and / or infrared light regions, and the dye can be incorporated into the porous semiconductor layer. Those having an interlocking group such as a carboxylic acid group, a carboxylic acid anhydride group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, or a phosphonyl group in the dye molecule for strongly adsorbing Are preferred, and among these, a carboxylic acid group and a carboxylic acid anhydride group are particularly preferred. In addition,
The interlocking group provides an electrical bond that facilitates electron transfer between the excited state dye and the conductive band of the porous semiconductor.

【0025】インターロック基を有する色素としては、
例えば、ルテニウムビピリジン系色素、アゾ系色素、キ
ノン系色素、キノンイミン系色素、キナクリドン系色
素、スクアリリウム系色素、シアニン系色素、メロシア
ニン系色素、トリフェニルメタン系色素、キサンテン系
色素、ポリフィリン系色素、フタロシアニン系色素、べ
リレン系色素、インジゴ系色素、ナフタロシアニン系色
素などが挙げられる。
As the dye having an interlock group,
For example, ruthenium bipyridine dye, azo dye, quinone dye, quinonimine dye, quinacridone dye, squarylium dye, cyanine dye, merocyanine dye, triphenylmethane dye, xanthene dye, porphyrin dye, phthalocyanine Examples thereof include dyes of the series, berylene dyes, indigo dyes, and naphthalocyanine dyes.

【0026】本発明においては、上記の色素のうち、吸
収スペクトルにおける最大感度波長領域が異なる少なく
とも2種類が用いられ、これにより、幅広い波長領域の
光を有効利用することができる。このような観点から、
2種類の色素を用いる場合、色素は、400nm以上6
00nm未満の範囲に吸収スペクトルにおける最大感度
波長領域を有する色素と、600nm以上1000nm
以下の範囲に吸収スペクトルにおける最大感度波長領域
を有する色素とからなるのが好ましい。具体的には、6
30〜800nmの最大感度波長領域を有するフタロシ
アニン系色素と450〜600nmの最大感度波長領域
を有するペリレン系色素との組み合わせが代表的なもの
として挙げられる。
In the present invention, at least two kinds of the above dyes having different maximum sensitivity wavelength regions in the absorption spectrum are used, whereby light in a wide wavelength region can be effectively used. From this perspective,
When using two kinds of dyes, the dye should be 400 nm or more 6
A dye having a maximum sensitivity wavelength region in the absorption spectrum in the range of less than 00 nm, and 600 nm or more and 1000 nm
It is preferably composed of a dye having the maximum sensitivity wavelength region in the absorption spectrum in the following range. Specifically, 6
A typical example is a combination of a phthalocyanine dye having a maximum sensitivity wavelength region of 30 to 800 nm and a perylene dye having a maximum sensitivity wavelength region of 450 to 600 nm.

【0027】また、異なる1種類の色素を吸着した領域
が、吸収スペクトルにおける最大感度波長領域を短波長
側に有する色素を吸着した領域から吸収スペクトルにお
ける最大感度波長領域を長波長側に有する色素を吸着し
た領域の順で受光面側から配置されてなるのが好まし
い。これにより、最大感度吸収波長領域を短波長側に有
する色素で吸収できなかった光を、最大感度吸収波長領
域を長波長側に有する色素で吸収させることができ、幅
広い波長領域の光を有効利用することができる。
Further, the region where one different kind of dye is adsorbed is changed from the region where the dye having the maximum sensitivity wavelength region in the absorption spectrum is adsorbed to the dye having the maximum sensitivity wavelength region in the absorption spectrum to the long wavelength side. It is preferable that the areas adsorbed are arranged in this order from the light-receiving surface side. As a result, the light that could not be absorbed by the dye having the maximum sensitivity absorption wavelength region on the short wavelength side can be absorbed by the dye having the maximum sensitivity absorption wavelength region on the long wavelength side, and the light in a wide wavelength region can be effectively used. can do.

【0028】理論的には、上下層の色素を混合吸着した
領域が存在しない、すなわち吸収スペクトルにおける最
大感度波長領域が異なる少なくとも2種類の色素がそれ
ぞれ単分子レベルで層状に区別されて多孔性半導体層に
吸着されている方が、色素間の相互作用がなく、効率的
に電子注入が行われる。しかし、各色素の吸光度および
各色素を単体で用いたときの太陽電池の量子効率などに
より変化するが、上下層の色素を混合吸着した領域が、
多孔性光電変換層の総膜厚に対して50%以下、好まし
くは10%以下の膜厚を有する場合には、上下層の色素
を混合吸着した領域が存在しない場合よりも、多孔性光
電変換層の総厚みを薄くすることができる。これによ
り、キャリア輸送における抵抗が低減され、より効率の
よい太陽電池を得ることができる。
Theoretically, there is no region in which the dyes in the upper and lower layers are mixed and adsorbed, that is, at least two types of dyes having different maximum sensitivity wavelength regions in the absorption spectrum are distinguished as a layer at the single molecule level, and the porous semiconductor is obtained. When the dye is adsorbed on the layer, there is no interaction between the dyes and the electron injection is performed efficiently. However, it varies depending on the absorbance of each dye and the quantum efficiency of the solar cell when each dye is used alone, but the region where the upper and lower layers are mixed and adsorbed is
When the film thickness is 50% or less, preferably 10% or less, with respect to the total film thickness of the porous photoelectric conversion layer, the porous photoelectric conversion is more effective than the case where the regions in which the dyes in the upper and lower layers are mixed and adsorbed are not present. The total thickness of the layers can be reduced. Thereby, resistance in carrier transport is reduced, and a more efficient solar cell can be obtained.

【0029】また、各色素の吸光度および各色素を単体
で用いたときの太陽電池の量子効率などにより変化する
が、上下層の色素を混合吸着した領域は、多孔性半導体
層の厚み方向に対して、どの部分に存在しても問題はな
い。したがって、多孔性光電変換層を形成する場合に
は、使用する色素の性能(例えば、光に対する吸収能
力)によって、異なる1種類の色素を吸着した領域およ
び上下層の色素を混合吸着した領域の各膜厚、ならびに
多孔性光電変換層の総膜厚を適宜変化させる必要があ
る。
Further, although it varies depending on the absorbance of each dye and the quantum efficiency of the solar cell when each dye is used alone, the regions where the dyes in the upper and lower layers are mixed and adsorbed are in the thickness direction of the porous semiconductor layer. And there is no problem even if it exists in any part. Therefore, in the case of forming the porous photoelectric conversion layer, each of the region in which one different kind of dye is adsorbed and the region in which the upper and lower layers are mixed and adsorbed are selected depending on the performance (for example, light absorption capacity) of the dye used. It is necessary to appropriately change the film thickness and the total film thickness of the porous photoelectric conversion layer.

【0030】多孔性半導体層に色素を吸着させる方法と
しては、例えば導電性支持体上に形成された多孔性半導
体層を、色素を溶解した溶液(色素吸着用溶液)に浸漬
する方法が挙げられる。また、多孔性半導体層への吸着
速度の異なる色素の組み合わせを選択することにより、
導電性支持体と平行な層形状である少なくとも3層以上
の色素吸着領域からなり、上下層の色素吸着領域がそれ
ぞれ異なる1種類の色素を吸着した領域であり、それら
に挟持された色素吸着領域が上下層の色素を混合吸着し
た領域である多孔性光電変換層を形成することができ
る。
Examples of the method of adsorbing the dye on the porous semiconductor layer include a method of immersing the porous semiconductor layer formed on the conductive support in a solution in which the dye is dissolved (dye adsorbing solution). . Further, by selecting a combination of dyes having different adsorption rates to the porous semiconductor layer,
The layer is composed of at least three layers of dye adsorption regions parallel to the conductive support, and the dye adsorption regions of the upper and lower layers are regions where one different type of dye is adsorbed, and the dye adsorption regions sandwiched between them. It is possible to form a porous photoelectric conversion layer in which the upper and lower layers are areas where the dyes are mixed and adsorbed.

【0031】色素を溶解させる溶剤としては、色素を溶
解するものであればよく、具体的には、エタノールなど
のアルコール類、アセトンなどのケトン類、ジエチルエ
ーテル、テトラヒドロフランなどのエーテル類、アセト
ニトリルなどの窒素化合物類、クロロホルムなどのハロ
ゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水
素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどの
エステル類、水などが挙げられる。これらの溶剤は2種
以上を混合して用いることもできる。
The solvent for dissolving the dye may be any solvent capable of dissolving the dye, and specific examples thereof include alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, acetonitrile and the like. Examples thereof include nitrogen compounds, halogenated aliphatic hydrocarbons such as chloroform, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, esters such as ethyl acetate, and water. These solvents may be used as a mixture of two or more kinds.

【0032】溶液中の色素濃度は、使用する色素および
溶剤の種類により適宜調整することができるが、吸着機
能を向上させるためにはできるだけ高濃度である方が好
ましい。色素濃度は、例えば5×10-5モル/リットル
以上であればよい。
The concentration of the dye in the solution can be appropriately adjusted depending on the types of dye and solvent used, but it is preferable that the concentration is as high as possible in order to improve the adsorption function. The dye concentration may be, for example, 5 × 10 −5 mol / liter or more.

【0033】多孔性半導体層に色素を吸着させる方法に
ついて、具体的に説明する。 吸着方法1 吸収スペクトルにおける最大感度波長領域が異なり、か
つ多孔性半導体層への吸着速度の異なる少なくとも2種
類の色素を別々に含む溶液を調製し、得られた溶液に多
孔性半導体層を順次浸漬して、多孔性半導体層に色素を
順次吸着させることにより多孔性光電変換層を形成す
る。
A method for adsorbing a dye on the porous semiconductor layer will be specifically described. Adsorption Method 1 A solution containing at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum and different adsorption rates to the porous semiconductor layer is prepared separately, and the porous semiconductor layer is sequentially immersed in the obtained solution. Then, the porous photoelectric conversion layer is formed by sequentially adsorbing the dye on the porous semiconductor layer.

【0034】多孔性半導体層への吸着速度が最も遅い色
素を上記の溶剤に上記の濃度範囲で溶解させて、色素吸
着用溶液を調製する。得られた溶液に多孔性半導体層を
浸漬させて、多孔性半導体層に色素を吸着させる。多孔
性半導体層への吸着速度は、溶液中の色素濃度や溶剤の
種類、浸漬工程における溶液の温度、雰囲気の温度およ
び圧力、浸漬時間により制御することができ、例えば室
温程度で、かつ大気圧下が挙げられる。一般に、吸着
(浸漬)を効果的に行うには、加熱下で行えばよい。
The dye having the slowest adsorption rate to the porous semiconductor layer is dissolved in the above solvent in the above concentration range to prepare a dye adsorbing solution. The porous semiconductor layer is immersed in the obtained solution to adsorb the dye on the porous semiconductor layer. The adsorption rate to the porous semiconductor layer can be controlled by the concentration of the dye in the solution, the type of the solvent, the temperature of the solution in the dipping step, the temperature and pressure of the atmosphere, and the dipping time. The following are listed. Generally, in order to carry out adsorption (immersion) effectively, heating may be performed.

【0035】浸漬後は、アセトニトリルなどの極性溶
剤、アルコール系溶剤などの有機溶剤、ピリジンなどの
アミン類を用いる公知の方法により、半導体を洗浄、乾
燥すればよい。色素の吸着後、多孔性半導体層への吸着
速度が遅いものから早いものの順に、上記と同様な工程
により、多孔性半導体層に次の色素を吸着させる。
After the immersion, the semiconductor may be washed and dried by a known method using a polar solvent such as acetonitrile, an organic solvent such as an alcohol solvent, and amines such as pyridine. After the dye is adsorbed, the next dye is adsorbed to the porous semiconductor layer in the order from the slowest adsorbing speed to the porous semiconductor layer to the fast adsorbing speed by the same steps as above.

【0036】導電性支持体上に形成された多孔性半導体
層に色素を吸着させる場合、導電性支持体に接していな
い多孔性半導体層面から色素吸着用溶液が浸透し吸着が
進行するため、吸着条件を制御することにより、導電性
支持体と平行した形状で多孔性半導体層中に導電性支持
体と接していない面から、層状に色素吸着層を形成させ
ることができる。吸着させた層の厚みは、吸着条件によ
り制御することができる。
When a dye is adsorbed on the porous semiconductor layer formed on the conductive support, the dye adsorbing solution permeates from the surface of the porous semiconductor layer which is not in contact with the conductive support, and the adsorption proceeds. By controlling the conditions, the dye adsorption layer can be formed in layers from the surface of the porous semiconductor layer that is parallel to the conductive support and is not in contact with the conductive support. The thickness of the adsorbed layer can be controlled by the adsorption conditions.

【0037】多孔性半導体層への色素の吸着速度の制御
方法としては、浸漬時間をパラメーターとして行うのが
好ましい。図2は、色素吸着用溶液に多孔性半導体層を
浸漬する際の浸漬時間と色素の浸透率の関係を示す図で
ある。これは、本発明者らが、吸着条件の浸漬時間のみ
を変化させること以外は、後述する実施例1と同様にし
て、色素吸着用溶液に多孔性半導体層を浸漬し、多孔性
半導体層に色素を吸着させる実験を予め行って得た結果
である。図2において、X軸は浸漬時間(分)、Y軸
(左)は多孔性半導体層の総膜厚に対する浸透部分の厚
みの比率、すなわち導電性支持体とは反対側からの多孔
性半導体層の吸着比率[浸透率(%)]、Y軸(右)
は、色素を吸着させた多孔性半導体層の全体の吸光度
(absorbance)を示している。
As a method for controlling the adsorption rate of the dye on the porous semiconductor layer, it is preferable to use the immersion time as a parameter. FIG. 2 is a diagram showing the relationship between the immersion time and the dye permeability when the porous semiconductor layer is immersed in the dye adsorbing solution. This is the same as in Example 1 to be described later, except that the present inventors changed only the immersion time of the adsorption conditions, by immersing the porous semiconductor layer in the dye adsorption solution to form a porous semiconductor layer. It is a result obtained by conducting an experiment for adsorbing a dye in advance. In FIG. 2, the X-axis is the immersion time (minutes), and the Y-axis (left) is the ratio of the thickness of the permeated portion to the total thickness of the porous semiconductor layer, that is, the porous semiconductor layer from the side opposite to the conductive support. Adsorption ratio [penetration rate (%)], Y axis (right)
Shows the overall absorbance of the porous semiconductor layer on which the dye is adsorbed.

【0038】また、図2の実験における浸漬時間15分
間の多孔性半導体層の断面図を図3に示す。図3におい
て、31は色素が吸着した領域、32は色素が吸着して
いない領域である。図2から、浸漬時間を変化させるこ
とにより、多孔性半導体層への色素の吸着速度を制御す
ることができることがわかり、図3から、多孔性半導体
層に層状に色素を吸着できることがわかる。
Further, FIG. 3 shows a cross-sectional view of the porous semiconductor layer in the experiment of FIG. 2 with the immersion time of 15 minutes. In FIG. 3, 31 is a region where the dye is adsorbed, and 32 is a region where the dye is not adsorbed. It can be seen from FIG. 2 that the adsorption rate of the dye on the porous semiconductor layer can be controlled by changing the immersion time, and FIG. 3 shows that the dye can be adsorbed in layers on the porous semiconductor layer.

【0039】吸着方法2 吸収スペクトルにおける最大感度波長領域が異なり、か
つ多孔性半導体層への吸着速度の異なる少なくとも2種
類の色素を含む溶液を調製し、得られた溶液に多孔性半
導体層を浸漬して、多孔性半導体層に少なくとも2種類
の色素を同時に吸着させることにより多孔性光電変換層
を形成する。
Adsorption Method 2 A solution containing at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum and different adsorption rates to the porous semiconductor layer is prepared, and the porous semiconductor layer is dipped in the obtained solution. Then, a porous photoelectric conversion layer is formed by simultaneously adsorbing at least two kinds of dyes to the porous semiconductor layer.

【0040】吸収スペクトルにおける最大感度波長領域
が異なり、かつ多孔性半導体層への吸着速度の異なる少
なくとも2種類の色素を上記の溶剤に上記の濃度範囲で
溶解させて、色素吸着用溶液を調製する。得られた溶液
に多孔性半導体層を浸漬させて、多孔性半導体層に各色
素を吸着させる。多孔性半導体層への吸着速度は、溶液
中の色素濃度や溶剤の種類、浸漬工程における溶液の温
度、雰囲気の温度および圧力、浸漬時間により制御する
ことができ、例えば室温程度で、かつ大気圧下が挙げら
れる。一般に、吸着(浸漬)を効果的に行うには、加熱
下で行えばよい。浸漬後は、アセトニトリルなどの極性
溶剤、アルコール系溶剤などの有機溶剤、ピリジンなど
のアミン類を用いる公知の方法により、半導体を洗浄、
乾燥すればよい。
A dye adsorption solution is prepared by dissolving at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum and different adsorption rates to the porous semiconductor layer in the above solvent in the above concentration range. . The porous semiconductor layer is immersed in the obtained solution to adsorb each dye to the porous semiconductor layer. The adsorption rate to the porous semiconductor layer can be controlled by the concentration of the dye in the solution, the type of the solvent, the temperature of the solution in the dipping step, the temperature and pressure of the atmosphere, and the dipping time. The following are listed. Generally, in order to carry out adsorption (immersion) effectively, heating may be performed. After the immersion, the semiconductor is washed by a known method using a polar solvent such as acetonitrile, an organic solvent such as an alcohol solvent, and amines such as pyridine,
Just dry.

【0041】導電性支持体上に形成された多孔性半導体
層に色素を吸着させる場合、導電性支持体に接していな
い多孔性半導体層面から色素吸着用溶液が浸透し吸着が
進行するため、各色素は部分的に吸着される。すなわ
ち、吸着速度が早い色素は多孔性半導体層の深くまで
(導電性支持体の近くまで)吸着し、吸着速度が遅い色
素は、多孔性半導体層の浅い部分まで(導電性支持体の
反対側)吸着する。したがって、2種類の色素を使用し
た場合、吸着速度の速い色素が多孔性半導体層の導電性
支持体側に吸着し、それ以外の部分は、吸着速度の速い
ものと遅いものがともに吸着されることになる。図1で
は、前者を第1色素が主として吸着した領域4として示
し、後者を第2色素が主として吸着した領域5と第1色
素および第2色素が共に(混合して)吸着した領域6と
に分けて示している。多孔性半導体層を層状に吸着され
た部分の厚みに関しては、それぞれの色素の多孔性半導
体層への吸着速度により制御することができる。吸着速
度に関しては、上記の条件(溶剤、温度、圧力等)によ
り制御することが可能となる。
When a dye is adsorbed on the porous semiconductor layer formed on the conductive support, the dye adsorbing solution permeates from the surface of the porous semiconductor layer which is not in contact with the conductive support and the adsorption progresses. The dye is partially adsorbed. That is, the dye having a high adsorption rate is adsorbed deep into the porous semiconductor layer (close to the conductive support), and the dye having a low adsorption rate is adsorbed to the shallow part of the porous semiconductor layer (on the opposite side of the conductive support). ) Adsorb. Therefore, when two kinds of dyes are used, the dye having a high adsorption rate is adsorbed on the conductive support side of the porous semiconductor layer, and the other portions are adsorbed both with a high adsorption rate and with a low adsorption rate. become. In FIG. 1, the former is shown as a region 4 where the first dye is mainly adsorbed, and the latter is shown as a region 5 where the second dye is mainly adsorbed and a region 6 where both the first dye and the second dye are adsorbed (mixed). It is shown separately. The thickness of the portion where the porous semiconductor layer is adsorbed in layers can be controlled by the adsorption rate of each dye to the porous semiconductor layer. The adsorption rate can be controlled by the above conditions (solvent, temperature, pressure, etc.).

【0042】異なる1種類の色素を吸着した領域が、吸
収スペクトルにおける最大感度波長領域を短波長側に有
する色素を吸着した領域から吸収スペクトルにおける最
大感度波長領域を長波長側に有する色素を吸着した領域
の順で受光面側から配置されるように、各色素を吸着さ
せるのが好ましい。これにより、入射光を有効に利用で
きる多孔性光電変換層が形成され、高性能な太陽電池が
得られる。
The region adsorbing one different kind of dye adsorbs the dye having the maximum sensitivity wavelength region in the absorption spectrum on the long wavelength side from the region adsorbing the dye having the maximum sensitivity wavelength region on the short wavelength side. It is preferable to adsorb each dye so that the dyes are arranged in order from the light receiving surface side. Thereby, a porous photoelectric conversion layer capable of effectively utilizing incident light is formed, and a high-performance solar cell is obtained.

【0043】このため、少なくとも2種類の色素は、相
対的に、吸収スペクトルにおける最大感度波長領域を短
波長側に有し、かつ多孔性半導体層への吸着速度の速い
色素と、吸収スペクトルにおける最大感度波長領域を長
波長側に有し、かつ多孔性半導体層への吸着速度の遅い
色素との組み合わせを用いるのが好ましい。2種類の色
素を用いる場合、多孔性半導体層への吸着速度は、例え
ば、速い方が1〜5μm/s程度、遅い方が0.05〜
2μm/s程度である。
Therefore, at least two kinds of dyes have a maximum sensitivity wavelength region in the absorption spectrum on the short wavelength side relatively, and a dye having a fast adsorption rate to the porous semiconductor layer and a maximum in the absorption spectrum. It is preferable to use a combination with a dye having a sensitivity wavelength region on the long wavelength side and having a slow adsorption rate to the porous semiconductor layer. When two kinds of dyes are used, the adsorption rate to the porous semiconductor layer is, for example, about 1 to 5 μm / s for the faster one and 0.05 to about 5
It is about 2 μm / s.

【0044】多孔性光電変換層3と対極8との間に充填
される導電層7は、電子、ホール、イオンを輸送できる
導電性材料から構成される。例えば、ポリカルバゾール
などのホール輸送材料;テトラニトロフロオルレノンな
どの電子輸送材料;ポリピロールなどの導電性ポリマ
ー;液体電解質、高分子電解質などのイオン導電体;ヨ
ウ化銅、チオシアン酸銅などのp型半導体が挙げられ
る。
The conductive layer 7 filled between the porous photoelectric conversion layer 3 and the counter electrode 8 is made of a conductive material capable of transporting electrons, holes and ions. For example, hole-transporting materials such as polycarbazole; electron-transporting materials such as tetranitrofluorolenone; conductive polymers such as polypyrrole; ionic conductors such as liquid electrolytes and polymer electrolytes; copper iodide, copper thiocyanate, etc. Type semiconductors.

【0045】上記の導電性材料の中でもイオン導電体が
好ましく、酸化還元性電解質を含む液体電解質が特に好
ましい。このような酸化還元性電解質としては、一般に
電池や太陽電池などにおいて使用することができるもの
であれば特に限定されない。具体的には、LiI、Na
I、KI、CaI2などの金属ヨウ化物とヨウ素の組み
合わせおよびLiBr、NaBr、KBr、CaBr2
などの金属臭化物と臭素の組み合わせが好ましく、これ
らの中でも、LiIとヨウ素の組み合わせが特に好まし
い。
Among the above conductive materials, the ionic conductor is preferable, and the liquid electrolyte containing the redox electrolyte is particularly preferable. Such redox electrolyte is not particularly limited as long as it can be generally used in batteries, solar cells and the like. Specifically, LiI, Na
Combinations of metal iodides such as I, KI, CaI 2 and iodine and LiBr, NaBr, KBr, CaBr 2
A combination of a metal bromide such as bromine and bromine is preferable, and among these, a combination of LiI and iodine is particularly preferable.

【0046】また、電解質の溶剤としては、プロピレン
カーボネートなどのカーボネート化合物、アセトニトリ
ルなどのニトリル化合物、エタノールなどのアルコール
類、その他、水や非プロトン極性物質などが挙げられる
が、これらの中でも、カーボネート化合物やニトリル化
合物が特に好ましい。電解質濃度は、0.1〜1.5モ
ル/リットル程度であり、0.1〜0.7モル/リット
ル程度が好ましい。
Examples of the solvent for the electrolyte include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, and water and aprotic polar substances. Among these, carbonate compounds And nitrile compounds are particularly preferred. The electrolyte concentration is about 0.1 to 1.5 mol / liter, preferably about 0.1 to 0.7 mol / liter.

【0047】封止材9は、導電層7を構成する材料が漏
れ出さないように太陽電池をシールできるものであれ
ば、特に限定されない。例えば、エポキシ樹脂、シリコ
ン樹脂、熱可塑性樹脂などが挙げられる。また、導電層
7を構成する材料が固体であって、太陽電池からの流出
の恐れがない場合には、封止材9は必ずしも設けなくて
もよい。
The sealing material 9 is not particularly limited as long as it can seal the solar cell so that the material forming the conductive layer 7 does not leak out. For example, epoxy resin, silicone resin, thermoplastic resin, etc. may be mentioned. Further, when the material forming the conductive layer 7 is solid and there is no risk of outflow from the solar cell, the sealing material 9 may not be necessarily provided.

【0048】[0048]

【実施例】本発明を実施例および比較例によりさらに具
体的に説明するが、これらの実施例により本発明が限定
されるものではない。なお、以下の実施例および比較例
については、本発明の太陽電池の層構成を示す要部の概
略断面図である図1に基づいて説明する。図1におい
て、1は透明支持体、2は透明導電体、3は多孔性光電
変換層、4は第1色素が主として吸着した領域、5は第
2色素が主として吸着した領域、6は第1色素および第
2色素が共に(混合して)吸着した領域、7は導電層
(酸化還元性電解液)、8は対極、9は白金膜、10は
封止材である。透明支持体1と透明導電体2とを合わせ
て、導電性支持体11ともいう。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The following examples and comparative examples will be described with reference to FIG. 1, which is a schematic cross-sectional view of an essential part showing the layer structure of the solar cell of the present invention. In FIG. 1, 1 is a transparent support, 2 is a transparent conductor, 3 is a porous photoelectric conversion layer, 4 is a region where a first dye is mainly adsorbed, 5 is a region where a second dye is mainly adsorbed, and 6 is a first. A region where both the dye and the second dye are adsorbed (mixed), 7 is a conductive layer (oxidation-reduction electrolyte), 8 is a counter electrode, 9 is a platinum film, and 10 is a sealing material. The transparent support 1 and the transparent conductor 2 are collectively referred to as a conductive support 11.

【0049】実施例1 多孔性半導体層に2種類の色素を層状に吸着させた多孔
性光電変換層を用いた太陽電池を製造し、その性能を評
価した。まず、多孔性光電変換層3の多孔性半導体層と
なる酸化チタン膜を形成する塗液として、市販の酸化チ
タンペースト(Solaronix社製、商品名:D/
SP)を用意した。透明導電体2としてSnO2膜を形
成したガラス基板1の透明導電膜2側に、スクリーン印
刷機を用いて酸化チタンペーストを塗布し、膜厚20μ
m程度、面積10mm×10mm程度の塗膜を得た。得
られた塗膜を120℃で15分間予備乾燥し、さらに酸
素雰囲気下、500℃で30分間焼成し、多孔性半導体
層3として膜厚17μm程度の酸化チタン膜を得た。
Example 1 A solar cell using a porous photoelectric conversion layer in which two kinds of dyes were adsorbed in layers on the porous semiconductor layer was produced and its performance was evaluated. First, as a coating liquid for forming a titanium oxide film to be a porous semiconductor layer of the porous photoelectric conversion layer 3, a commercially available titanium oxide paste (manufactured by Solaronix, trade name: D /
SP) was prepared. Titanium oxide paste was applied to the transparent conductive film 2 side of the glass substrate 1 on which the SnO 2 film was formed as the transparent conductor 2 using a screen printing machine to obtain a film thickness of 20 μm.
A coating film having a size of about m and an area of about 10 mm × 10 mm was obtained. The obtained coating film was pre-dried at 120 ° C. for 15 minutes and further baked at 500 ° C. for 30 minutes in an oxygen atmosphere to obtain a titanium oxide film having a thickness of about 17 μm as the porous semiconductor layer 3.

【0050】次に、吸収スペクトルにおける最大感度吸
収波長領域が長波長側に有する色素(第2色素)とし
て、式(1)で表されるフタロシアニン系色素を使用し
た。合成手法はJ.Porphyrins Phtha
locyanines 3,230−237(199
9)に記載の手法を使用した。式(1)で表されるフタ
ロシアニン系色素をジメチルホルムアミドに濃度4×1
-4モル/リットルで溶解させ、第2色素の吸着用色素
溶液を調製した。この吸着用色素溶液と上述で得られた
酸化チタン膜を形成した透明支持体1を容器に入れ、約
15分間浸漬させることにより、酸化チタン膜に第1色
素を吸着させた。なお、その他の条件は室温、常圧であ
る。その後、無水エタノールで数回洗浄し約60℃で約
20分間乾燥させた。
Next, the phthalocyanine dye represented by the formula (1) was used as the dye (second dye) having the maximum sensitivity absorption wavelength region on the long wavelength side in the absorption spectrum. The synthesis method is described in J. Porphyrins Phtha
locyanines 3,230-237 (199
The method described in 9) was used. The phthalocyanine dye represented by formula (1) was added to dimethylformamide at a concentration of 4 × 1.
It was dissolved at 0 −4 mol / liter to prepare a dye solution for adsorbing the second dye. The adsorption dye solution and the transparent support 1 having the titanium oxide film formed as described above were placed in a container and immersed for about 15 minutes to adsorb the first dye to the titanium oxide film. The other conditions are room temperature and normal pressure. Then, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes.

【0051】[0051]

【化1】 [Chemical 1]

【0052】次に、吸収スペクトルにおける最大感度吸
収波長領域を短波長側に有する色素(第1色素)とし
て、式(2)で表されるキサンテン系色素(ACROS
社製、製品名:EOSIN−Y)をジメチルホルムアミ
ドに溶解して、濃度4×10-4モル/リットルの第1色
素の吸着用色素溶液を調製した。この吸着用色素溶液と
上述で得られた第2色素を吸着した酸化チタン膜を具備
する透明支持体1を容器に入れ、約10分間浸透させる
ことにより、酸化チタン膜に第1色素を吸着させた。な
お、その他の条件は室温、常圧である。その後、無水エ
タノールで数回洗浄し約60℃で約20分間乾燥させ
た。
Next, as a dye (first dye) having the maximum sensitivity absorption wavelength region in the absorption spectrum on the short wavelength side, the xanthene dye (ACROS) represented by the formula (2) is used.
(Trade name, EOSIN-Y manufactured by the company) was dissolved in dimethylformamide to prepare a dye solution for adsorption of the first dye having a concentration of 4 × 10 −4 mol / liter. The transparent support 1 having the titanium oxide film adsorbing the second dye obtained above and the adsorbing dye solution is placed in a container and allowed to penetrate for about 10 minutes to allow the titanium oxide film to adsorb the first dye. It was The other conditions are room temperature and normal pressure. Then, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes.

【0053】[0053]

【化2】 [Chemical 2]

【0054】上述の工程により形成された第1色素およ
び第2色素を別々に吸着させた酸化チタン膜からなる多
孔性光電変換層3の断面図を図4に示す。図4は光学顕
微鏡により得られた図であり、41は第2色素が主とし
て吸着した領域、42は第1色素が主として吸着した領
域、43は第1色素および第2色素が共に(混合して)
吸着した領域を示す。この図から、上述の工程により、
単一工程で形成した酸化チタン膜に複数の色素を層状に
吸着させることができることがわかる。
FIG. 4 shows a cross-sectional view of the porous photoelectric conversion layer 3 formed of the titanium oxide film in which the first dye and the second dye formed by the above steps are adsorbed separately. FIG. 4 is a diagram obtained by an optical microscope. 41 is a region where the second dye is mainly adsorbed, 42 is a region where the first dye is mainly adsorbed, 43 is the first dye and the second dye together (mixed )
The adsorbed area is shown. From this figure, by the above steps,
It can be seen that a plurality of dyes can be adsorbed in layers on the titanium oxide film formed in a single step.

【0055】また、図4を多孔性光電変換層3の膜厚に
対してRGBの強度「R」で画像解析した結果を図5に
示す。実施例1で使用した第1色素および第2色素は、
それぞれ赤色および青色系統の色素であるため、色相
「R」に注目し、画像解析を行った。その結果、それぞ
れの色素が吸着した領域に挟持された部分(各色素が吸
着した層の界面付近)には、多孔性光電変換層3の総膜
厚に対して約9.4%程度の混合吸着した領域(第1色
素および第2色素が共に(混合して)吸着した領域)が
存在することが確認できた。
FIG. 5 shows the result of image analysis of FIG. 4 with respect to the film thickness of the porous photoelectric conversion layer 3 by the intensity “R” of RGB. The first dye and the second dye used in Example 1 are
Since they are red and blue dyes, respectively, the image analysis was performed by paying attention to the hue “R”. As a result, about 9.4% of the total film thickness of the porous photoelectric conversion layer 3 is mixed in the portion sandwiched between the regions where the respective dyes are adsorbed (in the vicinity of the interface between the layers where the respective dyes are adsorbed). It was confirmed that there was an adsorbed region (region where both the first dye and the second dye were adsorbed (mixed)).

【0056】次に、第1色素および第2色素を別々に吸
着させた酸化チタン膜からなる多孔性光電変換層3を、
無水エタノールで数回洗浄し約60℃で約20分間乾燥
させた。3−メトキシプロピオニトリル溶剤に、ヨウ化
リチウムが濃度0.5モル/リットル、ヨウ素が濃度
0.05モル/リットルになるように溶解させて、導電
層7となる酸化還元性電解液を調製した。その後、多孔
性半導体層3を具備した導電性支持体1の多孔性半導体
層3側と、白金膜9を具備した対極8としてのITOガ
ラスの白金膜9側とが対向するように設置し、その間に
調製した酸化還元性電解液を注入し、周囲をエポキシ系
樹脂の封止材10で封止して、太陽電池を完成した。得
られた太陽電池を測定条件:AM−1.5(100mW
/cm2)で評価したところ、電流値(Jsc):4.
1mA/cm2であった。
Next, the porous photoelectric conversion layer 3 made of a titanium oxide film in which the first dye and the second dye are separately adsorbed,
It was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes. Lithium iodide was dissolved in a 3-methoxypropionitrile solvent to a concentration of 0.5 mol / liter, and iodine was dissolved to a concentration of 0.05 mol / liter to prepare a redox electrolytic solution to be the conductive layer 7. did. After that, the conductive support 1 provided with the porous semiconductor layer 3 is placed so that the porous semiconductor layer 3 side and the platinum film 9 side of the ITO glass as the counter electrode 8 provided with the platinum film 9 face each other. The redox electrolytic solution prepared in the meantime was injected, and the periphery was sealed with an epoxy resin sealing material 10 to complete a solar cell. Measurement conditions of the obtained solar cell: AM-1.5 (100 mW
/ Cm 2 ), current value (Jsc): 4.
It was 1 mA / cm 2 .

【0057】比較例1 多孔性半導体層3に吸着させる色素として、実施例1の
第2色素である式(1)で表されるフタロシアニン系色
素のみを使用すること以外は、実施例1と同様にして太
陽電池を製造し、評価した。得られた太陽電池は、電流
値:2.7mA/cm2であった。
Comparative Example 1 Similar to Example 1 except that only the phthalocyanine dye represented by the formula (1), which is the second dye of Example 1, is used as the dye to be adsorbed on the porous semiconductor layer 3. Then, a solar cell was manufactured and evaluated. The obtained solar cell had a current value of 2.7 mA / cm 2 .

【0058】比較例2 多孔性半導体層3に吸着させる色素として、実施例1の
第1色素である式(2)で表されるキサンテン系色素の
みを使用すること以外は、実施例1と同様にして太陽電
池を製造し、評価した。得られた太陽電池は、電流値:
2.3mA/cm2であった。
Comparative Example 2 Similar to Example 1 except that only the xanthene dye represented by the formula (2) which is the first dye of Example 1 is used as the dye to be adsorbed on the porous semiconductor layer 3. Then, a solar cell was manufactured and evaluated. The obtained solar cell had a current value:
It was 2.3 mA / cm 2 .

【0059】実施例1、比較例1および比較例2の結果
から、本発明の多孔性半導体層に2種類の色素を層状に
吸着させた多孔性光電変換層を用いた太陽電池が、単一
色素のみを用いた太陽電池よりも、広範囲の光を吸収す
る(光を有効に利用する)ことができ、高い光電変換効
率を有することがわかる。
From the results of Example 1, Comparative Example 1 and Comparative Example 2, a single solar cell using a porous photoelectric conversion layer in which two kinds of dyes were adsorbed in layers on the porous semiconductor layer of the present invention was obtained. It can be understood that a wide range of light can be absorbed (light can be effectively used) and a high photoelectric conversion efficiency can be obtained as compared with the solar cell using only the dye.

【0060】実施例2 第1色素と第2色素の吸着手順を変えること以外は、実
施例1と同様にして太陽電池を製造し、評価した。
Example 2 A solar cell was manufactured and evaluated in the same manner as in Example 1 except that the adsorption procedure of the first dye and the second dye was changed.

【0061】式(1)で表されるフタロシアニン系色素
と式(2)で表されるキサンテン系色素とを、それぞれ
ジメチルホルムアミドに濃度4×10-2モル/リットル
となるように溶解させ、第1色素および第2色素が共に
溶解した吸着用色素溶液を調製した。この吸着用色素溶
液と実施例1と同様にして得られた酸化チタン膜を形成
した透明支持体1を容器に入れ、約20分間浸漬させる
ことにより、酸化チタン膜に色素を吸着させた。なお、
その他の条件は室温、常圧である。その後、無水エタノ
ールで数回洗浄し約60℃で約20分間乾燥させた。
The phthalocyanine dye represented by the formula (1) and the xanthene dye represented by the formula (2) are dissolved in dimethylformamide at a concentration of 4 × 10 -2 mol / liter, respectively. A dye solution for adsorption in which both the first dye and the second dye were dissolved was prepared. The adsorbing dye solution and the transparent support 1 having the titanium oxide film formed in the same manner as in Example 1 were placed in a container and immersed for about 20 minutes to adsorb the dye on the titanium oxide film. In addition,
Other conditions are room temperature and normal pressure. Then, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes.

【0062】上述の工程により形成された第1色素およ
び第2色素を同時に吸着させた酸化チタン膜からなる多
孔性光電変換層3の断面図を図6に示す。図6は光学顕
微鏡により得られた図であり、61は第2色素が主とし
て吸着した領域、62は第1色素が主として吸着した領
域、63は第1色素および第2色素が共に(混合して)
吸着した領域を示す。この図から、上述の工程により、
単一工程で形成した酸化チタン膜に複数の色素を層状に
吸着させることができることがわかる。また、それぞれ
の色素を同時に吸着させているため、吸着速度の遅い第
2色素側(透明導電体2とは反対側)にも第1色素が吸
着されていることがわかる。
FIG. 6 shows a cross-sectional view of the porous photoelectric conversion layer 3 formed of the titanium oxide film on which the first dye and the second dye formed by the above steps are adsorbed at the same time. FIG. 6 is a diagram obtained by an optical microscope. 61 is a region where the second dye is mainly adsorbed, 62 is a region where the first dye is mainly adsorbed, and 63 is the first dye and the second dye together (mixed )
The adsorbed area is shown. From this figure, by the above steps,
It can be seen that a plurality of dyes can be adsorbed in layers on the titanium oxide film formed in a single step. Further, since the respective dyes are adsorbed at the same time, it can be seen that the first dye is adsorbed also on the second dye side (the side opposite to the transparent conductor 2) having a slow adsorption speed.

【0063】また、図6を多孔性光電変換層3の膜厚に
対してRGBの強度「R」で画像解析した結果を図7に
示す。画像解析は、実施例1と同様に色相「R」に注目
して行った。その結果、それぞれの色素が吸着した領域
に挟持された部分(各色素が吸着した層の界面)には、
多孔性光電変換層3の総膜厚に対して約32.1%程度
の混合吸着した領域(第1色素および第2色素が共に
(混合して)吸着した領域)が存在することが確認でき
た。
FIG. 7 shows the result of image analysis of FIG. 6 with respect to the film thickness of the porous photoelectric conversion layer 3 by the intensity “R” of RGB. The image analysis was performed by paying attention to the hue “R” as in Example 1. As a result, in the part sandwiched between the areas where each dye is adsorbed (the interface of the layer where each dye is adsorbed),
It can be confirmed that there is a mixed adsorbed region (a region in which both the first dye and the second dye are admixed (mixed)) of about 32.1% with respect to the total film thickness of the porous photoelectric conversion layer 3. It was

【0064】次に、実施例1と同様にして太陽電池を完
成した。得られた太陽電池を測定条件:AM−1.5
(100mW/cm2)で評価したところ、電流値(J
sc):3.9mA/cm2であった。
Then, a solar cell was completed in the same manner as in Example 1. Measurement conditions of the obtained solar cell: AM-1.5
When evaluated with (100 mW / cm 2 ), the current value (J
sc): 3.9 mA / cm 2 .

【0065】実施例2の吸着方法によっても、単一工程
で形成した酸化チタン膜に複数の色素を層状に吸着させ
ることができ、かつ得られた太陽電池が、単一色素のみ
を用いた太陽電池(比較例1および比較例2)よりも、
広範囲の光を吸収する(光を有効に利用する)ことがで
き、高い光電変換効率を有することがわかる。
Also by the adsorption method of Example 2, a plurality of dyes can be adsorbed in layers on the titanium oxide film formed in a single step, and the obtained solar cell is a solar cell using only a single dye. Than the batteries (Comparative Example 1 and Comparative Example 2)
It can be seen that a wide range of light can be absorbed (light can be effectively used) and that it has high photoelectric conversion efficiency.

【0066】[0066]

【発明の効果】本発明の太陽電池は、多孔性半導体層に
吸着させて多孔性光電変換層を形成する色素として、吸
収スペクトルにおける最大感度波長領域が異なる少なく
とも2種類の色素を用いるので、従来の太陽電池と比較
して、光吸収波長領域が広く、かつ光吸収量が多い高性
能な太陽電池を提供することができる。また、本発明の
太陽電池は、多孔性光電変換層が導電性支持体と平行な
層形状である少なくとも3層以上の色素吸着領域からな
り、上下層の色素吸着領域がそれぞれ異なる1種類の色
素を吸着した領域であり、それらに挟持された色素吸着
領域が上下層の色素を混合吸着した領域であるので、多
孔性光電変換層の総膜厚を薄くすることができ、キャリ
ア輸送における抵抗を低減することができる。さらに、
本発明の太陽電池の製造方法は、単一工程で多孔性半導
体層を形成するので、製造コストを削減でき、安価な太
陽電池を提供することができる。
In the solar cell of the present invention, at least two kinds of dyes having different maximum sensitivity wavelength regions in the absorption spectrum are used as the dyes which are adsorbed on the porous semiconductor layer to form the porous photoelectric conversion layer. It is possible to provide a high-performance solar cell having a wide light absorption wavelength region and a large amount of light absorption, as compared with the above solar cell. Further, in the solar cell of the present invention, the porous photoelectric conversion layer is composed of at least three or more dye adsorption regions having a layer shape parallel to the conductive support, and the dye adsorption regions of the upper and lower layers are different from each other. Is the region where the dye is adsorbed, and the dye adsorption region sandwiched between them is a region where the dyes in the upper and lower layers are mixed and adsorbed, so that the total film thickness of the porous photoelectric conversion layer can be reduced, and the resistance in carrier transport can be reduced. It can be reduced. further,
According to the method for manufacturing a solar cell of the present invention, since the porous semiconductor layer is formed in a single step, the manufacturing cost can be reduced and an inexpensive solar cell can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の色素増感型太陽電池の層構成を示す要
部の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a main part showing a layer structure of a dye-sensitized solar cell of the present invention.

【図2】色素吸着用溶液に多孔性半導体層を浸漬する際
の浸漬時間と色素の浸透率または多孔性半導体層の全体
の吸光度の関係を示す図である(実施例1の予備試
験)。
FIG. 2 is a diagram showing the relationship between the immersion time when the porous semiconductor layer is immersed in the dye adsorbing solution and the dye permeability or the overall absorbance of the porous semiconductor layer (preliminary test of Example 1).

【図3】図2の実験における浸漬時間15分間の多孔性
半導体層の断面図である。
FIG. 3 is a cross-sectional view of a porous semiconductor layer with an immersion time of 15 minutes in the experiment of FIG.

【図4】第1色素および第2色素を別々に吸着させた酸
化チタン膜からなる多孔性光電変換層3の断面図である
(実施例1)。
FIG. 4 is a cross-sectional view of a porous photoelectric conversion layer 3 made of a titanium oxide film in which a first dye and a second dye are separately adsorbed (Example 1).

【図5】図4を多孔性光電変換層3の膜厚に対してRG
Bの強度「R」で画像解析した結果を示す図である(実
施例1)。
FIG. 5 shows RG with respect to the film thickness of the porous photoelectric conversion layer 3.
It is a figure which shows the result of having image-analyzed by the intensity | strength "R" of B (Example 1).

【図6】第1色素および第2色素を同時に吸着させた酸
化チタン膜からなる多孔性光電変換層3の断面図である
(実施例2)。
FIG. 6 is a cross-sectional view of a porous photoelectric conversion layer 3 made of a titanium oxide film on which a first dye and a second dye are simultaneously adsorbed (Example 2).

【図7】図6を多孔性光電変換層3の膜厚に対してRG
Bの強度「R」で画像解析した結果を示す図である(実
施例2)。
FIG. 7 shows RG with respect to the film thickness of the porous photoelectric conversion layer 3.
It is a figure which shows the result of having image-analyzed by the intensity | strength "R" of B (Example 2).

【符号の説明】[Explanation of symbols]

1 透明支持体 2 透明導電体 3 多孔性光電変換層 4 第1色素が主として吸着した領域 5 第2色素が主として吸着した領域 6、43、63 第1色素および第2色素が共に(混合
して)吸着した領域 7 導電層(酸化還元性電解液) 8 対極 9 白金膜 10 封止材 11 導電性支持体 31 色素が吸着した領域 32 色素が吸着していない領域 41、61 第2色素が主として吸着した領域 42、62 第1色素が主として吸着した領域
1 transparent support 2 transparent conductor 3 porous photoelectric conversion layer 4 region 5 where the first dye is mainly adsorbed 5 region where the second dye is mainly adsorbed 6, 43, 63 Both the first dye and the second dye (mixed ) Adsorbed region 7 conductive layer (oxidation-reduction electrolyte solution) 8 counter electrode 9 platinum film 10 encapsulating material 11 conductive support 31 dye-adsorbed region 32 dye-unadsorbed region 41, 61 second dye is mainly Adsorbed area 42, 62 Area where the first dye is mainly adsorbed

フロントページの続き (72)発明者 福家 信洋 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 見立 武仁 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5F051 AA07 AA12 AA14 BA11 BA13 CB11 CB13 FA03 FA04 FA06 GA03 5H032 AA06 AS06 AS16 BB05 EE02 EE16 HH07 Continued front page    (72) Inventor Fukuya Nobuhiro             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company (72) Inventor Takehito             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company F term (reference) 5F051 AA07 AA12 AA14 BA11 BA13                       CB11 CB13 FA03 FA04 FA06                       GA03                 5H032 AA06 AS06 AS16 BB05 EE02                       EE16 HH07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体上に、多孔性半導体層に色
素を吸着させた多孔性光電変換層、導電層および対極が
順次積層された色素増感型太陽電池において、多孔性光
電変換層が、吸収スペクトルにおける最大感度波長領域
が異なる少なくとも2種類の色素を吸着させることによ
り形成され、かつ導電性支持体と平行な層形状である少
なくとも3層以上の色素吸着領域からなり、上下層の色
素吸着領域がそれぞれ異なる1種類の色素を吸着した領
域であり、それらに挟持された色素吸着領域が上下層の
色素を混合吸着した領域であることを特徴とする色素増
感型太陽電池。
1. A dye-sensitized solar cell in which a porous semiconductor layer on which a dye is adsorbed, a conductive layer, and a counter electrode are sequentially laminated on a conductive support, and the porous photoelectric conversion layer. Is formed by adsorbing at least two types of dyes having different maximum sensitivity wavelength regions in the absorption spectrum, and is composed of at least three or more dye adsorbing regions in a layer shape parallel to the conductive support. A dye-sensitized solar cell, wherein the dye adsorption regions are regions in which different types of dyes are adsorbed, and the dye adsorption regions sandwiched between them are regions in which the dyes in the upper and lower layers are mixed and adsorbed.
【請求項2】 多孔性光電変換層が、多孔性半導体層へ
の吸着速度の異なる少なくとも2種類の色素を吸着させ
ることにより形成されてなる請求項1に記載の色素増感
型太陽電池。
2. The dye-sensitized solar cell according to claim 1, wherein the porous photoelectric conversion layer is formed by adsorbing at least two kinds of dyes having different adsorption rates to the porous semiconductor layer.
【請求項3】 上下層の色素を混合吸着した領域が、多
孔性光電変換層の総膜厚に対して50%以下の膜厚を有
する請求項1に記載の色素増感型太陽電池。
3. The dye-sensitized solar cell according to claim 1, wherein the regions in which the dyes are mixed and adsorbed in the upper and lower layers have a film thickness of 50% or less with respect to the total film thickness of the porous photoelectric conversion layer.
【請求項4】 異なる1種類の色素を吸着した領域が、
吸収スペクトルにおける最大感度波長領域を短波長側に
有する色素を吸着した領域から吸収スペクトルにおける
最大感度波長領域を長波長側に有する色素を吸着した領
域の順で受光面側から配置されてなる請求項2または3
に記載の色素増感型太陽電池。
4. A region where one different dye is adsorbed,
The dyes having the maximum sensitivity wavelength region in the absorption spectrum on the short wavelength side are adsorbed in this order from the region adsorbing the dye having the maximum sensitivity wavelength region in the absorption spectrum to the long wavelength side. 2 or 3
The dye-sensitized solar cell described in 1.
【請求項5】 (a)導電性支持体上に多孔性半導体層
を形成し、(b)吸収スペクトルにおける最大感度波長
領域が異なり、かつ多孔性半導体層への吸着速度の異な
る少なくとも2種類の色素を別々に含む溶液を調製し、
得られた溶液に多孔性半導体層を順次浸漬して、多孔性
半導体層に色素を順次吸着させることにより多孔性光電
変換層を形成し、(c)導電性支持体の多孔性光電変換
層と対極とを対向させ、それらの間に導電層を充填し、
(d)任意に封止材を用いて導電層を封止して、色素増
感型太陽電池を製造することを特徴とする色素増感型太
陽電池の製造方法。
5. At least two kinds of (a) a porous semiconductor layer formed on a conductive support, (b) different maximum sensitivity wavelength regions in the absorption spectrum, and different adsorption rates to the porous semiconductor layer. Prepare a solution containing the dyes separately,
A porous semiconductor layer is formed by sequentially immersing the porous semiconductor layer in the obtained solution and sequentially adsorbing a dye on the porous semiconductor layer, and (c) the porous photoelectric conversion layer of the conductive support. Face the counter electrode, fill the conductive layer between them,
(D) A method for manufacturing a dye-sensitized solar cell, which comprises manufacturing a dye-sensitized solar cell by optionally sealing a conductive layer with a sealing material.
【請求項6】 (a)導電性支持体上に多孔性半導体層
を形成し、(b’)吸収スペクトルにおける最大感度波
長領域が異なり、かつ多孔性半導体層への吸着速度の異
なる少なくとも2種類の色素を含む溶液を調製し、得ら
れた溶液に多孔性半導体層を浸漬して、多孔性半導体層
に少なくとも2種類の色素を同時に吸着させることによ
り多孔性光電変換層を形成し、(c)導電性支持体の多
孔性光電変換層と対極とを対向させ、それらの間に導電
層を充填し、(d)任意に封止材を用いて導電層を封止
して、色素増感型太陽電池を製造することを特徴とする
色素増感型太陽電池の製造方法。
6. At least two types of: (a) a porous semiconductor layer formed on a conductive support, (b ') having different maximum sensitivity wavelength regions in the absorption spectrum and different adsorption rates to the porous semiconductor layer. A solution containing the dye of (1) is prepared, and the porous semiconductor layer is formed by immersing the porous semiconductor layer in the obtained solution and adsorbing at least two kinds of dyes to the porous semiconductor layer at the same time. ) The porous photoelectric conversion layer of the conductive support and the counter electrode are opposed to each other, the conductive layer is filled between them, and (d) the conductive layer is optionally sealed with a sealing material to carry out dye sensitization. A method of manufacturing a dye-sensitized solar cell, which comprises manufacturing a dye-sensitized solar cell.
【請求項7】 工程(a)において、単一工程で導電性
支持体上に多孔性半導体層を形成する請求項5または6
に記載の色素増感型太陽電池の製造方法。
7. The porous semiconductor layer is formed on the conductive support in a single step in step (a).
The method for producing a dye-sensitized solar cell according to item 1.
【請求項8】 工程(b)における少なくとも2種類の
色素が、段階的に、吸収スペクトルにおける最大感度波
長領域を短波長側に有し、かつ多孔性半導体層への吸着
速度の速い色素と、吸収スペクトルにおける最大感度波
長領域を長波長側に有し、かつ多孔性半導体層への吸着
速度の遅い色素との組み合わせである請求項5〜7のい
ずれか1つに記載の色素増感型太陽電池の製造方法。
8. A dye having at least two kinds of dyes in step (b) having a maximum sensitivity wavelength region in an absorption spectrum on a short wavelength side in a stepwise manner and having a high adsorption rate to a porous semiconductor layer, The dye-sensitized sun according to any one of claims 5 to 7, which has a maximum sensitivity wavelength region in the absorption spectrum on the long wavelength side and is a combination with a dye having a slow adsorption rate to the porous semiconductor layer. Battery manufacturing method.
JP2002046803A 2002-02-22 2002-02-22 Dye-sensitized solar cell and method for producing the same Expired - Fee Related JP4149714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002046803A JP4149714B2 (en) 2002-02-22 2002-02-22 Dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002046803A JP4149714B2 (en) 2002-02-22 2002-02-22 Dye-sensitized solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003249274A true JP2003249274A (en) 2003-09-05
JP4149714B2 JP4149714B2 (en) 2008-09-17

Family

ID=28660082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002046803A Expired - Fee Related JP4149714B2 (en) 2002-02-22 2002-02-22 Dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4149714B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343455A (en) * 2001-05-22 2002-11-29 Sharp Corp Dye-sensitized solar cell and manufacturing method therefor
WO2005053082A1 (en) * 2003-11-28 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
JP2006107885A (en) * 2004-10-04 2006-04-20 Sharp Corp Dye-sensitized solar battery and dye-sensitized solar battery module
JP2006179488A (en) * 2004-12-20 2006-07-06 Konarka Technologies Inc Patterned photovoltaic cell
JP2006278112A (en) * 2005-03-29 2006-10-12 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module
JP2007263834A (en) * 2006-03-29 2007-10-11 Nippon Oil Corp Evaluation method of porous metal-metal oxide complex by image sensor
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
WO2010098088A1 (en) * 2009-02-25 2010-09-02 東京エレクトロン株式会社 Method and device for dye adsorption for photosensitizing dye, process and apparatus for producing dye-sensitized solar cell, and dye-sensitized solar cell
KR101117691B1 (en) * 2005-07-27 2012-03-02 삼성에스디아이 주식회사 Dye-sensitized solar cell and method of manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574897B2 (en) * 2001-05-22 2010-11-04 シャープ株式会社 Dye-sensitized solar cell and method for producing the same
JP2002343455A (en) * 2001-05-22 2002-11-29 Sharp Corp Dye-sensitized solar cell and manufacturing method therefor
WO2005053082A1 (en) * 2003-11-28 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
JP2006107885A (en) * 2004-10-04 2006-04-20 Sharp Corp Dye-sensitized solar battery and dye-sensitized solar battery module
JP4627427B2 (en) * 2004-10-04 2011-02-09 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
JP2006179488A (en) * 2004-12-20 2006-07-06 Konarka Technologies Inc Patterned photovoltaic cell
JP2006278112A (en) * 2005-03-29 2006-10-12 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module
KR101117691B1 (en) * 2005-07-27 2012-03-02 삼성에스디아이 주식회사 Dye-sensitized solar cell and method of manufacturing the same
JP2007263834A (en) * 2006-03-29 2007-10-11 Nippon Oil Corp Evaluation method of porous metal-metal oxide complex by image sensor
JP4664223B2 (en) * 2006-03-29 2011-04-06 Jx日鉱日石エネルギー株式会社 Evaluation method of porous metal-metal oxide composites by image sensor
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
WO2010098088A1 (en) * 2009-02-25 2010-09-02 東京エレクトロン株式会社 Method and device for dye adsorption for photosensitizing dye, process and apparatus for producing dye-sensitized solar cell, and dye-sensitized solar cell
JP5338897B2 (en) * 2009-02-25 2013-11-13 東京エレクトロン株式会社 Dye adsorption method and adsorption apparatus for photosensitized dye, and method and apparatus for producing dye-sensitized solar cell

Also Published As

Publication number Publication date
JP4149714B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US10366842B2 (en) Dye-sensitized solar cell and method for manufacturing thereof
JP5084730B2 (en) Dye-sensitized solar cell
US7202412B2 (en) Photovoltaic cell including porous semiconductor layer, method of manufacturing the same and solar cell
EP2043190B1 (en) Dye-sensitized solar cell module and method for fabricating same
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
KR20080094021A (en) Dye sensitization photoelectric converter
JP4312991B2 (en) Method for producing dye-sensitized solar cell
JP4448478B2 (en) Dye-sensitized solar cell module
JP4563697B2 (en) Dye-sensitized solar cell and method for producing the same
JP2008071535A (en) Photoelectric conversion element and its manufacturing method
JP2002222971A (en) Photoelectric converter
JP4149714B2 (en) Dye-sensitized solar cell and method for producing the same
JP5636736B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4897226B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2003187883A (en) Photoelectric conversion element
JP2007073198A (en) Dye-sensitized solar battery
JP4377627B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2002184477A (en) Optical semiconductor electrode, its method of manufacture, and photoelectric conversion element using the same
JP4092908B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2004047264A (en) Dye-sensitized solar cell and its manufacturing method
JP4347593B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5566681B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element
JP4537693B2 (en) Dye-sensitized solar cell
JP5131732B2 (en) Method for producing dye-adsorbing semiconductor electrode for dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees