JP2003245794A - Manufacturing method for sintered flux for submerged arc welding - Google Patents

Manufacturing method for sintered flux for submerged arc welding

Info

Publication number
JP2003245794A
JP2003245794A JP2002049937A JP2002049937A JP2003245794A JP 2003245794 A JP2003245794 A JP 2003245794A JP 2002049937 A JP2002049937 A JP 2002049937A JP 2002049937 A JP2002049937 A JP 2002049937A JP 2003245794 A JP2003245794 A JP 2003245794A
Authority
JP
Japan
Prior art keywords
flux
slag
raw material
less
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002049937A
Other languages
Japanese (ja)
Inventor
Nobuo Tezuka
伸夫 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002049937A priority Critical patent/JP2003245794A/en
Publication of JP2003245794A publication Critical patent/JP2003245794A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a sintered flux for submerged arc welding which can further reduce the content of diffusible hydrogen in a welding metal while making the larger quantity of smelting slags to be utilizable. <P>SOLUTION: In the manufacturing method for the sintered flux for the submerged arc welding which granulates and sinters after mixing flux raw material powder and a bonding agent, the flux raw material powder comprises iron- contained flux raw material powder containing an iron component of 5-10 mass%, welding slag powder or, furthermore, a slag making agent and/or a deoxidizer, the mixed product is made to contain the iron-contained flux raw material powder: 35-90%, Na<SB>2</SB>O: 4.0% or less in mass%, and, SiO<SB>2</SB>: 30-70%, a manganese oxide: 5-30% in terms of MnO, MgO: 3-30%, Al<SB>2</SB>O<SB>3</SB>: 2-20%, CaO: 10% or less, and one or two kinds or more of CaF<SB>2</SB>: 15% or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、船舶、海洋構造
物、貯槽、鉄骨、橋梁等の鋼構造物溶接に用いられるサ
ブマージアーク溶接用焼成型フラックスのうち、とくに
耐吸湿性を向上させた焼成型フラックスの製造方法に関
する。 【0002】 【従来の技術】サブマージアーク溶接用フラックスは、
酸化ケイ素(SiO2)を主体とし、それに酸化マンガン
(MnO 、Mn3O4 )酸化カルシウム(CaO )、アルミナ
(Al2O3 )およびその他の酸化物、フッ化物等を原料と
し、製造されている。サブマージアーク溶接用フラック
スはその製造方法により、溶融型フラックス、混合型フ
ラックス、焼成型フラックスに分類されている。 【0003】焼成型フラックスは一般に、酸化物やフッ
化物等のフラックス原料粉に結合剤として水ガラス(ケ
イ酸ソーダなど)を添加し、混練、造粒、乾燥、焼成と
いう工程により製造される。しかしながら、原料によっ
て焼成型フラックスの品質が、ひいては溶接金属の特性
が大きく変化する。例えば、原料の結晶水等の水分の含
有あるいは吸湿性が溶接金属中の水素(拡散性水素)量
に大きく影響する。これら溶接金属中の拡散性水素量
は、水素割れの原因となる。 【0004】このため、焼成型フラックスを用いて溶接
した溶接金属中の拡散性水素量を減少させるために、従
来から種々の方法が考えられている。例えば、特公昭51
-25809号公報には、結合剤として、低吸湿性のケイ酸リ
チウム水溶液を使用するか、あるいはケイ酸リチウムを
添加した水ガラスを使用することにより、結合剤を低吸
湿化する方法が提案されている。しかし、ケイ酸リチウ
ムが高価でありフラックスのコスト増を招くため、通常
のフラックスには適用されていないのが現状である。 【0005】これらの流れとは別に、特開2000-102892
号公報には、サブマージアーク溶接後に発生する溶接ス
ラグを粉砕してなる粉(溶接スラグ粉)と鉄含有フラッ
クス原料粉(鉄分5〜10wt%)とをフラックス原料粉の
一部として配合することにより、耐吸湿性に優れたサブ
マージアーク溶接用焼成型フラックスを製造する技術
(従来技術Aという。)が提案されている。ここで、鉄
含有フラックス原料としては、ニッケルスラグ、マンガ
ンスラグ、チタンスラグ、高炉スラグなどの、金属製錬
で発生したスラグ類(本発明では以下これを「製錬スラ
グ」という。)、および、オリビンサンド、一部のマン
ガン酸化物鉱石、ジルコンサンド、ケイ砂、マグネシア
クリンカーなどの鉱石類が挙げられている。 【0006】この従来技術Aは、産業廃棄物扱いとされ
ていた溶接スラグあるいはさらに余剰の製錬スラグをサ
ブマージアーク溶接用焼成型フラックスの原料として活
用可能としたので、資源再利用、環境保護の点で有用な
技術といえる。 【0007】 【発明が解決しようとする課題】しかし、上記従来技術
Aでは、製品フラックス中の鉄含有フラックス原料粉分
量が30wt%未満に制限されているため多量に発生しがち
な余剰の製錬スラグを十分吸収しきれない場合があると
いう問題や、溶接金属中の拡散性水素量を減少させる点
では未だ不十分であるという問題があった。 【0008】本発明は、上記問題を解決し、より多量の
製錬スラグを活用可能としながら溶接金属中の拡散性水
素量をさらに低減し得るサブマージアーク溶接用焼成型
フラックスの製造方法を提供することを目的とする。 【0009】 【課題を解決するための手段】本発明者は、上記問題を
解決するために、製品フラックス中の製錬スラグ(鉄分
5〜10質量%)の分量が30質量%以上の場合について、
拡散性水素量を低減しうるサブマージアーク溶接用焼成
型フラックスの製造方法を、主に結合剤の組成面から検
討した。その結果、製品フラックス中(フラックス原料
粉と結合剤との混合成品中)のNa2O分量を4.0 質量%以
下とする原料混合により、溶接金属中の拡散性水素量を
有効に低減させうることを見いだし、本発明をなすに至
った。 【0010】すなわち、本発明は、フラックス原料粉と
結合剤との混合成品を造粒し焼成するサブマージアーク
溶接用焼成型フラックスの製造方法において、前記フラ
ックス原料粉を、鉄分5〜10質量%を含有する鉄含有フ
ラックス原料粉、溶接スラグ粉、あるいはさらに造滓剤
および/または脱酸剤からなるものとし、前記混合成品
を、質量%で前記鉄含有フラックス原料粉:35〜90%、
Na2O:4.0 %以下を含有し、かつ、SiO2:30〜70%、マ
ンガン酸化物:MnO 換算で5〜30%、MgO :3〜30%、
Al2O3 :2〜20%、CaO :10%以下、CaF2:15%以下の
1種または2種以上を含有するものとしたことを特徴と
するサブマージアーク溶接用焼成型フラックスの製造方
法である。 【0011】 【発明の実施の形態】本発明では、フラックス原料粉お
よび結合剤(バインダ)の混合成品がNa2O:2.5 質量%
以下を含有するものとなるように両者を混合する。Na2O
は主として結合剤に含まれているが、後述の溶接スラグ
にも含まれている。本発明者の知見によれば、フラック
ス原料粉と結合剤との混合成品のNa2O分量が4.0 %を超
えると、結合剤や溶接スラグから持ち込まれる水分量が
増加して溶接金属中の拡散性水素量が増加する。このた
め、Na2Oは4.0 質量%以下に制限する必要がある。ただ
し、過度の低減はNa2Oを主成分とする結合剤の結合力を
弱めるので、1.0 質量%以上含有させるのが好ましい。
結合剤としては、ポリビニルアルコールなどの水溶液、
水ガラスが好適である。水ガラスとしては従来用いられ
ているSiO2とNa2Oのモル比1〜5のケイ酸ソーダも使用
できる。これの使用量は、フラックス原料粉1kgあたり
80〜150cc とすればよい。また、焼成温度は、650 ℃以
上とするのが好ましい。焼成温度が650 ℃を下回ると結
合剤より持ち込まれた水分の乾燥が不十分となり、溶接
金属中の拡散性水素の増加を招く。また、後述するよう
に、配合する溶接スラグ量も制限する必要がある。 【0012】本発明では、フラックス原料粉として、鉄
分5〜10質量%を含有する鉄含有フラックス原料粉+溶
接スラグ粉の2種配合成品、または該2種配合成品+
(造滓剤および/または脱酸剤)の3種または4種配合
成品を用い、これら配合成品と結合剤との混合成品中の
鉄含有フラックス原料粉の分量を35〜90質量%とした。
該分量を35質量%以上とすることにより、該分量が30wt
%未満に制限された従来技術Aよりも、水分の持込因子
である溶接スラグ粉の配合量を低減できて、溶接金属中
の拡散性水素量をさらに低減できる。一方、該分量を90
質量%以下としたのは、これを超えると溶接後発生スラ
グの剥離性が劣化し、剥離不良が発生するからである。
なお、溶接金属中の拡散性水素をより一層低減するため
には、混合成品中の溶接スラグ分量を45質量%以下とす
るのが好ましく、さらに好ましくは30質量%以下であ
る。また、鉄分5〜10質量%を含有する鉄含有フラック
ス原料としては、前記従来技術Aで挙げられたもの、す
なわちニッケルスラグ、マンガンスラグ、チタンスラ
グ、高炉スラグなどの製錬スラグ、および、オリビンサ
ンド、一部のマンガン酸化物鉱石、ジルコンサンド、ケ
イ砂、マグネシアクリンカーなどの鉱石類がいずれも好
適であり、それには製錬スラグも含まれるから、溶接ス
ラグよりも多量に発生して置き場にもこと欠く余剰の製
錬スラグを従来技術Aよりも多く受け入れてリサイクル
することができ、それゆえ資源再利用および環境保護の
面での寄与が従来技術Aよりも大きい。 【0013】鉄含有フラックス原料中の鉄分量は、これ
が5質量%未満では溶接時に発生するCO、CO2 ガス量が
少なく、溶接金属中の窒素量を低減できず、いわゆるピ
ットが発生して外観が劣化し、一方、10質量%超では溶
接金属中の窒素量は低減できるが溶接後発生スラグの剥
離性が劣化して剥離不良が発生するので、5 〜10質量%
に制限される。ここで、鉄分とは、いわゆる原料に含ま
れるTotal Fe(T.Fe)のことであり、JIS M 8212に準拠し
た方法により測定した全鉄含有率を意味する。 【0014】なお、溶接スラグ粉は、サブマージアーク
溶接後に発生した溶接スラグを機械粉砕し、粒子径300
μm 以下、比表面積0.1 〜0.5m2/g の粒子が略100 %を
占める粉粒体としたものが好ましい。その理由は次のと
おりである。 (粒子径300 μm 以下:)粒子径が300 μm 超では造粒
性が劣化する。 (比表面積0.1 〜0.5m2/g :)比表面積が0.1m2/g 未満
では造粒性が劣化し造粒時の結合剤所要量が増加し、焼
成での水分除去が困難化して、溶接金属中の拡散性水素
量が増加する。比表面積が0.5m2/g 超では溶接スラグ粉
中に含まれる未溶融状態の物質が吸湿する水分量が増加
し、溶接金属中の拡散性水素量が増加する。比表面積
は、窒素吸着によるBET法で測定される。 【0015】また、鉄含有フラックス原料粉は、通常水
砕あるいは機械粉砕されて塊状ないしは粉体状を呈して
いる前記製錬スラグや鉱石類などのうち生成工程や産地
等の影響により適正量(5〜10質量%)の鉄分を含有し
かつ造滓剤(スラグ生成剤)相当組成を有するものを粉
砕、好ましくは機械粉砕し、粒子径300 μm 以下の粒子
が略100 %を占める粉粒体としたものが好ましい。その
理由は溶接スラグの場合と同じである。 【0016】また、本発明では、良好な溶接ビードを得
るために、混合成品を、質量%でSiO2:30〜70%、マン
ガン酸化物:MnO 換算で5〜30%、MgO :3〜30%、Al
2O3:2〜20%、CaO :10%以下、CaF2:15%以下の1
種または2種以上を含有するものとする必要がある(:
要件Bと記す)。個々の好適範囲設定理由を以下に記
す。なお、これらの化合物はいずれも造滓剤(スラグ生
成剤)に分類される。 【0017】(SiO2:30〜70%:)SiO2は、ビード外観
を良好に保つ作用があるが30%未満ではその効果に乏し
い。特に高速隅肉溶接のようにビード端でのなじみが重
要な場合には30%未満では良好なビードが保持できな
い。一方、70%超では粘性が高くなりすぎてかえってビ
ード外観が乱れやすく、またスラグの剥離性が劣化する
などの問題が生じる。 【0018】(マンガン酸化物:MnO 換算で5〜30
%:)マンガン酸化物は、溶接速度が高くなってもビー
ド端部のなじみを良好に保つ作用があり、特に隅肉溶接
用フラックス成分として重用される。しかし、5%未満
ではその効果が認められず、一方、30%超ではスラグが
脆化してその剥離性が劣化する。 (MgO :3〜30%:)MgO は、スラグの融点および粘性
を調節し、優れたスラグ剥離性を確保するのに有用であ
るが、3%未満では十分な効果が得られず、一方、30%
を超えると粘性が低下しすぎたり、融点が上昇しすぎて
ビード外観が劣化しやすくなる。 【0019】(Al2O3 :2〜20%:)Al2O3 は、スラグ
の粘性および融点を調整する上で重要な成分であるが、
2%未満ではその効果に乏しく、一方、20%超では融点
が上昇しすぎてビード形状の劣化を招く。 (CaO :10%以下:)CaO は、スラグの流動性に影響を
及ぼす成分であり、10%超では流動性が阻害されビード
形状の劣化を招く。なお、好ましくは0.1 〜5%であ
る。 【0020】(CaF2:15%以下:)CaF2は、スラグの流
動性を向上させる成分であり、15%を超えるとスラグが
流動しやすくなる。なお、好ましくは0.5 %以上であ
る。要件Bは、フラックス原料粉を鉄含有フラックス原
料粉と溶接スラグ粉との2種配合のみとしたのでは満足
できない場合もある。かかる場合にも対応可能とするた
めに、本発明では、前記2種配合へ造滓剤を適宜添加す
るのが好ましい。これにより、前記2種配合と要件Bと
に差があっても、その差を造滓剤の添加で解消させるこ
とができる。 【0021】その他、造滓剤として、必要に応じて質量
%でTiO2:10%以下、BaO :5%以下、ZrO2:5%以
下、B2O3:4%以下、CaCO3 :5%以下の1種以上を、
前記混合成品中の分量がそれぞれ上記範囲となるよう
に、添加してもよい。TiO2は、溶接中に還元され、溶接
金属中へTiが移行し溶接金属の靭性を向上させるが、10
%超ではかえって靭性が劣化する。BaO,ZrO2は、スラグ
の塩基度や融点を調整するために添加するが、5%超に
なる添加はいずれもビード外観やスラグ剥離性を劣化さ
せる。B2O3は、溶接中に還元反応により溶接金属中へB
が移行して溶接金属の靭性改善に寄与するが、4%超で
は溶接金属の凝固割れを助長する。CaCO3 は、溶接中に
分解してCO2 を発生し水素分圧を下げるため溶接金属中
の拡散性水素量低減に有効であるが、5%超ではビード
外観を劣化させる。なお、CaCO3 は、焼成温度が650 ℃
以下の場合、好ましくは30%以下、より好ましくは15%
以下である。 【0022】さらに、上記以外に、ビードの表面光沢を
向上させ、あるいは溶接金属の靭性を向上させるため
に、前記2種配合に脱酸剤を添加することが好ましい。
脱酸剤としては、Ti,Al,Si,Mn等あるいはそれら元素
と鉄(Fe)との合金が挙げられるが、中でもSi,Mn,フ
ェロシリコン,フェロマンガンが好適である。脱酸剤は
1種のみで添加してもよく、また複合して添加してもよ
い。しかし前記混合成品中の分量が10質量%超では効果
が飽和するから、10質量%以下相当の添加量での添加が
好ましい。なお、好ましくは1質量%以上である。 【0023】所定量配合されたこれらフラックス原料粉
は、結合剤とともに混練され、造粒されたのち焼成され
る。造粒法はとくに限定しないが、転動式造粒機、押し
出し式造粒機を用いるのが好ましい。造粒された後、ダ
スト除去、粗大粒の解砕など整粒処理を行って、粒子径
が0.075 〜1.4mm の範囲となる大きさの粒子とするのが
好ましい。 【0024】 【実施例】機械粉砕により粒子径を300 μm 以下、比表
面積を0.13m2/gに調整したのち、磁選したサブマージア
ーク溶接スラグ粉と、機械粉砕で粒子径300 μm 以下と
した表1に示す組成になるニッケルスラグとを配合し、
他のフラックス原料粉(造滓剤相当)および結合剤とと
もに混練(混合)し、12〜100 メッシュの粒子に造粒し
たのち、900 ℃×1hで焼成して、製品としての焼成型
フラックスを得た。なお, ニッケルスラグ以外のフラッ
クス原料粉の鉄分は5質量%未満であった。 【0025】混練成品中のニッケルスラグ分量(配合分
量)、および得られた製品フラックスの組成(混合成品
の組成と略等しい)を表2に示す。 【0026】 【表1】 【0027】これら製品フラックスを30℃、相対湿度80
%の雰囲気中で24h吸湿させる処理を行い、溶接ワイヤ
として川崎製鉄株式会社製KW-36 を用いて、溶接電流70
0 A、溶接電圧30V、溶接速度40cm/minの溶接条件でJI
S SM490B相当の鋼板に対し、下向き隅肉溶接を行った。
なお、いずれの製品フラックスを用いた場合も、作業性
および溶接部外観に特に問題は見当らなかった。 【0028】生成した溶接金属について、それぞれJIS
Z 3118に準拠して溶接金属中の拡散性水素量を測定し
た。なお、拡散性水素量は繰り返し3回測定したデータ
の平均値で評価した。結果を表2に示す。 【0029】 【表2】【0030】本発明の方法で製造された製品フラックス
(:発明例)では、拡散性水素量が5.0ml/100g 未満と
低く、水素割れの防止効果が大きいことがわかる。 【0031】 【発明の効果】本発明によれば、拡散性水素の少ない溶
接金属を得ることができ、溶接部の水素割れの危険性が
著しく低減するという効果を奏する。また、産業廃棄物
扱いとされていた製錬スラグや溶接スラグを原料として
リサイクルでき、資源再利用、環境保護の面への寄与が
大である。また、溶接スラグを繰り返し再利用しても、
ポックマークの発生を防止できるという効果もある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submerged arc welding type flux used for welding steel structures such as ships, marine structures, storage tanks, steel frames, bridges and the like. More particularly, the present invention relates to a method for producing a fired flux having improved moisture absorption resistance. [0002] Fluxes for submerged arc welding are:
Manufactured mainly from silicon oxide (SiO 2 ), manganese oxide (MnO, Mn 3 O 4 ), calcium oxide (CaO), alumina (Al 2 O 3 ) and other oxides and fluorides I have. The flux for submerged arc welding is classified into a molten flux, a mixed flux, and a fired flux depending on the manufacturing method. [0003] A calcination type flux is generally produced by adding water glass (such as sodium silicate) as a binder to a flux raw material powder such as an oxide or a fluoride, and kneading, granulating, drying and firing. However, depending on the raw material, the quality of the fired flux and, consequently, the characteristics of the weld metal greatly change. For example, the content of moisture such as water of crystallization or the hygroscopicity of the raw material greatly affects the amount of hydrogen (diffusible hydrogen) in the weld metal. The amount of diffusible hydrogen in these weld metals causes hydrogen cracking. [0004] For this reason, various methods have conventionally been considered to reduce the amount of diffusible hydrogen in the weld metal welded by using the firing type flux. For example,
No. -25809 proposes a method of reducing the moisture absorption of a binder by using a low hygroscopic lithium silicate aqueous solution or a water glass to which lithium silicate is added as a binder. ing. However, since lithium silicate is expensive and leads to an increase in the cost of the flux, it is presently not applied to a normal flux. [0005] Apart from these flows, Japanese Patent Application Laid-Open No. 2000-102892
The publication discloses that powder obtained by pulverizing welding slag generated after submerged arc welding (welding slag powder) and iron-containing flux raw material powder (iron content: 5 to 10 wt%) are mixed as a part of the flux raw material powder. A technique for producing a fired flux for submerged arc welding excellent in moisture absorption resistance (hereinafter referred to as conventional technique A) has been proposed. Here, as the iron-containing flux raw materials, slags generated in metal smelting such as nickel slag, manganese slag, titanium slag, and blast furnace slag (hereinafter, referred to as “smelting slag” in the present invention), and Ores such as olivine sand, some manganese oxide ores, zircon sand, silica sand, and magnesia clinker are mentioned. In the prior art A, welding slag treated as industrial waste or surplus smelting slag can be used as a raw material for a sintering flux for submerged arc welding. This is a useful technique in this respect. [0007] However, in the above-mentioned prior art A, since the amount of the iron-containing flux raw material powder in the product flux is limited to less than 30 wt%, excessive smelting which tends to be generated in large quantities is considered. There was a problem that the slag could not be sufficiently absorbed, and a problem that the slag was still insufficient in reducing the amount of diffusible hydrogen in the weld metal. [0008] The present invention solves the above problems and provides a method for producing a fired flux for submerged arc welding in which a larger amount of smelting slag can be utilized and the amount of diffusible hydrogen in the weld metal can be further reduced. The purpose is to: In order to solve the above-mentioned problems, the present inventor has studied a case where the amount of smelting slag (iron content: 5 to 10% by mass) in a product flux is 30% by mass or more. ,
A method for producing a fired flux for submerged arc welding that can reduce the amount of diffusible hydrogen was studied mainly from the viewpoint of the composition of the binder. As a result, it is possible to effectively reduce the amount of diffusible hydrogen in the weld metal by mixing the raw material with a Na 2 O content of 4.0% by mass or less in the product flux (in the mixed product of the flux raw material powder and the binder). Have led to the present invention. That is, the present invention provides a method for producing a fired flux for submerged arc welding in which a mixed product of a flux raw material powder and a binder is granulated and fired. The iron-containing flux raw material powder, welding slag powder, or a slag-making agent and / or a deoxidizing agent to be contained, and the mixed product is 35 to 90% by mass of the iron-containing flux raw material powder,
Na 2 O: contains 4.0% or less, and SiO 2 : 30 to 70%, manganese oxide: 5 to 30% in terms of MnO, MgO: 3 to 30%,
Al 2 O 3: 2~20%, CaO: 10% or less, CaF 2: The method of preparation for the submerged arc welding sintering type flux, characterized in that the one containing one or more than 15% of It is. DETAILED DESCRIPTION OF THE INVENTION In the present invention, a mixture of a flux raw material powder and a binder (binder) contains 2.5% by mass of Na 2 O.
The two are mixed so as to contain: Na 2 O
Is mainly contained in the binder, but is also contained in the welding slag described later. According to the knowledge of the present inventor, when the Na 2 O content of the mixed product of the flux raw material powder and the binder exceeds 4.0%, the amount of moisture introduced from the binder and the welding slag increases, and the diffusion in the weld metal increases. Hydrogen content increases. For this reason, it is necessary to limit Na 2 O to 4.0% by mass or less. However, an excessive reduction weakens the binding force of the binder mainly composed of Na 2 O, so it is preferable to contain the binder in an amount of 1.0% by mass or more.
As the binder, an aqueous solution such as polyvinyl alcohol,
Water glass is preferred. As the water glass, conventionally used sodium silicate having a molar ratio of SiO 2 to Na 2 O of 1 to 5 can also be used. The amount of this used per kg of flux raw material powder
It should be 80-150cc. The firing temperature is preferably set to 650 ° C. or higher. If the sintering temperature is lower than 650 ° C., the moisture introduced from the binder will not be sufficiently dried, resulting in an increase in diffusible hydrogen in the weld metal. Further, as described later, it is necessary to limit the amount of welding slag to be mixed. In the present invention, as the flux raw material powder, two types of composite products of iron-containing flux raw material powder containing 5 to 10% by mass of iron + welding slag powder, or the two types of composite products +
(Slag-making agent and / or deoxidizing agent) of three or four kinds of synthesized products were used, and the amount of the iron-containing flux raw material powder in the mixed product of these synthesized products and the binder was 35 to 90% by mass.
By setting the amount to 35% by mass or more, the amount
%, The amount of welding slag powder, which is a factor for bringing in moisture, can be reduced, and the amount of diffusible hydrogen in the weld metal can be further reduced. On the other hand, the amount is 90
The reason why the content is set to be not more than mass% is that if it exceeds this, the peelability of slag generated after welding is deteriorated, and peeling failure occurs.
In order to further reduce diffusible hydrogen in the weld metal, the amount of the welding slag in the mixed product is preferably 45% by mass or less, more preferably 30% by mass or less. Examples of the iron-containing flux raw material containing 5 to 10% by mass of iron include those mentioned in the prior art A, namely, smelting slag such as nickel slag, manganese slag, titanium slag, blast furnace slag, and olivine sand. Ores such as some manganese oxide ores, zircon sand, silica sand, and magnesia clinker are all suitable, and include smelting slag. The lack of surplus smelting slag can be accepted and recycled more than in the prior art A, and therefore the contribution in resource reuse and environmental protection is greater than in the prior art A. If the iron content of the iron-containing flux raw material is less than 5% by mass, the amount of CO and CO 2 generated during welding is small, and the amount of nitrogen in the weld metal cannot be reduced. On the other hand, if it exceeds 10% by mass, the amount of nitrogen in the weld metal can be reduced, but the peelability of the slag generated after welding deteriorates and poor peeling occurs.
Is limited to Here, the iron content refers to the total Fe (T.Fe) contained in the so-called raw material, and means the total iron content measured by a method according to JIS M 8212. The welding slag powder is obtained by mechanically pulverizing the welding slag generated after the submerged arc welding to a particle size of 300 μm.
It is preferable to use powder having a particle size of 0.1 μm or less and a specific surface area of 0.1 to 0.5 m 2 / g occupying about 100%. The reason is as follows. (Particle size 300 μm or less :) If the particle size exceeds 300 μm, the granulation properties will deteriorate. (Specific surface area 0.1 to 0.5 m 2 / g :) If the specific surface area is less than 0.1 m 2 / g, the granulation property deteriorates, the required amount of binder during granulation increases, and it becomes difficult to remove moisture during firing, The amount of diffusible hydrogen in the weld metal increases. If the specific surface area exceeds 0.5 m 2 / g, the amount of moisture absorbed by the unmelted substance contained in the welding slag powder increases, and the amount of diffusible hydrogen in the weld metal increases. The specific surface area is measured by a BET method using nitrogen adsorption. In addition, the iron-containing flux raw material powder is usually subjected to granulation or mechanical pulverization to form an agglomerate or powdery smelting slag or ore and the like. 5 to 10% by mass) and having a composition equivalent to a slag-forming agent (slag forming agent) is pulverized, preferably mechanically pulverized, so that particles having a particle diameter of 300 μm or less account for approximately 100%. Are preferred. The reason is the same as in the case of welding slag. In the present invention, in order to obtain a good weld bead, the mixed product is prepared by mixing SiO 2 : 30 to 70% by mass%, manganese oxide: 5 to 30% in terms of MnO, and MgO: 3 to 30%. %, Al
2 O 3 : 2 to 20%, CaO: 10% or less, CaF 2 : 15% or less
Species or two or more species (:
Requirement B). The reasons for setting individual suitable ranges are described below. These compounds are all classified as slag-forming agents (slag forming agents). (SiO 2 : 30 to 70% :) SiO 2 has an effect of maintaining a good bead appearance, but the effect is poor when it is less than 30%. Especially when high-speed fillet welding requires familiarity at the bead end, a good bead cannot be maintained at less than 30%. On the other hand, if it exceeds 70%, the viscosity becomes so high that the bead appearance tends to be disturbed and the slag peeling property is deteriorated. (Manganese oxide: 5 to 30 in terms of MnO)
% :) Manganese oxide has an effect of keeping the conformity of the bead end good even when the welding speed is increased, and is especially used as a flux component for fillet welding. However, if the content is less than 5%, the effect is not recognized. On the other hand, if the content is more than 30%, the slag is embrittled and its removability is deteriorated. (MgO: 3 to 30% :) MgO is useful for adjusting the melting point and viscosity of the slag and ensuring excellent slag removability, but if it is less than 3%, a sufficient effect cannot be obtained. 30%
If it exceeds 300, the viscosity is too low or the melting point is too high, and the bead appearance is liable to deteriorate. (Al 2 O 3 : 2 to 20% :) Al 2 O 3 is an important component for adjusting the viscosity and melting point of slag.
If it is less than 2%, the effect is poor. On the other hand, if it exceeds 20%, the melting point is too high, which causes deterioration of the bead shape. (CaO: 10% or less :) CaO is a component that affects the fluidity of the slag. If it exceeds 10%, the fluidity is impaired and the bead shape is deteriorated. The content is preferably 0.1 to 5%. (CaF 2 : 15% or less :) CaF 2 is a component for improving the fluidity of the slag, and if it exceeds 15%, the slag is likely to flow. Preferably, it is at least 0.5%. Requirement B may not be satisfied if only two types of flux raw material powder are used: iron-containing flux raw material powder and welding slag powder. In order to be able to cope with such a case, in the present invention, it is preferable to appropriately add a slag-making agent to the above-mentioned two types of compounding. Thereby, even if there is a difference between the two types of compounding and the requirement B, the difference can be eliminated by adding the slag-making agent. In addition, as a slag-making agent, TiO 2 : 10% or less, BaO: 5% or less, ZrO 2 : 5% or less, B 2 O 3 : 4% or less, CaCO 3 : 5 by mass% as required % Or less,
You may add so that the quantity in the said mixed product may become each said range. TiO 2 is reduced during welding, and Ti migrates into the weld metal to improve the toughness of the weld metal.
%, The toughness is rather deteriorated. BaO and ZrO 2 are added to adjust the basicity and melting point of the slag, but any addition exceeding 5% degrades the bead appearance and the slag removability. B 2 O 3 is introduced into the weld metal by a reduction reaction during welding.
Is transferred to contribute to improvement of the toughness of the weld metal, but if it exceeds 4%, solidification cracking of the weld metal is promoted. CaCO 3 is decomposed during welding to generate CO 2 and reduce the hydrogen partial pressure, which is effective in reducing the amount of diffusible hydrogen in the weld metal. However, if it exceeds 5%, the bead appearance deteriorates. Note that CaCO 3 has a firing temperature of 650 ° C.
In the case of the following, preferably 30% or less, more preferably 15%
It is as follows. Further, in addition to the above, it is preferable to add a deoxidizing agent to the above two kinds of compounds in order to improve the surface gloss of the bead or the toughness of the weld metal.
Examples of the deoxidizing agent include Ti, Al, Si, Mn and the like and alloys of these elements and iron (Fe). Among them, Si, Mn, ferrosilicon and ferromanganese are preferable. The deoxidizing agent may be added alone, or may be added in combination. However, when the content in the mixed product exceeds 10% by mass, the effect is saturated. Therefore, the addition in an amount equivalent to 10% by mass or less is preferable. In addition, it is preferably 1% by mass or more. These flux raw material powders mixed in a predetermined amount are kneaded with a binder, granulated, and then fired. The granulation method is not particularly limited, but it is preferable to use a rolling granulator or an extrusion granulator. After the granulation, it is preferable to carry out a sizing treatment such as dust removal and crushing of coarse particles to obtain particles having a particle diameter in the range of 0.075 to 1.4 mm. [Example] After adjusting the particle diameter to 300 μm or less and the specific surface area to 0.13 m 2 / g by mechanical pulverization, a magnetically-selected submerged arc welding slag powder, and a table to reduce the particle diameter to 300 μm or less by mechanical pulverization. Formulated with nickel slag having the composition shown in 1,
It is kneaded (mixed) with other flux raw material powder (equivalent to a slag-making agent) and a binder, granulated into 12 to 100 mesh particles, and fired at 900 ° C for 1 hour to obtain a fired flux as a product. Was. The iron content of the flux raw material powder other than nickel slag was less than 5% by mass. Table 2 shows the nickel slag content (blended content) in the kneaded product and the composition of the obtained product flux (substantially equal to the composition of the mixed product). [Table 1] These product fluxes were kept at 30 ° C. and 80% relative humidity.
% Moisture in the atmosphere for 24 hours, and using KW-36 manufactured by Kawasaki Steel Co., Ltd. as a welding wire, with a welding current of 70%.
0A, welding voltage 30V, welding speed 40cm / min.
Downward fillet welding was performed on a steel plate equivalent to S SM490B.
In addition, when using any of the product fluxes, no particular problem was found in the workability and the appearance of the welded portion. Regarding the generated weld metal,
The amount of diffusible hydrogen in the weld metal was measured according to Z3118. The amount of diffusible hydrogen was evaluated by an average value of data measured repeatedly three times. Table 2 shows the results. [Table 2] The product flux produced by the method of the present invention (inventive example) has a low diffusible hydrogen content of less than 5.0 ml / 100 g, indicating that the effect of preventing hydrogen cracking is large. According to the present invention, it is possible to obtain a weld metal having a small amount of diffusible hydrogen, and it is possible to obtain an effect that the danger of hydrogen cracking in a welded portion is significantly reduced. In addition, smelting slag and welding slag, which have been treated as industrial waste, can be recycled as raw materials, greatly contributing to resource reuse and environmental protection. Also, even if welding slag is reused repeatedly,
There is also an effect that generation of a pock mark can be prevented.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E084 AA02 AA03 AA04 AA06 AA07 AA08 AA09 AA11 AA12 AA13 AA20 AA26 AA33 AA41 AA43 BA03 BA04 BA10 BA11 BA23 BA25 CA03 CA16 CA23 CA29 CA32 DA18 EA04 GA03    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 4E084 AA02 AA03 AA04 AA06 AA07                       AA08 AA09 AA11 AA12 AA13                       AA20 AA26 AA33 AA41 AA43                       BA03 BA04 BA10 BA11 BA23                       BA25 CA03 CA16 CA23 CA29                       CA32 DA18 EA04 GA03

Claims (1)

【特許請求の範囲】 【請求項1】 フラックス原料粉と結合剤との混合成品
を造粒し焼成するサブマージアーク溶接用焼成型フラッ
クスの製造方法において、前記フラックス原料粉を、鉄
分5〜10質量%を含有する鉄含有フラックス原料粉、溶
接スラグ粉、あるいはさらに造滓剤および/または脱酸
剤からなるものとし、前記混合成品を、質量%で前記鉄
含有フラックス原料粉:35〜90%、Na2O:4.0 %以下を
含有し、かつ、SiO2:30〜70%、マンガン酸化物:MnO
換算で5〜30%、MgO :3〜30%、Al2O3 :2〜20%、
CaO :10%以下、CaF2:15%以下の1種または2種以上
を含有するものとしたことを特徴とするサブマージアー
ク溶接用焼成型フラックスの製造方法。
Claims: 1. A method for producing a firing flux for submerged arc welding in which a mixed product of a flux raw material powder and a binder is granulated and fired, wherein the flux raw material powder has an iron content of 5 to 10 mass%. % Of iron-containing flux raw material powder, welding slag powder, or further a slag-making agent and / or a deoxidizing agent, and the mixed product is prepared by mass% of the iron-containing flux raw material powder: 35 to 90%; Na 2 O: contains 4.0% or less, SiO 2 : 30 to 70%, manganese oxide: MnO
5-30% at the exchange, MgO: 3~30%, Al 2 O 3: 2~20%,
CaO: 10% or less, CaF 2: 15% or less of one or manufacturing method of submerged arc welding sintering type flux, characterized in that the one containing two or more.
JP2002049937A 2002-02-26 2002-02-26 Manufacturing method for sintered flux for submerged arc welding Pending JP2003245794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049937A JP2003245794A (en) 2002-02-26 2002-02-26 Manufacturing method for sintered flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049937A JP2003245794A (en) 2002-02-26 2002-02-26 Manufacturing method for sintered flux for submerged arc welding

Publications (1)

Publication Number Publication Date
JP2003245794A true JP2003245794A (en) 2003-09-02

Family

ID=28662323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049937A Pending JP2003245794A (en) 2002-02-26 2002-02-26 Manufacturing method for sintered flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JP2003245794A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136516A (en) * 2005-11-18 2007-06-07 Kobe Steel Ltd Bonded flux for submerged arc welding
WO2008072835A1 (en) * 2006-12-13 2008-06-19 Kiswel Ltd. Sintered flux for submerged arc welding
CN102198573A (en) * 2011-04-28 2011-09-28 蒋才银 Automatic submerged arc welding agent and preparation method thereof
CN102699521A (en) * 2012-05-21 2012-10-03 天津大学 Simple electroless welding pen and preparation method of electroless welding pen
CN103100805A (en) * 2013-02-17 2013-05-15 云南锡业锡材有限公司 Preparation method for high-purity lead-free welding flux
KR101370403B1 (en) 2012-05-08 2014-03-06 한국생산기술연구원 Filler for cored wire and flux cored wire for overlay welding with low dilution rate
CN104551444A (en) * 2014-05-19 2015-04-29 石家庄铁道大学 High-hardness and high-crack-resistance submerged overlaying welding sintered flux for cold roll and preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292497A (en) * 1988-09-29 1990-04-03 Nippon Steel Corp Flux for high-speed submerged arc welding of spiral steel pipe
JPH02200381A (en) * 1989-01-31 1990-08-08 Nippon Steel Corp Submerged arc welding method at high speed for spiral steel pipe
JPH0999392A (en) * 1995-07-28 1997-04-15 Kawasaki Steel Corp Baked flux for submerged arc welding having excellent hygroscopic resistance
JPH11188496A (en) * 1997-10-20 1999-07-13 Kawasaki Steel Corp Burning type flux for submerged arc welding, and manufacture
JP2000102892A (en) * 1998-09-25 2000-04-11 Kawasaki Steel Corp Firing type flux for submerge arc welding and its manufacture
JP2001038486A (en) * 1999-07-29 2001-02-13 Kawasaki Steel Corp Firing type flux for submerge arc welding with excellent moisture adsorption resistance and degradation resistance, and manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292497A (en) * 1988-09-29 1990-04-03 Nippon Steel Corp Flux for high-speed submerged arc welding of spiral steel pipe
JPH02200381A (en) * 1989-01-31 1990-08-08 Nippon Steel Corp Submerged arc welding method at high speed for spiral steel pipe
JPH0999392A (en) * 1995-07-28 1997-04-15 Kawasaki Steel Corp Baked flux for submerged arc welding having excellent hygroscopic resistance
JPH11188496A (en) * 1997-10-20 1999-07-13 Kawasaki Steel Corp Burning type flux for submerged arc welding, and manufacture
JP2000102892A (en) * 1998-09-25 2000-04-11 Kawasaki Steel Corp Firing type flux for submerge arc welding and its manufacture
JP2001038486A (en) * 1999-07-29 2001-02-13 Kawasaki Steel Corp Firing type flux for submerge arc welding with excellent moisture adsorption resistance and degradation resistance, and manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136516A (en) * 2005-11-18 2007-06-07 Kobe Steel Ltd Bonded flux for submerged arc welding
JP4489009B2 (en) * 2005-11-18 2010-06-23 株式会社神戸製鋼所 Bond flux for submerged arc welding
WO2008072835A1 (en) * 2006-12-13 2008-06-19 Kiswel Ltd. Sintered flux for submerged arc welding
CN102198573A (en) * 2011-04-28 2011-09-28 蒋才银 Automatic submerged arc welding agent and preparation method thereof
KR101370403B1 (en) 2012-05-08 2014-03-06 한국생산기술연구원 Filler for cored wire and flux cored wire for overlay welding with low dilution rate
CN102699521A (en) * 2012-05-21 2012-10-03 天津大学 Simple electroless welding pen and preparation method of electroless welding pen
CN103100805A (en) * 2013-02-17 2013-05-15 云南锡业锡材有限公司 Preparation method for high-purity lead-free welding flux
CN104551444A (en) * 2014-05-19 2015-04-29 石家庄铁道大学 High-hardness and high-crack-resistance submerged overlaying welding sintered flux for cold roll and preparation method
CN104551444B (en) * 2014-05-19 2017-02-22 石家庄铁道大学 High-hardness and high-crack-resistance submerged overlaying welding sintered flux for cold roll and preparation method

Similar Documents

Publication Publication Date Title
KR100322395B1 (en) Bonded flux for submerged arc welding and process for producing the same
AU2006225236B2 (en) Sintered flux for submerged arc welding
JP2003245794A (en) Manufacturing method for sintered flux for submerged arc welding
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
JP2001038486A (en) Firing type flux for submerge arc welding with excellent moisture adsorption resistance and degradation resistance, and manufacturing method
JP3877811B2 (en) Sintered flux for 9% Ni steel submerged arc welding
JP2711758B2 (en) Manganese sintered ore for steelmaking and refining and its production method
JP3577995B2 (en) Manufacturing method of fired flux for submerged arc welding
JPS60258406A (en) Synthetic flux for molten steel
JPS6268695A (en) High temperature calcined flux for submerged arc welding
JP3636693B2 (en) Electric furnace steelmaking
JP2001334393A (en) Flux for cladding by submerged arc welding
KR20020075260A (en) Mixed flux for submerged arc welding and manufacturing method thereof
JPH04279294A (en) Bond flux for submerged arc welding
JP3336244B2 (en) High temperature firing type flux for submerged arc welding and method for producing the same
JP2781266B2 (en) Method for producing molten low-density specific gravity flux for welding
JPH08267280A (en) Sio2-mno baked flux for submerged arc welding
JP2001239394A (en) Raw material for sub-merged arc welding material
JPH06320297A (en) Flux cored wire for gas shielded metal-arc welding
JP2000288779A (en) Baked flux for submerged arc welding
JPS61113732A (en) Sintering method of chrome ore
JP2002205191A (en) Stainless steel coated electrode
JPS63264297A (en) Flux for non-fused submerged arc welding
JPS62151292A (en) Flux for submerged arc welding
JPS5925010B2 (en) Calcareous steel refining agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508