JP2003242987A - Manufacturing method of fuel cell electrode catalyst and electrolyte membrane/electrode jointed body and polymer electrolyte fuel cell having the same - Google Patents

Manufacturing method of fuel cell electrode catalyst and electrolyte membrane/electrode jointed body and polymer electrolyte fuel cell having the same

Info

Publication number
JP2003242987A
JP2003242987A JP2002041057A JP2002041057A JP2003242987A JP 2003242987 A JP2003242987 A JP 2003242987A JP 2002041057 A JP2002041057 A JP 2002041057A JP 2002041057 A JP2002041057 A JP 2002041057A JP 2003242987 A JP2003242987 A JP 2003242987A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
polymer electrolyte
conductive carbon
carbon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2002041057A
Other languages
Japanese (ja)
Inventor
Shinichi Arisaka
伸一 有坂
Yasuo Takebe
安男 武部
Yasushi Sugawara
靖 菅原
Yoshihiro Hori
堀  喜博
Makoto Uchida
誠 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002041057A priority Critical patent/JP2003242987A/en
Publication of JP2003242987A publication Critical patent/JP2003242987A/en
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a catalyst in which the manufacturing process of the catalyst is simplified by performing attachment of the precious metal in dry atmosphere and which is superior in mass-producibility. <P>SOLUTION: The powder of conductive carbon particles is floated in the dry atmosphere and a precious metal-contained solution such as chloroplatinic acid or its dispersed fluid is sprayed in this and adhered to the conductive carbon particles, and at the same time dried by a reducing gas while carrying out reduction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質形等
の燃料電池に用いられる電極用触媒の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a catalyst for electrodes used in a fuel cell such as a polymer electrolyte type.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池の構成要素であ
る電極において、化学反応を促進させるための触媒とし
ては、白金等の貴金属が用いられている。高分子電解質
型燃料電池の製造コストを下げるためには、触媒の貴金
属の使用量を減らすことが不可欠である。発電性能を維
持しながら貴金属の使用量を減らすために、貴金属を微
細な粒子状にして、アセチレンブラックなどの導電性炭
素粒子の表面に担持し、有効に働く貴金属の比表面積を
上げるという方法がとられている。
2. Description of the Related Art In an electrode which is a constituent element of a polymer electrolyte fuel cell, a noble metal such as platinum is used as a catalyst for promoting a chemical reaction. In order to reduce the production cost of polymer electrolyte fuel cells, it is essential to reduce the amount of precious metal used in the catalyst. In order to reduce the amount of precious metal used while maintaining power generation performance, a method is available in which the precious metal is made into fine particles and supported on the surface of conductive carbon particles such as acetylene black to increase the specific surface area of the precious metal that works effectively. It is taken.

【0003】例えば、特開昭63-97232号公報には、白金
化合物の水溶液に還元剤を加えた後、過酸化水素の存在
下で水溶性ルテニウム化合物を加え、溶液中で貴金属の
コロイドを調製し、炭素微粉末をその溶液に投入して炭
素微粉末上に貴金属触媒を沈着させる方法が提案されて
いる。
For example, in Japanese Patent Laid-Open No. 63-97232, after adding a reducing agent to an aqueous solution of a platinum compound, a water-soluble ruthenium compound is added in the presence of hydrogen peroxide to prepare a colloid of a noble metal in the solution. Then, a method has been proposed in which carbon fine powder is added to the solution to deposit the noble metal catalyst on the carbon fine powder.

【0004】また高分子電解質型燃料電池の電極では、
反応ガスの供給路となる細孔と、水素イオン導電性高分
子電解質と、電子導電体である触媒材料とが形成する、
いわゆる三相界面の面積の大小が、電池の放電性能を左
右する。従来、この三相界面を増大させ、触媒材料であ
る貴金属の使用量を低減するために、触媒材料に水素イ
オン伝導性高分子電解質を混合分散させる試みがなされ
てきた。例えば、特公昭62−61118号公報、特公
昭62−61119号公報に記載の技術では、高分子電
解質を分散した溶液と、触媒材料との混合物を高分子電
解質膜上に塗着し、これを他の電極材料である拡散層等
と合わせてホットプレスした後、触媒材料を還元する方
法が提案されている。
Further, in the electrode of the polymer electrolyte fuel cell,
The pores that serve as the supply path for the reaction gas, the hydrogen ion conductive polymer electrolyte, and the catalyst material that is the electronic conductor are formed,
The size of the so-called three-phase interface area determines the discharge performance of the battery. Heretofore, attempts have been made to mix and disperse a hydrogen ion conductive polymer electrolyte in the catalyst material in order to increase the three-phase interface and reduce the amount of the noble metal used as the catalyst material. For example, in the techniques described in JP-B-62-61118 and JP-B-62-611119, a mixture of a polymer electrolyte-dispersed solution and a catalyst material is applied onto a polymer electrolyte membrane, and this is applied. A method has been proposed in which the catalyst material is reduced after being hot-pressed together with another electrode material such as a diffusion layer.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、溶液中
で貴金属のコロイドを調製する方法では、貴金属の粒径
を小さくしすぎると、コロイドが安定化してしまい、炭
素表面に担持することが難しくなる。このため、貴金属
の微細化には限度がある。
However, in the method of preparing a noble metal colloid in a solution, if the particle size of the noble metal is too small, the colloid will be stabilized and it will be difficult to support it on the carbon surface. Therefore, there is a limit to miniaturization of precious metals.

【0006】また、コロイドの溶液を調製してから炭素
粉末に担持する方法では、生成した触媒と溶液の分離、
乾燥工程が必要であり、工程が多くなると共に操作が煩
雑になり、量産性や製造コストに課題があった。
In the method of preparing a colloidal solution and supporting it on carbon powder, separation of the produced catalyst from the solution,
Since a drying step is required, the number of steps is increased, the operation becomes complicated, and there are problems in mass productivity and manufacturing cost.

【0007】さらに、三相界面の面積を増やすために、
触媒材料に水素イオン伝導性高分子電解質を混合分散さ
せる工程も必要であった。
Furthermore, in order to increase the area of the three-phase interface,
A step of mixing and dispersing the hydrogen ion conductive polymer electrolyte in the catalyst material was also necessary.

【0008】本発明は上記の課題を解決するもので、貴
金属の担持を乾燥雰囲気下で行うことで、触媒の製造工
程を簡略化し、量産性に優れた触媒の製造方法を提供す
ることを目的とする。
The present invention is intended to solve the above-mentioned problems, and it is an object of the present invention to provide a method for producing a catalyst which is excellent in mass productivity by supporting the precious metal in a dry atmosphere to simplify the production process of the catalyst. And

【0009】[0009]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明の燃料電池用電極触媒の製造方法は、導電
性炭素粒子を乾燥雰囲気中に流動させ、この中に少なく
とも金属触媒を含む溶液、または分散液を噴霧すること
によって、触媒担持導電性炭素粒子を得る工程を有する
ことを特徴とする。
In order to solve the above problems, a method for producing an electrode catalyst for a fuel cell according to the present invention is characterized in that conductive carbon particles are made to flow in a dry atmosphere and at least a metal catalyst is contained therein. The method is characterized by comprising a step of obtaining the catalyst-supporting conductive carbon particles by spraying a solution or dispersion containing the catalyst.

【0010】また、本発明は、金属触媒が、少なくとも
白金を含み、さらに前記触媒担持導電性炭素粒子を還元
性ガス雰囲気中で還元させる工程を有することが好まし
い。
Further, the present invention preferably has a step in which the metal catalyst contains at least platinum and further the catalyst-supporting conductive carbon particles are reduced in a reducing gas atmosphere.

【0011】また、本発明は、前記還元性ガスがH2
よびアンモニアの少なくとも一つを含むと有効である。
Further, the present invention is effective when the reducing gas contains at least one of H 2 and ammonia.

【0012】さらに、本発明は、前記金属触媒が、少な
くとも白金およびルテニウムを含み、前記2種類の金属
触媒を共にあるいは別々に含む溶液、または分散液を噴
霧することが有効である。
Further, according to the present invention, it is effective to spray a solution or a dispersion liquid in which the metal catalyst contains at least platinum and ruthenium and the two kinds of metal catalysts together or separately.

【0013】また、本発明は、上述の燃料電池用電極触
媒の製造方法で得られた触媒担持導電性炭素粒子を乾燥
雰囲気中に流動させ、この中に水素イオン伝導性高分子
電解質および撥水材を同時に、または別々に噴霧する工
程を有すると有効である。
Further, according to the present invention, the catalyst-supporting conductive carbon particles obtained by the above-mentioned method for producing an electrode catalyst for a fuel cell are allowed to flow in a dry atmosphere, in which a hydrogen ion conductive polymer electrolyte and a water repellent are added. It is useful to have the step of spraying the materials simultaneously or separately.

【0014】また、本発明は、前記別々に噴霧する工程
において、前記水素イオン導伝性高分子電解質を前記触
媒担持導電性炭素粒子に噴霧した後、撥水材を噴霧する
と有効である。
Further, in the present invention, it is effective to spray the hydrogen ion conductive polymer electrolyte onto the catalyst-supporting conductive carbon particles and then spray the water repellent material in the separate spraying step.

【0015】また、本発明は、さらに、造粒された前記
触媒担持導電性炭素粒子が粉砕される工程を有すると有
効である。
Further, it is effective that the present invention further comprises a step of pulverizing the granulated catalyst-supporting conductive carbon particles.

【0016】また、本発明の電解質膜/電極接合体は、
水素イオン伝導性高分子電解質膜と、前記水素イオン性
高分子電解質膜の両面に配置され、かつ上述の本発明の
製造方法により得られる触媒を含む触媒層と、前記触媒
層を介して前記水素イオン伝導性高分子電解質膜の両側
に配置されたガス拡散層とを有することを特徴とする。
Further, the electrolyte membrane / electrode assembly of the present invention comprises
A hydrogen ion conductive polymer electrolyte membrane, a catalyst layer that is disposed on both sides of the hydrogen ionic polymer electrolyte membrane, and contains a catalyst obtained by the above-mentioned production method of the present invention, and the hydrogen via the catalyst layer. It has a gas diffusion layer arranged on both sides of the ion conductive polymer electrolyte membrane.

【0017】また、本発明の高分子電解質形燃料電池
は、前記電解質膜/電極接合体と、前記電解質膜/電極
接合体の一方に水素を含有する燃料ガスを供給排出し、
他方に酸素を含む酸化剤ガスを供給排出するガス流路を
有する一対の導電性セパレータ板とを有する単位セルの
積層体を備えることを特徴とする。
The polymer electrolyte fuel cell of the present invention supplies and discharges hydrogen-containing fuel gas to one of the electrolyte membrane / electrode assembly and the electrolyte membrane / electrode assembly,
On the other hand, a laminate of unit cells having a pair of conductive separator plates having a gas flow path for supplying and discharging an oxidant gas containing oxygen is provided.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て図1を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIG.

【0019】図1は、スプレードライ式装置の一つの概
念図である。この装置においては、下部円柱状容器1に
導電性炭素粒子粉末を入れ、高圧スプレー11から11
aにしたがって、塩化白金酸水溶液等の金属を含む溶液
または分散液を噴霧することができる。また、金属触媒
担持後に溶液を代え、触媒担持導電性炭素粒子に水素イ
オン伝導性高分子電解質溶液または分散液を噴霧するこ
とができる。さらに、導電性炭素粒子粉末、または触媒
粉末は、ガス導入口5から供給される一定温度(60〜
200℃)の乾燥ガスにより容器内で乾燥させることが
できる。
FIG. 1 is a conceptual view of a spray-dry type apparatus. In this apparatus, conductive carbon particle powder is placed in the lower cylindrical container 1 and the high pressure sprays 11 to 11 are used.
According to a, a solution or dispersion containing a metal such as an aqueous solution of chloroplatinic acid can be sprayed. Further, the solution can be changed after supporting the metal catalyst, and the hydrogen ion conductive polymer electrolyte solution or dispersion can be sprayed on the catalyst supporting conductive carbon particles. Furthermore, the conductive carbon particle powder or the catalyst powder is supplied at a constant temperature (60 to 60
It can be dried in a container with a dry gas (200 ° C.).

【0020】さらに、ガス導入口5から還元性ガスを導
入することで、金属を含むイオンを還元し、金属触媒の
担持と還元を同時に行うことができる。還元性ガスとし
ては、水素やアンモニアを含む気流を用いることができ
る。水素やアンモニアの濃度は、濃くても還元反応上は
問題無いが、爆発や毒性の危険性を考慮すると、窒素等
の不活性ガスで希釈しておくことが有効である。通常、
4%程度の濃度があれば十分に還元反応を進行でき、し
かも安全性を増大させることができる。
Furthermore, by introducing a reducing gas from the gas inlet 5, it is possible to reduce the ions containing the metal and simultaneously carry and carry the metal catalyst. An air flow containing hydrogen or ammonia can be used as the reducing gas. Even if the concentration of hydrogen or ammonia is high, there is no problem in the reduction reaction, but considering the risk of explosion and toxicity, it is effective to dilute it with an inert gas such as nitrogen. Normal,
If the concentration is about 4%, the reduction reaction can proceed sufficiently and the safety can be increased.

【0021】導入したガスは、ガス流れ方向を示した矢
印5a、5bにしたがって、流通する。そして、下部円
柱形状容器部1の外周縁部に設けたスリットと、造粒プ
レート6を設けてあり、流動風量が外周に向かって大き
くなるように開孔した通気スリットを通過し、下部円柱
状容器1の内部に吹き上がる。このガスによる流動風に
より、下部円柱状容器1に投入した導電性炭素粒子粉
末、および触媒担持導電性炭素粒子を逆円錐上に広がっ
た流動部2で流動させることができる。
The introduced gas flows according to the arrows 5a and 5b indicating the gas flow direction. Then, a slit provided on the outer peripheral edge of the lower cylindrical container portion 1 and a granulating plate 6 are provided, and the air passes through a ventilation slit that is opened so that the amount of flowing air increases toward the outer periphery, and the lower cylindrical shape It blows up inside the container 1. By the flowing air of this gas, it is possible to cause the conductive carbon particle powder and the catalyst-supporting conductive carbon particles charged into the lower cylindrical container 1 to flow in the flowing portion 2 spreading on the inverted cone.

【0022】さらに、造粒プレート6の上部に撹拌羽根
7を設けてあり、これにより、沈降してきた導電性炭素
粒子粉末、および触媒担持導電性炭素粒子は、造粒プレ
ート6と撹拌羽根7の間のギャップ8で造粒することが
できる。また、撹拌羽根7は導電性炭素粒子粉末、およ
び触媒担持導電性炭素粒子を撹拌、流動させる役目と、
粉砕する役目を果たすことができる。パルスジェット9
は、下部円柱状容器1の側面に設けた圧縮ガス噴射ノズ
ルである。高圧ガス流れ方向を示す9aに従って、撹拌
羽根7の中心部に位置する円錐状の衝突ターゲット10
に向かって、高圧ジェットを間欠的に吹き込めるように
した。これにより、流動状態の導電性炭素粒子粉末、お
よび触媒担持導電性炭素粒子をジェット粉砕で一次粒子
まで粉砕することができる。
Further, a stirring blade 7 is provided on the upper part of the granulating plate 6, whereby the conductive carbon particle powder and the catalyst-supporting conductive carbon particles which have settled down are separated from the granulating plate 6 and the stirring blade 7. Granulation can be carried out in the gap 8 between them. Further, the stirring blade 7 has a function of stirring and flowing the conductive carbon particle powder and the catalyst-supporting conductive carbon particles,
It can serve to crush. Pulse jet 9
Is a compressed gas injection nozzle provided on the side surface of the lower cylindrical container 1. A conical collision target 10 located at the center of the stirring blade 7 according to 9a indicating the high-pressure gas flow direction.
The high-pressure jet was intermittently blown toward. As a result, the conductive carbon particle powder in a fluid state and the catalyst-supporting conductive carbon particles can be pulverized by jet pulverization into primary particles.

【0023】また、系内に導入されたガスは、上部円柱
状容器部3に配置されたバグフィルター4によって、導
電性炭素粒子粉末、および触媒粉末をフィルトレーショ
ンし、ガスのみをガス流れ方向を示す5cにしたがい系
外に排出できる。
In addition, the gas introduced into the system is filtered by the bag filter 4 arranged in the upper cylindrical container portion 3 into the conductive carbon particle powder and the catalyst powder, and only the gas flows in the gas flow direction. Can be discharged to the outside of the system according to 5c.

【0024】上記図1の装置により、導電性炭素粒子粉
末、および触媒粉末を流動させ、撹拌、粉砕しながら、
金属触媒を含む溶液または分散液、または水素イオン伝
導性高分子電解質溶液または分散液を噴霧することがで
き、造粒も乾燥もさせることができる。
While the conductive carbon particle powder and the catalyst powder are made to flow by the apparatus shown in FIG.
A solution or dispersion containing a metal catalyst, or a hydrogen ion conductive polyelectrolyte solution or dispersion can be sprayed on and can be granulated and dried.

【0025】また、粉砕工程が加わることで、粒子の状
態が細かく粉砕され、噴霧しにくい部分の導電性炭素粒
子粉末、および触媒粉末部分が表面に現れ、金属触媒、
および水素イオン伝導性高分子電解質が付着することが
可能となり、電池特性が向上する。
Further, by adding the pulverizing step, the state of the particles is finely pulverized, and the conductive carbon particle powder and the catalyst powder portion of the portion which is difficult to be sprayed appear on the surface.
And, it becomes possible to attach the hydrogen ion conductive polymer electrolyte, and the battery characteristics are improved.

【0026】さらに、一つの装置により、導電性炭素粒
子粉末に金属触媒の担持、または水素イオン伝導性高分
子電解質を連続的に付着させることが可能であることか
ら、工程を減らすと共に操作の煩雑さが緩和され、量産
性の向上や製造コストの低減化が可能となる。
Further, since it is possible to carry the metal catalyst on the conductive carbon particle powder or continuously attach the hydrogen ion conductive polymer electrolyte by one apparatus, the number of steps is reduced and the operation is complicated. It is possible to improve mass productivity and reduce manufacturing cost.

【0027】[0027]

【実施例】次に本発明の具体例を説明する。EXAMPLES Next, specific examples of the present invention will be described.

【0028】(実施例1)本実施例では、まず、図1に
示す装置で導電性炭素粒子に金属触媒を担持した。
(Example 1) In this example, first, a metal catalyst was supported on conductive carbon particles by the apparatus shown in FIG.

【0029】30nmの平均一次粒子径を持つ導電性カ
ーボン粒子であるケッチェンブラックEC(オランダ
国、AKZO Chemie社)を導電性炭素粒子粉末
とした。
Ketjen Black EC (AKZO Chemie, Netherlands), which is a conductive carbon particle having an average primary particle diameter of 30 nm, was used as the conductive carbon particle powder.

【0030】図1で示した装置を用い、この導電性炭素
粒子の表面に塩化白金酸水溶液(H 2PtCl6 15w
t% 田中貴金属製)を噴霧しながら乾燥し、還元ガス
として、水素ガスを4%含む窒素ガス雰囲気中で還元さ
せることにより、導電性炭素粒子の表面に白金触媒を担
持した。
Using the device shown in FIG.
Chloroplatinic acid aqueous solution (H 2PtCl6  15w
t% made by Tanaka Kikinzoku Co., Ltd.) and dried with a reducing gas
Is reduced in a nitrogen gas atmosphere containing 4% hydrogen gas.
The platinum catalyst on the surface of the conductive carbon particles.
I had

【0031】以上の工程での詳細な条件は、次の通りで
ある。導電性炭素粒子粉末ケッチェンブラックECの投
入量は40g、塩化白金酸水溶液の投入量は560g、
高圧スプレー11による塩化白金酸水溶液の噴霧速度は
2g/分、還元ガス入り口温度は150℃、還元ガス風
量は0.06m3/分、撹拌羽根7の回転速度は300
rpm、パルスジェット9のOn/Off間隔は1回/
12秒であった。このようにして、白金粒子を50wt
%担持したものを作製し、空気極側の触媒担持炭素粒子
とした。また、透過型電子顕微鏡(TEM)測定より、
白金粒子の平均粒径は30Åであることがわかった。
Detailed conditions in the above steps are as follows. The charged amount of conductive carbon particle powder Ketjen Black EC is 40 g, the charged amount of chloroplatinic acid aqueous solution is 560 g,
The spray rate of the chloroplatinic acid aqueous solution by the high-pressure spray 11 is 2 g / min, the reducing gas inlet temperature is 150 ° C., the reducing gas air flow rate is 0.06 m 3 / min, and the rotating speed of the stirring blade 7 is 300.
rpm, pulse jet 9 On / Off interval is once /
It was 12 seconds. In this way, 50 wt.
% Supported on the air electrode to prepare catalyst-supporting carbon particles on the air electrode side. Moreover, from the transmission electron microscope (TEM) measurement,
It was found that the average particle size of the platinum particles was 30Å.

【0032】以上の例では貴金属溶液として塩化白金酸
水溶液を用いたが、代わりにジニトロジアンミン白金水
溶液(Pt(NO22(NH32)またはヘキサアンミ
ン白金塩化物水溶液(〔Pt(NH36〕Cl4)を用
いても、同様の結果が得られた。
In the above examples, the chloroplatinic acid aqueous solution was used as the noble metal solution, but instead, the dinitrodiammine platinum aqueous solution (Pt (NO 2 ) 2 (NH 3 ) 2 ) or hexaammine platinum chloride aqueous solution ([Pt (NH Similar results were obtained using 3 ) 6 ] Cl 4 ).

【0033】また、還元ガスとして、水素の代わりにア
ンモニアを含む窒素ガスを用いても同様の結果が得られ
た。
Similar results were obtained by using nitrogen gas containing ammonia instead of hydrogen as the reducing gas.

【0034】つぎに、上記触媒担持粉末に水素イオン伝
導性高分子電解質が付着したものを調製し、その後それ
を用いてMEA(電解質膜/電極接合体)を作製した。
図1で示した装置を用い、上記触媒担持導電性炭素粒子
の表面に水素イオン伝導性高分子電解質の溶液を噴霧し
ながら乾燥し、触媒担持導電性炭素粒子の表面に、水素
イオン伝導性高分子電解質を接合した。ここで、水素イ
オン伝導性高分子は10重量%濃度のパーフルオロカー
ボンスルホン酸(デュポン社製SE10072)を用い
た。
Next, the catalyst-supported powder to which the hydrogen ion conductive polymer electrolyte was attached was prepared, and then MEA (electrolyte membrane / electrode assembly) was prepared using the same.
Using the apparatus shown in FIG. 1, the catalyst-supporting conductive carbon particles were dried while spraying a solution of the hydrogen ion conductive polymer electrolyte on the surfaces thereof, and the surface of the catalyst-supporting conductive carbon particles was subjected to high hydrogen ion conductivity. The molecular electrolyte was joined. Here, as the hydrogen ion conductive polymer, 10% by weight concentration of perfluorocarbon sulfonic acid (SE10072 manufactured by DuPont) was used.

【0035】装置を用いた工程での詳細な条件は、水素
イオン伝導性高分子電解質の溶液の投入量は185g、
高圧スプレー11による水素イオン伝導性高分子電解質
溶液の噴霧速度は2g/分、窒素ガス入り口温度は10
0℃、窒素ガス風量は0.06m3/分、撹拌羽根7の
回転速度は300rpm、パルスジェット9のOn/O
ff間隔は1回/12秒であった。
Detailed conditions in the process using the apparatus are as follows: the amount of the hydrogen ion conductive polymer electrolyte solution charged is 185 g,
The spray rate of the hydrogen ion conductive polymer electrolyte solution by the high pressure spray 11 is 2 g / min, and the nitrogen gas inlet temperature is 10
0 ° C., nitrogen gas flow rate 0.06 m 3 / min, stirring blade 7 rotation speed 300 rpm, pulse jet 9 On / O
The ff interval was once per 12 seconds.

【0036】このようにして得た触媒体は、一次粒子の
レベルで、表面に水素イオン伝導性高分子電解質を均一
に配置しており、また、複次粒子の平均粒径を5μmと
することができた。
In the catalyst body thus obtained, the hydrogen ion conductive polymer electrolyte is uniformly arranged on the surface at the level of the primary particles, and the average particle size of the secondary particles is 5 μm. I was able to.

【0037】この触媒体を窒素雰囲気中でエチレングリ
コ−ルと混合し、空気極側触媒層用のペースト状のイン
クを調製した。つぎに、外寸が13cm×13cmの水
素イオン伝導性高分子電解質膜(デュポン社製ナフィオ
ン112)の片面に、空気極側触媒層用ペーストをスク
リーン印刷法により塗布した。形成後の空気極側触媒層
中に含まれる白金量は、0.5mg/cm2となるよう
調製し、このときの電極触媒層の平均厚みは20μmに
なるように調製した。
This catalyst was mixed with ethylene glycol in a nitrogen atmosphere to prepare a paste ink for the air electrode side catalyst layer. Next, the air electrode side catalyst layer paste was applied by a screen printing method to one surface of a hydrogen ion conductive polymer electrolyte membrane (Nafion 112 manufactured by DuPont) having outer dimensions of 13 cm × 13 cm. The amount of platinum contained in the air electrode side catalyst layer after formation was adjusted to 0.5 mg / cm 2, and the average thickness of the electrode catalyst layer at this time was adjusted to 20 μm.

【0038】また、図1で示した装置を用い、ケッチェ
ンブラックECに塩化白金酸水溶液(H2PtCl6)の
溶液を噴霧しながら乾燥し、水素ガスを4%含む還元ガ
ス雰囲気中で還元させた。続いて塩化ルテニウム水溶液
(RuCl3 8.3wt%田中貴金属製)の溶液を噴
霧しながら乾燥し、水素ガスを4%含む還元ガス雰囲気
中で還元させることにより、導電性炭素粒子の表面に白
金粒子とルテニウム粒子をそれぞれ25重量%担持し
た。これを燃料極側の触媒担持導電性炭素粒子とした。
さらに、この触媒担持導電性炭素粒子の表面に水素イオ
ン伝導性高分子電解質の溶液を噴霧しながら乾燥し、触
媒担持導電性炭素粒子の表面に、水素イオン伝導性高分
子電解質を接合した。
Using the apparatus shown in FIG. 1, Ketjen Black EC was dried while spraying a solution of a chloroplatinic acid aqueous solution (H 2 PtCl 6 ) and reduced in a reducing gas atmosphere containing 4% of hydrogen gas. Let Subsequently, a solution of a ruthenium chloride aqueous solution (RuCl 3 8.3 wt% made by Tanaka Kikinzoku) is sprayed and dried, and reduced in a reducing gas atmosphere containing 4% of hydrogen gas, whereby platinum particles are formed on the surface of the conductive carbon particles. And ruthenium particles were carried by 25% by weight, respectively. This was used as a catalyst-supporting conductive carbon particle on the fuel electrode side.
Further, a solution of a hydrogen ion conductive polymer electrolyte was sprayed onto the surface of the catalyst-supporting conductive carbon particles and dried to bond the hydrogen ion conductive polymer electrolyte to the surface of the catalyst-supporting conductive carbon particles.

【0039】以上の工程での詳細な条件は、次の通りで
ある。導電性炭素粒子粉末ケッチェンブラックECの投
入量は40g、塩化白金酸水溶液の投入量は280g、
塩化ルテニウム水溶液の投入量は495g、高圧スプレ
ー11による塩化白金酸水溶液、および塩化ルテニウム
水溶液の噴霧速度は2g/分、還元ガス入り口温度は1
50℃、還元ガス風量は0.06m3/分、撹拌羽根7
の回転速度は300rpm、パルスジェット9のOn/
Off間隔は1回/12秒であった。このようにして、
白金粒子とルテニウム粒子をそれぞれ25wt%担持し
たものを作製し、空気極側の触媒担持導電性炭素粒子と
した。また、透過型電子顕微鏡(TEM)測定より、白
金粒子、およびルテニウム粒子の平均粒径は30Åであ
ることがわかった。
Detailed conditions in the above steps are as follows. The charged amount of conductive carbon particle powder Ketjen Black EC is 40 g, the charged amount of chloroplatinic acid aqueous solution is 280 g,
The injection amount of the ruthenium chloride aqueous solution was 495 g, the spray rate of the chloroplatinic acid aqueous solution by the high-pressure spray 11 and the ruthenium chloride aqueous solution was 2 g / min, and the reducing gas inlet temperature was 1
50 ° C., reducing gas flow rate 0.06 m 3 / min, stirring blade 7
Rotation speed of 300 rpm, pulse jet 9 On /
The Off interval was once every 12 seconds. In this way
25 wt% of platinum particles and 25 wt% of ruthenium particles each were prepared to be used as catalyst-supporting conductive carbon particles on the air electrode side. Further, the transmission electron microscope (TEM) measurement revealed that the platinum particles and the ruthenium particles had an average particle size of 30Å.

【0040】つぎに、図1で示した装置を用い、上記触
媒担持導電性炭素粒子の表面に水素イオン伝導性高分子
電解質の溶液を噴霧しながら乾燥し、触媒担持導電性炭
素粒子の表面に、水素イオン伝導性高分子電解質を接合
した。
Next, using the apparatus shown in FIG. 1, the catalyst-supporting conductive carbon particles are dried while spraying a solution of the hydrogen ion conductive polymer electrolyte on the surfaces thereof to form catalyst-supporting conductive carbon particles on the surface. , Bonded with a hydrogen ion conductive polymer electrolyte.

【0041】水素イオン伝導性高分子電解質の溶液の投
入量は185g、高圧スプレー11による水素イオン伝
導性高分子電解質溶液の噴霧速度は2g/分、窒素ガス
入り口温度は100℃、窒素ガス風量は0.06m3
分、撹拌羽根7の回転速度は300rpm、パルスジェ
ット9のOn/Off間隔は1回/12秒であった。
The charged amount of the hydrogen ion conductive polymer electrolyte solution was 185 g, the spray rate of the hydrogen ion conductive polymer electrolyte solution by the high pressure spray 11 was 2 g / min, the nitrogen gas inlet temperature was 100 ° C., and the nitrogen gas flow rate was 0.06m 3 /
The rotation speed of the stirring blade 7 was 300 rpm, and the On / Off interval of the pulse jet 9 was 1 time / 12 seconds.

【0042】このようにして得た触媒体は、一次粒子の
レベルで、表面に水素イオン伝導性高分子電解質を均一
に配置しており、また、複次粒子の平均粒径を5μmと
することができた。
In the catalyst body thus obtained, the hydrogen ion conductive polymer electrolyte is uniformly arranged on the surface at the level of the primary particles, and the average particle size of the secondary particles is 5 μm. I was able to.

【0043】この触媒体を窒素雰囲気中でエチレングリ
コ−ルと混合し、燃料極側触媒層用のペースト状のイン
クを調製した。つぎに、片面に空気極側触媒層を塗布し
てある、外寸が13cm×13cmの水素イオン伝導性
高分子電解質膜の反対面に、燃料極側触媒層用ペースト
をスクリーン印刷法により塗布した。形成後の燃料極側
触媒層中に含まれる白金量は、0.3mg/cm2とな
るよう調製し、このときの電極触媒層の平均厚みは20
μmになるように調製した。
This catalyst was mixed with ethylene glycol in a nitrogen atmosphere to prepare a paste ink for the fuel electrode side catalyst layer. Next, the catalyst for the catalyst layer on the fuel electrode side was applied by screen printing to the opposite surface of the hydrogen ion conductive polymer electrolyte membrane having an outer dimension of 13 cm × 13 cm, which had one side coated with the catalyst layer on the air electrode side. . The amount of platinum contained in the fuel electrode side catalyst layer after formation was adjusted to 0.3 mg / cm 2, and the average thickness of the electrode catalyst layer at this time was 20 mg / cm 2.
It was prepared to have a thickness of μm.

【0044】一方、電極の拡散層となるカーボンペーパ
ーを撥水処理した。外寸6cm×6cm、厚み360μ
mの導電性カーボン粒子のカーボン不織布(東レ製、T
GP―H―120)を、フッ素樹脂含有の水性ディスパ
ージョン(ダイキン工業製、ネオフロンND1)に含浸
した後、これを乾燥し、400℃で30分加熱すること
で、撥水性を与えた。さらに、このカーボン不織布の一
方の面に、導電性カーボン粉末とPTFE微粉末を分散
させた水溶液とを混合したインクを、スクリーン印刷法
を用いて塗布することで撥水層を形成した。このとき、
撥水層の一部を、カーボン不織布の中に埋め込んだ。
On the other hand, the carbon paper to be the diffusion layer of the electrode was subjected to water repellent treatment. External size 6 cm x 6 cm, thickness 360μ
m non-woven fabric of conductive carbon particles (Tray, T
GP-H-120) was impregnated in a fluororesin-containing aqueous dispersion (Neotron ND1 manufactured by Daikin Industries, Ltd.), which was then dried and heated at 400 ° C. for 30 minutes to impart water repellency. Further, an ink obtained by mixing conductive carbon powder and an aqueous solution in which PTFE fine powder was dispersed was applied to one surface of this carbon nonwoven fabric by a screen printing method to form a water repellent layer. At this time,
A part of the water repellent layer was embedded in the carbon nonwoven fabric.

【0045】つぎに、触媒層が形成された水素イオン伝
導性高分子電解質膜に、前述のカーボンペーパーを撥水
層の塗布した面が触媒層の側に接するようにホットプレ
スで接合し、これを電解質膜/電極接合体(MEA)2
4とした。その構造を図2に示した。前記のMEAを用
い、燃料電池特性測定用セル(単セル)を組み立て、試
験を行った。図3に単セル構成図を示した。
Next, the hydrogen ion conductive polymer electrolyte membrane having the catalyst layer formed thereon was bonded by hot pressing so that the surface coated with the water repellent layer was in contact with the catalyst layer side. Electrolyte membrane / electrode assembly (MEA) 2
It was set to 4. The structure is shown in FIG. A fuel cell characteristic measurement cell (single cell) was assembled using the MEA and tested. FIG. 3 shows a single cell configuration diagram.

【0046】単セルの温度は75℃に設定し、活物質と
して負極側には水素ガスを露点70℃で加湿し、利用率
80%、正極には空気を露点60℃で加湿し、利用率4
0%に調製し、放電試験を行ったところ、電流密度に関
わらず高いセル電圧を示した。図4にセルの電流−電圧
特性を示した。
The temperature of the single cell was set to 75 ° C., hydrogen gas as the active material was humidified at the dew point of 70 ° C. on the negative electrode side, the utilization rate was 80%, and air at the positive electrode was humidified at the dew point of 60 ° C. Four
When adjusted to 0% and subjected to a discharge test, a high cell voltage was shown regardless of the current density. FIG. 4 shows the current-voltage characteristics of the cell.

【0047】なお、以上では触媒体を、エチレングリコ
−ルと混合し、電極触媒層用のペースト状のインクを調
製したが、インク溶媒塗工用インクにするために、ブタ
ノ−ル、イソプロパノールヘキサン、ヘプタンを用いて
も、同様の高性能が得られることを確認した。
In the above, the catalyst was mixed with ethylene glycol to prepare a paste-like ink for the electrode catalyst layer. However, in order to prepare the ink for ink solvent coating, butanol, isopropanol hexane were used. It was confirmed that the same high performance could be obtained by using heptane.

【0048】(比較例1)比較のために、次の方法によ
って調製した空気極側の触媒担持導電性炭素粒子を用い
てMEAを作成した。塩化白金酸溶液(田中貴金属製
15.217wt%)13.20gを水300mlに溶
かした。これに亜硫酸水素ナトリウム28.13gを加
えて攪拌した。さらに水1400mlを加えて攪拌し、
5%水酸化ナトリウム水溶液を約60mlを加えてpH
を5にした。
Comparative Example 1 For comparison, an MEA was prepared using the catalyst-supporting conductive carbon particles on the air electrode side prepared by the following method. Chloroplatinic acid solution (made by Tanaka Kikinzoku)
13.217 g (15.217 wt%) was dissolved in 300 ml of water. To this, 28.13 g of sodium hydrogen sulfite was added and stirred. Add 1400 ml of water and stir,
Approximately 60 ml of 5% aqueous sodium hydroxide solution was added to adjust the pH.
Was set to 5.

【0049】30%過酸化水素水240mlを滴下し、
さらに水酸化ナトリウム水溶液を約150mlを加えて
pHを5に保った。
240 ml of 30% hydrogen peroxide solution was added dropwise,
Further, about 150 ml of an aqueous sodium hydroxide solution was added to maintain the pH at 5.

【0050】この溶液に、ケッチェンブラックEC2.
34gに水300mlを加えて良く混ぜたものを加え、
超音波ホモジナイザーで攪拌しながら過熱し、1時間沸
騰させて、カーボンブラック表面に白金微粒子を担持さ
せた。
To this solution was added Ketjenblack EC2.
Add 34 ml of 300 ml of water and mix well,
The mixture was heated with stirring with an ultrasonic homogenizer and boiled for 1 hour to support platinum fine particles on the surface of carbon black.

【0051】濾過、水洗を繰り返して触媒担持カーボン
を得た。これを空気極側の触媒担持導電性炭素粒子とし
た。触媒担持導電性炭素粒子を空気中で800℃に加熱
してカーボンを燃焼させた時の残さの重量より、白金の
担持量は約50%であった。
Filtration and washing with water were repeated to obtain a catalyst-supporting carbon. This was used as the catalyst-supporting conductive carbon particles on the air electrode side. The amount of platinum supported was about 50% from the weight of the residue when the catalyst-supported conductive carbon particles were heated to 800 ° C. in air to burn the carbon.

【0052】つぎに、ケッチェンブラックECに、白金
とルテニウムの合金を担持したもの(田中貴金属製TE
C61E54、Pt濃度30wt%、Ru濃度24wt
%)を燃料極側の触媒担持導電性炭素粒子とした。これ
らの触媒担持導電性炭素粒子を実施例1の装置に投入
し、実施例1と同様に水素イオン伝導性高分子電解質を
噴霧し、高分子電解質形燃料電池を実施例1と同様に作
製した。
Next, an alloy of platinum and ruthenium supported on Ketjen Black EC (TE by Tanaka Kikinzoku Co., Ltd.)
C61E54, Pt concentration 30 wt%, Ru concentration 24 wt
%) As the catalyst-supporting conductive carbon particles on the fuel electrode side. These catalyst-supporting conductive carbon particles were placed in the apparatus of Example 1, and the hydrogen ion conductive polymer electrolyte was sprayed in the same manner as in Example 1 to prepare a polymer electrolyte fuel cell in the same manner as in Example 1. .

【0053】これを実施例1と同様に燃料電池の評価を
行った。その結果、電流密度の増大と共にセル電圧が低
下した。図4にセルの電流−電圧特性を示した。
The fuel cell was evaluated in the same manner as in Example 1. As a result, the cell voltage decreased as the current density increased. FIG. 4 shows the current-voltage characteristics of the cell.

【0054】(実施例2)本実施例では、図1で示した
装置を用い、燃料極側の触媒担持導電性炭素粒子とし
て、ケッチェンブラックECに塩化白金酸水溶液(H2
PtCl6)の溶液280gを噴霧しながら乾燥し、同
時に塩化ルテニウム水溶液(RuCl3)の溶液495
gを別の噴き出し口から噴霧しながら乾燥し、水素ガス
を4%含む還元ガス雰囲気中で還元させることにより、
導電性炭素粒子の表面に白金粒子とルテニウム粒子をそ
れぞれ25重量%担持した。さらに、この触媒担持導電
性炭素粒子の表面に水素イオン伝導性高分子電解質の溶
液185gを噴霧しながら乾燥し、触媒担持導電性炭素
粒子の表面に、水素イオン伝導性高分子電解質を接合し
た。
(Embodiment 2) In this embodiment, the apparatus shown in FIG. 1 is used, and Ketjen Black EC is used as a catalyst-carrying conductive carbon particle on the fuel electrode side in an aqueous solution of chloroplatinic acid (H 2).
280 g of a solution of PtCl 6 ) is sprayed and dried, and at the same time, a solution of an aqueous solution of ruthenium chloride (RuCl 3 ) 495
by spraying g from another outlet, and reducing in a reducing gas atmosphere containing 4% of hydrogen gas,
25% by weight of platinum particles and ruthenium particles were supported on the surfaces of the conductive carbon particles. Further, 185 g of a hydrogen ion conductive polymer electrolyte solution was sprayed onto the surface of the catalyst-supporting conductive carbon particles and dried to bond the hydrogen ion conductive polymer electrolyte to the surface of the catalyst-supporting conductive carbon particles.

【0055】この触媒体を窒素雰囲気中でエチレングリ
コ−ルと混合し、燃料極側触媒層用のペースト状のイン
クを調製した。つぎに、実施例1と同様に片面に空気極
側触媒層を塗布してある、外寸が13cm×13cmの
水素イオン伝導性高分子電解質膜の反対面に、燃料極側
触媒層用ペーストをスクリーン印刷法により塗布した。
形成後の燃料極側触媒層中に含まれる白金量は、0.3
mg/cm2となるよう調製し、このときの電極触媒層
の平均厚みは20μmになるように調製した。これを用
いて実施例1と同様に電極膜接合体(MEA)を作成
し、燃料電池特性測定用セル(単セル)を組み立て、試
験を行った。実施例1と同様に放電試験を行ったとこ
ろ、電流密度に関わらず高いセル電圧を示した。図4に
セルの電流−電圧特性を示した。
This catalyst was mixed with ethylene glycol in a nitrogen atmosphere to prepare a paste ink for the fuel electrode side catalyst layer. Next, in the same manner as in Example 1, the fuel electrode side catalyst layer paste was applied to the opposite side of the hydrogen ion conductive polymer electrolyte membrane having an outer dimension of 13 cm × 13 cm, which was coated on one side with the air electrode side catalyst layer. It was applied by a screen printing method.
The amount of platinum contained in the fuel electrode side catalyst layer after formation was 0.3.
It was adjusted to be mg / cm 2, and the average thickness of the electrode catalyst layer at this time was adjusted to be 20 μm. Using this, an electrode membrane assembly (MEA) was prepared in the same manner as in Example 1, and a fuel cell characteristic measurement cell (single cell) was assembled and tested. When a discharge test was conducted in the same manner as in Example 1, a high cell voltage was shown regardless of the current density. FIG. 4 shows the current-voltage characteristics of the cell.

【0056】(実施例3)本実施例では、図1で示した
装置を用い、燃料極側の触媒担持導電性炭素粒子とし
て、ケッチェンブラックECに塩化白金酸水溶液(H2
PtCl6)の溶液280gと塩化ルテニウム水溶液
(RuCl3)の溶液495gとを混合し、その混合液
を噴霧しながら乾燥し、水素ガスを4%含む還元ガス雰
囲気中で還元させることにより、導電性炭素粒子の表面
に白金粒子とルテニウム粒子をそれぞれ25重量%担持
した。さらに、この触媒担持導電性炭素粒子の表面に水
素イオン伝導性高分子電解質の溶液185gを噴霧しな
がら乾燥し、触媒担持導電性炭素粒子の表面に、水素イ
オン伝導性高分子電解質を接合した。
(Embodiment 3) In this embodiment, using the apparatus shown in FIG. 1, Ketjen Black EC as a catalyst-carrying conductive carbon particle on the fuel electrode side was mixed with an aqueous solution of chloroplatinic acid (H 2
280 g of a solution of PtCl 6 ) and 495 g of a ruthenium chloride aqueous solution (RuCl 3 ) are mixed, dried by spraying the mixed solution, and reduced in a reducing gas atmosphere containing 4% of hydrogen gas to obtain conductivity. 25% by weight of platinum particles and ruthenium particles were supported on the surface of each carbon particle. Further, 185 g of a hydrogen ion conductive polymer electrolyte solution was sprayed onto the surface of the catalyst-supporting conductive carbon particles and dried to bond the hydrogen ion conductive polymer electrolyte to the surface of the catalyst-supporting conductive carbon particles.

【0057】この触媒体を窒素雰囲気中でエチレングリ
コ−ルと混合し、燃料極側触媒層用のペースト状のイン
クを調製した。つぎに、実施例1と同様に片面に空気極
側触媒層を塗布してある、外寸が13cm×13cmの
水素イオン伝導性高分子電解質膜の反対面に、燃料極側
触媒層用ペーストをスクリーン印刷法により塗布した。
形成後の燃料極側触媒層中に含まれる白金量は、0.3
mg/cm2となるよう調製し、このときの電極触媒層
の平均厚みは20μmになるように調製した。これを用
いて実施例1と同様に電極膜接合体(MEA)を作成
し、燃料電池特性測定用セル(単セル)を組み立て、試
験を行った。実施例1と同様に放電試験を行ったとこ
ろ、電流密度に関わらず高いセル電圧を示した。図4に
セルの電流−電圧特性を示した。
This catalyst was mixed with ethylene glycol in a nitrogen atmosphere to prepare a paste ink for the fuel electrode side catalyst layer. Next, in the same manner as in Example 1, the fuel electrode side catalyst layer paste was applied to the opposite side of the hydrogen ion conductive polymer electrolyte membrane having an outer dimension of 13 cm × 13 cm, which was coated on one side with the air electrode side catalyst layer. It was applied by a screen printing method.
The amount of platinum contained in the fuel electrode side catalyst layer after formation was 0.3.
It was adjusted to be mg / cm 2, and the average thickness of the electrode catalyst layer at this time was adjusted to be 20 μm. Using this, an electrode membrane assembly (MEA) was prepared in the same manner as in Example 1, and a fuel cell characteristic measurement cell (single cell) was assembled and tested. When a discharge test was conducted in the same manner as in Example 1, a high cell voltage was shown regardless of the current density. FIG. 4 shows the current-voltage characteristics of the cell.

【0058】(実施例4)まず白金コロイドを含む溶液
を調製した。塩化白金酸溶液(田中貴金属製 15.2
17wt%)13.20gを水300mlに溶かした。
これに亜硫酸水素ナトリウム28.13gを加えて攪拌
した。さらに水1400mlを加えて攪拌し、5%水酸
化ナトリウム水溶液を約60mlを加えてpHを5にし
た。さらに30%過酸化水素水240mlを滴下し、さ
らに水酸化ナトリウム水溶液を約150mlを加えてp
Hを5に保った。これにより白金コロイドを含む溶液を
得た。
Example 4 First, a solution containing a platinum colloid was prepared. Chloroplatinic acid solution (Tanaka Kikinzoku 15.2
13.20 g of 17 wt%) was dissolved in 300 ml of water.
To this, 28.13 g of sodium hydrogen sulfite was added and stirred. Further, 1400 ml of water was added and stirred, and about 60 ml of 5% sodium hydroxide aqueous solution was added to adjust the pH to 5. Further, 240 ml of 30% hydrogen peroxide solution was added dropwise, and about 150 ml of sodium hydroxide aqueous solution was further added to add p.
H was kept at 5. As a result, a solution containing platinum colloid was obtained.

【0059】次にケッチェンブラックEC2.34gを
導電性炭素粒子粉末とし、図1で示した装置に投入し
て、上記白金コロイド溶液を噴霧しながら乾燥した。本
実施例では還元ガスの代わりに窒素ガスを用いた。これ
により空気極側の触媒担持導電性炭素粒子とした。
Next, 2.34 g of Ketjen Black EC was made into conductive carbon particle powder, which was put into the apparatus shown in FIG. 1 and dried by spraying the platinum colloid solution. In this example, nitrogen gas was used instead of reducing gas. As a result, catalyst-supporting conductive carbon particles on the air electrode side were obtained.

【0060】また、ケッチェンブラックECに、白金と
ルテニウムの合金を担持したもの(田中貴金属製TEC
61E54、Pt濃度30wt%、Ru濃度24wt
%)を燃料極側の触媒担持導電性炭素粒子とした。
Further, an alloy of platinum and ruthenium is supported on Ketjen Black EC (TEC made by Tanaka Kikinzoku Co., Ltd.
61E54, Pt concentration 30 wt%, Ru concentration 24 wt
%) As the catalyst-supporting conductive carbon particles on the fuel electrode side.

【0061】これらの触媒担持導電性炭素粒子を実施例
1の装置に投入し、実施例1と同様に水素イオン伝導性高
分子電解質を噴霧し、高分子電解質形燃料電池を実施例
1と同様に作製した。
These catalyst-supporting conductive carbon particles were used in Examples.
The polymer electrolyte fuel cell was placed in the apparatus of No. 1 and sprayed with a hydrogen ion conductive polymer electrolyte in the same manner as in Example 1 to prepare a polymer electrolyte fuel cell in the same manner as in Example 1.

【0062】これを実施例1と同様に燃料電池の評価を
行った。その結果、電流密度に関わらず高いセル電圧を
示した。図4にセルの電流−電圧特性を示した。
The fuel cell was evaluated in the same manner as in Example 1. As a result, a high cell voltage was shown regardless of the current density. FIG. 4 shows the current-voltage characteristics of the cell.

【0063】(実施例5)本実施例では、図1で示した
装置を用い、導電性炭素粒子として、ケッチェンブラッ
クEC40gを投入し、塩化白金酸水溶液(H2PtC
6 15wt%田中貴金属製)560gおよび水素イ
オン伝導性高分子溶液(10重量%濃度のパーフルオロ
カーボンスルホン酸、デュポン社製SE10072)1
85gを混合したものを噴霧しながら乾燥し、水素ガス
を4%含む還元ガス雰囲気中で還元させることにより、
導電性炭素粒子の表面に白金粒子と水素イオン伝導性高
分子電解質を接合した。これを空気極側の触媒担持導電
性炭素粒子とした。
(Embodiment 5) In this embodiment, using the apparatus shown in FIG. 1, 40 g of Ketjen Black EC was introduced as conductive carbon particles, and an aqueous solution of chloroplatinic acid (H 2 PtC) was added.
l 6 15 wt% Tanaka Kikinzoku Co., Ltd. 560 g and hydrogen ion conductive polymer solution (10 wt% concentration of perfluorocarbon sulfonic acid, DuPont SE10072) 1
By spraying and drying a mixture of 85 g, and reducing in a reducing gas atmosphere containing 4% of hydrogen gas,
The platinum particles and the hydrogen ion conductive polymer electrolyte were bonded to the surface of the conductive carbon particles. This was used as the catalyst-supporting conductive carbon particles on the air electrode side.

【0064】この触媒担持導電性炭素粒子を窒素雰囲気
中でエチレングリコ−ルと混合し、実施例1と同様に空
気極側触媒層用のペースト状のインクを調製し、外寸が
13cm×13cmの水素イオン伝導性高分子電解質膜
に、スクリーン印刷法により塗布した。
The catalyst-supporting conductive carbon particles were mixed with ethylene glycol in a nitrogen atmosphere to prepare a paste-like ink for the air electrode side catalyst layer in the same manner as in Example 1, and the outer dimensions were 13 cm × 13 cm. Was applied to the hydrogen ion conductive polymer electrolyte membrane of No. 1 by screen printing.

【0065】この膜の反対側に実施例1と同様に燃料極
側触媒層を形成し、電極膜接合体(MEA)を作成し、
燃料電池特性測定用セル(単セル)を組み立て、試験を
行った。実施例1と同様に放電試験を行ったところ、電
流密度に関わらず高いセル電圧を示した。図4にセルの
電流−電圧特性を示した。
A fuel electrode side catalyst layer was formed on the opposite side of this membrane in the same manner as in Example 1 to prepare an electrode membrane assembly (MEA).
A fuel cell characteristic measurement cell (single cell) was assembled and tested. When a discharge test was conducted in the same manner as in Example 1, a high cell voltage was shown regardless of the current density. FIG. 4 shows the current-voltage characteristics of the cell.

【0066】[0066]

【発明の効果】以上のように本発明によれば、貴金属担
持触媒を簡便に製造できる。さらに貴金属を微粒子化す
ることが可能であり、貴金属の利用率が向上し、貴金属
の使用量を減らすことも可能である。
As described above, according to the present invention, a noble metal-supported catalyst can be easily produced. Further, the precious metal can be made into fine particles, the utilization rate of the precious metal can be improved, and the amount of the precious metal used can be reduced.

【0067】さらに貴金属の担持と水素イオン伝導性高
分子電解質の接合を連続または同時に行うことで、量産
性に優れた燃料電池用電極触媒の製造が可能になる。
Further, by carrying the noble metal and joining the hydrogen ion conductive polymer electrolyte continuously or simultaneously, it becomes possible to produce a fuel cell electrode catalyst excellent in mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例で用いた製造装置の概念
を示す図
FIG. 1 is a diagram showing a concept of a manufacturing apparatus used in a first embodiment of the present invention.

【図2】本発明の第1の実施例における電解質膜/電極
接合体の構成図
FIG. 2 is a configuration diagram of an electrolyte membrane / electrode assembly according to the first embodiment of the present invention.

【図3】本発明の第1の実施例における単セル構成図FIG. 3 is a configuration diagram of a single cell according to the first embodiment of the present invention.

【図4】本発明の第1の実施例における単セルの電流−
電圧特性図
FIG. 4 shows the current of a single cell in the first embodiment of the present invention.
Voltage characteristic diagram

【符号の説明】[Explanation of symbols]

1 下部円柱状容器部 2 流動部 3 上部円柱状容器部 4 バグフィルター 5 ガス導入口 6 造粒プレート 7 撹拌羽根 8 造粒プレートと撹拌羽根との間のギャップ 9 パルスジェット 10 衝突ターゲット 11 高圧スプレー 21 水素イオン伝導性高分子電解質膜 22 触媒層 23 拡散層 24 電解質膜/電極接合体 31 セパレーター 32 ガス流路 33 単セル 1 Lower cylindrical container 2 Flow section 3 Upper cylindrical container 4 Bug filter 5 gas inlet 6 granulation plate 7 stirring blades 8 Gap between granulation plate and stirring blade 9 pulse jet 10 collision target 11 high pressure spray 21 Hydrogen ion conductive polymer electrolyte membrane 22 Catalyst layer 23 Diffusion layer 24 Electrolyte membrane / electrode assembly 31 separator 32 gas flow paths 33 single cells

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 (72)発明者 菅原 靖 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 堀 喜博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4D006 GA41 PB18 PB66 PC80 4D075 AA01 BB78Z CA22 CA47 DA11 DB11 DB70 DC19 DC50 EA07 EC10 4G069 AA03 AA08 BA08B BC75B CC32 EB18Y FA02 FB24 5H018 AA06 AS01 BB01 BB03 BB06 BB08 BB11 BB12 BB17 DD06 EE03 EE05 EE08 EE10 EE16 EE18 EE19 5H026 AA06 BB03 BB06 BB08 BB10 CC04 CX05 EE02 EE05 EE08 EE18 Front page continued (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/10 H01M 8/10 (72) Inventor Yasushi Sugawara 1006 Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. ( 72) Inventor Yoshihiro Hori, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. PC80 4D075 AA01 BB78Z CA22 CA47 DA11 DB11 DB70 DC19 DC50 EA07 EC10 4G069 AA03 AA08 BA08B BC75B CC32 EB18Y FA02 FB24 5H018 AA06 AS01 BB01 BB03 BB06 BB08 BB11 BB12 BB17 DD06 EE03 EE05 EE08 EE10 EE16 EE18 EE19 5H026 AA06 BB03 BB06 BB08 BB10 CC04 CX05 EE02 EE05 EE08 EE18

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 導電性炭素粒子を乾燥雰囲気中に流動さ
せ、この中に少なくとも金属触媒を含む溶液、または分
散液を噴霧することによって、触媒担持導電性炭素粒子
を得る工程を有することを特徴とする燃料電池用電極触
媒の製造方法。
1. A step of obtaining conductive carbon particles carrying a catalyst by causing conductive carbon particles to flow in a dry atmosphere and spraying a solution or dispersion containing at least a metal catalyst therein. And a method for producing a fuel cell electrode catalyst.
【請求項2】 前記金属触媒が、少なくとも白金を含
み、さらに前記触媒担持導電性炭素粒子を還元性ガス雰
囲気中で還元させる工程を有することを特徴とする請求
項1記載の燃料電池用電極触媒の製造方法。
2. The fuel cell electrode catalyst according to claim 1, wherein the metal catalyst contains at least platinum, and further has a step of reducing the catalyst-supporting conductive carbon particles in a reducing gas atmosphere. Manufacturing method.
【請求項3】 前記還元性ガスがH2およびアンモニア
の少なくとも一つを含むことを特徴とする請求項2記載
の燃料電池用電極触媒の製造方法。
3. The method for producing an electrode catalyst for a fuel cell according to claim 2, wherein the reducing gas contains at least one of H 2 and ammonia.
【請求項4】 前記金属触媒が、少なくとも白金および
ルテニウムを含み、前記2種類の金属触媒を共にあるい
は別々に含む溶液、または分散液を噴霧することを特徴
とする請求項1記載の燃料電池用電極触媒の製造方法。
4. The fuel cell according to claim 1, wherein the metal catalyst contains at least platinum and ruthenium, and a solution or dispersion containing the two kinds of metal catalysts together or separately is sprayed. Method for manufacturing electrode catalyst.
【請求項5】 さらに、請求項1または4記載の燃料電
池用電極触媒の製造方法で得られた触媒担持導電性炭素
粒子を乾燥雰囲気中に流動させ、この中に水素イオン伝
導性高分子電解質を含む分散液を噴霧することによっ
て、連続的に造粒された複次粒子を得る工程を有するこ
とを特徴とする燃料電池用電極触媒の製造方法。
5. The catalyst-supporting conductive carbon particles obtained by the method for producing an electrode catalyst for a fuel cell according to claim 1 or 4, are further allowed to flow in a dry atmosphere, and the hydrogen-ion conductive polymer electrolyte is contained therein. A method for producing an electrode catalyst for a fuel cell, which comprises a step of obtaining secondary particles that are continuously granulated by spraying a dispersion liquid containing the.
【請求項6】 さらに、請求項1〜4の何れかに記載の
燃料電池用電極触媒の製造方法で得られる触媒担持導電
性炭素粒子を乾燥雰囲気中に流動させ、この中に水素イ
オン伝導性高分子電解質および撥水材を同時に、または
別々に噴霧する工程を有することを特徴とする燃料電池
用電極触媒の製造方法。
6. The catalyst-carrying conductive carbon particles obtained by the method for producing an electrode catalyst for a fuel cell according to claim 1, are flowed in a dry atmosphere, and hydrogen ion conductivity is contained therein. A method for producing a fuel cell electrode catalyst, comprising a step of spraying a polymer electrolyte and a water repellent material simultaneously or separately.
【請求項7】 前記別々に噴霧する工程において、前記
水素イオン導伝性高分子電解質を前記触媒担持導電性炭
素粒子に噴霧した後、撥水材を噴霧することを特徴とす
る請求項6記載の燃料電池用電極触媒の製造方法。
7. The water repellent material is sprayed after the hydrogen ion conductive polymer electrolyte is sprayed on the catalyst-supporting conductive carbon particles in the step of spraying separately. Of the method for producing an electrode catalyst for a fuel cell.
【請求項8】 さらに、造粒された前記触媒担持導電性
炭素粒子が粉砕される工程を有することを特徴とする請
求項5に記載の燃料電池用電極触媒の製造方法。
8. The method for producing a fuel cell electrode catalyst according to claim 5, further comprising the step of pulverizing the granulated catalyst-supporting conductive carbon particles.
【請求項9】 水素イオン伝導性高分子電解質膜と、前
記水素イオン性高分子電解質膜の両面に配置され、かつ
請求項1〜8の何れかに記載の製造方法により得られた
触媒を含む触媒層と、前記触媒層を介して前記水素イオ
ン伝導性高分子電解質膜の両側に配置されたガス拡散層
とを有する電解質膜/電極接合体。
9. A hydrogen ion conductive polymer electrolyte membrane and a catalyst which is arranged on both sides of the hydrogen ion conductive polymer electrolyte membrane and which is obtained by the production method according to claim 1. An electrolyte membrane / electrode assembly having a catalyst layer and gas diffusion layers disposed on both sides of the hydrogen ion conductive polymer electrolyte membrane via the catalyst layer.
【請求項10】 請求項9に記載の電解質膜/電極接合
体と、前記電解質膜/電極接合体の一方に水素を含有す
る燃料ガスを供給排出し、他方に酸素を含む酸化剤ガス
を供給排出するガス流路を有する一対の導電性セパレー
タ板とを有する単位セルの積層体を備える高分子電解質
形燃料電池。
10. The electrolyte membrane / electrode assembly according to claim 9, and a fuel gas containing hydrogen is supplied to and discharged from one of the electrolyte membrane / electrode assembly, and an oxidant gas containing oxygen is supplied to the other. A polymer electrolyte fuel cell comprising a unit cell stack having a pair of conductive separator plates having a gas flow path for discharging.
JP2002041057A 2002-02-19 2002-02-19 Manufacturing method of fuel cell electrode catalyst and electrolyte membrane/electrode jointed body and polymer electrolyte fuel cell having the same Ceased JP2003242987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041057A JP2003242987A (en) 2002-02-19 2002-02-19 Manufacturing method of fuel cell electrode catalyst and electrolyte membrane/electrode jointed body and polymer electrolyte fuel cell having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041057A JP2003242987A (en) 2002-02-19 2002-02-19 Manufacturing method of fuel cell electrode catalyst and electrolyte membrane/electrode jointed body and polymer electrolyte fuel cell having the same

Publications (1)

Publication Number Publication Date
JP2003242987A true JP2003242987A (en) 2003-08-29

Family

ID=27781571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041057A Ceased JP2003242987A (en) 2002-02-19 2002-02-19 Manufacturing method of fuel cell electrode catalyst and electrolyte membrane/electrode jointed body and polymer electrolyte fuel cell having the same

Country Status (1)

Country Link
JP (1) JP2003242987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124004A (en) * 2006-11-15 2008-05-29 Samsung Electronics Co Ltd Manufacturing method and manufacturing apparatus of electrode for fuel cell
JP2010214246A (en) * 2009-03-13 2010-09-30 Aisin Seiki Co Ltd Method of supporting platinum nanoparticle
CN108676818A (en) * 2018-05-18 2018-10-19 清华大学深圳研究生院 A kind of method of the organic waste rapid conversion energy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124004A (en) * 2006-11-15 2008-05-29 Samsung Electronics Co Ltd Manufacturing method and manufacturing apparatus of electrode for fuel cell
JP2010214246A (en) * 2009-03-13 2010-09-30 Aisin Seiki Co Ltd Method of supporting platinum nanoparticle
CN108676818A (en) * 2018-05-18 2018-10-19 清华大学深圳研究生院 A kind of method of the organic waste rapid conversion energy
CN108676818B (en) * 2018-05-18 2021-06-01 清华大学深圳研究生院 Method for quickly converting organic waste into energy
US11535542B2 (en) 2018-05-18 2022-12-27 Tsinghua Shenzhen International Graduate School Method for quickly converting organic waste into energy

Similar Documents

Publication Publication Date Title
JP3869568B2 (en) Fuel cell electrode
JP4944345B2 (en) POLYMER ELECTROLYTE FUEL CELL, AND METHOD AND DEVICE FOR PRODUCING THE ELECTRODE
US6440594B1 (en) Aerosol feed direct methanol fuel cell
US7132187B2 (en) Polymer electrolyte fuel cell and production method thereof
US20080020924A1 (en) Method of fabricating platinum alloy electrocatalysts for membrane fuel cell applications
US20070161501A1 (en) Method for making carbon nanotube-supported platinum alloy electrocatalysts
JP2004281305A (en) Fuel cell and its manufacturing method
JP5114859B2 (en) Method for producing catalyst electrode for fuel cell
JP4826057B2 (en) Fuel cell
WO2011013206A1 (en) Direct methanol fuel cell and anode used therein
JP5108199B2 (en) POWDERED CATALYST MATERIAL, PROCESS FOR PRODUCING THE SAME, AND POLYMER FUEL CELL ELECTRODE
JP2003109602A (en) High molecular electrolyte fuel cell and method of manufacturing the same
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
JPH08115726A (en) Preparation of electrode for high-molecular solid electrolytic type electrochemistry cell
US7056615B2 (en) Electrode for polymer electrolyte fuel cells and manufacturing method therefor
JP2003109605A (en) Electrode for high molecular electrolyte fuel cell and method of manufacturing the same
JP2003242987A (en) Manufacturing method of fuel cell electrode catalyst and electrolyte membrane/electrode jointed body and polymer electrolyte fuel cell having the same
JP4910305B2 (en) A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same.
JP5114856B2 (en) Anode manufacturing method
JP2003282067A (en) Composition and manufacturing method of polymerelectrolyte type fuel cell catalyst layer
JP2003282074A (en) Electrode for fuel cell, and manufacturing method of the same
JP2004139789A (en) Catalyst powder for fuel cell and its manufacturing method as well as polyelectrolyte membrane/electrode joint body and polyelectrolyte fuel cell equipped with the same
JP2004349076A (en) Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same
JP2003109601A (en) Catalyst layer for high molecular electrolyte fuel cell and method of manufacturing the same
JP2003045439A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell, electrolyte membrane/electrode assembly using it, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20060704