JP2003240503A - Method and apparatus for measuring perfect circle - Google Patents

Method and apparatus for measuring perfect circle

Info

Publication number
JP2003240503A
JP2003240503A JP2002039974A JP2002039974A JP2003240503A JP 2003240503 A JP2003240503 A JP 2003240503A JP 2002039974 A JP2002039974 A JP 2002039974A JP 2002039974 A JP2002039974 A JP 2002039974A JP 2003240503 A JP2003240503 A JP 2003240503A
Authority
JP
Japan
Prior art keywords
measured
displacement
measuring
axial direction
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002039974A
Other languages
Japanese (ja)
Other versions
JP3564106B2 (en
Inventor
Katsuyuki Endo
勝幸 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukushima Prefecture
Original Assignee
Fukushima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukushima Prefecture filed Critical Fukushima Prefecture
Priority to JP2002039974A priority Critical patent/JP3564106B2/en
Publication of JP2003240503A publication Critical patent/JP2003240503A/en
Application granted granted Critical
Publication of JP3564106B2 publication Critical patent/JP3564106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for measuring a perfect circle capable of measuring the entire surface profile of a measuring object with high precision by a low-precision, low-printed mechanism and through easy measuring work. <P>SOLUTION: The apparatus for measuring a perfect circle is characterized in that it comprises a rotating mechanism 6 rotating the measuring object 5 having a circular cross section; a displacement gage supporting stage 7 provided adjacent to the measuring object 5; no fewer than five displacement gages 4 mounted on the displacement gage supporting stage 7 and arranged with staggered angles on a spiral trajectory on the surface of the measuring object 5; a horizontally moving mechanism 8 moving the displacement gages 4 along the axial direction; a calculating mechanism 25 measuring the surface profile by sequentially measuring a measuring point of the measuring object 5 by the each displacement gage 4, calculating from the each measurement, up-and-down and side-to-side parallel displacement errors and inclination errors in the vertical plane and the horizontal plane with respect to the axial direction of the measuring object 5, and subtracting these calculated kinetic errors; and a displaying mechanism 26 displaying the surface profile along the axial direction of the measuring object while sequentially moving the measuring point. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は円柱体または円筒体
など断面円形状をなす被測定物の軸方向に沿った真円を
連続的に測定する方法およびその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for continuously measuring a true circle along an axial direction of an object to be measured having a circular cross section such as a cylinder or a cylinder.

【0002】[0002]

【従来の技術】一般に、印刷用や圧延用のロールやシャ
フト、ロッドなどの円柱体や、シリンダーや軸受ブロッ
クなどの円筒体など、断面円形状をなす被測定物の形状
評価法としては、現在様々な方法が用いられている。従
来から行なわれている簡易な方法としては、マイクロメ
ータなどで何ヶ所かの直径を測る方法がある。この方法
では母線方向の曲がりは測定できないため、被測定物を
回転させながらダイヤルゲージなどで振れ回りを見る
か、あるいはダイヤルゲージを母線方向に送って変位を
見る必要がある。しかしながらこの簡易な方法では、測
定点が少ないため全体的な形状を把握できず、等幅曲線
が測定できない。また回転精度や送り精度などの機構精
度以上の精度で測定できないなどの欠点がある。
2. Description of the Related Art Generally, as a method for evaluating the shape of an object having a circular cross section, such as a cylindrical body such as a roll or shaft for printing or rolling, a cylindrical body such as a cylinder or a bearing block, is currently available. Various methods are used. As a conventional simple method, there is a method of measuring the diameter at several places with a micrometer or the like. Since the bending in the busbar direction cannot be measured by this method, it is necessary to observe whirling with a dial gauge or the like while rotating the object to be measured, or send the dial gauge in the busbar direction to see the displacement. However, with this simple method, the total shape cannot be grasped because there are few measurement points, and the monospaced curve cannot be measured. Further, there is a drawback that measurement cannot be performed with accuracy higher than mechanical accuracy such as rotation accuracy and feed accuracy.

【0003】また一般に最も使用されている精密な測定
法としては、真円度測定機という専用機を用いる方法が
ある。これは、いずれの測定機メーカでも一つの検出器
による半径法という方法を用いている。これは図9に示
すように、基台1の上にターンテーブル2を設け、この
横にスタンド3を設けて、ここに変位計4を上下動自在
に取付けたものである。これはターンテーブル2の上に
被測定物5を垂直に設置して、この表面に変位計4を接
触させて被測定物5を回転させながら半径方向の変位を
測定する。次に変位計4を軸方向に送り、同様に被測定
物5の半径方向の表面変位を順次測定する。
The most commonly used precision measuring method is to use a dedicated machine called a roundness measuring machine. This is a method called the radius method with one detector used by all measuring machine manufacturers. As shown in FIG. 9, a turntable 2 is provided on a base 1, a stand 3 is provided next to the turntable 2, and a displacement meter 4 is attached to the stand 3 so as to be vertically movable. In this, the object to be measured 5 is installed vertically on the turntable 2, and the displacement gauge 4 is brought into contact with the surface of the object to measure the displacement in the radial direction while rotating the object to be measured 5. Next, the displacement meter 4 is fed in the axial direction, and similarly the surface displacement in the radial direction of the DUT 5 is sequentially measured.

【0004】しかしながらこの真円度測定機による測定
は、測定精度以上の、非常に高い回転精度と送り精度が
必要であるため、測定できる大きさに制限があり、大型
の被測定物の測定は難しい。また、被測定物5の取付け
の際に、ターンテーブル2の回転軸と被測定物5との軸
を一致させるためのセンタリング・ チルティング作業が
必要であり、作業が煩雑で時間がかかる問題がある。ま
た、高精度な回転軸と送り機構のため、装置が高価とな
り、更に振動や温度変化が少ない安定した測定環境が要
求される問題があった。
However, the measurement with this roundness measuring machine requires extremely high rotational accuracy and feed accuracy, which are higher than the measurement accuracy, and therefore there is a limit to the size that can be measured. difficult. Further, when mounting the DUT 5, it is necessary to perform centering / tilting work for aligning the rotation axis of the turntable 2 and the DUT 5 axis, which is troublesome and time-consuming. is there. Further, since the rotating shaft and the feeding mechanism are highly accurate, the device becomes expensive, and there is a problem that a stable measurement environment with less vibration and temperature change is required.

【0005】更に従来の真円度測定機による測定では、
被測定物5の軸に対して垂直な半径方向の表面変位しか
測定できず、軸方向の形状変化は、変位計4を軸方向に
少しずつずらしてその位置における半径方向の表面変位
を順次測定していくため、軸方向に沿った連続的な表面
変位の変化を測定することができなかった。
Further, in the measurement by the conventional roundness measuring machine,
Only the surface displacement in the radial direction perpendicular to the axis of the DUT 5 can be measured. For the shape change in the axial direction, the displacement gauge 4 is gradually displaced in the axial direction to sequentially measure the radial surface displacement at that position. Therefore, it was not possible to measure the continuous change of the surface displacement along the axial direction.

【0006】一般に、変位計は、測定面上の一点までの
変位しか測定することはできない。被測定物5の軸方向
に沿った連続的な表面変位の変化を測定して、全体的な
形状を得るためには図10に示すように被測定物5と変
位計4を相対的に動かし、複数点を測定する必要があ
る。被測定物5と変位計4の相対的な動きを実現するた
めの機構には、様々な種類が考えられるが、例えば図1
1に示すように、被測定物5の中心軸回りに回転運動だ
けを行い、変位計4は被測定物中心軸にほぼ平行に直線
運動する構造である。この構造により、被測定物5の表
面上で任意のらせん軌跡を描かせ、任意点の変位を測定
することができる。
In general, the displacement meter can measure only the displacement up to one point on the measurement surface. In order to measure the continuous change in the surface displacement of the DUT 5 along the axial direction and obtain the overall shape, the DUT 5 and the displacement meter 4 are moved relative to each other as shown in FIG. , It is necessary to measure multiple points. Although various types of mechanisms can be considered for realizing the relative movement of the DUT 5 and the displacement meter 4, for example, FIG.
As shown in FIG. 1, the displacement gauge 4 has a structure in which only a rotational movement is performed around the central axis of the object to be measured 5, and the displacement meter 4 linearly moves substantially parallel to the central axis of the object to be measured. With this structure, an arbitrary spiral locus can be drawn on the surface of the DUT 5 and the displacement at an arbitrary point can be measured.

【0007】これらの運動は、完全に被測定物5の回転
軸(回転中心)が動き回らない回転運動と、その回転軸
に完全に平行な直線運動が行なえることが条件である。
しかし、これらの運動を実現するためには、非常に高精
度な軸受けや直線ガイドが必要になる。非常に高精度と
いうのは、測定に必要な精度に比べてその誤差が無視で
きるほど小さい、ということである。例えば図12に示
すように測定したい被測定物5の表面形状が10μmの範
囲でうねる軸とずれて偏りがある場合、運動誤差は、1
μm以下となることが必要である。
These movements are required to be able to perform a rotation movement in which the rotation axis (rotation center) of the object to be measured 5 does not move completely and a linear movement completely parallel to the rotation axis.
However, very accurate bearings and linear guides are required to achieve these movements. Very high precision means that the error is negligible compared to the precision required for measurement. For example, as shown in FIG. 12, when the surface shape of the DUT 5 to be measured is deviated from the wavy axis in the range of 10 μm, the motion error is 1
It must be less than μm.

【0008】一般に表面研削されたような高精度な被測
定物5は、数μm以下の加工誤差しか持たないため、運
動誤差はこの10分の1以下である0.1 μm程度に抑え
る必要がある。しかしながら、この運動精度を実現する
ことは容易ではなく、高価な空気軸受けを使用しても、
大きな重量の被測定物5を支えることは困難である。ま
た玉軸受けやスライドガイドなどを用いれば、安価で大
きな重量に耐える構造を作ることができるが、図13に
示すように、被測定物5の中心軸が回転機構の軸中心か
らずれてセットされた場合や、精度の低い回転機構や水
平移動機構のガタツキなどが加わって、測定時に運動誤
差となって現れる。このように安価な機構を用いると運
動誤差は数μm程度になり、高精度な被測定物5の測定
には適用できない問題があった。
Generally, the highly accurate object to be measured 5 whose surface has been ground has only a processing error of several μm or less, and therefore the motion error must be suppressed to about 0.1 μm, which is one tenth or less. However, it is not easy to realize this motion accuracy, and even if an expensive air bearing is used,
It is difficult to support the object 5 having a large weight. If a ball bearing or a slide guide is used, it is possible to make a structure that is inexpensive and can withstand a large weight. However, as shown in FIG. 13, the center axis of the DUT 5 is set so as to deviate from the axis center of the rotating mechanism. In addition, if the rotation mechanism or horizontal movement mechanism with low accuracy rattles, it will appear as a motion error during measurement. When such an inexpensive mechanism is used, the motion error is about several μm, which is a problem that cannot be applied to highly accurate measurement of the DUT 5.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記問題を改
善し、被測定物の高精度な回転機構と、変位計の高精度
な送り機構を不必要とし、低精度で安価な機構により被
測定物の全体の表面形状を高精度に測定することがで
き、しかも被測定物を測定機に取付ける際の、センタリ
ング・ チルティング作業が不要で測定作業も容易な真円
測定方法および真円測定装置を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and eliminates the need for a highly accurate rotation mechanism for an object to be measured and a highly accurate feed mechanism for a displacement gauge, and a low-accuracy and inexpensive mechanism to cover the object. A perfect circle measuring method and perfect circle measurement that can measure the surface shape of the entire measured object with high accuracy, and do not require centering and tilting work when mounting the measured object on the measuring machine. A device is provided.

【0010】[0010]

【課題を解決するための手段】本発明の請求項1記載の
真円測定方法は、円柱体または円筒体など断面円形状を
なす被測定物の表面の同一らせん状軌跡の上に、角度を
ずらして5個以上の変位計を配置し、被測定物を回転し
ながら、変位計に対して相対的に軸方向に沿って移動さ
せて、前記各変位計で被測定物の同一の測定点を順次測
定し、それぞれの測定結果から、被測定物の上下および
左右の平行移動誤差と、軸方向に対して垂直面および水
平面内の傾き誤差を演算して、これら演算した運動誤差
を除去し、以下測定点を順次移動させながら被測定物の
軸方向に沿った表面形状を測定することを特徴とするも
のである。
A perfect circle measuring method according to a first aspect of the present invention is such that an angle is set on the same spiral locus of the surface of an object to be measured having a circular cross section such as a cylinder or a cylinder. Displacement of five or more displacement gauges is performed, and while rotating the object to be measured, it is moved along the axial direction relative to the displacement meter, and each displacement meter has the same measurement point of the object to be measured. Are sequentially measured, and the vertical and horizontal translation errors of the object to be measured and the tilt errors in the vertical and horizontal planes with respect to the axial direction are calculated from each measurement result, and these calculated motion errors are removed. In the following, the surface shape along the axial direction of the object to be measured is measured while sequentially moving the measurement points.

【0011】本発明の請求項2記載の真円測定装置は、
円柱体または円筒体など断面円形状をなす被測定物を回
転させる回転機構と、被測定物に近接して設けられた変
位計支持台と、この変位計支持台に取付けられ、被測定
物の表面の同一らせん状軌跡の上に、角度をずらして5
個以上配置された変位計と、被測定物または変位計支持
台を被測定物の軸方向に沿って移動させる移動機構と、
前記各変位計で被測定物の同一の測定点を順次測定し、
それぞれの測定結果から、被測定物の上下および左右の
平行移動誤差と、軸方向に対して垂直面および水平面内
の傾き誤差を演算して、これら演算した運動誤差を除去
して表面形状を測定する演算機構と、測定点を順次移動
させながら被測定物の軸方向に沿った表面形状を表示す
る表示機構とからなることを特徴とするものである。
A perfect circle measuring device according to claim 2 of the present invention is
A rotating mechanism for rotating a measured object having a circular cross section such as a cylindrical body or a cylindrical body, a displacement gauge support stand provided in proximity to the measured subject, and an object to be measured attached to the displacement gauge support stand. On the same spiral locus on the surface, shift the angle 5
Displacement meter arranged more than one, and a moving mechanism that moves the object to be measured or the displacement gauge support base along the axial direction of the object to be measured,
Sequentially measure the same measurement point of the measured object with each displacement meter,
From each measurement result, the vertical and horizontal translation errors of the DUT and tilt errors in the vertical and horizontal planes with respect to the axial direction are calculated, and the calculated motion errors are removed to measure the surface shape. And a display mechanism for displaying the surface shape of the object to be measured along the axial direction while sequentially moving the measurement points.

【0012】[0012]

【発明の実施の形態】以下本発明の実施の一形態を図1
ないし図9を参照して詳細に説明する。図1は真円測定
装置を示すもので、これは円柱体または円筒体など断面
円形状をなす被測定物5を水平に支持して回転させる回
転機構6と、角度をずらして5個の変位計4を配置した
変位計支持台7と、この変位計支持台7を被測定物5の
軸方向に沿って平行に移動させる水平移動機構8とから
構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG.
A detailed description will be given with reference to FIGS. FIG. 1 shows a perfect circle measuring device, which includes a rotating mechanism 6 for horizontally supporting and rotating an object to be measured 5 having a circular cross section such as a cylindrical body or a cylindrical body, and five displacements at different angles. It comprises a displacement gauge support base 7 on which the gauge 4 is arranged, and a horizontal movement mechanism 8 which moves the displacement gauge support base 7 in parallel along the axial direction of the object to be measured 5.

【0013】前記回転機構6は支持台10の上にサーボ
モータ11が取付けられ、このサーボモータ11に減速
器12とベアリングホルダ13を介してチャック14が
取付けられている。またこれと対向するチャック15
は、水平移動機構8のガイドレール16の上に水平方向
に可動自在に支持され支持台17の上のベアリングホル
ダ18に取付けられている。従って被測定物5の長さに
応じて支持台17を移動させ、チャック14と15の間
隔を調整して支持するようになっている。
A servomotor 11 is mounted on a support 10 of the rotating mechanism 6, and a chuck 14 is mounted on the servomotor 11 via a speed reducer 12 and a bearing holder 13. Also, the chuck 15 facing this
Is movably supported in the horizontal direction on the guide rail 16 of the horizontal movement mechanism 8 and attached to a bearing holder 18 on a support base 17. Therefore, the support table 17 is moved according to the length of the DUT 5 to adjust and support the gap between the chucks 14 and 15.

【0014】また前記水平移動機構8は、ボールネジ2
0の両端がベアリングホルダ21、21に支持され、こ
のボールネジ20の一端にサーボモータ22が接続され
ている。このボールネジ20には変位計支持台7に設け
たスライドブロック23が螺合して、サーボモータ22
によりボールネジ20が回転して変位計支持台7が被測
定物5に軸方向に沿って水平に移動するようになってい
る。
Further, the horizontal moving mechanism 8 includes the ball screw 2
Both ends of 0 are supported by bearing holders 21 and 21, and a servomotor 22 is connected to one end of the ball screw 20. A slide block 23 provided on the displacement gauge support base 7 is screwed onto the ball screw 20 so that the servo motor 22
As a result, the ball screw 20 rotates and the displacement gauge support base 7 moves horizontally with respect to the DUT 5 along the axial direction.

【0015】変位計支持台7の上部には図3に示すよう
に被測定物5の外周を囲むように、これに近接して逆U
形状の支持ブラケット24が設けられている。この支持
ブラケット24に、5個の変位計4が角度をずらして、
その先端が被測定物5の表面の同一らせん状軌跡の上に
接触するように取付けられている。
As shown in FIG. 3, the upper portion of the displacement gauge support base 7 surrounds the outer circumference of the object 5 to be measured, and in the vicinity of this, an inverted U-shape.
A shaped support bracket 24 is provided. The five displacement gauges 4 are displaced in angle from the support bracket 24,
The tip is attached so as to come into contact with the same spiral locus on the surface of the DUT 5.

【0016】また5個の変位計4は、図3に示すよう
に、前記各変位計4で被測定物の同一の測定点を順次測
定し、それぞれの測定結果から、被測定物5の上下およ
び左右の平行移動誤差と、軸方向に対して垂直面および
水平面内の傾き誤差を演算して、これら演算した運動誤
差を除去して表面形状を測定する演算機構25と、測定
点を順次移動させながら被測定物5の軸方向に沿った表
面形状を表示する表示機構26とから構成されている。
Further, as shown in FIG. 3, the five displacement gauges 4 sequentially measure the same measurement point of the object to be measured with each of the displacement gauges 4, and based on the respective measurement results, the upper and lower sides of the object to be measured 5 are measured. And a parallel movement error on the left and right, and an inclination error in a vertical plane and a horizontal plane with respect to the axial direction, and the arithmetic mechanism 25 for measuring the surface shape by removing the calculated motion error, and the measurement points are sequentially moved. And a display mechanism 26 for displaying the surface shape of the DUT 5 along the axial direction.

【0017】上記構成の真円測定装置による測定は、水
平移動機構8に取付けたガイドレール16の上の支持台
17をスライドさせて被測定物5の長さに合わせて調整
し、このチャック15と、サーボモータ11側のチャッ
ク14とで回転機構6に水平に支持する。次に円柱体ま
たは円筒体など断面円形状をなす被測定物5の測定開始
点に変位計支持台7を設置して、この支持ブラケット2
4に取付けた5個の変位計4を、その先端が被測定物5
の表面の同一らせん状軌跡の上に接触するように角度を
ずらして接触させる。
In the measurement by the circularity measuring device having the above-mentioned structure, the support base 17 on the guide rail 16 attached to the horizontal moving mechanism 8 is slid to adjust the length of the DUT 5, and the chuck 15 is adjusted. And the chuck 14 on the side of the servomotor 11 horizontally supports the rotation mechanism 6. Next, the displacement gauge support base 7 is installed at the measurement starting point of the DUT 5 having a circular cross section such as a cylindrical body or a cylindrical body, and the support bracket 2
The five displacement gauges 4 attached to the 4 are attached to the object 5 to be measured.
The contact is made by shifting the angle so as to make contact with the same spiral locus on the surface of.

【0018】このようにしてから、回転機構6のサーボ
モータ11を回転させて被測定物5を回転させると共
に、水平移動機構8のサーボモータ22を回転させて変
位計4を水平移動させると、変位計4は被測定物5の表
面の同一らせん状軌跡の上に接触しながら、変位を連続
的に測定していく。
After this, when the servo motor 11 of the rotating mechanism 6 is rotated to rotate the DUT 5 and the servo motor 22 of the horizontal moving mechanism 8 is rotated to move the displacement meter 4 horizontally, The displacement gauge 4 continuously measures the displacement while contacting the same spiral locus on the surface of the object 5 to be measured.

【0019】次にこの測定原理を説明する。被測定物5
の誤差は、被測定物5の回転機構6への取付け誤差と、
回転機構6や水平移動機構8の機械的な運動誤差とがあ
る。つまり被測定物5の中心軸が回転機構6の中心軸と
ずれて偏心してセットされた場合や、精度の低い回転機
構6や水平移動機構8などの構造上のガタツキなどが加
わって、測定時に運動誤差となって現れる。
Next, the measuring principle will be described. DUT 5
Error is due to the mounting error of the DUT 5 to the rotation mechanism 6,
There is a mechanical motion error of the rotation mechanism 6 and the horizontal movement mechanism 8. That is, when the center axis of the object to be measured 5 is set eccentrically with the center axis of the rotating mechanism 6 deviated from the center axis, or due to structural rattling of the rotating mechanism 6 and the horizontal moving mechanism 8 having low accuracy, etc. It appears as a motion error.

【0020】被測定物全体の互いに独立な運動誤差の方
向としては、軸方向の平行移動誤差が上下方向と左右方
向の2方向の誤差と、軸方向に対して垂直面と水平面内
の傾き誤差の2方向の誤差と、変位計4の軸方向に沿っ
た前後の直進運動誤差の2方向の誤差がある。被測定物
5の軸方向の平行移動は変位計4に与える影響は小さい
と考えられ、また、変位計4の直進運動の誤差は、被測
定物5の軸方向の平行移動と相対的には同一である。
As the directions of the motion error independent of each other in the whole object to be measured, the translation error in the axial direction is the error in the two directions of the vertical direction and the horizontal direction, and the error in the inclination in the plane perpendicular to the axial direction and the horizontal plane. Error in two directions, and an error in two directions of forward and backward linear motion errors along the axial direction of the displacement meter 4. It is considered that the translational movement of the DUT 5 in the axial direction has a small effect on the displacement meter 4, and the error of the linear movement of the displacement gauge 4 is relatively small with respect to the translational movement of the DUT 5 in the axial direction. It is the same.

【0021】したがって、運動誤差の方向は上下と左右
方向の2方向の誤差と、軸方向に対して垂直面と水平面
内の傾き誤差の2方向の誤差との合計4方向と考えるこ
とができる。これらの運動誤差は未知の量であり、運動
するに従って刻々と変化する。
Therefore, the directions of the motion error can be considered as a total of four directions including an error in two directions of up and down and a horizontal direction and an error in two directions of a tilt error in a plane vertical to the axial direction and a horizontal plane. These motion errors are unknown quantities and change every moment as one moves.

【0022】被測定物表面のある位置にある変位計4の
出力に影響を与える運動誤差は、これらの互いに独立な
運動が合成されたものである。この合成された運動誤差
が変位計4に与える影響度は、その方向と変位計4の配
置によって異なる。例えば、図4に示すように測定対象
の被測定物5に、変位計4aと変位計4bが直角の位置
関係に配置され、合成された運動誤差の方向と変位計4
a、4bの検出方向が同じ場合、変位計4aの出力に上
下の運動誤差は大きく影響するが、変位計4bの出力に
は上下の運動誤差はほとんど影響を与えない。逆に左右
方向の運動誤差は変位計4bの出力に大きく影響する。
The motion error affecting the output of the displacement meter 4 at a certain position on the surface of the object to be measured is a combination of these motions independent of each other. The degree of influence of the combined motion error on the displacement meter 4 differs depending on the direction and the arrangement of the displacement meter 4. For example, as shown in FIG. 4, a displacement gauge 4a and a displacement gauge 4b are arranged in a positional relationship of a right angle on an object 5 to be measured, and the direction of the combined motion error and the displacement gauge 4 are measured.
When the detection directions of a and 4b are the same, the vertical motion error has a large effect on the output of the displacement meter 4a, but the vertical motion error has almost no effect on the output of the displacement meter 4b. On the contrary, the motion error in the left-right direction greatly affects the output of the displacement meter 4b.

【0023】このように、変位計4a、4bの出力に運
動誤差の与える影響は、運動誤差の方向と変位計の配置
関係によって決定される。厳密には、三次元空間におけ
る幾何学的関係によってこれらの関係は決定される。図
5は直径50mmの被測定物5において、ピッチが10mmのら
せんを描かせた場合の5回転分の連続した5個の変位計
4a〜4eの出力値であり、それぞれの出力値は、被測
定物5の表面変位に運動誤差が加わったものとなる。
As described above, the influence of the motion error on the outputs of the displacement meters 4a and 4b is determined by the direction of the motion error and the positional relationship of the displacement meters. Strictly speaking, these relationships are determined by geometrical relationships in three-dimensional space. FIG. 5 shows the output values of five consecutive displacement gauges 4a to 4e for five revolutions when a helix with a pitch of 10 mm is drawn on the DUT 5 having a diameter of 50 mm. The surface displacement of the object to be measured 5 includes a motion error.

【0024】運動誤差と測定する被測定物5の表面の変
位が、被測定物5の直径より十分小さい場合は、この幾
何学的関係は式1のように簡略化される。式1における
e1は、被測定物5の軸方向に対する上下の平行移動誤差
(微小長さ)、e2は軸の左右の平行移動誤差(微小長
さ)、e3は軸の垂直面内の傾き誤差(微小角度)、e4は
軸の水平面内の傾き誤差(微小角度)である。
When the displacement of the surface of the object to be measured 5 to be measured as the motion error is sufficiently smaller than the diameter of the object to be measured 5, this geometrical relationship is simplified as shown in the equation (1). In equation 1
e1 is a vertical translation error (a minute length) with respect to the axial direction of the DUT 5, e2 is a horizontal translation error (a minute length), and e3 is a tilt error (a minute angle) in the vertical plane of the axis. ), E4 is the tilt error (minute angle) in the horizontal plane of the axis.

【0025】また、式1のb1、b2、b3、b4はそれぞれの
運動誤差の影響度(定数)である。またrは被測定物表
面の測定点の変位(微小長さ)、mは変位計4の出力値
(変位量に対応した信号)である。
Further, b1, b2, b3, and b4 in the equation 1 are the degree of influence (constant) of each motion error. Further, r is a displacement (a minute length) of a measurement point on the surface of the object to be measured, and m is an output value of the displacement meter 4 (a signal corresponding to the displacement amount).

【0026】[0026]

【式1】 [Formula 1]

【0027】また運動誤差の影響度b1〜b4は、変位計の
配置から空間幾何的に一意に決定できる変化しない定数
であり、式2のように表すことができる。
The degree of influence b1 to b4 of the motion error is a constant that can be uniquely determined spatially geometrically from the disposition of the displacement gauge, and can be expressed by the equation (2).

【0028】[0028]

【式2】 [Formula 2]

【0029】運動誤差の影響を排除するため、n個の変
位計を被測定物5の異なった位置に配したとき、ある時
刻における変位計4の出力値は、式3に示すように各変
位計4が置かれている部分の被測定物5の表面変位r1〜
rnと、その時刻の運動誤差にそれぞれの変位計による影
響度を加味した運動誤差の合計である。
In order to eliminate the influence of motion error, when n displacement gauges are arranged at different positions on the object to be measured 5, the output value of the displacement gauge 4 at a certain time is as shown in equation (3). Surface displacement r1 of the DUT 5 where the total 4 is placed
rn and the motion error obtained by adding the degree of influence of each displacement gauge to the motion error at that time.

【0030】[0030]

【式3】 [Formula 3]

【0031】これらを連立方程式とみなし、各変位計の
出力値にそれぞれ定数a1〜anを乗算し、加算することに
よって、運動誤差を消去することができる。なお、この
運動誤差e1〜e4を消去するためには、連立方程式は5個
必要である。すなわち、変位計4は最低5個必要であ
り、n=5である。乗算する定数a1〜a5は、ちょうど運
動誤差e1〜e4が消去されるように、各影響度b11 〜b54
から算出することができる。
By considering these as simultaneous equations and multiplying the output values of each displacement meter by constants a1 to an and adding them, the motion error can be eliminated. It should be noted that five simultaneous equations are required to eliminate the motion errors e1 to e4. That is, at least five displacement gauges 4 are required, and n = 5. The constants a1 to a5 to be multiplied have the influence degrees b11 to b54 just so that the motion errors e1 to e4 are eliminated.
Can be calculated from

【0032】また5個の変位計4が被測定物5の同じ点
を通過するような軌跡で、最も簡単なものは、らせんで
ある。これは図6に示すように、変位計同志の相対的な
位置関係が一定で、被測定物5の回転も一方向に一定速
であり、なおかつ変位計の軸方向の送りも一方向に一定
にすることにより実現できるためである。
The simplest locus in which the five displacement gauges 4 pass through the same point on the object 5 to be measured is a helix. As shown in FIG. 6, the relative positional relationship between the displacement gauges is constant, the rotation of the DUT 5 is constant in one direction, and the axial feed of the displacement gauge is constant in one direction. This is because it can be realized by

【0033】この運動誤差消去演算を演算機構25で行
うことにより、被測定物5の表面の異なった部分の変位
r1〜r5に、定数を乗算し、加え合わせた値Mを式4とし
て得ることができる。
By performing this motion error elimination calculation by the calculation mechanism 25, the displacement of different portions of the surface of the DUT 5 is displaced.
A value M obtained by multiplying r1 to r5 by a constant and adding them can be obtained as Expression 4.

【0034】[0034]

【式4】 [Formula 4]

【0035】位置補正の方法は、次のようにする。ある
時刻において、運動誤差が除去された値Mが得られてい
るとする。これは、すでに説明したように、被測定物5
の異なった部分の表面変位r1〜r5に既知の定数a1〜a5を
かけて合計したものである。この表面変位r1〜r5のう
ち、r2〜r5は前の時刻までの測定で既知であり、新たな
測定点に最初に接触する先頭の変位計4aの位置r1のみ
が未知の変位とする。なお、最初の時点で、被測定物5
の表面変位は既知であるとする。
The position correction method is as follows. It is assumed that the value M from which the motion error is removed is obtained at a certain time. This is the measured object 5 as described above.
It is the sum of the surface displacements r1 to r5 of the different parts of x multiplied by the known constants a1 to a5. Among the surface displacements r1 to r5, r2 to r5 are known by the measurement up to the previous time, and only the position r1 of the leading displacement meter 4a that first contacts a new measurement point is an unknown displacement. In addition, at the first time point, the object to be measured 5
It is assumed that the surface displacement of is known.

【0036】値Mから、既知の表面変位r2〜r5と定数a2
〜a5から得られる値を引き、既知の定数a1で除算するこ
とにより、先頭の変位計4aで新たな点の変位r1を得る
ことができる。
From the value M, known surface displacements r2 to r5 and a constant a2
By subtracting the values obtained from a5 to a5 and dividing by the known constant a1, the displacement r1 of the new point can be obtained with the leading displacement meter 4a.

【0037】[0037]

【式5】 [Formula 5]

【0038】このように運動誤差除去演算と位置補正演
算を行ない、この操作を次々と繰り返すことにより、被
測定物5上の点の変位を次々と決定して、軸方向(回転
角度)に沿った新たな変位r1の測定結果は図7のように
なる。
By carrying out the motion error removal calculation and the position correction calculation in this way, and repeating this operation one after another, the displacements of the points on the object to be measured 5 are determined one after another and along the axial direction (rotation angle). The measurement result of the new displacement r1 is as shown in FIG.

【0039】このように各変位計4が、被測定物5の表
面上の同じ部分を次々と通過するように軌跡を選ぶこと
により、既に測定した位置の補正が可能となり、これを
基に新たな点における変位を得ることができる。これを
逐次行い、最終的に被測定物5の軸方向から見た半径方
向の変位を表示機構26で表示すると図8のようにな
り、被測定物5の全体形状を得ることができる。
As described above, by selecting the loci so that each displacement meter 4 passes through the same portion on the surface of the object 5 to be measured one after another, it becomes possible to correct the already measured position. The displacement at various points can be obtained. By sequentially performing this, and finally displaying the displacement of the measured object 5 in the radial direction viewed from the axial direction on the display mechanism 26, the result becomes as shown in FIG. 8, and the entire shape of the measured object 5 can be obtained.

【0040】なお、変位計の間隔はらせん状軌跡の上で
必ずしも等間隔である必要はなく、新たな点の変位を決
定するために必要な別の4点の変位が既に決定されてい
るようにすればよい。つまり、具体的には、データを採
取する間隔の整数倍の間隔に各変位計が配置されていれ
ばよい。また変位計4としては接触式に限らずレーザー
等を用いた非接触式のものを用いても良い。
It should be noted that the intervals of the displacement gauges do not necessarily have to be equal intervals on the spiral locus, and the displacements of the other four points necessary for determining the displacement of the new point have already been determined. You can do this. That is, specifically, each displacement meter may be arranged at an interval that is an integral multiple of the interval at which data is collected. Further, the displacement meter 4 is not limited to the contact type, but a non-contact type using a laser or the like may be used.

【0041】また上記説明では変位計4を5個設置した
場合について示したが、6個以上でも良い。また上記説
明では被測定物5を回転させ、変位計4を水平移動させ
て測定する場合について示したが、変位計4を固定し、
被測定物5に回転と水平移動を与えて測定する方法でも
良い。更に図9に示すように回転機構と移動機構を垂直
に設置して、変位計を上下動自在に支持した構成でも良
い。
In the above description, the case where five displacement gauges 4 are installed has been shown, but it is also possible to have six or more. In the above description, the object to be measured 5 is rotated and the displacement meter 4 is horizontally moved for measurement, but the displacement meter 4 is fixed,
A method of performing rotation and horizontal movement on the DUT 5 may be used for measurement. Further, as shown in FIG. 9, a rotating mechanism and a moving mechanism may be installed vertically and the displacement gauge may be supported so as to be vertically movable.

【0042】また上記説明では、円柱体または円筒体な
ど断面円形状をなす被測定物の外周表面を測定する場合
について示したが、円筒体の内側に変位計4を配置し
て、内周表面の全体形状を測定する方法にも適用するこ
とができる。
Further, in the above description, the case where the outer peripheral surface of the object to be measured having a circular cross section such as a cylindrical body or a cylindrical body is measured has been described. However, the displacement meter 4 is arranged inside the cylindrical body to measure the inner peripheral surface. It can also be applied to a method of measuring the entire shape of the.

【0043】[0043]

【発明の効果】以上説明した如く本発明に係る真円測定
方法および真円測定装置によれば、複数の変位計で異な
る場所の変位を同時に測定し、既に測定した変位から移
動誤差を除去して、新たな点の変位を決定し、測定点を
移動させながら順次測定することにより、高精度な回転
機構と送り機構を不必要とし、低精度で安価な機構によ
り被測定物の全体の表面形状を高精度に測定することが
でき、しかも被測定物を測定機に取付ける際の、センタ
リング・ チルティング作業が不要で測定作業も容易に行
なうことができる。
As described above, according to the true circle measuring method and the true circle measuring apparatus of the present invention, the displacements at different places are simultaneously measured by a plurality of displacement gauges, and the movement error is removed from the already measured displacements. By deciding the displacement of a new point and sequentially measuring while moving the measurement point, a high-precision rotation mechanism and feed mechanism are unnecessary, and a low-precision, low-cost mechanism allows the entire surface of the DUT to be measured. The shape can be measured with high accuracy, and the centering / tilting work when mounting the object to be measured on the measuring machine is unnecessary and the measurement work can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態による真円測定装置の側
面図である。
FIG. 1 is a side view of a perfect circle measuring device according to an embodiment of the present invention.

【図2】図1の真円測定装置を示す平面図である。FIG. 2 is a plan view showing the perfect circle measuring device of FIG.

【図3】図1のAーA断面図である。3 is a cross-sectional view taken along the line AA of FIG.

【図4】変位計の被測定物との接触関係を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing a contact relationship between the displacement meter and the object to be measured.

【図5】被測定物の表面変位に運動誤差が加わった変位
計の出力値を示すグラフである。
FIG. 5 is a graph showing an output value of a displacement meter in which a motion error is added to a surface displacement of a measured object.

【図6】被測定物の表面のらせん軌跡上に複数の変位計
を配置した状態を示す説明図である。
FIG. 6 is an explanatory diagram showing a state in which a plurality of displacement gauges are arranged on a spiral locus on the surface of the object to be measured.

【図7】運動誤差除去演算と位置補正演算を行ない、軸
方向(回転角度)の変化に伴う、変位の変化を示すグラ
フである。
FIG. 7 is a graph showing a change in displacement caused by a change in an axial direction (rotation angle) by performing a motion error removal calculation and a position correction calculation.

【図8】被測定物の軸方向から見た半径方向の変位を表
示した図形である。
FIG. 8 is a diagram showing a displacement of a measured object in a radial direction viewed from an axial direction.

【図9】従来の真円度測定機を示す正面図である。FIG. 9 is a front view showing a conventional roundness measuring machine.

【図10】被測定物の表面変位を変位計で軸方向に沿っ
て測定する場合の説明図である。
FIG. 10 is an explanatory diagram in the case of measuring the surface displacement of the object to be measured with a displacement meter along the axial direction.

【図11】被測定物を回転させ変位計を軸方向に移動さ
せて変位を測定する場合の説明図である。
FIG. 11 is an explanatory diagram of a case where a displacement is measured by rotating an object to be measured and moving a displacement meter in an axial direction.

【図12】被測定物の表面変位を変位計で軸方向に沿っ
て測定する場合の説明図である。
FIG. 12 is an explanatory diagram in the case of measuring the surface displacement of the measured object along the axial direction with a displacement meter.

【図13】変位計に加わる運動誤差を示す説明図であ
る。
FIG. 13 is an explanatory diagram showing a motion error applied to the displacement meter.

【符号の説明】[Explanation of symbols]

1 基台 2 ターンテーブル 3 スタンド 4 変位計 5 被測定物 6 回転機構 7 変位計支持台 8 水平移動機構 10 支持台 11 サーボモータ 12 減速器 14 チャック 15 チャック 16 ガイドレール 17 支持台 20 ボールネジ 22 サーボモータ 24 支持ブラケット 25 演算機構 26 表示機構 1 base 2 turntable 3 stand 4 displacement meter 5 DUT 6 rotation mechanism 7 Displacement gauge support 8 Horizontal movement mechanism 10 Support 11 Servo motor 12 reducer 14 chuck 15 chuck 16 Guide rail 17 Support 20 ball screws 22 Servo motor 24 Support bracket 25 Arithmetic mechanism 26 Display mechanism

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F062 AA57 BB07 BC80 CC22 DD03 DD09 DD17 DD35 EE01 EE41 EE66 FF03 FF17 FF25 FG08 GG18 GG38 GG71 HH05 HH13 JJ04 JJ05 JJ10 LL01 LL19 MM03 MM08 2F069 AA56 BB07 DD25 EE04 EE11 EE12 EE23 GG01 GG04 GG07 GG52 GG58 GG65 HH02 HH09 HH15 JJ06 JJ17 JJ25 LL02 MM04 MM32 MM34 NN08 NN15   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F062 AA57 BB07 BC80 CC22 DD03                       DD09 DD17 DD35 EE01 EE41                       EE66 FF03 FF17 FF25 FG08                       GG18 GG38 GG71 HH05 HH13                       JJ04 JJ05 JJ10 LL01 LL19                       MM03 MM08                 2F069 AA56 BB07 DD25 EE04 EE11                       EE12 EE23 GG01 GG04 GG07                       GG52 GG58 GG65 HH02 HH09                       HH15 JJ06 JJ17 JJ25 LL02                       MM04 MM32 MM34 NN08 NN15

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円柱体または円筒体など断面円形状をな
す被測定物の表面の同一らせん状軌跡の上に、角度をず
らして5個以上の変位計を配置し、被測定物を回転しな
がら、変位計に対して相対的に軸方向に沿って移動させ
て、前記各変位計で被測定物の同一の測定点を順次測定
し、それぞれの測定結果から、被測定物の上下および左
右の平行移動誤差と、軸方向に対して垂直面および水平
面内の傾き誤差を演算して、これら演算した運動誤差を
除去し、以下測定点を順次移動させながら被測定物の軸
方向に沿った表面形状を測定することを特徴とする真円
測定方法。
1. Displacement of five or more displacement gauges at different angles on the same spiral locus on the surface of an object to be measured having a circular cross section, such as a cylinder or a cylinder, and rotating the object to be measured. However, by moving along the axial direction relative to the displacement meter, the same measurement point of the measured object is sequentially measured by each displacement meter, and the vertical and horizontal directions of the measured object are measured from the respective measurement results. And the tilt error in the vertical and horizontal planes with respect to the axial direction are calculated, and the calculated motion errors are removed. A perfect circle measuring method characterized by measuring a surface shape.
【請求項2】 円柱体または円筒体など断面円形状をな
す被測定物を回転させる回転機構と、被測定物に近接し
て設けられた変位計支持台と、この変位計支持台に取付
けられ、被測定物の表面の同一らせん状軌跡の上に、角
度をずらして5個以上配置された変位計と、被測定物ま
たは変位計支持台を被測定物の軸方向に沿って移動させ
る移動機構と、前記各変位計で被測定物の同一の測定点
を順次測定し、それぞれの測定結果から、被測定物の上
下および左右の平行移動誤差と、軸方向に対して垂直面
および水平面内の傾き誤差を演算して、これら演算した
運動誤差を除去して表面形状を測定する演算機構と、測
定点を順次移動させながら被測定物の軸方向に沿った表
面形状を表示する表示機構とからなることを特徴とする
真円測定装置。
2. A rotating mechanism for rotating an object to be measured having a circular cross section such as a cylindrical body or a cylindrical body, a displacement gauge support base provided near the object to be measured, and a displacement gauge support base attached to the displacement gauge support base. , 5 or more displacement gauges arranged at different angles on the same spiral locus on the surface of the object to be measured and the object to be measured or the displacement gauge support to move along the axial direction of the object to be measured. The same measurement point of the measured object is sequentially measured by the mechanism and each of the displacement meters, and the vertical and horizontal translation errors of the measured object and the vertical and horizontal planes with respect to the axial direction are measured from the respective measurement results. A calculation mechanism that calculates the tilt error of the object and removes the calculated motion error to measure the surface shape; and a display mechanism that displays the surface shape along the axial direction of the measured object while sequentially moving the measurement points. A perfect circle measuring device comprising:
JP2002039974A 2002-02-18 2002-02-18 Perfect circle measuring method and perfect circle measuring device Expired - Fee Related JP3564106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039974A JP3564106B2 (en) 2002-02-18 2002-02-18 Perfect circle measuring method and perfect circle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039974A JP3564106B2 (en) 2002-02-18 2002-02-18 Perfect circle measuring method and perfect circle measuring device

Publications (2)

Publication Number Publication Date
JP2003240503A true JP2003240503A (en) 2003-08-27
JP3564106B2 JP3564106B2 (en) 2004-09-08

Family

ID=27780847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039974A Expired - Fee Related JP3564106B2 (en) 2002-02-18 2002-02-18 Perfect circle measuring method and perfect circle measuring device

Country Status (1)

Country Link
JP (1) JP3564106B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025603A1 (en) * 2004-09-01 2006-03-09 Canon Kabushiki Kaisha Method for measuring circular shape, and method and device for measuring cylindrical shape
JP2007263940A (en) * 2005-09-02 2007-10-11 キヤノン株式会社 Cylindrical measurement method
KR100956252B1 (en) 2008-11-17 2010-05-06 주식회사 실트론 Profiler
CN103234503A (en) * 2013-04-26 2013-08-07 宁波市镇海银球轴承有限公司 Contourgraph with measuring table capable of measuring inner and outer rings of miniature bearing
KR101633817B1 (en) * 2015-04-13 2016-07-08 충북대학교 산학협력단 Compound profile meter
JP2017137558A (en) * 2016-02-05 2017-08-10 住友化学株式会社 Production method of cylindrical target
JP2017179607A (en) * 2017-05-26 2017-10-05 住友化学株式会社 Cylindrical target
CN108489367A (en) * 2018-04-26 2018-09-04 阜阳盛东智能制造技术研发有限公司 A kind of intelligence manufacture detection device
CN109115089A (en) * 2018-10-19 2019-01-01 安庆中船柴油机有限公司 A kind of piston pin camber detection device and detection method
CN114623786A (en) * 2022-05-16 2022-06-14 成都市鸿侠科技有限责任公司 Surface finish detection device for large arc-shaped component of aircraft

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101795178B1 (en) 2015-12-10 2017-11-07 현대위아 주식회사 Test bar and installation method for ball screw support bearing unit using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025603A1 (en) * 2004-09-01 2006-03-09 Canon Kabushiki Kaisha Method for measuring circular shape, and method and device for measuring cylindrical shape
JP2007263940A (en) * 2005-09-02 2007-10-11 キヤノン株式会社 Cylindrical measurement method
JP4557940B2 (en) * 2005-09-02 2010-10-06 キヤノン株式会社 Method for measuring the shape of a cross-sectional circle perpendicular to the axis of the cylinder to be measured, and method for measuring the cylindrical shape of the cylinder to be measured
KR100956252B1 (en) 2008-11-17 2010-05-06 주식회사 실트론 Profiler
CN103234503A (en) * 2013-04-26 2013-08-07 宁波市镇海银球轴承有限公司 Contourgraph with measuring table capable of measuring inner and outer rings of miniature bearing
KR101633817B1 (en) * 2015-04-13 2016-07-08 충북대학교 산학협력단 Compound profile meter
JP2017137558A (en) * 2016-02-05 2017-08-10 住友化学株式会社 Production method of cylindrical target
CN111074218A (en) * 2016-02-05 2020-04-28 住友化学株式会社 Method for manufacturing cylindrical target and cylindrical target
US10670384B2 (en) 2016-02-05 2020-06-02 Sumitomo Chemical Company, Limited Cylindrical target production method and cylindrical target
CN111074218B (en) * 2016-02-05 2022-06-03 住友化学株式会社 Method for manufacturing cylindrical target and cylindrical target
JP2017179607A (en) * 2017-05-26 2017-10-05 住友化学株式会社 Cylindrical target
CN108489367A (en) * 2018-04-26 2018-09-04 阜阳盛东智能制造技术研发有限公司 A kind of intelligence manufacture detection device
CN109115089A (en) * 2018-10-19 2019-01-01 安庆中船柴油机有限公司 A kind of piston pin camber detection device and detection method
CN114623786A (en) * 2022-05-16 2022-06-14 成都市鸿侠科技有限责任公司 Surface finish detection device for large arc-shaped component of aircraft
CN114623786B (en) * 2022-05-16 2022-07-15 成都市鸿侠科技有限责任公司 Surface finish detection device for large arc-shaped component of aircraft

Also Published As

Publication number Publication date
JP3564106B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
US8949071B2 (en) Circularity measuring apparatus and measurement value correcting method for circularity measuring method
CN111023981B (en) Large cylindrical workpiece parameter measuring device and method
JP3516630B2 (en) Shape measuring machine and shape measuring method
JP2000501505A (en) Surface shape measurement
JP3564106B2 (en) Perfect circle measuring method and perfect circle measuring device
JP6671011B2 (en) Roundness measuring device
CN105758360A (en) Steering bearing shaft washer channel parameter measuring instrument and measuring method
US5097602A (en) Apparatus and method for automated inspection of a surface contour on a workpiece
CN112284219A (en) Pipeline size measuring device
US20030101602A1 (en) Measurement of geometric parameters of internal and external screw thread and similar grooves
CN108955593A (en) Bearing internal external circle dimension automatic detection device
JP2010096560A (en) Female screw measurement device for ball screw
JPH0792383B2 (en) Method and apparatus for inspecting gear pitch
JP5716427B2 (en) Roundness measuring device and method of correcting misalignment
JP2002005653A (en) Method and apparatus for measurement of screw dimension
KR100723756B1 (en) Measuring Machine of dimensional and geometric for cylindrical product
CN112432626A (en) Ovality detection device and detection method
JP2000292161A (en) Circularity measuring instrument
JP5742078B2 (en) Roundness measuring device, misalignment correction method, and misalignment calculation method
CN214173239U (en) High-precision measuring device for straightness of cylindrical bus
JP3722288B2 (en) Cylindrical shape measurement method
CN114608418A (en) Device and method for measuring meshing pair clearance of single-screw compressor
JP3654744B2 (en) Roundness measuring machine
CN112964169A (en) High-precision measuring device and method for straightness of cylindrical bus
CN112484607A (en) Parallelism inspection device for lathe bed bearing block

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Effective date: 20040604

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees