JP2003238775A - Resin composition and molding - Google Patents

Resin composition and molding

Info

Publication number
JP2003238775A
JP2003238775A JP2002035462A JP2002035462A JP2003238775A JP 2003238775 A JP2003238775 A JP 2003238775A JP 2002035462 A JP2002035462 A JP 2002035462A JP 2002035462 A JP2002035462 A JP 2002035462A JP 2003238775 A JP2003238775 A JP 2003238775A
Authority
JP
Japan
Prior art keywords
fiber
melting point
polylactic acid
polyamide
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002035462A
Other languages
Japanese (ja)
Other versions
JP3893995B2 (en
JP2003238775A5 (en
Inventor
Takashi Ochi
隆志 越智
Toshiaki Kimura
敏明 木村
Yuhei Maeda
裕平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002035462A priority Critical patent/JP3893995B2/en
Publication of JP2003238775A publication Critical patent/JP2003238775A/en
Publication of JP2003238775A5 publication Critical patent/JP2003238775A5/ja
Application granted granted Critical
Publication of JP3893995B2 publication Critical patent/JP3893995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a resin composition which has excellent machanical characteristics, heat resistance and abrasion resistance, and unprecedentedly, in which a polyamide is uniformly blended in an aliphatic polyester. <P>SOLUTION: The resin composition is characterized in that it has a sea-island structure in which the polyamide is blended in the aliphatic polyester and that the domain size of the island component is 0.001-10 μm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、脂肪族ポリエステ
ルにポリアミドが均一にブレンドされた高性能樹脂組成
物に関するものである。
TECHNICAL FIELD The present invention relates to a high performance resin composition in which a polyamide is uniformly blended with an aliphatic polyester.

【0002】[0002]

【従来の技術】最近、地球的規模での環境問題に対し
て、自然環境の中で分解するポリマー素材の開発が切望
されており、脂肪族ポリエステル等、様々なポリマーの
研究・開発、また実用化の試みが活発化している。そし
て、微生物により分解されるポリマー、すなわち生分解
性ポリマーに注目が集まっている。
2. Description of the Related Art Recently, development of a polymer material that decomposes in a natural environment has been earnestly desired for environmental problems on a global scale. Research and development of various polymers such as aliphatic polyester and practical use Attempts to realize this are becoming more active. Attention has been focused on polymers that are decomposed by microorganisms, that is, biodegradable polymers.

【0003】一方、従来のポリマーはほとんど石油資源
を原料としているが、石油資源が将来的に枯渇するので
はないかということ、また石油資源を大量消費すること
により、地質時代より地中に蓄えられていた二酸化炭素
が大気中に放出され、さらに地球温暖化が深刻化するこ
とが懸念されている。しかし、二酸化炭素を大気中から
取り込み成長する植物資源を原料としてポリマーが合成
できれば、二酸化炭素循環により地球温暖化を抑制でき
ることが期待できるのみならず、資源枯渇の問題も同時
に解決できる可能性がある。このため、植物資源を原料
とするポリマー、すなわちバイオマス利用ポリマーに注
目が集まっている。
On the other hand, most conventional polymers use petroleum resources as raw materials, but it is possible that petroleum resources will be depleted in the future, and due to the large consumption of petroleum resources, they will be stored underground in the geological era. It is feared that the carbon dioxide that had been released will be released into the atmosphere, and that global warming will become more serious. However, if polymers can be synthesized from plant resources that take in carbon dioxide from the atmosphere and grow and grow, not only can we expect that global warming can be suppressed by the carbon dioxide cycle, but there is also the possibility that the problem of resource depletion can be solved at the same time. . Therefore, attention has been focused on polymers made from plant resources, that is, polymers using biomass.

【0004】上記2つの点から、バイオマス利用の生分
解性ポリマーが大きな注目を集め、石油資源を原料とす
る従来のポリマーを代替していくことが期待されてい
る。しかしながら、バイオマス利用の生分解性ポリマー
は一般に力学特性、耐熱性が低く、また高コストとなる
といった課題あった。これらを解決できるバイオマス利
用の生分解性ポリマーとして、現在、最も注目されてい
るのは脂肪族ポリエステルの一種であるポリ乳酸であ
る。ポリ乳酸は植物から抽出したでんぷんを発酵するこ
とにより得られる乳酸を原料としたポリマーであり、バ
イオマス利用の生分解性ポリマーの中では力学特性、耐
熱性、コストのバランスが最も優れている。そして、こ
れを利用した樹脂製品、繊維、フィルム、シート等の開
発が急ピッチで行われている。
From the above two points, biodegradable polymers utilizing biomass have attracted great attention and are expected to replace conventional polymers derived from petroleum resources. However, biodegradable polymers using biomass generally have the problems of low mechanical properties and low heat resistance and high cost. As a biodegradable polymer using biomass that can solve these problems, polylactic acid, which is a kind of aliphatic polyester, is currently receiving the most attention. Polylactic acid is a polymer using lactic acid as a raw material, which is obtained by fermenting starch extracted from plants, and has the best balance among mechanical properties, heat resistance and cost among biodegradable polymers using biomass. The development of resin products, fibers, films, sheets, etc. using these is being carried out at a rapid pace.

【0005】しかし、このように最も有望なポリ乳酸で
さえ、ナイロンのような従来の石油資源を原料とするポ
リマーに比べるといくつかの欠点を有している。このう
ち大きなものとして、力学特性や耐熱性、耐摩耗性が低
いことが挙げられる。このため、ポリ乳酸に例えばナイ
ロン6をブレンドし、上記欠点を補うことが考えられる
が、通常、ナイロン6はポリ乳酸との相溶性が低く、均
一にブレンドできないという問題があった。またナイロ
ン6の融点は225℃程度であり、ポリ乳酸の170℃
程度に比較すると大幅に高く、ポリマーブレンドの工程
温度をポリ乳酸の熱分解温度である250℃以上とする
必要があった。このように、ポリ乳酸にナイロンを均一
にブレンドすることは困難であった。
However, even the most promising polylactic acid has some drawbacks as compared with conventional polymers derived from petroleum resources such as nylon. Among them, the major ones are low mechanical properties, heat resistance, and wear resistance. For this reason, it is possible to blend the polylactic acid with, for example, nylon 6 to compensate for the above-mentioned drawbacks. However, in general, nylon 6 has a low compatibility with polylactic acid and cannot be uniformly blended. Nylon 6 has a melting point of about 225 ° C, which is 170 ° C for polylactic acid.
It is significantly higher than the above, and it was necessary to set the process temperature of the polymer blend to 250 ° C. or higher, which is the thermal decomposition temperature of polylactic acid. Thus, it was difficult to uniformly blend nylon with polylactic acid.

【0006】なお、脂肪族ポリエステルの一種であるポ
リカプロラクトンにナイロン6を大量の相溶化剤を併用
してブロック共重合した例が特開平7−173282号
公報に記載されている。たしかに、大量の相溶化剤を併
用したブロック共重合という手法を用いれば、通常では
ポリマーブレンドが困難な組み合わせであっても、1分
子鎖中にポリカプロラクトンブロックとナイロン6ブロ
ックを交互に存在させることができるため、均一に混合
することが可能である。しかしながら、ブロック共重合
では融点の低下が著しく、高融点成分であるナイロン6
でも融点=201〜214℃(融点降下=11〜24
℃)であった。このため、ナイロンの優れた耐熱性を充
分活かすことができなかった。また、ナイロン6ブロッ
クドメインが小さすぎるため、ナイロン6のバルクの特
性である優れた耐摩耗性を充分活かすことができなかっ
た。また、ブロック共重合工程の温度が260℃という
高温に達するため、これをポリ乳酸にそのまま適用する
と、ポリ乳酸の著しい熱分解が発生する問題もあった。
さらに相溶化剤として用いるp−クロロフェノール等の
ハロゲン化芳香族モノヒドロキシ化合物は、人体に有害
で有るばかりか、環境負荷も大きいという問題があっ
た。
An example of block copolymerization of polycaprolactone, which is a kind of aliphatic polyester, with nylon 6 in combination with a large amount of a compatibilizing agent is described in JP-A-7-173228. Certainly, by using a method called block copolymerization in which a large amount of compatibilizers are used together, polycaprolactone blocks and nylon 6 blocks can be alternately present in one molecular chain even if the combination is usually difficult for polymer blending. Therefore, uniform mixing is possible. However, in the block copolymer, the melting point is remarkably lowered, and nylon 6 which is a high melting point component is used.
But melting point = 201-214 ° C (melting point drop = 11-24
℃). Therefore, the excellent heat resistance of nylon cannot be fully utilized. Further, since the nylon 6 block domain is too small, the excellent wear resistance, which is a characteristic of the bulk of nylon 6, cannot be fully utilized. Further, since the temperature of the block copolymerization step reaches a high temperature of 260 ° C., if this is directly applied to polylactic acid, there is a problem that remarkable thermal decomposition of polylactic acid occurs.
Further, halogenated aromatic monohydroxy compounds such as p-chlorophenol used as a compatibilizer have a problem that they are not only harmful to the human body but also have a large environmental load.

【0007】[0007]

【発明が解決しようとする課題】本発明は、優れた力学
特性、耐熱性、耐摩耗性を有する、従来には無かった脂
肪族ポリエステルを主成分とする樹脂組成物を提供する
ものである。
DISCLOSURE OF THE INVENTION The present invention provides a resin composition containing an aliphatic polyester as a main component, which has not been available in the past, and which has excellent mechanical properties, heat resistance and abrasion resistance.

【0008】[0008]

【課題を解決するための手段】上記目的は、脂肪族ポリ
エステルにポリアミドがブレンドされた海島構造をして
おり、島成分のドメインサイズが0.001〜10μm
であることを特徴とする樹脂組成物により達成される。
[Means for Solving the Problems] The above-mentioned object has a sea-island structure in which a polyamide is blended with an aliphatic polyester, and the domain size of the island component is 0.001 to 10 μm.
It is achieved by a resin composition characterized by

【0009】[0009]

【発明の実施の形態】本発明でいう脂肪族ポリエステル
とは、脂肪族アルキル鎖がエステル結合で連結されたポ
リマーのことをいい、例えばポリ乳酸、ポリヒドロキシ
ブチレート、ポリブチレンサクシネート、ポリグリコー
ル酸、ポリカプロラクトン等が挙げられる。このうち、
前記したようにポリ乳酸が最も好ましい。また、ポリ乳
酸とは乳酸を重合したものを言い、L体あるいはD体の
光学純度は90%以上であると、融点が高く好ましい。
また、ポリ乳酸の性質を損なわない範囲で、乳酸以外の
成分を共重合していても、ポリ乳酸以外のポリマーや粒
子、難燃剤、帯電防止剤等の添加物を含有していても良
い。ただし、バイオマス利用、生分解性の観点から、ポ
リマーとして乳酸モノマーは50重量%以上とすること
が重要である。乳酸モノマーは好ましくは75重量%以
上、より好ましくは96重量%以上である。また、ポリ
乳酸ポリマーの分子量は、重量平均分子量で5万〜50
万であると、力学特性と成形性のバランスが良く好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The aliphatic polyester referred to in the present invention means a polymer in which an aliphatic alkyl chain is linked by an ester bond, and examples thereof include polylactic acid, polyhydroxybutyrate, polybutylene succinate and polyglycol. Examples thereof include acids and polycaprolactone. this house,
As mentioned above, polylactic acid is most preferred. Further, polylactic acid means a polymer of lactic acid, and it is preferable that the optical purity of the L-form or D-form is 90% or more because the melting point is high.
Further, components other than lactic acid may be copolymerized, or polymers other than polylactic acid, particles, additives such as flame retardants, antistatic agents and the like may be contained, as long as the properties of polylactic acid are not impaired. However, from the viewpoint of biomass utilization and biodegradability, it is important that the lactic acid monomer is 50% by weight or more as a polymer. The lactic acid monomer is preferably 75% by weight or more, more preferably 96% by weight or more. The molecular weight of the polylactic acid polymer is 50,000 to 50 in terms of weight average molecular weight.
It is preferable because the balance between mechanical properties and moldability is good.

【0010】本発明でいうポリアミドとは、ナイロン等
のアミド結合を有するポリマーのことをいうが、例えば
ナイロン6やナイロン11等を挙げることができる。ま
た、ポリアミドはホモポリマーであっても共重合ポリマ
ーであってもよく、さらに粒子、難燃剤、帯電防止剤等
の添加物を含有していても良い。
The polyamide in the present invention means a polymer having an amide bond such as nylon, and examples thereof include nylon 6 and nylon 11. The polyamide may be a homopolymer or a copolymer, and may further contain additives such as particles, flame retardants and antistatic agents.

【0011】また、一般に脂肪族ポリエステルの融点が
170℃以下であるため、ブレンド温度をなるべく低温
化することを考慮し、ポリアミドの融点は250℃以下
であることが好ましく、より好ましくは210℃以下で
ある。一方、ブレンドポリマーの耐熱性を考慮すると、
ポリアミドの融点は150℃以上であることが好まし
い。また、脂肪族ポリエステルにポリアミドをブレンド
したブレンドポリマー樹脂の成形性、成形体の寸法安定
性を向上させるために、該ブレンドポリマー樹脂が結晶
性であることが好ましい。このため、ブレンドするポリ
アミドも結晶性であることが好ましい。なお、示差走査
熱量計(DSC)測定において融解ピークを観測できれ
ば、そのポリマーは結晶性であると判断できる。
Further, since the melting point of the aliphatic polyester is generally 170 ° C. or lower, the melting point of the polyamide is preferably 250 ° C. or lower, more preferably 210 ° C. or lower in consideration of lowering the blending temperature as low as possible. Is. On the other hand, considering the heat resistance of the blend polymer,
The melting point of the polyamide is preferably 150 ° C. or higher. In order to improve the moldability of the blended polymer resin obtained by blending the polyamide with the aliphatic polyester and the dimensional stability of the molded product, the blended polymer resin is preferably crystalline. Therefore, the polyamide to be blended is also preferably crystalline. If a melting peak can be observed in a differential scanning calorimeter (DSC) measurement, the polymer can be judged to be crystalline.

【0012】また、該ブレンドポリマー樹脂の生分解性
を考慮すると、ポリアミドのブレンド比は該ブレンドポ
リマー樹脂全体に対し40重量%以下であることが好ま
しい。一方、脂肪族ポリエステルの特性を向上させる点
を考慮するとポリアミドのブレンド比は5重量%以上で
あることが好ましい。ポリアミドのブレンド比は、好ま
しくは10〜30重量%である。
Further, considering the biodegradability of the blended polymer resin, the blending ratio of the polyamide is preferably 40% by weight or less based on the whole blended polymer resin. On the other hand, from the viewpoint of improving the characteristics of the aliphatic polyester, the polyamide blending ratio is preferably 5% by weight or more. The blending ratio of the polyamide is preferably 10 to 30% by weight.

【0013】本発明において、脂肪族ポリエステルとポ
リアミドが均一にブレンドされていることが重要である
が、ここで、均一にブレンドされているとは以下の状態
をいうものである。すなわち、該ブレンドポリマー成形
体のスライスを透過型電子顕微鏡(TEM)観察により、
いわゆる海島構造を採っており、しかも島ドメインのサ
イズが直径換算で0.001〜10μmまで小さくなっ
ている状態をいうものである。特に成形体を繊維、フィ
ルムとした場合は、その直径や厚みが20μmより小さ
い場合が多いため、島ドメインのサイズが直径換算で
0.001〜2μmであることが好ましい。島ドメイン
のサイズはより好ましくは1μm以下である。また、島
ドメインサイズの分布も狭い方が良く、島ドメインサイ
ズは好ましくは0.05〜1μmの間に島成分の90%
以上が分布することが好ましい。
In the present invention, it is important that the aliphatic polyester and the polyamide are uniformly blended, but the term "uniformly blended" means the following state. That is, by observing a slice of the blended polymer molded body with a transmission electron microscope (TEM),
This is a state in which a so-called sea-island structure is adopted and the size of the island domain is reduced to 0.001 to 10 μm in terms of diameter. Particularly when the molded body is a fiber or film, the diameter and the thickness are often smaller than 20 μm, and therefore the size of the island domain is preferably 0.001 to 2 μm in terms of diameter. The size of the island domain is more preferably 1 μm or less. Also, the distribution of the island domain size is preferably narrow, and the island domain size is preferably 90% to 90% of the island component in the range of 0.05 to 1 μm.
The above is preferably distributed.

【0014】このように、脂肪族ポリエステルとポリア
ミドの相溶性を高めるためにはポリアミドの脂肪族性を
高くすることが有効である。例えば、ナイロン6よりも
メチレン鎖長の長いナイロン11の方が脂肪族ポリエス
テルとの相溶性に優れている。また、ナイロン6ホモポ
リマーは通常、脂肪族ポリエステルとは均一ブレンド困
難であるが、共重合により脂肪族性を高くし、また融点
を低下させることで均一ブレンドが可能となる場合があ
る。なお、ナイロン6ホモポリマーであっても、適切な
相溶化剤を用いたり、またナイロン6を低分子量化ある
いは脂肪族ポリエステル側を高分子量化することで均一
ブレンドが可能となる場合がある。
Thus, in order to increase the compatibility of the aliphatic polyester and the polyamide, it is effective to increase the aliphaticity of the polyamide. For example, nylon 11, which has a longer methylene chain length, has better compatibility with aliphatic polyester than nylon 6. Further, nylon 6 homopolymer is usually difficult to be homogeneously blended with an aliphatic polyester, but copolymerization may increase the aliphaticity, and lowering the melting point may allow homogeneous blending. Even with nylon 6 homopolymer, uniform blending may be possible by using an appropriate compatibilizing agent, or by reducing the molecular weight of nylon 6 or increasing the molecular weight of the aliphatic polyester side.

【0015】また、本願はポリマーブレンドであるた
め、1分子鎖中に脂肪族ポリエステルブロックとポリア
ミドブロックが交互に存在するブロック共重合とは異な
り、脂肪族ポリエステル分子鎖とポリアミド分子鎖は実
質的に独立に存在していることが重要である。この状態
の違いは、ホモポリマーとブレンドポリマー中でのポリ
アミドの融点降下により見積もることができ、ポリアミ
ドの融点降下が3℃以下であれば、脂肪族ポリエステル
とポリアミドはほとんど共重合されておらず(エステル
−アミド交換がほとんど起こっておらず)、実質的に脂
肪族ポリエステル分子鎖とポリアミド分子鎖は独立に存
在するポリマーブレンドの状態であることがわかる。こ
のため、本願ではポリアミドのドメインサイズがブロッ
ク共重合の場合に比べ大きく、ポリアミドのバルクの特
性を充分発揮できるメリットがある。すなわち、ブロッ
ク共重合ではスポイルされていたポリアミドの耐摩耗性
や高融点が充分活かせるのである。本願ではブレンドさ
れたポリアミドの融点降下は2℃以下であることが好ま
しい。
Since the present application is a polymer blend, the aliphatic polyester molecular chain and the polyamide molecular chain are substantially different from the block copolymer in which the aliphatic polyester block and the polyamide block are alternately present in one molecular chain. Being independent is important. The difference in this state can be estimated by the melting point decrease of the polyamide in the homopolymer and the blend polymer. If the melting point decrease of the polyamide is 3 ° C. or less, the aliphatic polyester and the polyamide are hardly copolymerized ( It can be seen that the aliphatic polyester molecular chain and the polyamide molecular chain are substantially in the state of a polymer blend in which they are independently present). Therefore, in the present application, the domain size of polyamide is larger than that in the case of block copolymerization, and there is an advantage that the characteristics of the bulk of polyamide can be sufficiently exhibited. That is, in block copolymerization, the abrasion resistance and high melting point of polyamide spoiled can be fully utilized. In the present application, the melting point of the blended polyamide is preferably 2 ° C. or lower.

【0016】本発明の樹脂組成物は成形性に優れている
ため、射出成形、押出成形、ブロー成形のような通常の
樹脂成形は元より、紡糸による繊維化や製膜によるフィ
ルム化といったより高度な溶融成形にも適用可能であ
る。通常、樹脂の高性能化にはガラス繊維ブレンドが利
用されているが、ガラス繊維のサイズがミクロンオーダ
ー以上であるため、繊維やフィルムに適用した場合、繊
維径やフィルム厚以上のサイズとなるため、実質的に製
糸や製膜は不可能であった。しかし、本発明の該ブレン
ドポリマーでは、島ドメインサイズは1μm以下とする
ことも可能であるため、そのような問題が無く、脂肪族
ポリエステルの高性能化、用途拡大に大いに寄与できる
のである。特に、繊維および繊維製品はそれを用いた2
次加工も容易であり、好ましい。
Since the resin composition of the present invention is excellent in moldability, it can be used not only for ordinary resin molding such as injection molding, extrusion molding and blow molding, but also for more advanced processing such as fiber formation by spinning and film formation by film formation. It is also applicable to various melt moldings. Normally, glass fiber blends are used to improve the performance of resins, but since the size of glass fibers is on the order of microns or more, when applied to fibers and films, the size is greater than the fiber diameter or film thickness. However, it was virtually impossible to make yarn or film. However, since the island domain size can be set to 1 μm or less in the blended polymer of the present invention, such a problem does not occur, and the aliphatic polyester can greatly contribute to high performance and expanded applications. In particular, fibers and textile products are
Subsequent processing is also easy and preferable.

【0017】本発明の樹脂組成物を利用した繊維では、
工程通過性や製品の力学的強度を充分高く保つために
は、室温での強度は1.0cN/dtex以上とするこ
とが好ましい。また、本発明の繊維の室温での伸度は1
5〜70%であると、繊維製品にする際の工程通過性が
向上し、好ましい。
In the fiber using the resin composition of the present invention,
In order to keep the process passability and the mechanical strength of the product sufficiently high, the strength at room temperature is preferably 1.0 cN / dtex or more. The elongation of the fiber of the present invention at room temperature is 1
When it is 5 to 70%, the process passability in forming a textile product is improved, which is preferable.

【0018】本発明の繊維では、沸収が0〜20%であ
れば繊維および繊維製品の寸法安定性が良く好ましい。
In the fiber of the present invention, if the boiling point is 0 to 20%, the dimensional stability of the fiber and the fiber product is good, which is preferable.

【0019】本発明の繊維の断面形状については丸断
面、中空断面、三葉断面等の多葉断面、その他の異形断
面についても自由に選択することが可能である。また、
繊維の形態は、長繊維、短繊維等特に制限は無く、長繊
維の場合はマルチフィラメントでもモノフィラメントで
も良い。
Regarding the cross-sectional shape of the fiber of the present invention, it is possible to freely select a round cross section, a hollow cross section, a multilobe cross section such as a trilobal cross section, and other irregular cross sections. Also,
The form of the fiber is not particularly limited such as long fiber and short fiber, and in the case of long fiber, it may be multifilament or monofilament.

【0020】本発明の繊維は、織物、編物、不織布の
他、カップやボード等の熱圧縮成形体等の様々な繊維製
品の形態を採ることができる。
The fibers of the present invention can be in the form of various textile products such as woven fabrics, knitted fabrics, non-woven fabrics and thermocompression molded products such as cups and boards.

【0021】本発明の樹脂組成物により、従来の脂肪族
ポリエステルの欠点を克服し、脂肪族ポリエステルを高
性能化することが可能である。例えば、ポリ乳酸繊維で
は降伏応力が低く、力学的に寸法安定性が低いが、本発
明の繊維では降伏応力が向上し、力学的な寸法安定性が
改善できるのである。これにより、ウォータージェット
ルームやエアジェットルームのような高速織機を使用し
ても、緯糸が伸びることが無く織り欠点を大幅に抑制で
きるのである。また、ポリ乳酸繊維は融点が170℃程
度であるため、アイロンをあてると糸の融解により布帛
に穴が空いてしまうが、融点がポリ乳酸より高いポリア
ミドをブレンドすることにより、これを大幅に改善する
ことができるのである。さらに、ポリ乳酸繊維では耐摩
耗性が悪いため、軽度の擦過によりフィブリル化が発生
し布帛欠点となりやすいが、耐摩耗性に優れたナイロン
等をブレンドすることにより、これを大幅に改善できる
のである。このように、本発明により、脂肪族ポリエス
テルの欠点を克服し、用途拡大に大いに寄与できるもの
である。
With the resin composition of the present invention, it is possible to overcome the drawbacks of conventional aliphatic polyesters and improve the performance of the aliphatic polyesters. For example, polylactic acid fiber has a low yield stress and mechanically low dimensional stability, whereas the fiber of the present invention has improved yield stress and improved mechanical dimensional stability. As a result, even when a high-speed loom such as a water jet loom or an air jet loom is used, the weft yarn does not stretch and the weaving defect can be greatly suppressed. Also, since the melting point of polylactic acid fiber is about 170 ° C, holes will be formed in the fabric due to the melting of the yarn when ironed, but this is greatly improved by blending polyamide with a melting point higher than that of polylactic acid. You can do it. Furthermore, since the polylactic acid fiber has poor abrasion resistance, fibrillation is likely to occur due to slight rubbing to easily cause a fabric defect, but by blending nylon or the like having excellent abrasion resistance, this can be greatly improved. . As described above, according to the present invention, the drawbacks of the aliphatic polyester can be overcome and the application can be greatly expanded.

【0022】本発明の樹脂組成物の製造方法は特に限定
されるものではないが、例えば以下の様な方法を採用す
ることができる。
The method for producing the resin composition of the present invention is not particularly limited, but the following method can be adopted, for example.

【0023】すなわち、重量平均分子量12万〜20万
のホモポリL乳酸とナイロン11(融点186℃)を2
10〜240℃で2軸押し出し混練機を用いて混練し、
ポリ乳酸にナイロン11が均一ブレンドされた本願樹脂
組成物を得ることができる。そして、これを通常の溶融
紡糸装置を用い、210〜240℃で溶融紡糸した後、
紡速1000〜7000m/分で引き取り、一旦巻き取
った後、延伸温度80〜150℃、熱セット温度80〜
160℃で延伸することにより、本願繊維を得ることが
できる。この時、熱履歴としては245℃以下とすると
ベースポリマーであるポリ乳酸の分解を抑制でき、好ま
しいのである。
That is, 2 parts of homopoly L lactic acid having a weight average molecular weight of 120,000 to 200,000 and nylon 11 (melting point 186 ° C.) are used.
Knead using a twin-screw extrusion kneader at 10 to 240 ° C,
The resin composition of the present invention in which nylon 11 is uniformly blended with polylactic acid can be obtained. And after melt-spinning this at 210-240 degreeC using a normal melt spinning apparatus,
The film is taken up at a spinning speed of 1000 to 7000 m / min, wound once, and then drawn at a drawing temperature of 80 to 150 ° C. and a heat setting temperature of 80 to
The fiber of the present invention can be obtained by stretching at 160 ° C. At this time, it is preferable that the heat history is 245 ° C. or lower because the decomposition of polylactic acid as the base polymer can be suppressed.

【0024】本発明のポリエステル樹脂組成物は、樹脂
成形用途においてはケース、ボード、生活資材、車両用
資材、産業資材等に好適に用いることができる。また、
繊維用途においては、仮撚加工用の原糸、シャツやブル
ゾン、パンツといった衣料用途のみならず、カップやパ
ッド等の衣料資材、カーテンやカーペット、マット、家
具等のインテリアや車両内装やベルト、ネット、ロー
プ、重布、袋類、縫い糸、フェルト、不織布、フィルタ
ー、人工芝等の産業資材用途にも好適に用いることがで
きる。また、フィルム、シート用途においては、包装
材、ラベルの他、ラップフィルム等の生活資材、セパレ
ーター等の産業資材にも好適に用いることができる。
The polyester resin composition of the present invention can be suitably used for cases such as cases, boards, daily life materials, vehicle materials, and industrial materials in resin molding applications. Also,
In textile applications, not only raw yarn for false twisting, clothing such as shirts, blouson and pants, but also clothing materials such as cups and pads, curtains, carpets, mats, furniture interiors, vehicle interiors, belts, nets, etc. It can also be suitably used for industrial materials such as ropes, heavy cloth, bags, sewing threads, felts, non-woven fabrics, filters and artificial grass. In addition, in the use of films and sheets, it can be suitably used as a packaging material, a label, a living material such as a wrap film, and an industrial material such as a separator.

【0025】[0025]

【実施例】以下、本発明を実施例を用いて詳細に説明す
る。なお、実施例中の測定方法は以下の方法を用いた。
EXAMPLES The present invention will be described in detail below with reference to examples. The following methods were used as the measuring methods in the examples.

【0026】A.脂肪族ポリエステルの重量平均分子量 試料のクロロホルム溶液にテトラヒドロフランを混合し
測定溶液とした。これをゲルパーミテーションクロマト
グラフィー(GPC)で測定し、ポリスチレン換算で重
量平均分子量を求めた。
A. Tetrahydrofuran was mixed with a chloroform solution of a weight average molecular weight sample of an aliphatic polyester to prepare a measurement solution. This was measured by gel permeation chromatography (GPC) to determine the weight average molecular weight in terms of polystyrene.

【0027】B.ナイロンの相対粘度および固有粘度 ナイロン6の相対粘度は、0.01g/mLの98%硫
酸溶液を調製し、25℃で測定した。
B. Relative Viscosity and Intrinsic Viscosity of Nylon The relative viscosity of Nylon 6 was measured at 25 ° C. by preparing 0.01 g / mL of 98% sulfuric acid solution.

【0028】ナイロン11の固有粘度は、0.5重量%
のメタクレゾール溶液を調整し20℃で測定した。
The intrinsic viscosity of nylon 11 is 0.5% by weight.
The meta-cresol solution of was prepared and measured at 20 ° C.

【0029】C.室温での強度および伸度 室温(25℃)で、初期試料長=200mm、引っ張り速
度=200mm/分とし、JIS L1013に示され
る条件で荷重−伸長曲線を求めた。次に破断時の荷重値
を初期の繊度で割り、それを強度とし、破断時の伸びを
初期試料長で割り、伸度として強伸度曲線を求めた。
C. Strength and Elongation at Room Temperature At room temperature (25 ° C.), an initial sample length = 200 mm and a pulling rate = 200 mm / min, and a load-elongation curve was obtained under the conditions specified in JIS L1013. Next, the load value at break was divided by the initial fineness to obtain the strength, the elongation at break was divided by the initial sample length, and the strength / elongation curve was obtained as the elongation.

【0030】D.沸収 沸収(%)=[(L0−L1)/L0)]×100(%) L0:延伸糸をかせ取りし初荷重0.09cN/dte
x下で測定したかせの原長 L1:L0を測定したかせを実質的に荷重フリーの状態
で沸騰水中で15分間処理し、風乾後初荷重0.09c
N/dtex下でのかせ長 E.ポリマーの融点 PERKIN ELMER社製DSC−7を用いて2n
d runで融点を測定した。この時、試料重量を10
mg、昇温速度を16℃/分とした。
D. Boiling point Boiling point (%) = [(L0-L1) / L0)] × 100 (%) L0: Stretching the drawn yarn and initial load 0.09 cN / dte
The original length L1: L0 of the skein measured under x was treated in boiling water for 15 minutes in a substantially load-free state, and after air drying, the initial load was 0.09c.
Skein length under N / dtex E. Polymer melting point 2n using PERKIN ELMER DSC-7
Melting point was measured by d run. At this time, the sample weight is 10
mg and the temperature rising rate were 16 ° C./min.

【0031】F.ブレンドポリマーのブレンド状態観察 ブレンド繊維の横断面方向に超薄切片を切り出し、透過
型電子顕微鏡(TEM)にてポリアミドのブレンド状態を
観察した。
F. Observation of blended state of blended polymer An ultrathin section was cut in the cross-sectional direction of the blended fiber, and the blended state of the polyamide was observed with a transmission electron microscope (TEM).

【0032】TEM装置:日立社製H−7100FA型 条 件 :加速電圧 100kV ここで、島ドメインのサイズとしては、ドメインを円と
仮定し面積から直径換算でサイズを計算した。
TEM apparatus: H-7100FA type manufactured by Hitachi Ltd. Condition: Accelerating voltage 100 kV Here, the size of the island domain was calculated by converting the area into a diameter and assuming that the domain is a circle.

【0033】G.耐摩耗テスト 繊維を総繊度が334dtexとなる様に引き揃えて編
み立て、平編地を作成した。そして、120℃で生機セ
ット後、98℃で精練し、引き続き分散染料Diani
x Black BG−FS200を使用して110℃で
染色後130℃で仕上げセットした。仕上げセット後の
編地密度は、全水準ウエール30/inch×コース3
1/inchとした。そして、得られた平編地から直径
120mmのサンプルを採取し、その中央部に直径6m
mの穴をあけ、ASTM D 1175に規定されるテー
バ摩耗試験機(Rotary Abraser)に取り付
け、CS#10摩耗輪により荷重500gf(4.9N)
で1000回転摩耗を行った後の生地の表面摩耗状態を
観察した。そして、以下に示す等級で表し、3級以上を
合格とした。
G. Abrasion resistance test Fibers were aligned and knitted so that the total fineness was 334 dtex to prepare a plain knitted fabric. Then, after setting the greige at 120 ° C., scouring at 98 ° C., followed by disperse dye Dani
x Black BG-FS200 was used, dyeing was performed at 110 ° C, and finishing setting was performed at 130 ° C. Knitted fabric density after finishing set is all standard wale 30 / inch x course 3
1 / inch. Then, a sample with a diameter of 120 mm was collected from the obtained plain knitted fabric, and the diameter of 6 m
Drill a hole of m and attach to a Taber abrasion tester (Rotary Abraser) specified in ASTM D 1175, and load 500 gf (4.9 N) with CS # 10 abrasion wheel.
The surface abrasion state of the fabric after 1000 rotation abrasion was observed. Then, the grades shown below were used and grades of 3 or higher were passed.

【0034】5級:状態の変化がないもの 4級:やや毛羽立ちがあるもの 3級:毛羽立ちがやや多いもの 2級:毛羽立ちが多く、しかも糸が細くなっているもの 1級:糸切れのあるもの H.捲縮糸の捲縮特性 CR値 捲縮糸をかせ取りし、荷重フリーの状態で沸騰水中15
分間処理し、24時間風乾した。このサンプルに0.0
88cN/dtex(0.1gf/d)相当の荷重をかけ
水中に浸漬し、2分後のかせ長L'0を測定した。次
に、水中で0.088cN/dtex相当の荷重を除き
0.0018cN/dtex(2mgf/d)相当の微荷
重に交換し、2分後のかせ長L'1を測定した。そして
下式によりCR値を計算した。
Grade 5: No change in state Grade 4: Slightly fluffy Grade 3: Slightly fluffy Grade 2: Lots of fluffing and fine thread 1: Grade: Broken thread H. Crimping characteristics of crimped yarn CR value Crimped yarn is skeined off, and is 15
It was treated for 1 minute and air dried for 24 hours. 0.0 for this sample
A load equivalent to 88 cN / dtex (0.1 gf / d) was applied and immersed in water to measure the skein length L′ 0 after 2 minutes. Next, the load equivalent to 0.088 cN / dtex was removed in water, and the load was replaced with a slight load equivalent to 0.0018 cN / dtex (2 mgf / d), and the skein length L′ 1 was measured after 2 minutes. Then, the CR value was calculated by the following formula.

【0035】CR(%)=[(L'0−L'1)/L'0]×1
00(%) I.捲縮糸の捲縮数 捲縮糸を荷重フリーの状態で100℃熱水中で自由に収
縮させた後、捲縮数を数えた。
CR (%) = [(L'0-L'1) / L'0] × 1
00 (%) I. Number of crimps of crimped yarn The crimped yarn was freely shrunk in hot water at 100 ° C. in a load-free state, and then the number of crimps was counted.

【0036】実施例1 ポリアミドとして固有粘度1.45のナイロン11(融点
186℃)を用い、これと重量平均分子量15万のホモ
ポリL乳酸(光学純度99%L乳酸、融点170℃)を2
20℃で2軸混練機を用い溶融ブレンドし、ブレンドポ
リマーを得た。この時、ナイロン11のブレンド比はブ
レンドポリマーに対し10重量%とした。これの融点を
測定したところ170℃にポリ乳酸、186℃にナイロ
ン11の融点が観測された。このブレンドポリマーを乾
燥し、紡糸温度を220℃として溶融紡糸し、紡出した
糸条5をチムニー4により25℃の冷却風で冷却固化さ
せた後、集束給油ガイド6により繊維用油剤を塗布し、
交絡ガイド7により糸に交絡を付与した(図2)。これの
溶融紡糸性には全く問題が無く、100kg巻き取りで
の糸切れはゼロであった。その後、周速1250m/分
の非加熱の第1引き取りローラー8で引き取った後、非
加熱の第2引き取りローラー9を介し巻き取った。この
糸を第1ローラー13温度90℃で予熱した後、3.2
倍に延伸し、第2ローラー14で130℃で熱セットを
行い、非加熱の第3ローラー15を介し巻き取り、84
dtex、36フィラメント、丸断面の延伸糸16を得
た(図3)。ここでの延伸性にも全く問題が無く、100
kg巻き取りでの糸切れはゼロであった。
Example 1 Nylon 11 having an intrinsic viscosity of 1.45 (melting point 186 ° C.) was used as a polyamide, and 2 parts of this and homopoly L lactic acid having a weight average molecular weight of 150,000 (optical purity 99% L lactic acid, melting point 170 ° C.) were used.
Melt blending was performed at 20 ° C. using a biaxial kneader to obtain a blended polymer. At this time, the blend ratio of nylon 11 was set to 10% by weight based on the blend polymer. When the melting point of this was measured, the melting point of polylactic acid at 170 ° C. and the melting point of nylon 11 at 186 ° C. were observed. The blended polymer is dried, melt-spun at a spinning temperature of 220 ° C., and the spun yarn 5 is cooled and solidified by a chimney 4 with a cooling air of 25 ° C., and then a fiber oil agent is applied by a focusing oil supply guide 6. ,
Entangling was given to the yarn by the entanglement guide 7 (Fig. 2). There was no problem in melt spinnability, and the number of yarn breakages after winding 100 kg was zero. Then, after being taken up by the unheated first take-up roller 8 at a peripheral speed of 1250 m / min, it was taken up by the non-heated second take-up roller 9. After preheating this yarn at the first roller 13 temperature of 90 ° C, 3.2
Double stretching, heat setting at 130 ° C. with the second roller 14, winding up with the non-heated third roller 15, 84
A drawn yarn 16 having a dtex of 36 filaments and a round cross section was obtained (FIG. 3). There is no problem with the stretchability here,
There was no yarn breakage after winding up with kg.

【0037】得られた繊維の糸横断面のTEM観察を行
ったところ、図1に示すように均一に分散した海島構造
を採っており、島成分のドメインサイズは直径換算で
0.05〜0.3μmであった。
TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure as shown in FIG. 1, and the domain size of the island component was 0.05 to 0 in terms of diameter. It was 0.3 μm.

【0038】さらにこの繊維を筒編みし、170℃でア
イロン掛けテストを行ったが、筒編み地に穴が空くこと
は無く、従来のポリ乳酸繊維(比較例1)に比べ耐熱性が
格段に向上していた。
Further, this fiber was tubularly knitted and subjected to an ironing test at 170 ° C. However, no hole was formed in the tubular knitted fabric, and the heat resistance was remarkably higher than that of the conventional polylactic acid fiber (Comparative Example 1). It was improving.

【0039】実施例2 ナイロン11のブレンド比を3重量%とした以外は実施
例1と同様に、ブレンドポリマーを得た。これの融点を
測定したところ、170℃にポリ乳酸、186℃にナイ
ロン11の融点が観測された。そして、これの紡糸、延
伸を実施例1と同様に行い84dtex、72フィラメ
ント、丸断面の延伸糸を得た。得られた繊維の糸横断面
のTEM観察を行ったところ、均一に分散した海島構造
を採っており、島ドメインサイズは直径換算で0.05
〜0.3μmであった。
Example 2 A blend polymer was obtained in the same manner as in Example 1 except that the blending ratio of nylon 11 was changed to 3% by weight. When the melting point of this was measured, the melting point of polylactic acid at 170 ° C. and that of nylon 11 at 186 ° C. were observed. Then, this was spun and drawn in the same manner as in Example 1 to obtain a drawn yarn of 84 dtex, 72 filaments, and a round cross section. A TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 in terms of diameter.
Was 0.3 μm.

【0040】さらにこの繊維を筒編みし、170℃でア
イロン掛けテストを行ったが、従来のポリ乳酸繊維(比
較例1)に比べ耐熱性が向上していたが、筒編み地にと
ころどころに小さな穴が空いた。
Further, this fiber was knitted and subjected to an ironing test at 170 ° C. The heat resistance was improved as compared with the conventional polylactic acid fiber (Comparative Example 1), but it was small in places in the knitted fabric. There is a hole.

【0041】実施例3 ナイロン11のブレンド比を20重量%とし、混練温度
を225℃とした以外は実施例1と同様に、ブレンドポ
リマーを得た。これの融点を測定したところ、170℃
にポリ乳酸、185℃にナイロン11の融点が観測され
た。また、これのTEM観察を行ったところ、均一な海
島構造をしており、島ドメインサイズは直径換算で0.
5〜2.0μmであった。そして、紡糸温度225℃で
実施例1と同様に、これの紡糸、延伸を行い84dte
x、72フィラメント、丸断面の延伸糸を得た。得られ
た繊維の糸横断面のTEM観察を行ったところ、均一に
分散した海島構造を採っており、島ドメインサイズは直
径換算で0.05〜0.4μmであった。
Example 3 A blend polymer was obtained in the same manner as in Example 1 except that the blending ratio of nylon 11 was 20% by weight and the kneading temperature was 225 ° C. The melting point of this was measured to be 170 ° C.
Polylactic acid was observed and the melting point of nylon 11 was observed at 185 ° C. In addition, TEM observation of this revealed that it had a uniform sea-island structure, and the island domain size was 0.
It was 5 to 2.0 μm. Then, this was spun and stretched at a spinning temperature of 225 ° C. in the same manner as in Example 1 to obtain 84 dte.
x, 72 filaments, and a round section drawn yarn were obtained. TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 to 0.4 μm in terms of diameter.

【0042】さらにこの繊維を筒編みし、170℃でア
イロン掛けテストを行ったが、筒編み地に穴が空くこと
は無く、従来のポリ乳酸繊維(比較例1)に比べ耐熱性が
格段に向上していた。
Further, this fiber was tubularly knitted and subjected to an ironing test at 170 ° C., but no hole was formed in the tubular knitted fabric, and the heat resistance was remarkably higher than that of the conventional polylactic acid fiber (Comparative Example 1). It was improving.

【0043】実施例4 ナイロン11のブレンド比を35重量%とし、混練温度
を230℃とした以外は実施例1と同様に、ブレンドポ
リマーを得た。これの融点を測定したところ、169℃
にポリ乳酸、184℃にナイロン11の融点が観測され
た。そして、紡糸温度230℃で実施例1と同様に、こ
れの紡糸、延伸を行い84dtex、24フィラメン
ト、丸断面の延伸糸を得た。得られた繊維の糸横断面の
TEM観察を行ったところ、均一に分散した海島構造を
採っており、島ドメインサイズは直径換算で0.05〜
0.5μmであった。
Example 4 A blend polymer was obtained in the same manner as in Example 1 except that the blending ratio of nylon 11 was 35% by weight and the kneading temperature was 230 ° C. When the melting point of this was measured, it was 169 ° C.
The melting point of polylactic acid was observed, and the melting point of nylon 11 was observed at 184 ° C. Then, this was spun and stretched at a spinning temperature of 230 ° C. in the same manner as in Example 1 to obtain a stretched yarn of 84 dtex, 24 filaments, and a round cross section. TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 to 5 in terms of diameter.
It was 0.5 μm.

【0044】さらにこの繊維を筒編みし、170℃でア
イロン掛けテストを行ったが、筒編み地に穴が空くこと
は無く、従来のポリ乳酸繊維(比較例1)に比べ耐熱性が
格段に向上していた。
Further, this fiber was tubularly knitted and subjected to an ironing test at 170 ° C., but no hole was formed in the tubular knitted fabric, and the heat resistance was remarkably higher than that of the conventional polylactic acid fiber (Comparative Example 1). It was improving.

【0045】実施例5 溶融ブレンド時に、減粘剤としてε−カプロラクタムを
0.5重量%添加した以外は実施例1と同様に、ブレン
ドポリマーを得た。これの融点を測定したところ、17
0℃にポリ乳酸、186℃にナイロン11の融点が観測
された。そして、実施例1と同様に、これの紡糸、延伸
(延伸倍率3.3倍)を行い84dtex、144フィラ
メント、丸断面の延伸糸を得た。得られた繊維の糸横断
面のTEM観察を行ったところ、均一に分散した海島構
造を採っており、島ドメインサイズは直径換算で0.0
5〜0.9μmであった。この強伸度曲線を図4に示す
が、従来のポリ乳酸繊維(比較例1)に比べ降伏応力が大
幅に向上していた。
Example 5 A blend polymer was obtained in the same manner as in Example 1 except that 0.5% by weight of ε-caprolactam was added as a viscosity reducing agent during melt blending. The melting point of this was measured to be 17
The melting point of polylactic acid was observed at 0 ° C, and the melting point of nylon 11 was observed at 186 ° C. Then, in the same manner as in Example 1, spinning and drawing of this
(Drawing ratio 3.3 times) was carried out to obtain 84 dtex, 144 filaments, drawn yarn having a circular cross section. TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.0 in terms of diameter.
It was 5 to 0.9 μm. This strength-elongation curve is shown in FIG. 4, and the yield stress was significantly improved as compared with the conventional polylactic acid fiber (Comparative Example 1).

【0046】さらにこの繊維を筒編みし、170℃でア
イロン掛けテストを行ったが、筒編み地に穴が空くこと
は無く、従来のポリ乳酸繊維(比較例1)に比べ耐熱性が
格段に向上していた。
Further, this fiber was knitted and subjected to an ironing test at 170 ° C., but no hole was formed in the knitted fabric, and the heat resistance was remarkably higher than that of the conventional polylactic acid fiber (Comparative Example 1). It was improving.

【0047】実施例6 ホモポリL乳酸の重量平均分子量を20万(光学純度9
9%L乳酸、融点170℃)とし、混練温度235℃と
した以外は実施例1と同様にブレンドポリマーを得た。
これの融点を測定したところ、170℃にポリ乳酸、1
86℃にナイロン11の融点が観測された。そして、紡
糸温度を240℃、第1引き取りローラー8の周速を6
000m/分とした以外は実施例5と同様に紡糸を行
い、84dtex、36フィラメントの糸を得た。得ら
れた繊維の糸横断面のTEM観察を行ったところ、均一
に分散した海島構造を採っており、島ドメインサイズは
直径換算で0.05〜0.9μmであった。
Example 6 The weight average molecular weight of homopoly L lactic acid was 200,000 (optical purity 9
9% L lactic acid, melting point 170 ° C.) and a kneading temperature of 235 ° C. were used to obtain a blend polymer in the same manner as in Example 1.
When its melting point was measured, it was polylactic acid at 170 ° C., 1
A melting point of nylon 11 was observed at 86 ° C. Then, the spinning temperature is 240 ° C., and the peripheral speed of the first take-up roller 8 is 6
Spinning was performed in the same manner as in Example 5 except that the yarn was made of 84 dtex and 36 filaments, except that the yarn was 000 m / min. TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 to 0.9 μm in terms of diameter.

【0048】さらにこの繊維を筒編みし、170℃でア
イロン掛けテストを行ったが、筒編み地に穴が空くこと
は無く、従来のポリ乳酸繊維(比較例1)に比べ耐熱性が
格段に向上していた。
Further, this fiber was cylindrically knitted and subjected to an ironing test at 170 ° C. However, no hole was formed in the tubular knitted fabric, and the heat resistance was remarkably higher than that of the conventional polylactic acid fiber (Comparative Example 1). It was improving.

【0049】実施例7 ポリアミドとして相対粘度2.3の低分子量ナイロン6
(融点223℃)を用い、これと重量平均分子量20万の
ホモポリL乳酸(光学純度99%L乳酸、融点170℃)
を245℃で2軸混練機を用い溶融ブレンドし、ブレン
ドポリマーを得た。これの融点を測定したところ、17
0℃にポリ乳酸、223℃にナイロン6の融点が観測さ
れた。このブレンドポリマーを乾燥し、紡糸温度を24
5℃として溶融紡糸し、実施例1と同様に溶融紡糸、延
伸を行った。得られた繊維の糸横断面のTEM観察を行
ったところ、均一に分散した海島構造を採っており、島
ドメインサイズは直径換算で0.05〜0.9μmであ
った。
Example 7 Low molecular weight nylon 6 having a relative viscosity of 2.3 as polyamide
(Melting point 223 ° C) and homopoly L-lactic acid having a weight average molecular weight of 200,000 (optical purity 99% L-lactic acid, melting point 170 ° C)
Was melt-blended at 245 ° C. using a biaxial kneader to obtain a blended polymer. The melting point of this was measured to be 17
A melting point of polylactic acid at 0 ° C. and a melting point of nylon 6 at 223 ° C. were observed. The blend polymer is dried and the spinning temperature is raised to 24
Melt spinning was performed at 5 ° C., and melt spinning and drawing were performed in the same manner as in Example 1. TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 to 0.9 μm in terms of diameter.

【0050】さらにこの繊維を筒編みし、170℃でア
イロン掛けテストを行ったが、筒編み地に穴が空くこと
は無く、従来のポリ乳酸繊維(比較例1)に比べ耐熱性が
格段に向上していた。
Further, this fiber was cylindrically knitted and subjected to an ironing test at 170 ° C., but no hole was formed in the tubular knitted fabric, and the heat resistance was remarkably higher than that of the conventional polylactic acid fiber (Comparative Example 1). It was improving.

【0051】比較例1 実施例1で使用したポリ乳酸を乾燥した後、220℃で
溶融紡糸し、紡出した糸条5をチムニー4により25℃
の冷却風で糸を冷却固化させた後、集束給油ガイド6に
より繊維用油剤を塗布し、交絡ガイド7により糸に交絡
を付与した(図2)。その後、周速1250m/分の非加
熱の第1引き取りローラー8で引き取った後、非加熱の
第2引き取りローラー9を介して糸を巻き取った。この
未延伸糸11を第1ローラー13温度90℃で予熱した
後、2.8倍に延伸し、第2ローラー14で130℃で
熱セットを行い、非加熱の第3ローラー15を介し巻き
取り、84dtex、24フィラメント、丸断面の延伸
糸を得た(図3)。これの90℃での強伸度曲線を図4、
物性値を表1に示すが、降伏応力が低いものであった。
さらにこの繊維を筒編みし、170℃でアイロン掛けテ
ストを行ったが、ポリ乳酸繊維の融解のため筒編み地に
大きな穴が空き、耐熱性が不良なものであった。
Comparative Example 1 The polylactic acid used in Example 1 was dried, melt-spun at 220 ° C., and the spun yarn 5 was heated at 25 ° C. with a chimney 4.
After the yarn was cooled and solidified by the cooling air, the focusing oil supply guide 6 applied the fiber oil agent, and the entanglement guide 7 entangled the yarn (FIG. 2). After that, the yarn was taken up by the unheated first take-up roller 8 at a peripheral speed of 1250 m / min, and then the yarn was wound up by the non-heated second take-up roller 9. This unstretched yarn 11 is preheated at a temperature of 90 ° C. for the first roller 13 and then stretched 2.8 times, heat set at 130 ° C. for the second roller 14, and wound up through a non-heated third roller 15. , 84 dtex, 24 filaments, round stretched yarn was obtained (FIG. 3). The strength and elongation curve of this at 90 ° C. is shown in FIG.
The physical properties are shown in Table 1, but the yield stress was low.
Further, this fiber was knitted and subjected to an ironing test at 170 ° C. However, due to melting of the polylactic acid fiber, a large hole was formed in the knitted fabric and heat resistance was poor.

【0052】比較例2 と同様ポリアミドとして相対粘度3.4の高分子量ナイ
ロン6(融点225℃)を用い、混練温度、紡糸温度を
250℃として実施例7と同様にポリ乳酸にナイロン6
をブレンドし、溶融紡糸を行ったが、糸が五月雨状にな
り、巻き取り不能であった。この五月雨糸の糸横断面の
TEM観察を行ったところ、島ドメインサイズが大きく
直径換算で20μm以上であった。
As in Comparative Example 2, high-molecular-weight nylon 6 having a relative viscosity of 3.4 (melting point 225 ° C.) was used as the polyamide, and the kneading temperature and spinning temperature were set to 250 ° C.
Was melt-spun, but the yarn became rainy in May and could not be wound. TEM observation of the cross-section of this May rain thread revealed that the island domain size was large and 20 μm or more in terms of diameter.

【0053】[0053]

【表1】 実施例8 実施例1〜7で得た繊維に、延伸倍率1.35倍、ヒー
ター温度130℃、加工速度400m/分でフリクショ
ンディスク仮撚加工を施した。加工性に問題無く、糸切
れ、毛羽は発生しなかった。また、捲縮特性の指標であ
るCR値は20%を超え仮撚加工糸として充分な捲縮を
有していた。そして、これらの耐摩耗テストを行ったと
ころ、表2に示すように実施例1〜7の繊維を原糸とし
た仮撚加工糸は優れた耐摩耗性を示した。
[Table 1] Example 8 The fibers obtained in Examples 1 to 7 were subjected to friction disk false twisting at a draw ratio of 1.35 times, a heater temperature of 130 ° C., and a processing speed of 400 m / min. There was no problem in workability and no yarn breakage or fluff occurred. The CR value, which is an index of crimp characteristics, exceeded 20% and had sufficient crimp as a false twist textured yarn. Then, when these abrasion resistance tests were performed, as shown in Table 2, the false twisted yarns using the fibers of Examples 1 to 7 as the raw yarns showed excellent abrasion resistance.

【0054】[0054]

【表2】 比較例3 比較例1で得た従来ポリ乳酸繊維に、延伸倍率1.35
倍、ヒーター温度130℃、加工速度400m/分でフ
リクションディスク仮撚加工を施したが、熱板上で糸が
弛み糸かけ不能であった。次に、熱板温度110℃に下
げて加工を施したところ、やはり糸かけに問題があった
が、糸を巻き取ることは可能であった。捲縮特性の指標
であるCR値は21%と充分なものであったが、耐摩耗
性は2級と不良であった(表2)。
[Table 2] Comparative Example 3 The conventional polylactic acid fiber obtained in Comparative Example 1 was added with a draw ratio of 1.35.
When the friction disk false twisting process was performed at twice the heater temperature of 130 ° C. and the processing speed of 400 m / min, the yarn was slack on the hot plate and the yarn could not be applied. Next, when the hot plate temperature was lowered to 110 ° C. and processing was performed, there was still a problem in threading, but it was possible to wind up the thread. The CR value, which is an index of crimp characteristics, was 21%, which was sufficient, but the abrasion resistance was inferior to the second grade (Table 2).

【0055】実施例9 実施例8において、実施例5を加工原糸として得られた
仮撚加工糸を経糸および緯糸に用い、ウォータージェッ
トルームで平織りを作製した。得られた平織りを常法に
したがい60℃で精練した後、140℃で中間セットを
施した。これは、織り欠点はなく品位に優れたものであ
った。さらに常法にしたがい110℃で染色した。得ら
れた布帛は、きしみ感、ソフト感があり、衣料用として
優れた風合いを有していた。また、染色斑も無く品位に
優れたものであった。
Example 9 A plain weave was produced in a water jet loom using the false twist textured yarn obtained in Example 8 as the textured raw yarn for the warp and the weft. The plain weave thus obtained was scoured at 60 ° C. according to a conventional method, and then intermediate set at 140 ° C. This was excellent in quality without weaving defects. Further, it was dyed at 110 ° C. according to a conventional method. The obtained cloth had a squeaky feeling and a soft feeling, and had an excellent texture for clothing. Moreover, it was excellent in quality without stains.

【0056】比較例4 比較例3で得られた仮撚加工糸を用い実施例9と同様に
平織りを作製した。しかし、緯糸打ち込み時の張力によ
り緯糸が伸びてしまい、織り欠点が多発した。これを実
施例9同様に染色したところ染色斑が多発し品位に劣る
ものであった。
Comparative Example 4 A plain weave was produced in the same manner as in Example 9 using the false twisted yarn obtained in Comparative Example 3. However, the wefts stretched due to the tension when the wefts were driven in, and weaving defects frequently occurred. When this was dyed in the same manner as in Example 9, stains frequently occurred and the quality was poor.

【0057】実施例10 実施例1で得たブレンドポリマーを溶融紡糸し、これを
1600m/分で引き取りトウとし、90℃水槽中で4
倍に延伸した。そして、クリンパーを通した後、カット
し、90℃で弛緩熱処理を施し、単糸繊度6dtex、
繊維長60mmのカットファイバーを得た。得られた繊
維の糸横断面のTEM観察を行ったところ、均一に分散
した海島構造を採っており、島ドメインサイズは直径換
算で0.05〜0.3μmであった。これを220℃で熱
圧縮成形し厚さ3mmのボードを得た。
Example 10 The blend polymer obtained in Example 1 was melt-spun, and this was taken up at 1600 m / min to obtain a tow, which was then placed in a water bath at 90 ° C. for 4 hours.
It was stretched twice. Then, after passing through a crimper, it is cut and subjected to a relaxation heat treatment at 90 ° C., a single yarn fineness of 6 dtex,
A cut fiber having a fiber length of 60 mm was obtained. TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 to 0.3 μm in terms of diameter. This was subjected to thermocompression molding at 220 ° C. to obtain a board having a thickness of 3 mm.

【0058】一般にポリマーが非晶の場合はガラス転移
温度を超えると急激に軟化するが、ポリマーが一旦結晶
化すると、軟化温度をガラス転移温度より高くすること
が可能であり、場合によっては融点付近まで軟化を抑制
できる場合がある。このため、該ボードの耐熱性を以下
のようにして評価した。すなわち、得られたボードを幅
2cmにカットし、支点間距離50cmとして、中心に
1kgの重りを乗せ、80℃で20分間保持した。これ
を冷却後、重りを取り去り、ボードの変形を観察した。
ここで得られたボードはポリL乳酸単独のもの(比較例
5)とは異なり、変形は観測されず、耐熱性が向上して
いることが確認できた。
In general, when the polymer is amorphous, it is rapidly softened when it exceeds the glass transition temperature, but once the polymer is crystallized, the softening temperature can be made higher than the glass transition temperature, and in some cases, near the melting point. Sometimes softening can be suppressed. Therefore, the heat resistance of the board was evaluated as follows. That is, the obtained board was cut into a width of 2 cm, the distance between fulcrums was 50 cm, a weight of 1 kg was placed on the center, and the board was kept at 80 ° C. for 20 minutes. After cooling this, the weight was removed and the deformation of the board was observed.
Unlike the board obtained by poly L-lactic acid alone (Comparative Example 5), no deformation was observed and it was confirmed that the board obtained here had improved heat resistance.

【0059】比較例5 比較例1で使用したポリ乳酸を用いた以外は、実施例1
0と同様にしてボードを得た。しかしながら、このボー
ドはほとんど結晶化しておらず、実施例10と同様の8
0℃で荷重を加える耐熱性評価を行ったところ、変形が
観測され耐熱性に劣るものであった。
Comparative Example 5 Example 1 was repeated except that the polylactic acid used in Comparative Example 1 was used.
A board was obtained in the same manner as 0. However, this board was hardly crystallized, and the same 8 as in Example 10 was used.
When heat resistance was evaluated by applying a load at 0 ° C., deformation was observed and the heat resistance was poor.

【0060】実施例11 実施例1で得られたブレンドポリマーを乾燥し、230
℃で溶融紡糸を行った。このとき、口金吐出孔はY型と
し、その口金吐出孔長は0.5mmのものを用いた。紡
出糸は800m/分で引き取り、次いで、1段目の延伸
倍率を1.4倍、トータル倍率を4.0倍の条件で2段延
伸を行い、さらにジェットノズルを用いて捲縮を付与し
てから450dtex、90フィラメントのカーペット
用の嵩高加工糸を巻き取った。得られた繊維の糸横断面
のTEM観察を行ったところ、均一に分散した海島構造
を採っており、島ドメインサイズは直径換算で0.05
〜0.3μmであった。これの捲縮数は15個/mであ
り、良好な捲縮を示した。
Example 11 The blend polymer obtained in Example 1 was dried to give 230
Melt spinning was performed at ° C. At this time, the die discharge hole was Y-shaped and the die discharge hole length was 0.5 mm. The spun yarn is drawn at 800 m / min, then drawn in two stages with the first stage draw ratio of 1.4 times and the total draw ratio of 4.0 times, and crimped using a jet nozzle. Then, a bulky processed yarn for carpet having 450 dtex and 90 filaments was wound up. A TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 in terms of diameter.
Was 0.3 μm. The number of crimps was 15 / m, indicating a good crimp.

【0061】比較例6 比較例1で使用したポリ乳酸を用いた以外は、実施例1
1と同様にしてカーペット用嵩高加工糸を得た。これの
捲縮数は6個/mであり、不充分な捲縮であった。
Comparative Example 6 Example 1 was repeated except that the polylactic acid used in Comparative Example 1 was used.
A bulky processed yarn for carpet was obtained in the same manner as in 1. The number of crimps was 6 / m, which was an insufficient crimp.

【0062】実施例12 実施例1で得られたブレンドポリマーを乾燥し、240
℃に加熱された直径150mmのスクリューを備えた単
軸押出機に投入して、溶融押出を行い、繊維焼結ステン
レス金属フィルター内で濾過した後、Tダイよりシート
状に吐出し、該シートを表面温度25℃の冷却ドラム上
に、ドラフト比3で20m/分の速度で密着固化させ急
冷し、実質的に無配向の未延伸フィルムを得た。
Example 12 The blend polymer obtained in Example 1 was dried to give 240
The mixture is put into a single-screw extruder equipped with a screw having a diameter of 150 mm and heated to ℃, melt-extruded, filtered in a fiber-sintered stainless metal filter, and then discharged into a sheet form from a T die, and the sheet is discharged. On a cooling drum having a surface temperature of 25 ° C., a draft ratio of 3 was applied and solidified at a rate of 20 m / min, followed by rapid cooling to obtain a substantially non-oriented unstretched film.

【0063】続いて、該未延伸フィルムを、加熱された
複数のロール群からなる縦延伸機を用い、ロールの周速
差を利用して、85℃の温度でフィルムの縦方向に3.
5倍の倍率で延伸した。その後、このフィルムの両端部
をクリップで把持して、テンターに導き、延伸温度85
℃、延伸倍率3.0倍でフィルムの幅方向に延伸した。
次いで、160℃の温度で熱処理を行った後、室温まで
冷却した後、フィルムエッジを除去し、厚さ20μmの
二軸配向フィルムを得た。得られたフィルムの横断面の
TEM観察を行ったところ、均一に分散した海島構造を
採っており、島ドメインサイズは直径換算で0.05〜
0.4μmであった。
Subsequently, the unstretched film was stretched in the longitudinal direction of the film at a temperature of 85 ° C. by using a longitudinal stretching machine consisting of a plurality of heated roll groups and utilizing the peripheral speed difference of the rolls.
It was stretched at a magnification of 5 times. After that, both ends of this film are grasped with clips, guided to a tenter, and stretched at a stretching temperature of 85.
The film was stretched in the width direction of the film at a stretching ratio of 3.0 times.
Then, after heat treatment at a temperature of 160 ° C. and cooling to room temperature, the film edge was removed to obtain a biaxially oriented film having a thickness of 20 μm. TEM observation of the cross section of the obtained film showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 to 5 in terms of diameter.
It was 0.4 μm.

【0064】これの縦方向強度は100MPa、横方向
強度は130MPa、縦方向熱収縮は0.5%、横方向
熱収縮は0.5%であり、強度、収縮とも充分なもので
あった。なお、熱収縮は乾熱120℃雰囲気中に無荷重
下30分間放置した時の寸法変化から求めた。
The longitudinal strength was 100 MPa, the lateral strength was 130 MPa, the longitudinal heat shrinkage was 0.5%, and the lateral heat shrinkage was 0.5%. Both strength and shrinkage were sufficient. The heat shrinkage was determined from the dimensional change when left in an atmosphere of dry heat of 120 ° C. for 30 minutes under no load.

【0065】比較例7 比較例1で使用したポリ乳酸を用いた以外は、実施例1
2と同様にして、製膜を行ったが160℃での熱処理し
た際にポリ乳酸の部分融解が原因と考えられる破れが発
生し、実質的に製膜不能であった。そこで、熱処理温度
を160℃から140℃に低下させて製膜を行い、厚さ
20μmの二軸配向フィルムを得た。
Comparative Example 7 Example 1 was repeated except that the polylactic acid used in Comparative Example 1 was used.
Film formation was carried out in the same manner as in 2, but when heat-treated at 160 ° C., a breakage thought to be caused by partial melting of polylactic acid occurred, and film formation was substantially impossible. Therefore, the heat treatment temperature was lowered from 160 ° C. to 140 ° C. to form a film, and a 20 μm thick biaxially oriented film was obtained.

【0066】これの縦方向強度は110MPa、横方向
強度は150MPa、縦方向熱収縮は2.5%、横方向
熱収縮は2.5%であり、強度は充分であったが、収縮
が大きくなってしまった。
The longitudinal strength was 110 MPa, the lateral strength was 150 MPa, the longitudinal heat shrinkage was 2.5%, and the lateral heat shrinkage was 2.5%. The strength was sufficient, but the shrinkage was large. It is had.

【0067】実施例13 実施例1で得られたブレンドポリマーチップを乾燥し、
240℃に加熱された直径150mmのスクリューを備
えた単軸押出機に投入して、シリンダー温度240℃、
金型温度40℃で射出成形し、縦100mm、横20m
m、厚さ3mmの試験片を作製した。得られた試験片の
横断面のTEM観察を行ったところ、均一に分散した海
島構造を採っており、島ドメインサイズは直径換算で
0.05〜1.8μmであった。雰囲気温度120℃と
し、これに支点間距離80mmで1kgの重りを30分
間乗せたが、室温まで冷却した時の残留変形は無かっ
た。
Example 13 The blended polymer chips obtained in Example 1 are dried,
It is charged into a single-screw extruder equipped with a screw having a diameter of 150 mm heated to 240 ° C. and a cylinder temperature of 240 ° C.
Injection molding at a mold temperature of 40 ° C, length 100 mm, width 20 m
A test piece of m and a thickness of 3 mm was prepared. TEM observation of the cross section of the obtained test piece showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 to 1.8 μm in terms of diameter. An atmosphere temperature was set to 120 ° C., and a weight of 1 kg was placed on the fulcrum at a distance of 80 mm for 30 minutes, but there was no residual deformation when cooled to room temperature.

【0068】比較例8 比較例1で使用したポリ乳酸を用い、押出機温度および
シリンダー温度を220℃とした以外は、実施例13と
同様にして試験片を作製した。雰囲気温度120℃と
し、これに支点間距離80mmで1kgの重りを30分
間乗せたが、室温まで冷却した時に顕著な残留変形が見
られた。
Comparative Example 8 A test piece was prepared in the same manner as in Example 13 except that the polylactic acid used in Comparative Example 1 was used and the extruder temperature and the cylinder temperature were 220 ° C. An ambient temperature was set to 120 ° C., and a weight of 1 kg was placed on the fulcrum at a distance of 80 mm for 30 minutes, but when the temperature was cooled to room temperature, remarkable residual deformation was observed.

【0069】実施例14 脂肪族ポリエステルとして実施例1で用いたポリ乳酸と
ポリブチレンサクシネート(昭和高分子“ビオノーレ”
融点118℃)を3:1でブレンドしたものを用い、こ
れに実施例1と同様にナイロン11を10重量%ブレン
ドしたブレンドポリマーを220℃で作製した。これの
融点を測定したところ、118℃にポリブチレンサクシ
ネート、170℃にポリ乳酸、186℃にナイロン11
の融点が観測された。そして、このブレンドポリマーを
用いて、やはり実施例1と同様にして、84dtex、
36フィラメント、丸断面の延伸糸を得た。得られた繊
維の糸横断面のTEM観察を行ったところ、均一に分散
した海島構造を採っており、島ドメインサイズは直径換
算で0.05〜0.9μmであった。この延伸糸の耐摩耗
テストを行ったところ耐摩耗性4級と優れたものであっ
た。
Example 14 Polylactic acid and polybutylene succinate used in Example 1 as an aliphatic polyester (Showa High Polymer "Bionore")
A blend polymer was prepared by blending 10% by weight of nylon 11 in the same manner as in Example 1 using a blend of 3: 1 with a melting point of 118 ° C) at 220 ° C. The melting point of this was measured. As a result, polybutylene succinate at 118 ° C, polylactic acid at 170 ° C, nylon 11 at 186 ° C.
A melting point of was observed. Then, using this blended polymer, as in Example 1, 84 dtex,
A 36-filament, round-section drawn yarn was obtained. TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 to 0.9 μm in terms of diameter. When the abrasion resistance test of this drawn yarn was performed, it was excellent in abrasion resistance class 4.

【0070】実施例15 脂肪族ポリエステルとして実施例14のポリブチレンサ
クシネートを用いた以外は、実施例1と同様にして、ブ
レンドポリマーを得た。これの融点を測定したところ、
118℃にポリブチレンサクシネート、186℃にナイ
ロン11の融点が観測された。そして、このブレンドポ
リマーを用いて、やはり実施例1と同様にして、84d
tex、36フィラメント、丸断面の延伸糸を得た。得
られた繊維の糸横断面のTEM観察を行ったところ、均
一に分散した海島構造を採っており、島ドメインサイズ
は直径換算で0.05〜1μmであった。この延伸糸の
耐摩耗テストを行ったところ耐摩耗性4級と優れたもの
であった。
Example 15 A blend polymer was obtained in the same manner as in Example 1 except that the polybutylene succinate of Example 14 was used as the aliphatic polyester. When the melting point of this was measured,
A melting point of polybutylene succinate was observed at 118 ° C, and a melting point of nylon 11 was observed at 186 ° C. Then, using this blended polymer, as in Example 1, 84d
A drawn yarn having a tex of 36 filaments and a round cross section was obtained. TEM observation of the cross section of the obtained fiber showed that it had a uniformly dispersed sea-island structure, and the island domain size was 0.05 to 1 μm in terms of diameter. When the abrasion resistance test of this drawn yarn was performed, it was excellent in abrasion resistance class 4.

【0071】[0071]

【発明の効果】本発明の脂肪族ポリエステルにポリアミ
ドが均一ブレンドされていることを特徴とする樹脂組成
物を使用することにより、脂肪族ポリエステルの欠点で
あった力学特性や耐熱性、耐摩耗性を大幅に向上するこ
とができ、脂肪族ポリエステルの用途展開を大きく拡げ
ることができる。
EFFECTS OF THE INVENTION By using a resin composition characterized in that a polyamide is uniformly blended with the aliphatic polyester of the present invention, mechanical properties, heat resistance and abrasion resistance, which are the drawbacks of the aliphatic polyester, are obtained. Can be significantly improved, and the application of the aliphatic polyester can be greatly expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のブレンドポリマー内のポリアミドと脂
肪族ポリエステルのブレンド状態を示すTEM写真であ
る。
FIG. 1 is a TEM photograph showing a blended state of a polyamide and an aliphatic polyester in a blend polymer of the present invention.

【図2】紡糸装置を示す図である。FIG. 2 is a view showing a spinning device.

【図3】延伸装置を示す図である。FIG. 3 is a diagram showing a stretching device.

【図4】従来ポリ乳酸繊維およびナイロン11ブレンド
繊維の強伸度曲線を示す図である。
FIG. 4 is a view showing strength / elongation curves of conventional polylactic acid fiber and nylon 11 blend fiber.

【符号の説明】 1:スピンブロック 2:紡糸パック 3:口金 4:チムニー 5:糸条 6:集束給油ガイド 7:交絡ガイド 8:第1引き取りローラー 9:第2引き取りローラー 10:巻き取り糸 11:未延伸糸 12:フィードローラー 13:第1ローラー 14:第2ローラー 15:第3ローラー 16:延伸糸[Explanation of symbols] 1: Spin block 2: Spin pack 3: Base 4: Chimney 5: Thread 6: Focused refueling guide 7: Confounding guide 8: First take-up roller 9: Second take-up roller 10: Winding thread 11: Undrawn yarn 12: Feed roller 13: First roller 14: Second roller 15: Third roller 16: drawn yarn

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 77:00) Fターム(参考) 4F071 AA43 AA44 AA54 AA55 AF13 AF22 AF45 AH03 AH04 AH06 AH07 BB05 BB06 BC01 BC03 BC06 4J002 CF031 CF181 CF191 CL002 CL012 CL032 GG02 GK01 GL00 GN00 4L035 AA05 BB55 BB77 BB89 BB91 EE20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08L 77:00) F term (reference) 4F071 AA43 AA44 AA54 AA55 AF13 AF22 AF45 AH03 AH04 AH06 AH07 BB05 BB06 BC01 BC03 BC06 4J002 CF031 CF181 CF191 CL002 CL012 CL032 GG02 GK01 GL00 GN00 4L035 AA05 BB55 BB77 BB89 BB91 EE20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】脂肪族ポリエステルにポリアミドがブレン
ドされた海島構造をしており、島成分のドメインサイズ
が0.001〜10μmであることを特徴とする樹脂組
成物。
1. A resin composition having a sea-island structure in which a polyamide is blended with an aliphatic polyester, and the domain size of the island component is 0.001 to 10 μm.
【請求項2】ポリアミドが結晶性であり、融点が150
〜250℃であることを特徴とする請求項1記載の樹脂
組成物。
2. The polyamide is crystalline and has a melting point of 150.
It is -250 degreeC, The resin composition of Claim 1 characterized by the above-mentioned.
【請求項3】ポリアミドのブレンド比が樹脂組成物全体
に対し5〜40重量%であることを特徴とする請求項1
または2記載の樹脂組成物。
3. The blending ratio of polyamide is 5 to 40% by weight based on the whole resin composition.
Or the resin composition according to 2.
【請求項4】請求項1〜3のうちいずれか1項記載の樹
脂組成物を少なくとも一部に含むことを特徴とする成形
体。
4. A molded article comprising at least a part of the resin composition according to any one of claims 1 to 3.
【請求項5】成形体が繊維であることを特徴とする請求
項4記載の成形体。
5. The molded product according to claim 4, wherein the molded product is a fiber.
JP2002035462A 2002-02-13 2002-02-13 Resin composition and molded body Expired - Fee Related JP3893995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002035462A JP3893995B2 (en) 2002-02-13 2002-02-13 Resin composition and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002035462A JP3893995B2 (en) 2002-02-13 2002-02-13 Resin composition and molded body

Publications (3)

Publication Number Publication Date
JP2003238775A true JP2003238775A (en) 2003-08-27
JP2003238775A5 JP2003238775A5 (en) 2005-01-27
JP3893995B2 JP3893995B2 (en) 2007-03-14

Family

ID=27777640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002035462A Expired - Fee Related JP3893995B2 (en) 2002-02-13 2002-02-13 Resin composition and molded body

Country Status (1)

Country Link
JP (1) JP3893995B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233375A (en) * 2005-02-25 2006-09-07 Toray Ind Inc Synthetic fiber and fiber structure composed of the same
JP2007063297A (en) * 2004-08-12 2007-03-15 Mitsubishi Chemicals Corp Resin composition
JP2007100068A (en) * 2005-09-09 2007-04-19 Toray Ind Inc Thermoplastic resin composition and molded product thereof
JP2007131696A (en) * 2005-11-09 2007-05-31 Toray Ind Inc Resin composition and fiber consisting of the same
JP2007246845A (en) * 2006-03-17 2007-09-27 Toray Ind Inc Resin composition and molding composed of the same
JP2007277774A (en) * 2006-04-11 2007-10-25 Toray Ind Inc Filament nonwoven fabric and method for producing the same
JP2008007884A (en) * 2006-06-29 2008-01-17 Toray Ind Inc Nonwoven fabric for agricultural use
JP2008031611A (en) * 2006-08-01 2008-02-14 Toray Ind Inc Nonwoven fabric for tea bag and the resultant tea bag
JP2008057095A (en) * 2005-10-19 2008-03-13 Toray Ind Inc Internal trim material with high abrasion resistance
JP2009079218A (en) * 2007-09-03 2009-04-16 Unitika Ltd Environment consideration type thermoplastic resin composition and molded article comprising it
JP2009540090A (en) * 2006-06-16 2009-11-19 アルケマ フランス Composite material based on polylactic acid and polyamide with improved impact resistance, its production method and its use
JP2010265336A (en) * 2009-05-12 2010-11-25 Fuji Kasei Kogyo Co Ltd Resin composition based on poly(lactic acid)
WO2012029642A1 (en) * 2010-08-31 2012-03-08 東レ株式会社 Synthetic fiber and method for producing same
JP2014101143A (en) * 2012-11-22 2014-06-05 Jfe Steel Corp Resin-coated steel sheet easy-open can lid and manufacturing method thereof
JP2014109018A (en) * 2012-12-04 2014-06-12 Suntory Holdings Ltd Molding of polylactic resin compounded with clay dispersed polyamide-nanocomposite, having enhanced gas barrier properties
WO2015119116A1 (en) * 2014-02-06 2015-08-13 住友ベークライト株式会社 Laminate film
JP2016216739A (en) * 2016-08-16 2016-12-22 サントリーホールディングス株式会社 Clay dispersed polyamide and nanocomposite composite polylactic resin molded article having enhanced gas barrier property
KR101810274B1 (en) * 2010-08-13 2017-12-18 킴벌리-클라크 월드와이드, 인크. Modified polylactic acid fibers
KR101810273B1 (en) * 2010-08-13 2017-12-18 킴벌리-클라크 월드와이드, 인크. Toughened polylactic acid fibers

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063297A (en) * 2004-08-12 2007-03-15 Mitsubishi Chemicals Corp Resin composition
JP2006233375A (en) * 2005-02-25 2006-09-07 Toray Ind Inc Synthetic fiber and fiber structure composed of the same
JP4661266B2 (en) * 2005-02-25 2011-03-30 東レ株式会社 Synthetic fiber and fiber structure comprising the same
JP2007100068A (en) * 2005-09-09 2007-04-19 Toray Ind Inc Thermoplastic resin composition and molded product thereof
JP2008057095A (en) * 2005-10-19 2008-03-13 Toray Ind Inc Internal trim material with high abrasion resistance
JP2007131696A (en) * 2005-11-09 2007-05-31 Toray Ind Inc Resin composition and fiber consisting of the same
JP2007246845A (en) * 2006-03-17 2007-09-27 Toray Ind Inc Resin composition and molding composed of the same
JP2007277774A (en) * 2006-04-11 2007-10-25 Toray Ind Inc Filament nonwoven fabric and method for producing the same
JP2009540090A (en) * 2006-06-16 2009-11-19 アルケマ フランス Composite material based on polylactic acid and polyamide with improved impact resistance, its production method and its use
JP2008007884A (en) * 2006-06-29 2008-01-17 Toray Ind Inc Nonwoven fabric for agricultural use
JP2008031611A (en) * 2006-08-01 2008-02-14 Toray Ind Inc Nonwoven fabric for tea bag and the resultant tea bag
JP2009079218A (en) * 2007-09-03 2009-04-16 Unitika Ltd Environment consideration type thermoplastic resin composition and molded article comprising it
JP2010265336A (en) * 2009-05-12 2010-11-25 Fuji Kasei Kogyo Co Ltd Resin composition based on poly(lactic acid)
KR101810273B1 (en) * 2010-08-13 2017-12-18 킴벌리-클라크 월드와이드, 인크. Toughened polylactic acid fibers
US10753023B2 (en) 2010-08-13 2020-08-25 Kimberly-Clark Worldwide, Inc. Toughened polylactic acid fibers
US10718069B2 (en) 2010-08-13 2020-07-21 Kimberly-Clark Worldwide, Inc. Modified polylactic acid fibers
KR101810274B1 (en) * 2010-08-13 2017-12-18 킴벌리-클라크 월드와이드, 인크. Modified polylactic acid fibers
WO2012029642A1 (en) * 2010-08-31 2012-03-08 東レ株式会社 Synthetic fiber and method for producing same
JP5783046B2 (en) * 2010-08-31 2015-09-24 東レ株式会社 Synthetic fiber and method for producing the same
JP2014101143A (en) * 2012-11-22 2014-06-05 Jfe Steel Corp Resin-coated steel sheet easy-open can lid and manufacturing method thereof
JP2014109018A (en) * 2012-12-04 2014-06-12 Suntory Holdings Ltd Molding of polylactic resin compounded with clay dispersed polyamide-nanocomposite, having enhanced gas barrier properties
WO2015119116A1 (en) * 2014-02-06 2015-08-13 住友ベークライト株式会社 Laminate film
JP2015147350A (en) * 2014-02-06 2015-08-20 住友ベークライト株式会社 laminate film
JP2016216739A (en) * 2016-08-16 2016-12-22 サントリーホールディングス株式会社 Clay dispersed polyamide and nanocomposite composite polylactic resin molded article having enhanced gas barrier property

Also Published As

Publication number Publication date
JP3893995B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
KR100901325B1 (en) Polylatic acid fiber
CA2310686C (en) Soft stretch yarns and their method of production
JP3893995B2 (en) Resin composition and molded body
JPWO2002086211A1 (en) False twisted yarn of polyester composite fiber and method for producing the same
US6923925B2 (en) Process of making poly (trimethylene dicarboxylate) fibers
JP3966043B2 (en) Production method of polylactic acid fiber excellent in heat resistance
JP3925176B2 (en) Polyester resin composition
JP3982305B2 (en) Polylactic acid fiber with excellent hydrolysis resistance
US8293364B2 (en) Highly shrinkable fiber
TW202001018A (en) Fabrics and spun yarns comprising polyester staple fiber
JP4487973B2 (en) Polyester resin composition
JP3463597B2 (en) Aliphatic polyester false twist yarn with excellent gloss
JP4100063B2 (en) Composite fibers and fiber structures
JP4151295B2 (en) Method for producing polylactic acid fiber
JP3786004B2 (en) Aliphatic polyester resin composition, molded article and method for producing the same
JP4729819B2 (en) Polylactic acid fiber with excellent high-temperature mechanical properties
JP4114443B2 (en) Polylactic acid fiber excellent in wear resistance and method for producing the same
JP3895190B2 (en) Polyester composite false twisted yarn for cut pile knitted fabric and method for producing the same
JP4003506B2 (en) Polylactic acid fiber having 31 helical structure
JP3925275B2 (en) Polylactic acid crimped yarn excellent in heat resistance and method for producing the same
KR100624147B1 (en) An air textured micro-yarn with excellent suede effect, and a process of preparing for the same
JP4729832B2 (en) Polylactic acid crimped yarn with excellent high-temperature mechanical properties
JP4059192B2 (en) Polylactic acid false twisted yarn and method for producing the same
JP4667632B2 (en) Fibrilized fiber and method for producing fibrillated fiber
JP2023170756A (en) polyester fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R151 Written notification of patent or utility model registration

Ref document number: 3893995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees