JP2003238698A - Fiber-reinforced composite material, fibrous reinforcement for fiber-reinforced composite material, and method for producing fiber-reinforced composite material - Google Patents

Fiber-reinforced composite material, fibrous reinforcement for fiber-reinforced composite material, and method for producing fiber-reinforced composite material

Info

Publication number
JP2003238698A
JP2003238698A JP2002046733A JP2002046733A JP2003238698A JP 2003238698 A JP2003238698 A JP 2003238698A JP 2002046733 A JP2002046733 A JP 2002046733A JP 2002046733 A JP2002046733 A JP 2002046733A JP 2003238698 A JP2003238698 A JP 2003238698A
Authority
JP
Japan
Prior art keywords
fiber
frp
reinforcing fiber
composite material
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002046733A
Other languages
Japanese (ja)
Other versions
JP2003238698A5 (en
JP4107475B2 (en
Inventor
Kazuya Goto
和也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002046733A priority Critical patent/JP4107475B2/en
Publication of JP2003238698A publication Critical patent/JP2003238698A/en
Publication of JP2003238698A5 publication Critical patent/JP2003238698A5/ja
Application granted granted Critical
Publication of JP4107475B2 publication Critical patent/JP4107475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-CAI (compressive strength after impact) FRP by improving the strength in the direction at right angles with the fibrous reinforcement of an FRP, to provide a fibrous reinforcement which is desirable for the FRP and can attain excellent mechanical properties, especially high CAI without sacrificing its handleability when made into a prepreg, and to provide a method for easily producing the FRP. <P>SOLUTION: There are provided a fiber-reinforced composite material which is one comprising (A) a fibrous reinforcement, (B) an inorganic additive, and (C) a resin, wherein the distribution of the concentration of the inorganic additive B in the resin C is such that the concentration is maximum in the part which is in contact with the fibrous reinforcement, and it lowers with an increasing distance from the fibrous reinforcement; a fibrous reinforcement used therefor; and a method for producing the fiber-reinforced composite material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マトリックス樹脂
に機能傾斜を付与した繊維強化複合材料(以下、FRP
という。)、そのFRPに好適に用いることのできる補
強繊維及び前記FRPの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced composite material (hereinafter referred to as FRP) in which a functional gradient is given to a matrix resin.
Say. ), A reinforcing fiber that can be suitably used for the FRP, and a method for producing the FRP.

【0002】[0002]

【従来の技術】FRPは、熱硬化性樹脂などのマトリッ
クス樹脂を補強繊維で強化したものであり、軽量、かつ
高強度、高弾性の特性を有し、ゴルフシャフト、テニス
ラケット、釣り竿、等のスポーツレジャー関連から自動
車、航空機などの産業用途にまで広く用いられている。
FRP is a matrix resin such as thermosetting resin reinforced with reinforcing fibers, and has characteristics of light weight, high strength and high elasticity, and is used for golf shafts, tennis rackets, fishing rods, etc. Widely used in sports and leisure, as well as in industrial applications such as automobiles and aircraft.

【0003】FRPは高強度、軽量化を目指す各用途に
対して非常に適しており、ますます今後の展開が期待さ
れる材料であるが、一方FRPの欠点として、補強繊維
の方向に対し直角方向の強度が弱いことが挙げられる。
これは、たとえば補強繊維方向の強度は、補強繊維その
ものの強度が反映するため、非常に高強度が発現される
のに対し、それと直角方向の強度はマトリックスの強
度、又は補強繊維とマトリックスの界面接着強度に支配
されるために、補強繊維方向に比べて一桁以上低くなっ
てしまう。
FRP is very suitable for various uses aiming at high strength and light weight, and is a material that is expected to be developed in the future. On the other hand, the disadvantage of FRP is that it is perpendicular to the direction of the reinforcing fiber. It can be said that the strength in the direction is weak.
This is because, for example, the strength in the direction of the reinforcing fiber reflects the strength of the reinforcing fiber itself, so that a very high strength is expressed, while the strength in the direction perpendicular to that is the strength of the matrix or the interface between the reinforcing fiber and the matrix. Since it is governed by the adhesive strength, it becomes lower than the reinforcing fiber direction by one digit or more.

【0004】このようにFRPは補強繊維方向と、それ
と直角方向とで大きく物性が異なる、いわゆる異方性材
料であるが、あらゆる方向に同等の物性を付与する方法
として、補強繊維が一方向に配列した一方向材料を、角
度を変えて擬似等方に積層する方法がある。しかしなが
ら、この積層方法にしても厚み方向に対しては異方性を
防ぐことはできない。特に層間はガラス転移温度以下で
のマトリックスの熱収縮が残留応力として残存するた
め、厚み方向の強度が非常に低くなってしまう。構造材
料としては耐熱性が要求されることが多いが、耐熱性が
向上するほど、残留応力は大きくなり、層間、すなわち
厚み方向の強度が低くなってしまう。
As described above, FRP is a so-called anisotropic material in which the physical properties greatly differ between the direction of the reinforcing fiber and the direction perpendicular thereto, but as a method of imparting equivalent physical properties in all directions, the reinforcing fiber is unidirectional. There is a method of stacking unidirectionally arranged materials in a pseudo isotropic manner by changing the angle. However, even with this stacking method, anisotropy cannot be prevented in the thickness direction. In particular, thermal contraction of the matrix below the glass transition temperature between layers remains as residual stress, so that the strength in the thickness direction becomes extremely low. Although heat resistance is often required as a structural material, the higher the heat resistance, the larger the residual stress and the lower the strength between layers, that is, in the thickness direction.

【0005】FRPの強度評価の一つにCAI(衝撃後
圧縮強度)がある。これはFRP積層板に衝撃を与え、
その後の圧縮強度を測定するものであるが、衝撃を与え
たときに層間に剥離が伸展し、その後の圧縮強度を大き
く低下させてしまう。このCAIは航空機などの構造材
料にとって、耐熱性とともに最も重要な強度の一つであ
り、高い耐熱性とCAIを両立させることで航空機など
の設計の自由度が大いに広がり、更なる軽量化が達成可
能となる。
One of the strength evaluations of FRP is CAI (compressive strength after impact). This shocks the FRP laminate,
Although the subsequent compressive strength is measured, when an impact is applied, peeling extends between the layers, and the subsequent compressive strength is greatly reduced. This CAI is one of the most important strengths along with heat resistance for structural materials such as aircraft, and by achieving both high heat resistance and CAI, the degree of freedom in designing aircraft is greatly expanded and further weight reduction is achieved. It will be possible.

【0006】CAIを向上させる方法としてはインター
リーフ的層間補強技術が代表的なものであり、特開平1
−104624号公報をはじめ、数多くの技術が開示さ
れている。これらの技術の基本的な考え方は、熱可塑性
樹脂やエラストマー、ゴム成分などの高靭性成分を層間
に配置することにより、衝撃時の層間の剥離を抑え、C
AIの低下を防ぐものである。これらの方法の問題点と
しては、高靭性成分を層間に配置させることが困難であ
ったり、工数を要したりするということが挙げられる。
An interleaf interlayer reinforcement technique is a typical method for improving CAI.
A number of techniques are disclosed, including Japanese Patent Laid-Open No. 104624. The basic idea of these technologies is that by placing a high toughness component such as a thermoplastic resin, an elastomer, or a rubber component between the layers, delamination between layers at the time of impact is suppressed, and C
It is intended to prevent a decrease in AI. Problems with these methods include that it is difficult to dispose the high toughness component between the layers, and that man-hours are required.

【0007】たとえばシート状の高靭性成分を添加する
場合には、まず薄いシート状にしなくてはならない。厚
ければ補強繊維の含有率が低下してしまい、その他の機
械物性に悪影響を与えてしまう。次にこのシート状高靭
性成分を層間に配置しなければならず、工数アップにな
る。又成形時にはこのシート状高靭性成分が乱れないよ
うに注意が必要である。工数アップを防ぐためにプリプ
レグなどの中間材料に予め貼り付けておく場合には、プ
リプレグのタックなどの取り扱い性を犠牲にせざるを得
ないなど、課題が多い。又、粒子状の高靭性成分を用い
る場合にも、層間に配置させるのに高度な技術が必要で
あること、プリプレグの表面に予め分散させておく場合
には、やはりタックの低減は避けられず、取り扱い性を
犠牲にしなければならない。
For example, when a sheet-shaped high toughness component is added, it must first be formed into a thin sheet. If it is thick, the content of reinforcing fibers will be reduced, and other mechanical properties will be adversely affected. Next, this sheet-shaped high toughness component must be arranged between layers, which increases the number of steps. At the time of molding, care must be taken not to disturb this sheet-shaped high toughness component. When it is pasted on an intermediate material such as a prepreg in order to prevent an increase in man-hours, there are many problems such as the necessity of sacrificing handleability such as tack of the prepreg. Further, even when using a particulate high toughness component, advanced technology is required to arrange between the layers, and when predispersed on the surface of the prepreg, reduction of tack is inevitable. , You have to sacrifice handleability.

【0008】このように、FRPの最も重要な機械強度
の一つであるCAIを向上する層間補強には高度な技術
が必要であり、プリプレグにした場合にもその取り扱い
性を犠牲にせざるを得ないという問題があった。
[0008] As described above, an advanced technique is required for interlayer reinforcement for improving CAI, which is one of the most important mechanical strengths of FRP, and the handling property of prepreg must be sacrificed. There was a problem of not having.

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明の課題
は、FRPの補強繊維と直角方向の強度を向上し、層間
の強度を向上して、CAIの高いFRPを提供すること
である。又、本発明の課題は、そのようなFRPに好適
な補強繊維であり、プリプレグにしたときもその取り扱
い性を犠牲にすることなく、優れた機械物性、特に高い
CAIを得ることができる補強繊維を提供することであ
る。さらに本発明の課題は、前記FRPを容易に得るこ
とができる製造方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a FRP having a high CAI by improving the strength of the FRP in the direction perpendicular to the reinforcing fiber and the strength between layers. Further, the object of the present invention is a reinforcing fiber suitable for such FRP, and a reinforcing fiber capable of obtaining excellent mechanical properties, particularly high CAI, without sacrificing the handling property even when made into a prepreg. Is to provide. Furthermore, the subject of this invention is providing the manufacturing method which can obtain the said FRP easily.

【0010】[0010]

【課題を解決するための手段】上記課題について鋭意検
討した結果、全く新しい発想により上記課題を解決する
ことができ、本発明に到達した。
Means for Solving the Problems As a result of intensive studies on the above problems, the above problems can be solved by a completely new idea, and the present invention has been achieved.

【0011】すなわち、本発明のFRPは、マトリック
スに機能傾斜を付与し、残留応力の低減を図ることによ
りCAIの向上、更にはFRPの繊維と直角方向の強度
向上を達成したものである。具体的には、(A)補強繊
維、(B)無機系添加剤及び(C)樹脂からなるFRP
において、(B)無機系添加剤の(C)樹脂中の分布濃
度が(A)補強繊維に接する部分で最大であり、(A)
補強繊維から離れるにしたがって低くなることを特徴と
するFRPである。
That is, the FRP of the present invention achieves the improvement of CAI and the improvement of the strength of the FRP in the direction perpendicular to the fibers by imparting a functional gradient to the matrix to reduce the residual stress. Specifically, an FRP composed of (A) reinforcing fiber, (B) inorganic additive, and (C) resin
In (A), the distribution concentration of the inorganic additive (B) in the resin (C) is the maximum in the portion in contact with the reinforcing fiber (A),
The FRP is characterized in that it becomes lower as the distance from the reinforcing fiber increases.

【0012】本発明のFRPは(A)補強繊維が炭素繊
維であることが好ましい。又、本発明のFRPは、
(B)無機系添加剤の弾性率が、(C)樹脂の弾性率よ
りも高いことが好ましく、又(B)無機系添加剤がカー
ボンナノチューブであることが好ましい。
In the FRP of the present invention, the reinforcing fiber (A) is preferably carbon fiber. Further, the FRP of the present invention is
The elastic modulus of the inorganic additive (B) is preferably higher than that of the resin (C), and the inorganic additive (B) is preferably carbon nanotube.

【0013】又、本発明のFRPは、(C)樹脂が熱硬
化性樹脂であることがこのましい。本発明のFRP用の
補強繊維は、(B)無機系添加剤が(A)補強繊維の表
面に塗布されていることを特徴とするFRP用の補強繊
維である。
Further, in the FRP of the present invention, it is preferable that the resin (C) is a thermosetting resin. The reinforcing fiber for FRP of the present invention is a reinforcing fiber for FRP, characterized in that the inorganic additive (B) is applied to the surface of the reinforcing fiber (A).

【0014】本発明のFRPの製造方法は、(B)無機
系添加剤を予め(A)補強繊維に塗布し、その後(C)
樹脂と一体化して成形することを特徴とする前記FRP
の製造方法。
In the method for producing FRP of the present invention, (B) an inorganic additive is applied to (A) reinforcing fiber in advance, and then (C).
The FRP characterized by being molded integrally with a resin
Manufacturing method.

【0015】[0015]

【発明の実施の形態】本発明のFRPに用いられる
(A)補強繊維としては、特に制限はなく、炭素繊維、
ガラス繊維、アラミド繊維、スチール繊維、高強度ポリ
エチレン繊維、PBO繊維、等が挙げられるが、強度、
弾性率に優れる炭素繊維を使用した場合、本発明のFR
Pの強度が非常に優れたものとなるため、最も好適であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The reinforcing fiber (A) used in the FRP of the present invention is not particularly limited, and carbon fiber,
Examples include glass fiber, aramid fiber, steel fiber, high strength polyethylene fiber, PBO fiber, etc.
When carbon fiber having an excellent elastic modulus is used, FR of the present invention is used.
It is most preferable because the strength of P becomes extremely excellent.

【0016】(B)無機系添加剤としては特に制限はな
いが、(C)樹脂に対する濃度が(A)補強繊維に接す
る部分で最大であり、(A)補強繊維から離れるにした
がって低くならなければならない。濃度の測定方法とし
てはたとえば次のような方法が例示できる。まずFRP
が層間を含む場合、図1に示したように補強繊維層1と
補強繊維層2にはさまれた樹脂層3が確認できるように
FRPの断面写真をとる。層間の樹脂層部分を補強繊維
の層に沿って5つの層に分ける。補強繊維の層1に近い
ほうから順にa層、b層、c層、d層、e層とし、各層
の厚みに対して、それぞれ5倍以上の長さの断面におい
て、各層の断面積に対する各層に含まれる(B)無機系
添加剤の断面積の比を、その層での(B)無機系添加剤
濃度とする。又、FRPが層間を含まないような場合に
は、補強繊維とマトリックスが確認できるような、図2
に示すような断面写真をとる。補強繊維4と補強繊維4
の間のマトリックスを5つの層に分け、それぞれa層、
b層、c層、d層、e層とする。前記と同様、各層の厚
みに対して、それぞれ5倍以上の長さの断面において、
各層の断面積に対する各層に含まれる(B)無機系添加
剤の断面積の比を、その層での(B)無機系添加剤の濃
度とする。いずれの場合にも厚みが一定でないときに
は、5点程度厚みを測り、その平均値に対して5倍以上
の長さに対して濃度の評価を実施する。
The inorganic additive (B) is not particularly limited, but the concentration with respect to the resin (C) is the highest in the portion in contact with the reinforcing fiber (A), and must be lower as the distance from the reinforcing fiber (A) increases. I have to. Examples of the concentration measuring method include the following methods. First FRP
In the case of including an interlayer, a cross-sectional photograph of the FRP is taken so that the reinforcing fiber layer 1 and the resin layer 3 sandwiched between the reinforcing fiber layers 2 can be confirmed as shown in FIG. The resin layer portion between the layers is divided into five layers along the reinforcing fiber layer. A layer, b layer, c layer, d layer, and e layer are arranged in this order from the side closer to the layer 1 of the reinforcing fiber, and each layer has a cross-sectional area of each layer that is 5 times or more the length of each layer. The ratio of the cross-sectional areas of the (B) inorganic additive contained in (2) is defined as the (B) inorganic additive concentration in the layer. In addition, when the FRP does not include the layers, the reinforcing fibers and the matrix can be confirmed, as shown in FIG.
Take a cross-sectional photograph as shown in. Reinforcing fiber 4 and reinforcing fiber 4
The matrix in between is divided into 5 layers, and each is a layer,
The layers are b layer, c layer, d layer, and e layer. Similar to the above, in the cross-section with a length of 5 times or more with respect to the thickness of each layer,
The ratio of the cross-sectional area of the (B) inorganic additive contained in each layer to the cross-sectional area of each layer is defined as the concentration of the (B) inorganic additive in that layer. In any case, when the thickness is not constant, the thickness is measured at about 5 points, and the density is evaluated for a length of 5 times or more the average value.

【0017】FRPに対して以上のような処理を施し、
a層、e層を補強繊維に接する部分とし、c層を補強繊
維から最も離れた部分とする。本発明においては(B)
無機系添加剤の濃度の平均値が、a層→b層→c層(e
層→d層→c層)と(A)補強繊維から離れるにしたが
って低くならなければならない。a層、e層での(B)
無機系添加剤の濃度が、c層での(B)無機系添加剤の
濃度の2倍以上高い場合は、機能傾斜効果がより顕著に
なるために好ましい。
The above-mentioned processing is applied to the FRP,
The a layer and the e layer are the portions in contact with the reinforcing fibers, and the c layer is the portion farthest from the reinforcing fibers. In the present invention (B)
The average value of the concentration of the inorganic additive is a layer → b layer → c layer (e
(Layer->d-layer-> c-layer) and (A) It should become low as it goes away from the reinforcing fiber. (B) in layers a and e
When the concentration of the inorganic additive is at least twice as high as the concentration of the (B) inorganic additive in the c layer, the function gradient effect becomes more remarkable, which is preferable.

【0018】本発明における(B)無機系添加剤の弾性
率は(C)樹脂の弾性率よりも高いことが望ましい。
(A)は補強するための繊維であるので、(C)樹脂よ
りも弾性率は高い。本発明は(B)無機系添加剤の
(C)樹脂内での分布により、樹脂に機能傾斜を付与す
るものであるので、(B)弾性率は(C)弾性率よりも
高いことが望ましいのである。
The elastic modulus of the inorganic additive (B) in the present invention is preferably higher than that of the resin (C).
Since (A) is a fiber for reinforcement, it has a higher elastic modulus than the (C) resin. Since the present invention imparts a functional gradient to the resin by the distribution of the inorganic additive (B) in the resin (C), the elastic modulus (B) is preferably higher than the elastic modulus (C). Of.

【0019】又、(B)無機系添加剤はカーボンナノチ
ューブであることが好ましい。カーボンナノチューブは
非常に弾性率が高く、特に(A)補強繊維が炭素繊維で
ある場合には、(B)成分も同等の弾性率となるため、
補強繊維も含めたFRP全体に機能傾斜効果が付与さ
れ、機能傾斜効果が最も大きくなるので好ましい。カー
ボンナノチューブとしては特に制限はなく、単層カーボ
ンナノチューブでも多層カーボンナノチューブでもよい
が、コストパフォーマンスに優れる多層カーボンナノチ
ューブの方が好適である。更に(B)無機系添加剤とし
てカーボンナノチューブを用いた場合、そのカーボンナ
ノチューブがFRPの中で、(A)補強繊維に平行に配
置されている場合には、(C)樹脂は(A)補強繊維に
よる異方性をある程度保持しながら、なおかつ機能傾斜
を付与されている為、本発明のFRPとして最も理想的
な状態となり、機械強度も非常に高くなるので、特に好
ましい。
The inorganic additive (B) is preferably carbon nanotubes. Carbon nanotubes have a very high elastic modulus, and especially when the (A) reinforcing fibers are carbon fibers, the (B) component also has an equivalent elastic modulus,
A functional gradient effect is imparted to the entire FRP including the reinforcing fibers, and the functional gradient effect is maximized, which is preferable. The carbon nanotubes are not particularly limited and may be single-wall carbon nanotubes or multi-wall carbon nanotubes, but multi-wall carbon nanotubes, which are excellent in cost performance, are more preferable. Further, when carbon nanotubes are used as the inorganic additive (B), the carbon nanotubes are arranged in parallel with the reinforcing fibers (A) in the FRP, the resin (C) is reinforced (A). The FRP of the present invention is most ideal because the anisotropy due to the fibers is maintained to some extent and the functional gradient is imparted, and the mechanical strength becomes extremely high, which is particularly preferable.

【0020】本発明における(C)樹脂としては特に制
限はなく、熱可塑性樹脂、熱硬化性樹脂が使用できる
が、熱硬化性樹脂が、成形性や取り扱い性に優れるため
好ましい。
The resin (C) in the present invention is not particularly limited, and thermoplastic resins and thermosetting resins can be used, but thermosetting resins are preferable because they are excellent in moldability and handleability.

【0021】次にもう一つの発明である補強繊維につい
て説明する。(A)補強繊維、(B)無機系添加剤及び
(C)樹脂は上述の通りである。本発明のFRPに好適
に用いることのできる補強繊維は、例えば次のようにし
て製造することができる。 (製造方法を説明してください。)
Next, the reinforcing fiber which is another invention will be described. The reinforcing fiber (A), the inorganic additive (B) and the resin (C) are as described above. The reinforcing fiber that can be suitably used for the FRP of the present invention can be produced, for example, as follows. (Please explain the manufacturing method.)

【0022】本発明のFRPの製造方法としては特に制
限はないが、次の方法による製造方法が好適である。す
なわち、(B)無機系添加剤を予め(A)補強繊維に付
着させておいて、その後(C)樹脂と一体化して成形す
る方法である。このような方法で製造すると、本発明の
FRPを比較的容易に製造することができる。
The method for producing the FRP of the present invention is not particularly limited, but the following method is preferred. That is, it is a method in which the inorganic additive (B) is previously attached to the reinforcing fiber (A), and then integrated with the resin (C) and molded. When manufactured by such a method, the FRP of the present invention can be manufactured relatively easily.

【0023】[0023]

【実施例】以下、本発明を実施例に基づき詳細に説明す
るが、もちろん本発明はこれらの実施例に限定されるも
のではない。
EXAMPLES The present invention will be described in detail below based on examples, but of course the present invention is not limited to these examples.

【0024】(実施例1)まず、使用した材料について
説明する。(A)補強繊維としては、三菱レイヨン社製
の炭素繊維、パイロフィルTR50S−12Kを使用し
た。 (B)無機系添加剤としては、直径約16nmのガラス
微粒子を使用した。 (C)樹脂としては、次の組成のエポキシ樹脂組成物を
用いた。 すなわち、ジャパンエポキシレジン社製エピコート82
8 40質量部、同エピコート1002 30質量部、
大日本インキ化学工業社製エピクロンN67330質量
部、ジャパンエポキシレジン社製Dicy7 5質量
部、保土ヶ谷化学社製DCMU99 5質量部、を均一
に混合したものである。
Example 1 First, the materials used will be described. As the reinforcing fiber (A), Pyrofil TR50S-12K, a carbon fiber manufactured by Mitsubishi Rayon Co., Ltd. was used. As the inorganic additive (B), fine glass particles having a diameter of about 16 nm were used. An epoxy resin composition having the following composition was used as the resin (C). That is, Epicoat 82 manufactured by Japan Epoxy Resin Co., Ltd.
8 40 parts by mass, Epicoat 1002 30 parts by mass,
It is a uniform mixture of Epicron N67330 parts by mass manufactured by Dainippon Ink and Chemicals, Inc., 5 parts by mass of Dicy7 manufactured by Japan Epoxy Resins, and 5 parts by mass of DCMU99 manufactured by Hodogaya Chemical Co., Ltd.

【0025】次にFRP用補強繊維の製造方法について
説明する。まず、(B)樹脂 100質量部とジャパン
エポキシレジン社製エピコート1001、100質量
部、メチルエチルケトン 100質量部とを均一に混合
した。次にこの均一混合物に(A)補強繊維をディップ
して塗布し、メチルエチルケトンを脱溶剤して本発明の
FRP用補強繊維を得た。得られたFRP用補強繊維
の、(A)補強繊維に対する(B)無機系添加剤の付着
割合は12質量%であった。さらにFRPの製造方法に
ついて説明する。FRP用補強繊維を一方向に引き揃え
て、(C)樹脂をホットメルト方式により含浸させてプ
リプレグを得た。プリプレグの補強繊維目付けは150
g/mとした。プリプレグの製造は通常の方法により
実施可能であり、特に制限はなかった。又得られたプリ
プレグはタック、ドレープ性に優れ、取り扱い製に優れ
たものであった。
Next, a method for producing the reinforcing fiber for FRP will be described. First, 100 parts by mass of the resin (B), 100 parts by mass of Epicoat 1001, manufactured by Japan Epoxy Resin Co., Ltd., and 100 parts by mass of methyl ethyl ketone were uniformly mixed. Next, the reinforcing fiber (A) was dipped and applied to this uniform mixture, and the methyl ethyl ketone was desolvated to obtain the reinforcing fiber for FRP of the present invention. In the obtained reinforcing fiber for FRP, the adhesion ratio of the inorganic additive (B) to the reinforcing fiber (A) was 12% by mass. Further, a method of manufacturing FRP will be described. The reinforcing fibers for FRP were aligned in one direction and impregnated with the resin (C) by a hot melt method to obtain a prepreg. Reinforcing fiber basis weight of prepreg is 150
It was set to g / m 2 . The prepreg can be manufactured by a usual method and there is no particular limitation. Further, the obtained prepreg was excellent in tackiness and drape, and was easy to handle.

【0026】得られたプリプレグを[45°/0°/−
45°/90°/45°/0°/−45°/90°/4
5°/0°/−45°/90°/90°/−45°/0
°/45°/90°/−45°/0°/45°/90°
/−45°/0°/45°]で24ply積層し、オー
トクレーブで2kg/cmの圧をかけて、130℃×
1時間で成形した。炭素繊維の体積含有率は55体積%
であった。成形したパネルの層間を含む断面写真をと
り、機能傾斜の評価を、明細書に示した層間を含む場合
に準じて実施した。a層、e層、b層、d層における
(B)無機系添加剤の平均値はそれぞれ28%、20%
であり、c層における(B)無機系添加剤の平均濃度は
12%であった。a層、e層における(B)無機系添加
剤の濃度の平均値はc層における(B)無機系添加剤の
濃度の2倍以上であった。該CFRPパネルをボーイン
グマテリアルスペック8−276に従ってCAIを測定
した。CAIは290MPaと高い値を示した。
The prepreg obtained was [45 ° / 0 ° /-
45 ° / 90 ° / 45 ° / 0 ° / -45 ° / 90 ° / 4
5 ° / 0 ° / -45 ° / 90 ° / 90 ° / -45 ° / 0
° / 45 ° / 90 ° / -45 ° / 0 ° / 45 ° / 90 °
/ -45 ° / 0 ° / 45 °] and 24 ply are laminated, and a pressure of 2 kg / cm 2 is applied by an autoclave to obtain 130 ° C.
Molded in 1 hour. Volume content of carbon fiber is 55% by volume
Met. A photograph of a cross section of the molded panel including the layers was taken, and the functional gradient was evaluated according to the case of including the layers shown in the specification. The average value of the inorganic additive (B) in the layers a, e, b, and d is 28% and 20%, respectively.
And the average concentration of the (B) inorganic additive in the c layer was 12%. The average value of the concentration of the inorganic additive (B) in the layers a and e was twice or more the concentration of the inorganic additive (B) in the layer c. The CAI of the CFRP panel was measured according to Boeing Material Specification 8-276. The CAI showed a high value of 290 MPa.

【0027】又、得られたプリプレグを[0°/0°/
0°/0°/0°/0°/0°/0°/0°/0°]で
10ply積層し、同様に成形して一方向のCFRPを
得た。炭素繊維の体積含有率は55体積%であった。得
られたCFRPは層間が不明瞭であったので、明細書中
に示した層間を含まない場合に準じて機能傾斜の評価を
実施した。a層、e層、b層、d層における(B)無機
系添加剤の濃度の平均値はそれぞれ36%、29%であ
り、c層における(B)無機系添加剤の濃度は17%で
あった。a層、e層における(B)無機系添加剤の濃度
の平均値はc層における(B)無機系添加剤の濃度の2
倍以上であった。得られたCFRPの90°方向の曲げ
強度をASTM D790に従って評価したところ、1
58MPaと高い値を示した。
Further, the obtained prepreg is [0 ° / 0 ° /
0 degree / 0 degree / 0 degree / 0 degree / 0 degree / 0 degree / 0 degree / 0 degree] was laminated 10 ply, and it shape | molded similarly and obtained unidirectional CFRP. The volume content of carbon fibers was 55% by volume. Since the obtained CFRP was not clear between the layers, the functional gradient was evaluated according to the case where the layers were not included in the specification. The average values of the concentrations of the (B) inorganic additive in the a layer, the e layer, the b layer, and the d layer are 36% and 29%, respectively, and the concentrations of the (B) inorganic additive in the c layer are 17%. there were. The average value of the concentration of the inorganic additive (B) in the layers a and e is 2 times the concentration of the inorganic additive (B) in the layer c.
It was more than double. The bending strength of the obtained CFRP in the 90 ° direction was evaluated according to ASTM D790, and was 1
It showed a high value of 58 MPa.

【0028】(比較例1)(B)無機系添加剤のを用い
ない例を示す。(A)補強繊維、(C)樹脂は実施例1
と同じものを用いた。(A)補強繊維に、ジャパンエポ
キシレジン社製エピコート1001 100質量部とメ
チルエチルケトン 100質量部を均一に混合したもの
を塗布し、メチルエチルケトンを脱溶剤した。次にこの
補強繊維を一方向に引き揃えて、(C)樹脂をホットメ
ルト方式により含浸させてプリプレグを得た。プリプレ
グの補強繊維目付けは150g/mとした。
(Comparative Example 1) An example in which (B) an inorganic additive is not used is shown. The reinforcing fiber (A) and the resin (C) are used in Example 1.
The same one was used. A uniform mixture of 100 parts by mass of Epicoat 1001 manufactured by Japan Epoxy Resin Co., Ltd. and 100 parts by mass of methyl ethyl ketone was applied to the reinforcing fiber (A), and the solvent was removed from the methyl ethyl ketone. Next, the reinforcing fibers were aligned in one direction and impregnated with the resin (C) by a hot melt method to obtain a prepreg. The reinforcing fiber areal weight of the prepreg was set to 150 g / m 2 .

【0029】得られたプリプレグから実施例1と同様に
してCFRPを成形した。成形物の炭素繊維の体積含有
率は55体積%であった。得られたCFRPで、実施例
1と同様にしてCAI、90°方向の曲げ強度を測定し
たところ、それぞれ245MPa、132MPaであっ
た。
CFRP was molded from the obtained prepreg in the same manner as in Example 1. The volume content of carbon fibers in the molded product was 55% by volume. When the CAI and the bending strength in the 90 ° direction were measured with the obtained CFRP in the same manner as in Example 1, they were 245 MPa and 132 MPa, respectively.

【0030】(比較例2)マトリックスに機能傾斜がな
い場合を示す。実施例1で用いた(B)添加剤を(C)
樹脂に均一に混合し、(A)成分を一方向に引きそろえ
たものに含浸させてプリプレグを調製した。(B)添加
量は(A)の質量に対して12質量%とした。得られた
プリプレグから実施例1と同様にしてCFRPを成形し
た。成形物の炭素繊維の体積含有率は55%であった。
得られたCFRPで、実施例1と同様にしてCAI、9
0度方向の曲げ強度を測定したところ、それぞれ234
MPa、135MPaであった。
Comparative Example 2 A case where the matrix has no functional gradient is shown. The (B) additive used in Example 1 was (C)
A prepreg was prepared by uniformly mixing with the resin and impregnating the component (A) in one direction. The amount of (B) added was 12% by mass with respect to the mass of (A). CFRP was molded from the obtained prepreg in the same manner as in Example 1. The volume content of carbon fiber in the molded product was 55%.
With the obtained CFRP, CAI, 9 was obtained in the same manner as in Example 1.
The bending strength in the 0 degree direction was measured to be 234
It was MPa and 135 MPa.

【0031】(実施例2)(A)補強繊維及び(C)樹
脂としては実施例1で用いたものと同じものを用いた。
又、(B)無機系添加剤としてはカーボンナノチューブ
を用いた。カーボンナノチューブはアーク放電法により
製造したものである。実施例1と同様にして、(B)無
機系添加剤 100質量部とジャパンエポキシレジン社
製エピコート1001 100質量部、メチルエチルケ
トン100質量部とを均一に混合した。
Example 2 As the reinforcing fiber (A) and the resin (C), the same ones as used in Example 1 were used.
Carbon nanotubes were used as the inorganic additive (B). The carbon nanotubes are manufactured by the arc discharge method. In the same manner as in Example 1, 100 parts by mass of the inorganic additive (B), 100 parts by mass of Epicoat 1001 manufactured by Japan Epoxy Resin Co., Ltd., and 100 parts by mass of methyl ethyl ketone were uniformly mixed.

【0032】次にこの均一混合物に(A)補強繊維をデ
ィップして塗布し、メチルエチルケトンを脱溶剤して本
発明のFRP用補強繊維を得た。得られたFRP用補強
繊維の(B)無機系添加剤の(A)補強繊維に対する質
量割合は8質量%であった。続いてこのFRP用補強繊
維を一方向に引き揃えて、(C)樹脂をホットメルト方
式により含浸させてプリプレグを得た。プリプレグの補
強繊維目付けは150g/mとした。プリプレグの製
造は通常の方法により実施可能であり、特に制限はなか
った。又得られたプリプレグはタック、ドレープ性に優
れ、取り扱い製に優れたものであった。得られたプリプ
レグを実施例1と同様にしてCAI測定を実施した。C
AIに用いたCFRPパネルの機能傾斜の評価を実施例
1と同様にして実施したところ、a層、e層、b、d層
における(B)無機系添加剤の濃度の平均値はそれぞれ
37%、24%であり、c層における(B)無機系添加
剤の濃度は14%であった。a,e層における(B)無
機系添加剤の濃度の平均値はc層における(B)無機系
添加剤の濃度の2倍以上であった。又、該CFRPパネ
ルの炭素繊維含有率は55体積%であった。該CFRP
パネルを実施例1と同様にしてCAIを測定したところ
332MPaと高い値を示した。
Next, the reinforcing fiber (A) was dipped and applied to this homogeneous mixture, and the methyl ethyl ketone was removed from the solvent to obtain the reinforcing fiber for FRP of the present invention. The mass ratio of the obtained reinforcing fiber for FRP to the reinforcing fiber (A) of the inorganic additive (B) was 8% by mass. Subsequently, the reinforcing fibers for FRP were aligned in one direction and impregnated with the resin (C) by a hot melt method to obtain a prepreg. The reinforcing fiber areal weight of the prepreg was set to 150 g / m 2 . The prepreg can be manufactured by a usual method and there is no particular limitation. Further, the obtained prepreg was excellent in tackiness and drape, and was easy to handle. CAI measurement was performed on the obtained prepreg in the same manner as in Example 1. C
When the functional gradient of the CFRP panel used for AI was evaluated in the same manner as in Example 1, the average value of the concentration of the (B) inorganic additive in each of the a layer, the e layer, the b layer, and the d layer was 37%. , And the concentration of the (B) inorganic additive in the c layer was 14%. The average value of the concentration of the (B) inorganic additive in the a and e layers was twice or more the concentration of the (B) inorganic additive in the c layer. The carbon fiber content of the CFRP panel was 55% by volume. The CFRP
When the CAI of the panel was measured in the same manner as in Example 1, it showed a high value of 332 MPa.

【0033】又、得られたプリプレグを実施例1と同様
にして90°の曲げ試験を実施した。CFRPパネルの
炭素繊維の体積含有率は55体積%であった。得られた
CFRPは層間が不明瞭であったので、実施例1と同
様、明細書中に示した層間を含まない場合に準じて機能
傾斜の評価を実施した。a層、e層、b層、d層におけ
る(B)無機系添加剤の濃度の平均値はそれぞれ42
%、30%であり、c層における(B)濃度は20%で
あった。a層、e層における(B)無機系添加剤の濃度
の平均値はc層における(B)無機系添加剤の濃度の2
倍以上であった。
Further, the obtained prepreg was subjected to a 90 ° bending test in the same manner as in Example 1. The volume content of carbon fibers in the CFRP panel was 55% by volume. Since the obtained CFRP had unclear layers, the functional gradient was evaluated in the same manner as in Example 1 according to the case where the layers were not included in the specification. The average value of the concentration of the inorganic additive (B) in the layers a, e, b, and d is 42, respectively.
%, 30%, and the (B) concentration in the c layer was 20%. The average value of the concentration of the inorganic additive (B) in the layers a and e is 2 times the concentration of the inorganic additive (B) in the layer c.
It was more than double.

【0034】又、該CFRPの補強繊維に平行な断面の
断面観察をしたところ、(B)カーボンナノチューブは
補強繊維に対してほぼ平行に配置されていた。該CFR
Pの90°方向の曲げ強度をASTM D790に従っ
て評価したところ、172MPaと高い値を示した。
When the cross section of the cross section parallel to the reinforcing fiber of the CFRP was observed, (B) the carbon nanotubes were arranged substantially parallel to the reinforcing fiber. The CFR
When the bending strength of P in the 90 ° direction was evaluated according to ASTM D790, it showed a high value of 172 MPa.

【0035】[0035]

【図面の簡単な説明】[Brief description of drawings]

【図1】FRPが層間を含む場合のマトリックス層を5
層に分ける方法の略図である。右図は拡大図である。
FIG. 1 shows five matrix layers when the FRP includes layers.
6 is a schematic diagram of a method of dividing into layers. The right figure is an enlarged view.

【図2】FRPの層間が不明瞭な場合のマトリックス層
を5層に分ける方法の略図である。右図は拡大図であ
る。
FIG. 2 is a schematic view of a method of dividing a matrix layer into five layers when the FRP layers are unclear. The right figure is an enlarged view.

【符号の説明】[Explanation of symbols]

1 補強繊維層 2 マトリックス層 3 補強繊維層 a、e マトリックス層の中で、補強繊維に接する部分 c マトリックス層の中で、補強繊維より最も離れた個
所 b、d マトリックス層の中で、a層とc層、c層とe
層の中間層 4 補強繊維
1 Reinforcement fiber layer 2 Matrix layer 3 Reinforcement fiber layer a, e In the matrix layer, the part in contact with the reinforcement fiber c In the matrix layer, the position farthest from the reinforcement fiber b, d In the matrix layer, a layer And c layer, c layer and e
Interlayer 4 Reinforcing fibers

【発明の効果】以上詳細に説明したように、本発明のF
RPは、(A)補強繊維、(B)無機系添加剤及び
(C)樹脂からなるFRPにおいて、(B)無機系添加
剤の(C)樹脂中の分布濃度が(A)補強繊維に接する
部分で最大であり、(A)補強繊維から離れるにしたが
って低くなることを特徴とするFRPであるので、FR
Pの補強繊維と直角方向の強度を向上させ、層間の強度
を向上させてCAIの高いFRPを提供することができ
る。又、本発明のFRP用の補強繊維は、(B)無機系
添加剤が(A)補強繊維の表面に塗布されていることを
特徴とするFRP用の補強繊維であるので、補強繊維と
直角方向の強度が高く、CAIの高いFRPを得ること
ができる補強繊維を提供することができ、更にプリプレ
グにしたときもその取り扱い性を犠牲にすることなく、
優れた機械物性、特に高いCAIを得ることができる補
強繊維を提供することができる。さらに、本発明のFR
Pの製造方法は、(B)無機系添加剤を予め(A)補強
繊維に塗布し、その後(C)樹脂と一体化して成形する
ことを特徴とする請求項1記載のFRPの製造方法であ
るので、補強繊維と直角方向の強度が高く、CAIの高
いFRPを得ることができる製造方法を提供することが
できた。
As described in detail above, the F of the present invention
RP is an FRP consisting of (A) reinforcing fiber, (B) inorganic additive and (C) resin, and the distribution concentration of (B) inorganic additive in (C) resin is in contact with (A) reinforcing fiber. FR because it is the FRP that is the largest in the part and becomes lower as it goes away from the reinforcing fiber (A).
It is possible to improve the strength in the direction perpendicular to the reinforcing fiber of P and improve the strength between layers to provide an FRP with high CAI. Further, since the reinforcing fiber for FRP of the present invention is a reinforcing fiber for FRP characterized in that (B) an inorganic additive is applied to the surface of the reinforcing fiber (A), it is perpendicular to the reinforcing fiber. It is possible to provide a reinforcing fiber having high directional strength and capable of obtaining a FRP having a high CAI, and further, when it is made into a prepreg, without sacrificing its handleability,
It is possible to provide a reinforcing fiber that can obtain excellent mechanical properties, particularly high CAI. Furthermore, the FR of the present invention
2. The method for producing FRP according to claim 1, wherein the inorganic additive (B) is applied to the reinforcing fiber (A) in advance, and then the resin (C) is integrated with the resin and molded. Therefore, it was possible to provide a manufacturing method capable of obtaining FRP having high strength in the direction perpendicular to the reinforcing fiber and high CAI.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 105:08 B29K 105:16 105:16 B29C 67/14 W Fターム(参考) 4F072 AA01 AB10 AD23 AE22 AF01 AG07 AL02 AL04 4F205 AA36 AA39 AB11 AB18 AB28 AD16 AH17 AH31 AH59 HA06 HA35 HA39 HB01 HC17 HF02 HG01 HG10 HM02 4J002 AA001 CD001 DA036 FA056 GC00 GN00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // B29K 105: 08 B29K 105: 16 105: 16 B29C 67/14 WF term (reference) 4F072 AA01 AB10 AD23 AE22 AF01 AG07 AL02 AL04 4F205 AA36 AA39 AB11 AB18 AB28 AD16 AH17 AH31 AH59 HA06 HA35 HA39 HB01 HC17 HF02 HG01 HG10 HM02 4J002 AA001 CD001 DA036 FA056 GC00 GN00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 (A)補強繊維、(B)無機系添加剤及
び(C)樹脂からなる繊維強化複合材料において、
(B)無機系添加剤の(C)樹脂中の分布濃度が(A)
補強繊維に接する部分で最大であり、(A)補強繊維か
ら離れるにしたがって低くなることを特徴とする繊維強
化複合材料。
1. A fiber-reinforced composite material comprising (A) reinforcing fiber, (B) inorganic additive and (C) resin,
The distribution concentration of the inorganic additive (B) in the resin (C) is (A).
A fiber-reinforced composite material, which is the largest in a portion in contact with the reinforcing fiber and is lowered as it goes away from the reinforcing fiber (A).
【請求項2】 (B)無機系添加剤の弾性率が(C)樹
脂の弾性率よりも高い請求項1記載の繊維強化複合材
料。
2. The fiber-reinforced composite material according to claim 1, wherein the elastic modulus of the inorganic additive (B) is higher than that of the resin (C).
【請求項3】 (A)補強繊維が炭素繊維である請求項
1又は2記載の繊維強化複合材料。
3. The fiber-reinforced composite material according to claim 1, wherein the reinforcing fiber (A) is a carbon fiber.
【請求項4】 (B)無機系添加剤がカーボンナノチュ
ーブである請求項1〜3のいずれか1項記載の繊維強化
複合材料。
4. The fiber-reinforced composite material according to claim 1, wherein the inorganic additive (B) is a carbon nanotube.
【請求項5】 (C)樹脂が熱硬化性樹脂である請求項
1〜4のいずれか1項記載の繊維強化複合材料。
5. The fiber-reinforced composite material according to claim 1, wherein the resin (C) is a thermosetting resin.
【請求項6】 (B)無機系添加剤が(A)補強繊維の
表面に塗布されていることを特徴とする繊維強化複合材
料用の補強繊維。
6. A reinforcing fiber for a fiber reinforced composite material, wherein the inorganic additive (B) is applied to the surface of the reinforcing fiber (A).
【請求項7】 (B)無機系添加剤を予め(A)補強繊
維に塗布し、その後(C)樹脂と一体化して成形するこ
とを特徴とする請求項1記載の繊維強化複合材料の製造
方法。
7. The production of a fiber-reinforced composite material according to claim 1, wherein the inorganic additive (B) is applied to the reinforcing fiber (A) in advance, and then the resin (C) is integrated with the resin and molded. Method.
JP2002046733A 2002-02-22 2002-02-22 Reinforcing fibers for fiber reinforced composites Expired - Fee Related JP4107475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002046733A JP4107475B2 (en) 2002-02-22 2002-02-22 Reinforcing fibers for fiber reinforced composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002046733A JP4107475B2 (en) 2002-02-22 2002-02-22 Reinforcing fibers for fiber reinforced composites

Publications (3)

Publication Number Publication Date
JP2003238698A true JP2003238698A (en) 2003-08-27
JP2003238698A5 JP2003238698A5 (en) 2005-08-25
JP4107475B2 JP4107475B2 (en) 2008-06-25

Family

ID=27784543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002046733A Expired - Fee Related JP4107475B2 (en) 2002-02-22 2002-02-22 Reinforcing fibers for fiber reinforced composites

Country Status (1)

Country Link
JP (1) JP4107475B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238708A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Carbon nanotube reinforced resin structure and its manufacturing method
WO2007008214A1 (en) * 2004-07-22 2007-01-18 William Marsh Rice University Polymer / carbon-nanotube interpenetrating networks and process for making same
JP2009535530A (en) * 2006-05-02 2009-10-01 ロール インコーポレイテッド Modification of reinforcing fiber tows used in composites using nano-reinforcing materials
JP2010531244A (en) * 2007-04-17 2010-09-24 ゼネラル・エレクトリック・カンパニイ Method for making an article having reinforced and non-reinforced regions
JP2010531934A (en) * 2007-01-03 2010-09-30 ロッキード マーティン コーポレーション Fibers leached with carbon nanotubes and methods for producing the same
JP2011528056A (en) * 2008-07-17 2011-11-10 ナノシル エス.エー. Method for producing reinforced thermosetting polymer composite
US8561934B2 (en) 2009-08-28 2013-10-22 Teresa M. Kruckenberg Lightning strike protection
US8962130B2 (en) 2006-03-10 2015-02-24 Rohr, Inc. Low density lightning strike protection for use in airplanes
WO2016159121A1 (en) * 2015-03-31 2016-10-06 ニッタ株式会社 Carbon fiber-reinforced molded article
CN111320841A (en) * 2020-01-08 2020-06-23 浙江精功碳纤维有限公司 Aramid fiber/carbon nanotube composite reinforced carbon fiber resin prepreg
JP6923978B1 (en) * 2020-12-21 2021-08-25 竹本油脂株式会社 Sizing agents for inorganic fibers, inorganic fibers, their manufacturing methods, and composite materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951632B2 (en) * 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137576A (en) * 1983-01-17 1984-08-07 三菱レイヨン株式会社 Surface treating agent for carbon fiber
JPS62149984A (en) * 1985-12-24 1987-07-03 東邦レーヨン株式会社 Carbon fiber cord for reinforcing rubber excellent in adhesiveness and its production
JPS63203876A (en) * 1987-02-20 1988-08-23 新日本製鐵株式会社 Surface treatment of reinforcing carbon fiber
JPS6426652A (en) * 1987-04-17 1989-01-27 Osaka Gas Co Ltd Fiber-containing massive polymer composition and production thereof
JPH0326726A (en) * 1989-06-23 1991-02-05 Mitsubishi Kasei Corp Carbon short fiber aggregate and fiber-reinforced thermoplastic resin composition using same
JPH09228248A (en) * 1996-02-14 1997-09-02 Toray Ind Inc Carbon fiber, its production and prepreg produced by using the carbon fiber
JP2002097375A (en) * 2000-09-22 2002-04-02 Toray Ind Inc Thermoplastic resin composition and molding
JP2002105329A (en) * 2000-09-29 2002-04-10 Toray Ind Inc Thermoplastic resin composition and molded article
JP2003102343A (en) * 2001-09-28 2003-04-08 Daiwa Seiko Inc Fiber-reinforced laminate
JP2003239171A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber, method for producing the same and carbon fiber-reinforced resin composition
JP2005517788A (en) * 2002-02-20 2005-06-16 エレクトロヴァク・ファブリケーション・エレクトロテクニシャー・スペズィアラーティケル・ゲーエムベーハー Flame retardant polymer composite and production method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137576A (en) * 1983-01-17 1984-08-07 三菱レイヨン株式会社 Surface treating agent for carbon fiber
JPS62149984A (en) * 1985-12-24 1987-07-03 東邦レーヨン株式会社 Carbon fiber cord for reinforcing rubber excellent in adhesiveness and its production
JPS63203876A (en) * 1987-02-20 1988-08-23 新日本製鐵株式会社 Surface treatment of reinforcing carbon fiber
JPS6426652A (en) * 1987-04-17 1989-01-27 Osaka Gas Co Ltd Fiber-containing massive polymer composition and production thereof
JPH0326726A (en) * 1989-06-23 1991-02-05 Mitsubishi Kasei Corp Carbon short fiber aggregate and fiber-reinforced thermoplastic resin composition using same
JPH09228248A (en) * 1996-02-14 1997-09-02 Toray Ind Inc Carbon fiber, its production and prepreg produced by using the carbon fiber
JP2002097375A (en) * 2000-09-22 2002-04-02 Toray Ind Inc Thermoplastic resin composition and molding
JP2002105329A (en) * 2000-09-29 2002-04-10 Toray Ind Inc Thermoplastic resin composition and molded article
JP2003102343A (en) * 2001-09-28 2003-04-08 Daiwa Seiko Inc Fiber-reinforced laminate
JP2003239171A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber, method for producing the same and carbon fiber-reinforced resin composition
JP2005517788A (en) * 2002-02-20 2005-06-16 エレクトロヴァク・ファブリケーション・エレクトロテクニシャー・スペズィアラーティケル・ゲーエムベーハー Flame retardant polymer composite and production method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238708A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Carbon nanotube reinforced resin structure and its manufacturing method
WO2007008214A1 (en) * 2004-07-22 2007-01-18 William Marsh Rice University Polymer / carbon-nanotube interpenetrating networks and process for making same
US7938991B2 (en) 2004-07-22 2011-05-10 William Marsh Rice University Polymer / carbon-nanotube interpenetrating networks and process for making same
US8962130B2 (en) 2006-03-10 2015-02-24 Rohr, Inc. Low density lightning strike protection for use in airplanes
EP2660385A1 (en) * 2006-05-02 2013-11-06 Goodrich Corporation Methods of making nanoreinforced carbon fiber and components comprising nanoreinforced carbon fiber
JP2009535530A (en) * 2006-05-02 2009-10-01 ロール インコーポレイテッド Modification of reinforcing fiber tows used in composites using nano-reinforcing materials
JP2010531934A (en) * 2007-01-03 2010-09-30 ロッキード マーティン コーポレーション Fibers leached with carbon nanotubes and methods for producing the same
JP2010531244A (en) * 2007-04-17 2010-09-24 ゼネラル・エレクトリック・カンパニイ Method for making an article having reinforced and non-reinforced regions
JP2011528056A (en) * 2008-07-17 2011-11-10 ナノシル エス.エー. Method for producing reinforced thermosetting polymer composite
US8561934B2 (en) 2009-08-28 2013-10-22 Teresa M. Kruckenberg Lightning strike protection
WO2016159121A1 (en) * 2015-03-31 2016-10-06 ニッタ株式会社 Carbon fiber-reinforced molded article
JP2016190969A (en) * 2015-03-31 2016-11-10 ニッタ株式会社 Carbon fiber-reinforced molded article
US10329392B2 (en) 2015-03-31 2019-06-25 Nitta Corporation Carbon fiber-reinforced molded article
CN111320841A (en) * 2020-01-08 2020-06-23 浙江精功碳纤维有限公司 Aramid fiber/carbon nanotube composite reinforced carbon fiber resin prepreg
CN111320841B (en) * 2020-01-08 2022-08-26 浙江宝旌炭材料有限公司 Aramid fiber/carbon nanotube composite reinforced carbon fiber resin prepreg
JP6923978B1 (en) * 2020-12-21 2021-08-25 竹本油脂株式会社 Sizing agents for inorganic fibers, inorganic fibers, their manufacturing methods, and composite materials
WO2022138497A1 (en) * 2020-12-21 2022-06-30 竹本油脂株式会社 Sizing agent for inorganic fiber, inorganic fiber and production method therefor, and composite material
JP2022098324A (en) * 2020-12-21 2022-07-01 竹本油脂株式会社 Sizing agent for inorganic fiber, inorganic fiber, method for producing the same, and composite material

Also Published As

Publication number Publication date
JP4107475B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
CA2505241C (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
JP2003238698A (en) Fiber-reinforced composite material, fibrous reinforcement for fiber-reinforced composite material, and method for producing fiber-reinforced composite material
EP3808521B1 (en) Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
US9574063B2 (en) Method of making a large area graphene composite material
JP2003201388A (en) Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
JP3641553B2 (en) Fiber reinforced composite material molding
JP2004298357A (en) Golf shaft
JPH10329247A (en) Composite material tubular member
JP4506189B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2000355630A (en) Member made from fiber-reinforced plastic
TWI779294B (en) Carbon fiber reinforced plastic sheet and method for producing carbon fiber reinforced plastic sheet
JP3363559B2 (en) Nickel / titanium superelastic wire composite prepreg
JP2007016122A (en) Carbon fiber-reinforced composite material
JPH025979A (en) Golf club
JPH05105773A (en) Plate-like fiber-reinforced composite molded product
JP3137670B2 (en) Composite material
US20040086706A1 (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
JPH01104625A (en) Composite material
AU2022275406B2 (en) Sporting Equipment and a Method of Manufacturing Same
JP2009167350A (en) Prepreg and fiber-reinforced composite material
US20040086705A1 (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
Bambal Mechanical evaluation and FE modeling of composite sandwich panels
JP3137671B2 (en) Prepreg
JP2002282398A (en) Tubular body made of fiber-reinforced composite material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees