JP2003238649A - エポキシ樹脂製連続多孔体の製造方法及び陶磁器の加圧鋳込成形型 - Google Patents

エポキシ樹脂製連続多孔体の製造方法及び陶磁器の加圧鋳込成形型

Info

Publication number
JP2003238649A
JP2003238649A JP2002041220A JP2002041220A JP2003238649A JP 2003238649 A JP2003238649 A JP 2003238649A JP 2002041220 A JP2002041220 A JP 2002041220A JP 2002041220 A JP2002041220 A JP 2002041220A JP 2003238649 A JP2003238649 A JP 2003238649A
Authority
JP
Japan
Prior art keywords
epoxy resin
mold
porous body
continuous porous
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002041220A
Other languages
English (en)
Inventor
Juku Yasukawa
熟 安川
Naoyuki Shimura
直行 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002041220A priority Critical patent/JP2003238649A/ja
Publication of JP2003238649A publication Critical patent/JP2003238649A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)
  • Epoxy Resins (AREA)

Abstract

(57)【要約】 【課題】 エポキシ樹脂製連続多孔体形成用のエマルジ
ョンスラリー中に分散したエポキシ樹脂粒子が連続多孔
体の細孔中に残存しにくく、細孔の目詰まりを起こしに
くく、常にバランスのよい通気性を有するエポキシ樹脂
製連続多孔体の製造方法とそれを用いた陶磁器の加圧鋳
込成形型を提供すること。 【解決手段】 エポキシ樹脂製連続多孔体形成用のエマ
ルジョンスラリーを準備する工程、前記エマルジョンス
ラリーを流し込む不透水性鋳型を準備する工程、不透水
性鋳型に前記エマルジョンスラリーを流し込む工程、前
記エマルジョンスラリーを硬化してエポキシ樹脂製連続
多孔体を形成する工程、前記形成したエポキシ樹脂製連
続多孔体を洗浄する工程を含むエポキシ樹脂製連続多孔
体の製造方法であって、前記不透水性鋳型を準備する工
程では、前記不透水性鋳型の温度を所定温度に維持する
ことを特徴とする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、エポキシ樹脂製連
続多孔体の製造方法、及び陶磁器の加圧鋳込成形型に関
する。
【0002】
【従来の技術】濾過材、散気材、型材等に使用される連
続多孔体を製造する手段として従来から金属粉の焼結、
熱可塑性樹脂粉末の焼結、無機粉体の焼結、セメント類
の水和硬化、熱可塑性樹脂と充填材の混合プレス成形、
またはスタンプ成形、造孔剤を含んだ樹脂液を硬化させ
造孔剤を溶解抽出または蒸発により除去する方法、発泡
剤の利用、含水ポリエステル樹脂のようにW/O型エマ
ルジョンを硬化重合させたのち、水を蒸発させる方法
等、多数の方法が提案されている。しかし、これらの方
法で連続多孔体を製造する場合、製品の形状や寸法が著
しく制限されること、しばしば高温の熱処理や高圧プレ
スが必要なこと、あるいは製造工程が複雑であるといっ
た成形上の問題があった。さらにこれらの方法では、連
続多孔体を濾過材、散気材として利用する場合に、最も
大切な気孔径のコントロールが非常に困難であった。こ
れらの諸問題を解決し、大型で複雑な形状の連続多孔体
を寸法よく、しかも所望の気孔径をもたせて製造する方
法としては、エポキシ樹脂、硬化剤、充填材及び水を含
む混合物を攪拌してエマルジョンスラリーを得、これを
含水状態のまま硬化させることにより、水の部分を気孔
とする方法がある。例えば、特開昭50−116598
号公報ではグリシジル系エポキシ樹脂と、重合脂肪酸ポ
リアミド硬化剤と充填材と水の混合物からなるO/W型
エマルジョンスラリーを調製し、このエマルジョンスラ
リーを不透水性鋳型に鋳込み、含水状態のまま硬化さ
せ、しかる後に脱水することにより、所期の目的が達成
されている。この方法によれば、大型で複雑な形状の連
続多孔体を寸法精度よくつくることができ、充填材の粒
度、反応性希釈剤の量及びエポキシ樹脂、硬化剤、充填
材、水の調合割合等を変えることにより、気孔径をコン
トロールすることができる。しかし、この方法で得られ
た連続多孔体は、気孔径が1.5μm以下の非常に細か
いところに片寄り、濾過材、散気材、型材としての実用
性が乏しいものであった。
【0003】この問題を解決した方法が、モノマー脂肪
酸とエチレンアミン〔H2N−(CH2−CH2−NH)n
−H(ただしnは3〜5である)〕との反応により得ら
れるアミド化合物と重合脂肪酸と上記エチレンアミンと
の反応によって得られる重合脂肪酸ポリアミドとの混合
物、または該モノマー脂肪酸と該重合脂肪酸と該エチレ
ンアミンとを混合し、反応させて得られる混合反応物を
硬化剤とし、ビスフェノール型エポキシ樹脂と上記硬化
剤と充填材と水とを含む混合物を強く攪拌してエマルジ
ョンスラリーを得、これを不透水性鋳型に鋳込み、含水
状態のまま硬化させ、しかる後に脱水することを特徴と
する連続多孔体の製造方法(特開昭59−71339号
公報)である。この方法により0.5〜10μmの平均
気孔径を有する連続多孔体、好ましくは0.5〜5μm
の平均気孔径を有する大型で複雑な形状の連続多孔体を
寸法精度よく成形し、特に好ましくは1.5〜5μmの
間の希望する平均気孔径のものを精度よく製造すること
が可能となった。また特開昭63−75044号公報に
は、グリシジル系エポキシ樹脂とポリアミド硬化剤と変
性ポリアミン硬化剤及びまたはアミン硬化剤と充填材と
水との混合物からエマルジョンスラリーを得、これを不
透水性鋳型に鋳込み、含水状態のまま硬化させることに
より、0.2〜10μmの範囲の気孔を有する連続多孔
体の製法も開示されている。
【0004】
【発明が解決しようとする課題】しかし、従来の方法で
はエマルジョンスラリーを流し込む不透水性鋳型の温度
を常温にて行っていたため、エポキシ樹脂製連続多孔体
硬化時にエマルジョンスラリーからの析出樹脂粒子の熱
運動が悪くなり、その析出した樹脂が、充填剤と一体化
せず、分散した樹脂粒子が、エポキシ樹脂製連続多孔体
の細孔中に残存しやすくなる。そのため、細孔中に分散
したまま硬化した樹脂粒子は、細孔の目詰まりを起こ
し、エポキシ樹脂製連続多孔体の通気性を悪化させ、寿
命低下に繋がっていた。
【0005】本発明の目的は、エポキシ樹脂製連続多孔
体形成用のエマルジョンスラリー中に分散したエポキシ
樹脂粒子が連続多孔体の細孔中に残存しにくく、細孔の
目詰まりを起こしにくく、常にバランスのよい通気性を
有するエポキシ樹脂製連続多孔体の製造方法とそれを用
いた陶磁器の加圧鋳込成形型を提供することにある。
【0006】
【課題を解決するための手段】本発明は、エポキシ樹脂
製連続多孔体形成用のエマルジョンスラリーを準備する
工程、前記エマルジョンスラリーを流し込む不透水性鋳
型を準備する工程、不透水性鋳型に前記エマルジョンス
ラリーを流し込む工程、前記エマルジョンスラリーを硬
化してエポキシ樹脂製連続多孔体を形成する工程、前記
形成したエポキシ樹脂製連続多孔体を洗浄する工程を含
むエポキシ樹脂製連続多孔体の製造方法であって、前記
不透水性鋳型を準備する工程では、前記不透水性鋳型の
温度を所定温度に維持することを特徴とする。エポキシ
樹脂製連続多孔体形成用のエマルジョンスラリーを流し
込む不透水性鋳型を加温することで、エマルジョンスラ
リーの硬化時に、連続相から析出した樹脂と充填剤の一
体化が促進され浮遊樹脂粒子が残存しにくい状態にな
る。よって、エマルジョンスラリーの硬化して得る連続
多孔体内の細孔の目詰まりを起こしにくく、常にバラン
スのよい通気性を得ることが可能になる。
【0007】本発明の好ましい態様としては、不透水性
鋳型を準備する工程では、不透水性鋳型の温度が25〜
40℃であるようにする。不透水性鋳型の温度が25℃
以下であると、前記エマルジョンスラリーが硬化する
際、反応熱を奪われ硬化不良に繋がる。また、反対に不
透水性鋳型の温度が40℃以上になると、エポキシ樹脂
製連続多孔体の強度が低下してしまう。よって好ましい
不透水性鋳型の温度を25〜40℃とすることで、安定
した前記エマルジョンスラリーの硬化が得られ、硬化後
の連続細孔の目詰まりを起こしにくい。
【0008】また、本発明は、前記エポキシ樹脂製連続
多孔体の製造方法で形成したエポキシ樹脂製連続多孔体
を用いた陶磁器の加圧鋳込成形型である。陶磁器の加圧
鋳込成形とは、上記エポキシ樹脂製連続多孔体の内部、
若しくは外接して水/又は空気を通すための中空路が形
成されていることを特徴とし、粘土等の素地粒子と水等
の溶媒からなるスラリーを多孔体質の型に鋳込み、スラ
リーに圧力をかけることによってエポキシ樹脂製連続多
孔体に溶媒を吸収させてスラリーを着肉させる。その後
にエポキシ樹脂製連続多孔体内の均一に配列された中空
路に空気を投入することにより、エポキシ樹脂製連続多
孔体表面(着肉面)から均一に溶媒および空気をしみ出
し、着肉された成形品を離型する方法である。陶磁器の
加圧鋳込成形用型に使用する場合においては、通気性の
バラツキが陶磁器の成形体に離型不良等の欠点を発生さ
せるため常にバランスのよい通気性を確保できれば、陶
磁器の成形体に悪影響を及ぼさない。
【0009】
【発明の実施の形態】エポキシ樹脂製連続多孔体とは、
エポキシ樹脂、硬化剤、充填材及び水等を含む混合物を
攪拌してエマルジョンスラリーを得て、不透水性鋳型の
温度が常温にて、当エマルジョンスラリー鋳込み、エポ
キシ樹脂製連続多孔体原料を含水状態のまま硬化させた
ものをいう。
【0010】以下、エポキシ樹脂製連続多孔体の原料に
ついて説明する。エポキシ樹脂としては、常温で液体で
あり、かつ粘性の低いものを用いるのがエマルジョンス
ラリーを作るのに便利であり、好適なものとして、ビス
フェノールA型、ビスフェノールF型、ビスフェノール
AD型等のビスフェノール型エポキシ樹脂があげられ
る。
【0011】硬化剤としては、ポリアミド系のもの、ポ
リアミン系のもの、変性ポリアミン系のもの、またはこ
れらの混合物により粘度が低いエマルジョンスラリーを
作る上で好適である。その中でも特に好適なものとして
は、ポリアミド系の硬化剤であって、モノマー脂肪酸と
エチレンアミン〔H2N−(CH2−CH2−NH)n−H
(ただしnは3〜5である)〕との反応で得られるアミ
ド化合物と重合脂肪酸と上記エチレンアミンとの反応に
よって得られる重合脂肪酸ポリアミドとの混合物、また
は該モノマー脂肪酸と該重合脂肪酸と該エチレンアミン
を混合し反応させて得られる反応混合物であるものがあ
げられる。
【0012】充填剤としては特に制限はないが、エポキ
シ樹脂で接着できる材質を有し、且つ粒度をコントロー
ルできる材料が好ましく、例として珪石粉または珪砂粉
があげられる。また、硬化物が軽量であることが望まし
い場合には、有機粉体やマイクロバルーンを用いること
もできる。
【0013】また、本発明におけるエマルジョンスラリ
ーの原料として、アリルグリシジルエーテル、ブチルグ
リシジルエーテル、スチレンオキサイド、フェニルグリ
シジルエーテル、クレジルグリシジルエーテル、エチレ
ングリコールジグリシジルエーテル、ネオペンチルグリ
コールジグリシジルエーテル、1,6−ヘキサンジオー
ルグリシジルエーテル、トリメチロールプロパントリグ
リシジルエーテル等の反応性希釈剤や、ベンジルジメチ
ルアミン、2,4,6−トリス(ジメチルアミノメチ
ル)フェノールなどの硬化促進剤や、塩化カリウム、塩
化ナトリウム、塩化亜鉛、塩化カルシウム、塩化バリウ
ム、塩化チタン、塩化鉄、塩化ニッケル、塩化マグネシ
ウム、硫酸アルミニウム、硫酸亜鉛、硫酸アルミニウム
アンモニウム、硫酸アルミニウムカリウム、硫酸カリウ
ム、硫酸コバルト、硫酸鉄、硫酸銅、硫酸ナトリウム、
硫酸ニッケル、硫酸マグネシウム、硫酸マンガン、水酸
化ナトリウム、水酸化カリウム、水酸化カルシウム等の
可溶性無機塩類を加えることもできる。
【0014】次に、エポキシ樹脂製連続多孔体の形成方
法について説明する。エマルジョンスラリーを構成する
各原料を樹脂(エポキシ樹脂及び硬化剤、反応性希釈剤
や硬化促進剤を添加する場合にはこれも含むものとす
る)、充填材、水の3相に分類すると、それぞれの好ま
しい構成体積比は、エマルジョンスラリー全体を100
容量%とすると、樹脂8〜45容量%、充填剤20〜6
5容量%、水20〜60容量%である。
【0015】前記樹脂、充填材、水を高速攪拌機、往復
回転式攪拌機等により攪拌して、得られたエマルジョン
スラリーを不透水性の型に鋳込み、それを含水状態のま
ま硬化させ、不透水性鋳型から離型する。攪拌に関して
は、気泡の巻き込み防止や樹脂、充填剤等は、粘性が高
いため、混合されにくい。よって、均一なエマルジョン
スラリーを得るという観点から、速い回転よりも強い回
転力が必要とされるため、好ましい攪拌機は、往復回転
式攪拌機である。
【0016】上記で得られたエポキシ樹脂製連続多孔体
は、エマルジョンスラリーが硬化していく過程で充填材
に樹脂が接着されて、水は気孔を形成していくが、エマ
ルジョンスラリーの凝集力が弱いものは、充填材に接着
せずに単独のまま樹脂成分が形成される。硬化が終了す
ると、樹脂成分は気孔内に浮遊或いは吸着された状態で
存在しているため、水/または空気により、エポキシ樹
脂製連続多孔体内の洗浄を行う。
【0017】不透水性鋳型の加温方法としては、温度調
節可能な部屋(恒温器等)で加温する気相方法と温熱シ
ートにて加温する固相方法または、液体の中にて加温す
る液相方法とがあるが、最も好ましい加温方法は、安定
した加温が得られる気相方法である。
【0018】また、不透水性鋳型の加温する温度は、好
ましくは25〜40℃であるが、より好ましくは、エポ
キシ樹脂製連続多孔体原料の硬化が促進され、常に安定
した通気性が保つことが可能な30〜35℃である。
【0019】本発明におけるエポキシ樹脂製連続多孔体
の応用例の一つとして、陶磁器の加圧鋳込成形用型への
応用を挙げることができる。陶磁器の加圧鋳込成形とは
粘土等の素地粒子と水等の溶媒からなるスラリーを多孔
質の型に鋳込み、スラリーに圧力をかけることによっ
て、型に溶媒を吸収させてスラリーを固化させその後
に、固化した成形品を離型する方法がある。なお、この
成形方式には、成形品の両側から型が溶媒を吸収する固
形鋳込みと、成形品の片側から型が溶媒を吸収し、所定
の厚みがついた後に、余剰のスラリーを排出する排泥鋳
込みがあるが、いずれの方式においても本発明における
陶磁器の加圧鋳込成形型を応用することができる。
【0020】この加圧鋳込成形型の好ましい実施態様と
して、成形品を離型する際の通気手段を設けることが挙
げられる。これは、成形品を型から外す際に、型の裏面
(着肉面と反対側の面)から圧力をかけて型が吸収した
スラリーからの溶媒及び空気を型の着肉面と成形品との
間にしみ出させ、スムーズな離型を行うために設けられ
る。その通気手段の好ましい例として、エポキシ樹脂製
連続多孔体内部に中空路を設けることが挙げられる。こ
の中空路は、エポキシ樹脂製連続多孔体表面(着肉面)
から均一に溶媒及び空気がしみ出すように配置されてお
り、またその中空路は1本または複数の型外へ通じる通
路に連結している。そして離型の際には、加圧空気を型
外へ通じる通路から中空路を通じて吹き込むと、溶媒及
び空気を型の着肉面と成形品の間にしみ出させることが
できる。しかしながら、エポキシ樹脂製連続多孔体の通
気性にバラツキが生じていると離型がスムーズに行われ
ず、成形体に不具合が発生してしまうので、安定したバ
ラツキのない通気性が求められる。
【0021】
【実施例】表1に示すような調合割合で調合した材料を
蓋なしのステンレス容器に入れ常温で10分間激しく攪
拌して、均一なエマルジョンスラリーを得た。このエマ
ルジョンスラリーを、温度を20.0℃にした不透水性
鋳型(形状は200×300×20mmの直方体で、中
空路部にチューブを張り、塩化ビニル製の板で四方を囲
んだもの)に鋳込み、水が蒸発しないように被いをし、
30℃の室内に48時間放置して含水状態のまま硬化さ
せ、チューブを除去し、硬化体を脱型した。しかる後に
図1のように、エポキシ樹脂製連続気孔多孔体1に中空
路入り口2を塞ぎ、中空路面及び側面をシール用エポキ
シ樹脂3で密封した。なお図示していないが、当多孔体
内部に設けられた中空路はすべてつながっており、それ
ぞれの中空路は型外に連結し、離型時に空気を送り込む
ための管4につながっているものとし、これを試験体1
とした。
【0022】同様に、上記の要領にて、表2に示すよう
に不透水性鋳型の温度を25.0℃、30.0℃、3
5.0℃、40.0℃、50.0℃に変更したものを、
それぞれ、試験体2、試験体3、試験体4、試験体5、
試験体6とした。
【表1】
【表2】
【0023】(通気量測定)次に、実施例で形成された
試験体1〜6を数回洗浄した後、通気測定を行った。測
定結果は、表3に示す。以下、その通気量測定手順を説
明する。 1.図1の4に注入する水圧および空気圧は0.25M
Paとする。 2.図1の4より水圧0.25MPaを保ちながら、5
分間通水する。 3.5分間通水後、図1の4より空気圧0.25MPa
を保ちながら、7分間通気する。 4.上記、2,3の手順を1サイクルとして、数回繰り
返し洗浄を行う。 5.数回洗浄後、図1の4に流量計を中継し、空気圧
0.25MPaを保ちながら、1分間通気後の通気量
(通気抵抗)を測定する。
【0024】(平均気孔径測定)次に、実施例で形成さ
れた試験体1〜6の平均気孔径の測定を行った。測定結
果は表3に示す。測定方法は、まず連続多孔体を5mm
角に細断したサンプルをつくり、測定機器には、圧力を
加えた水銀をエポキシ樹脂製連続多孔体内に浸入させ、
気孔径を測定することを特徴とした水銀圧入方式である
ポアサイザ9310(島津製作所製)を使用した。
【0025】(曲げ強度測定)次に、実施例と同様の要
領で、エポキシ樹脂製連続多孔体単体(形状15×15
×120mm)の試験体1〜6を作製し、曲げ強度測定
機(島津製作所製オートグラフ)にて以下に示す条件お
よび計算式にて、エポキシ樹脂製連続多孔体の曲げ強度
を測定した。試験結果は表3に示す。 (曲げ強度測定条件) 1.LOAD CELL…(B) 2.RANGE…(最大荷重 500N) 3.CHART SPEED…100mm/min 4.CROSSHEAD SPEED…2.5mm/m
in 5.支点間距離…100mm 以上の5項目を条件とする。 (曲げ強度算出計算式) St=3Pl÷2ab2 St…曲げ強度(MPa) P…破断荷重(N) l…支点間距離(cm) a…試料幅(cm) b…試料厚み(cm)
【表3】
【0026】以上の試験結果から、通気量に関しては、
表3および図2に示すように、通気量は増加傾向であ
る。また、鋳型の温度と通気量の関係では、25〜35
℃で1段階目の安定域、40〜50℃で2段階目の安定
域といえる。平均気孔径に関しては、表3および図3に
示すように、20〜35℃の温度では比較的安定してい
る。しかし、35℃以上になると顕著に大きくなる傾向
である。エポキシ樹脂製連続多孔体の曲げ強度に関して
は、表3および図4に示すように、温度が上昇するにつ
れ、強度も増加するが、温度が35℃位を境に低下傾向
となる。それぞれの試験結果から総合的に判断すると、
不透水性鋳型の加温する好ましい温度域は、30〜35
℃といえる。
【0027】
【発明の効果】本発明によれば、エポキシ樹脂製連続多
孔体形成用のエマルジョンスラリーを流し込む不透水性
鋳型を加温することにより、常にバランスのよい通気性
をもたせたエポキシ樹脂製連続多孔体の製造が可能とな
る。また、前記製造で得られたエポキシ樹脂製連続多孔
体を陶磁器の加圧鋳込成形型に用いることにより離型不
良など成形体に悪影響を及ぼすことがない加圧鋳込み成
形型が実現できる。
【図面の簡単な説明】
【図1】本発明の実施例で使用された試験体を示す全体
図(断面図)。
【図2】本発明の不透水性鋳型温度とエポキシ樹脂製連
続多孔体の通気量の関係図。
【図3】本発明の不透水性鋳型温度とエポキシ樹脂製連
続多孔体の平均気孔径の関係図。
【図4】本発明の不透水性鋳型温度とエポキシ樹脂製連
続多孔体曲げ強度の関係図。
【符号の説明】
1…エポキシ樹脂製連続多孔体 2…中空路 3…シール用エポキシ樹脂 4…送気管
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G053 AA13 CA21 DA01 DA21 EB01 EB17 4J036 AA02 AD08 FA01 FA05 FB13 FB14 JA15 KA04

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 エポキシ樹脂製連続多孔体形成用のエマ
    ルジョンスラリーを準備する工程、前記エマルジョンス
    ラリーを流し込む不透水性鋳型を準備する工程、不透水
    性鋳型に前記エマルジョンスラリーを流し込む工程、前
    記エマルジョンスラリーを硬化してエポキシ樹脂製連続
    多孔体を形成する工程、前記形成したエポキシ樹脂製連
    続多孔体を洗浄する工程を含むエポキシ樹脂製連続多孔
    体の製造方法であって、 前記不透水性鋳型を準備する工程では、前記不透水性鋳
    型の温度を所定温度に維持することを特徴とするエポキ
    シ樹脂製連続多孔体の製造方法。
  2. 【請求項2】 前記所定温度が25〜40℃であること
    を特徴とする請求項1に記載のエポキシ樹脂製連続多孔
    体の製造方法。
  3. 【請求項3】 請求項1又は2に記載のエポキシ樹脂製
    連続多孔体の製造方法で形成したエポキシ樹脂製連続多
    孔体を用いた陶磁器の加圧鋳込成形型。
JP2002041220A 2002-02-19 2002-02-19 エポキシ樹脂製連続多孔体の製造方法及び陶磁器の加圧鋳込成形型 Pending JP2003238649A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041220A JP2003238649A (ja) 2002-02-19 2002-02-19 エポキシ樹脂製連続多孔体の製造方法及び陶磁器の加圧鋳込成形型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041220A JP2003238649A (ja) 2002-02-19 2002-02-19 エポキシ樹脂製連続多孔体の製造方法及び陶磁器の加圧鋳込成形型

Publications (1)

Publication Number Publication Date
JP2003238649A true JP2003238649A (ja) 2003-08-27

Family

ID=27781702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041220A Pending JP2003238649A (ja) 2002-02-19 2002-02-19 エポキシ樹脂製連続多孔体の製造方法及び陶磁器の加圧鋳込成形型

Country Status (1)

Country Link
JP (1) JP2003238649A (ja)

Similar Documents

Publication Publication Date Title
JPH05345835A (ja) 連続気孔多孔体とその製造方法、及びそれを用いた陶磁器の加圧鋳込み成形用型
KR900004673B1 (ko) 연속기공 다공체의 제조방법
JPS5971339A (ja) 連続気孔多孔体の製法
KR940006194B1 (ko) 개공을 갖는 다공성 물질의 제조방법
CN102442801A (zh) 一种微孔树脂模具材料及其制备方法
WO1997007948A1 (fr) Procede de coulage en barbotine de poudres, moule utilise selon ce procede et procede de production de corps poreux a alveoles ouvertes a l'aide dudit moule
CN104448713A (zh) 一种开孔型导热性环氧基复合多孔材料及其制法与应用
JP2005523808A (ja) エアレータ
CN1299797C (zh) 一种多孔无机微滤滤芯的制备方法
JP2003238649A (ja) エポキシ樹脂製連続多孔体の製造方法及び陶磁器の加圧鋳込成形型
JP4994860B2 (ja) 多孔質成形体およびその製造方法ならびにその用途
CN109575522B (zh) 一种环氧树脂多孔复合材料及其制备方法和应用
TWI245752B (en) Method of making boron carbide cast body suitable for sintering
US20030088008A1 (en) Molding composition for the transfer of micro-structured surfaces
JP3606185B2 (ja) 連続気孔多孔体の洗浄方法
JP2002225014A (ja) 鋳込成形用型及びその製造方法
JP3543751B2 (ja) 連続気孔多孔体の製造方法
KR100703980B1 (ko) 세라믹 필터의 제조방법 및 이를 이용한 세라믹 필터
JPH0377045B2 (ja)
JP2004050731A (ja) 熱硬化性樹脂水性分散体の硬化成型方法
JP2002219704A (ja) 泥漿鋳型及びその製造方法
US20080191375A1 (en) Manufacturing Method For A Composite Structure
JPH0523562B2 (ja)
JPS6310643A (ja) 連続気孔多孔体の製造方法
JPS6291455A (ja) セメント製品の製造方法