JP2003236944A - Method for manufacturing resin molded product - Google Patents

Method for manufacturing resin molded product

Info

Publication number
JP2003236944A
JP2003236944A JP2002038359A JP2002038359A JP2003236944A JP 2003236944 A JP2003236944 A JP 2003236944A JP 2002038359 A JP2002038359 A JP 2002038359A JP 2002038359 A JP2002038359 A JP 2002038359A JP 2003236944 A JP2003236944 A JP 2003236944A
Authority
JP
Japan
Prior art keywords
molding material
molded product
resin molded
molding
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002038359A
Other languages
Japanese (ja)
Inventor
Fumiyuki Suzuki
文行 鈴木
Tadashi Mochizuki
正 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002038359A priority Critical patent/JP2003236944A/en
Publication of JP2003236944A publication Critical patent/JP2003236944A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of obtaining a resin molded product sufficiently performing an obtained function without imparting an adverse influence to the function or the performance of a circumferential member or the like without bring about a deformation or the like even when the product is exposed with a high-temperature atmosphere since the product has a sufficient heat resistance, recycling and without imparting an adverse influence to an environment after discarding. <P>SOLUTION: The method for manufacturing the resin molded product comprises the steps of bringing a molten molding material into contact with a gas of a supercritical state, then shaping the material when the molding material containing a polylactic acid as a main ingredient is molten and molded, and cooling the obtained product until the obtained product becomes a glass transition temperature or lower of the molding material under a pressure or lower of the critical pressure of the gas to crystallize the molding material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、樹脂成形品の製造
方法に関し、特に、十分な耐熱性を有するため、高温雰
囲気に曝された場合でも変形等を生じず、部材または部
品として求められる機能を十分に果たすことができ、か
つ再利用が可能で、廃棄された際には環境へ悪影響を与
えることがない樹脂成形品を得ることができる樹脂成形
品の製造方法に関する。 【0002】 【従来の技術】近年、多くの工業製品を構成する部材、
部品等には、求められる機能、性能、性状等に応じて、
各種の樹脂素材を単独または複合してなる成形材料を所
要の形状に成形した樹脂成形品が使用されている。例え
ば、写真記録材料、磁気記録材料、光記録材料等の記録
材料を収納、包装、被覆、保護、搬送、保管または形態
保持するための容器、筐体、蓋、巻き芯等の部材または
部品、また、カセットケース等の部材には、各種の樹脂
成形品が使用されている。また、記録材料本体を収納す
る部材として、カセット、マガジン、レンズ付きフィル
ムケース等、あるいは単に記録材料を保護するための容
器、オーディオカセットテープ、ビデオテープ等の収納
ケース、CD、MD等の収納ケースなどにも各種の樹脂
素材からなる樹脂成形品が使用されている。 【0003】ところで、これらの樹脂成形品の大部分
は、その機能を発揮した後には、廃棄処理されるか、再
利用可能であれば、再生処理される。例えば、前記記録
材料を構成する各種の部材または部品等の樹脂成形品
は、記録材料の使用時または使用中に分離されて廃棄さ
れ、また、廃棄される記録材料に付随して廃棄される。 【0004】しかし、従来の樹脂成形品は廃棄された際
に自然環境では分解し難く、環境を汚染する一つの要因
となっている。そこで、近年、自然環境下で分解される
素材からなる成形品を使用することが検討されている。
このような自然環境下で分解される樹脂素材として生分
解性樹脂が知られている。例えば、近年、トウモロコシ
澱粉を原料とするポリ乳酸が安価に大量生産可能とな
り、このポリ乳酸は再生可能で地球環境に優しい生分解
性樹脂として注目されている。 【0005】しかし、ポリ乳酸は、ガラス転移温度が5
8℃と低いため、60℃を超えると軟化が甚だしくな
り、例えば、夏場の自動車内のように高温となる環境条
件では変形するため、耐熱性が必要とされる用途には利
用が困難である。そこで、耐熱性の要求される樹脂成形
品にポリ乳酸等の生分解性樹脂を利用可能にする技術開
発が望まれている。 【0006】 【発明が解決しようとする課題】本発明の目的は、十分
な耐熱性を有し、樹脂部材または部品として必要な諸機
能および性能を保持するとともに、夏季日中の自動車内
のような高温環境に一時的に放置され、高温に加熱され
た後でも変形等を生じず、周囲の部材、部品等の機能ま
たは性能に悪影響を与えず、部材または部品として求め
られる機能を十分に果たすことができ、かつ再利用が可
能で、廃棄され自然界に放置されても最終的に微生物に
よって分解され、環境へ悪影響を与えることがない樹脂
成形品を得ることができる方法を提供することにある。 【0007】 【課題を解決するための手段】前記課題を解決するため
に、本発明は、ポリ乳酸を主成分とする成形材料を溶融
して成形するに際し、溶融した成形材料と超臨界状態の
気体を接触させてから賦形し、得られる成形品を、気体
の臨界圧力以上の圧力下に該成形材料のガラス転移温度
以下となるまで冷却して成形材料を結晶化させる工程を
有する樹脂成形品の製造方法を提供するものである。 【0008】以下、本発明の樹脂成形品の製造方法(以
下、「本発明の方法」という)について詳細に説明す
る。 【0009】本発明において、樹脂成形品とは、機能性
材料を構成する構造部材、あるいは記録材料を収納、包
装、被覆、保護、搬送、保管、形態支持等のために用い
られる容器、蓋およびそれに付随する付属部品、あるい
は、前記機能性材料を装填してその機能を発揮させるた
めに成形された成形品をいう。例えば、機能性材料とし
ては、写真感光材料、磁気記録材料、光記録材料等の各
種記録材料、あるいは感圧または感熱の記録材料、半導
体メモリー利用の記録材料などが挙げられる。記録材料
の具体例としては、ネガフィルム、リバーサルフィル
ム、印画紙、モノシートあるいはピールアパート式のイ
ンスタント写真フィルム等の写真感光材料、オーディオ
カセットテープ、ビデオカセットテープ、フレキシブル
ディスク、コンピュータデータ記録用磁気テープ等の磁
気記録材料、CD、CD−R、CD−RW、DVD、D
VD−R、DVD−RW、MD等の光記録材料などが挙
げられる。 【0010】この樹脂成形品の具体例として、写真感光
材料においては、135、110、120、220等の
各種規格のネガフィルムまたはリバーサルフィルムのス
プール、本体容器、また、収納容器、蓋等、インスタン
トフィルムパック用ケースなどの構成部材(例えば、容
器本体、遮光シート、弾性板、可撓性遮光シート、遮光
片、底面遮光シート等の構成部材または部品)、レンズ
付きフィルムの筐体、内部機構部品などの各種の部材ま
たは部品が挙げられる。また、磁気記録材料において
は、オーディオカセットテープ、ビデオカセットテー
プ、コンピュータデータ記録用磁気テープ、フレキシブ
ルディスク等を収納するカセット筐体およびその構成部
品やそれらを収納するケースなどが挙げられる。さらに
光記録材料においては、MDのカセットやCD、CD−
R、CD−RW、DVD、DVD−R、DVD−RW、
MD等を収納するケースが挙げられる。 【0011】 【発明の実施の形態】本発明の方法で用いられる成形材
料の主材であるポリ乳酸は、L−乳酸のホモポリマー、
L−乳酸とD−乳酸との共重合体、またはL−乳酸とヒ
ドロキシカルボン酸の共重合体、あるいはこれらの混合
物である。ヒドロキシカルボン酸としては、例えば、グ
リコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ吉草
酸、6−ヒドロキシカプロン酸等が挙げられる。一般
に、ポリ乳酸はL体のみが生分解が可能である。乳酸の
ホモポリマーは工業的には天然物であるデンプンを乳酸
発酵させて乳酸を得、これを重合させて作られ、この過
程で異性化反応が生じる。したがって、通常、乳酸のホ
モポリマーは少量のD体を不純物として含むものであ
る。また、L体純度が低いとポリ乳酸の結晶化が阻害さ
れるため、本発明で用いられるポリ乳酸はL体純度が8
8%以上、好ましくは95%以上、特に好ましくは97
〜100%であるものが望ましい。 【0012】本発明の成形品を構成する成形材料の主材
であるポリ乳酸を主成分とする樹脂の重量平均分子量は
50000〜150000のものが好ましく、特に70
000〜120000のものが好ましい。一般に結晶性
のポリマーは分子量が低いほど結晶化し易い性質を有す
るが、結晶化に伴い機械的強度も低下する。重量平均分
子量が50000より低いポリ乳酸を主成分とする樹脂
からなる成形品は、機械的強度が低く、ある程度の強度
を要する用途には適用できない。また、ポリ乳酸は、溶
融状態で水分に接すると、容易に加水分解して分子量の
低下を招き易い。そこで、成形材料の含水率を100p
pm以下にまで十分に乾燥してから成形機に供給すれ
ば、分子量の低下が少なく、成形品の分子量はほぼ原料
と同等のものが得られる。 【0013】本発明で用いられる成形材料は、前記ポリ
乳酸を主材とし、これに必要に応じて、他の生分解性樹
脂、カーボンブラック等の遮光性充填剤、シリコンオイ
ル等の摺動性改良剤、顔料等の着色剤、酸化防止剤、抗
菌剤、防カビ剤、発泡剤、紫外線吸収剤、難燃剤、帯電
防止剤、可塑剤、補強繊維、結晶核剤、滑剤等の添加剤
を、ポリ乳酸の結晶化を阻害しない程度に配合すること
ができる。これらの添加剤は、本発明の目的を損なわな
い範囲で、1種または2種以上を組み合わせて配合する
ことができる。 【0014】他の生分解性樹脂としては、例えば、変性
デンプン樹脂、ポリカプロラクトン、β−ヒドロキシ酪
酸(3HB)とβ−ヒドロキシ吉草酸(3HV)の共重
合ポリエステル、酢酸セルロース・酢酸グリセリン、ポ
リヒドロキシ酪酸、ポリビニルアルコール、ポリブチレ
ンサクシネート、ポリブチレンサクシネート・アジペー
ト、ポリエチレンサクシネート、ポリエステルアミド、
酢酸ビニル等が挙げられる。これらの生分解性樹脂は、
1種単独でも2種以上を組み合わせて用いてもよい。 【0015】補強繊維としては、例えば、ガラス繊維、
炭素繊維、炭化ケイ素繊維、アルミナ繊維、窒化ケイ素
繊維等の無機系繊維、また、アラミド繊維、竹繊維、リ
ュウゼツラン繊維等の有機系繊維などが挙げられ、これ
らは1種でも2種以上を組み合わせて用いてもよい。補
強繊維を配合する場合、その配合量は10〜30質量%
が好ましい。 【0016】また、補強繊維は、ポリ乳酸を含む成形材
料との相溶性を向上させるため、シランカップリング
剤、チタンカップリング剤、アルミネート系カップリン
グ剤、ジルコニウム系カップリング剤、脂肪酸系カップ
リング剤、油脂、ワックス、界面活性剤等によって表面
処理が施されていると、好ましい。 【0017】本発明の方法は、ポリ乳酸、ならびに必要
に応じて配合される他の生分解性樹脂および他の添加剤
を含む成形材料を調製し、その成形材料を成形機に供給
して溶融し、所要の形態に賦形して結晶化させて樹脂成
形品を得る方法である。 【0018】成形材料の調製は、ポリ乳酸、およびその
他の必要に応じて配合される各種の成分を、その一部も
しくは全量を高濃度に混合したペレット(マスターバッ
チ)を調製しておき、これを所定の割合となるように成
形機で混合する方法(マスターバッチ法)、ポリ乳酸お
よびその他の必要な成分を、予め溶融・混練して、ペレ
ットに成形する方法、あるいは、成形に際して、成形機
にポリ乳酸およびその他の各種成分を、所定の割合にな
るように別個にまたは同時に供給し、シリンダ内で加熱
溶融・混練して成形材料として、成形に供する方法など
のいずれの方法にしたがって行ってもよい。これらの内
で、マスターバッチ法は、コストおよび各成分の混合の
均一性の点で、好ましい。 【0019】本発明の方法において、溶融された成形材
料は超臨界状態の気体と接触させてから賦形される。成
形材料と接触させる超臨界状態の気体としては、二酸化
炭素、水、炭化水素等が挙げられるが、水は加水分解作
用が強いため樹脂材料を劣化させるおそれがあり、炭化
水素は引火の危険性が大きいため、工業的には二酸化炭
素を用いることが好ましい。二酸化炭素の臨界温度は3
1.2℃であり、これ以上の温度では圧力による相変化
を生じない超臨界状態を呈する。超臨界状態の気体を圧
縮し密度が液体に近づくと溶解力が高まり、樹脂への溶
解度が急激に上昇する。そのため、実用的には7MPa
以上の圧力の二酸化炭素で安定な成形機の運転が可能と
なる。 【0020】本発明の方法において、賦形に用いられる
成形機は、特に制限されず、形状、大きさ等の樹脂成形
品の形態、成形材料の種類、量、また、用いる超臨界状
態の気体等に応じて適宜選択される。例えば、射出成形
機等の成形機を適宜用いることができる。本発明の方法
において、成形に射出成形機を用いる場合、成形機の射
出シリンダー部の原料成形材料が十分可塑化されている
箇所に二酸化炭素が圧入される。圧入された二酸化炭素
は溶融状態の成形材料と機械的に混練されることが好ま
しく、これにより溶融状態の成形材料に均一に高濃度の
二酸化炭素が溶解される。用いる射出成形機は、プラン
ジャー型、インライン型のいずれも使用できるが、圧入
した二酸化炭素が成形材料の供給側に逆流しないように
成形材料を十分に溶融させ、これにより気体の逆流防止
シールを行うことが必要である。また、射出成形機のス
クリューは、このような機能を有することが好ましく、
一旦可塑化した溶融成形材料が再び二酸化炭素と混練さ
れるように二段構成のスクリューとしてもよい。二酸化
炭素を高濃度に溶解した成形材料が射出される金型のキ
ャビティは予め気体で加圧しておくことが必要である。
キャビティ内の圧力は二酸化炭素の臨界圧力以上であれ
ばよく、過度に低いと射出された成形材料が発泡し、甚
だしい場合はスポンジ状の多孔質体となってしまう。 【0021】本発明の方法において、溶融した成形材料
に賦形してえられた粗成形品は、用いた臨界状態の気体
の臨界圧力以上の圧力下に、成形材料のガラス転移温度
以下となるまで冷却される。これにより、成形材料が結
晶化され、耐熱性に優れる樹脂成形品を得ることができ
る。 【0022】本発明の方法において、得られる樹脂成形
品の結晶化の程度は、所期の耐熱特性を有する樹脂成形
品が得られる点で、結晶融解熱量20mJ/mg以上を
示すものが好ましく、さらに好ましくは30mJ/mg
以上、結晶生成量が多くなると耐熱性がさらに向上する
ため、特に、40mJ/mg以上を示すものが好まし
い。本発明において、樹脂成形品の結晶融解熱量は、示
差走査熱量計(DSC)を用いて10℃/分の昇温速度
で測定される値である。 【0023】また、本発明の方法は、ポリ乳酸を主成分
とする成形材料のみならず、結晶性熱可塑性樹脂を成形
材料として用いる樹脂成形品の製造に適用して、得られ
る成形品を構成する樹脂材料の結晶化を促進し、耐熱
性、機械的特性等の各種の特性に優れた樹脂成形品を得
るために有効である。 【0024】 【実施例】以下、本発明の実施例および比較例を挙げ、
本発明をより具体的に説明する。 【0025】(実施例1)L体純度が98.5%、重量
平均分子量が95000であるポリ乳酸のペレットを、
10Torrの減圧下に16時間乾燥して成形材料を調
製した。この成形材料を射出成形機に供給して200℃
で溶融するとともに、射出成形機のシリンダー部に設け
られたガス導入口から、8MPaの圧力の超臨界状態の
二酸化炭素を圧入し、スクリューで混練して溶融状態の
成形材料と接触させた。射出成形機の先端に取り付けら
れた金型の成形キャビティ内に、窒素ガスを8MPaの
圧力で充填しておき、この成形キャビティ内に、超臨界
状態の二酸化炭素と接触させた溶融成形材料を射出圧
力:90MPaで射出し、樹脂成形品に賦形した。この
とき、金型内の窒素ガスは溶融成形材料の射出・流入に
合わせて、圧力が8MPa以下とならないように維持し
ながら系外に放出させた。次に、金型内の成形材料に1
00MPaの圧力を加えた状態で、ガラス転移温度以下
の50℃まで冷却して成形材料を固化させて取り出し、
樹脂成形品を得た。 【0026】得られた樹脂成形品の結晶生成量を評価す
るため、DSCを用いて結晶融解熱を測定したところ、
48mJ/mgであった。DSCは昇温測定を行った
が、このとき生成する結晶の生成熱と結晶の融解熱の絶
対値の差を成形品から由来する結晶の融解熱とした。 【0027】(比較例1)射出成形機のシリンダー内に
超臨界状態の二酸化炭素を圧入しない以外は、実施例1
と同様にして樹脂成形品を製造した。得られた樹脂成形
品の結晶融解熱の測定を試みたが、結晶融解熱は殆ど測
定されなかった。 【0028】(比較例2)金型に窒素ガスを充填しない
以外は実施例1と同様にして樹脂成形品を製造したが、
得られた樹脂成形品は発泡しており、強度が不足するも
のであった。 【0029】(実施例2)窒素ガスの代わりに、金型に
二酸化炭素を充填した以外は実施例1と同様にして樹脂
成形品を製造した。得られた樹脂成形品の結晶融解熱は
50mJ/mgであった。 【0030】 【発明の効果】以上のとおり、本発明の方法によれば、
十分な耐熱性を有し、樹脂部材または部品として必要な
諸機能および性能を保持するとともに、夏季日中の自動
車内のような高温環境に一時的に放置され、高温に加熱
された後でも変形等を生じず、また、周囲の部材、部品
等の機能または性能に悪影響を与えず、部材または部品
として求められる機能を十分に果たすことができる樹脂
成形品を得ることができる。この樹脂成形品は、再利用
が可能で、廃棄され自然界に放置されても最終的に微生
物によって分解され、環境へ悪影響を与えることがな
い。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a resin molded product, and in particular, has sufficient heat resistance so that it can be deformed even when exposed to a high temperature atmosphere. Resin-molded product that does not occur, can sufficiently fulfill the functions required as a member or component, can be reused, and can obtain a resin-molded product that does not adversely affect the environment when discarded It relates to the manufacturing method. In recent years, members constituting many industrial products,
Depending on the required functions, performance, properties, etc.,
A resin molded product is used in which a molding material made of various resin materials alone or in combination is molded into a required shape. For example, members or parts such as containers, casings, lids, and winding cores for storing, packaging, covering, protecting, transporting, storing, or maintaining the shape of recording materials such as photographic recording materials, magnetic recording materials, and optical recording materials, Moreover, various resin molded products are used for members, such as a cassette case. In addition, as a member for storing the recording material body, cassettes, magazines, film cases with lenses, etc., or containers for simply protecting the recording material, storage cases such as audio cassette tapes and video tapes, storage cases such as CDs, MDs, etc. For example, resin molded products made of various resin materials are used. By the way, most of these resin molded products are disposed of after their functions are performed, or are recycled if they can be reused. For example, resin molded articles such as various members or parts constituting the recording material are separated and discarded when the recording material is used or used, and are discarded along with the discarded recording material. However, conventional resin molded products are difficult to decompose in the natural environment when discarded, and this is one factor that pollutes the environment. Therefore, in recent years, it has been studied to use a molded product made of a material that can be decomposed in a natural environment.
Biodegradable resins are known as resin materials that can be decomposed in such a natural environment. For example, in recent years, polylactic acid using corn starch as a raw material can be mass-produced at low cost, and this polylactic acid is attracting attention as a biodegradable resin that is renewable and friendly to the global environment. However, polylactic acid has a glass transition temperature of 5
Since the temperature is as low as 8 ° C, softening becomes severe when the temperature exceeds 60 ° C. For example, it is deformed under high temperature environmental conditions such as in a car in the summer, so that it is difficult to use for applications that require heat resistance. . Therefore, it is desired to develop a technology that makes it possible to use a biodegradable resin such as polylactic acid in a resin molded product that requires heat resistance. SUMMARY OF THE INVENTION An object of the present invention is to have sufficient heat resistance, maintain various functions and performances required as a resin member or component, and be used in an automobile during the summer day. Even if it is temporarily left in a high temperature environment and heated to a high temperature, it does not deform, does not adversely affect the function or performance of surrounding members, parts, etc., and sufficiently fulfills the functions required as members or parts. It is an object of the present invention to provide a method capable of obtaining a resin molded product that can be reused and can be reused and is finally decomposed by microorganisms even if discarded and left in the natural environment, and does not adversely affect the environment. . In order to solve the above-described problems, the present invention provides a supercritical state of a molten molding material when molding a molding material containing polylactic acid as a main component. Resin molding having a step of crystallizing the molding material by shaping after contact with the gas and cooling the resulting molded product to a temperature not higher than the critical pressure of the gas until the temperature falls below the glass transition temperature of the molding material The manufacturing method of goods is provided. The method for producing a resin molded product of the present invention (hereinafter referred to as “the method of the present invention”) will be described in detail below. In the present invention, the resin molded product refers to a structural member constituting a functional material or a container, lid, and the like used for storing, packaging, covering, protecting, transporting, storing, and supporting a form of a recording material. It refers to an attached part that accompanies it, or a molded product that is molded to load the functional material and exert its function. For example, examples of the functional material include various recording materials such as a photographic light-sensitive material, a magnetic recording material, and an optical recording material, a pressure-sensitive or heat-sensitive recording material, and a recording material using a semiconductor memory. Specific examples of recording materials include photographic photosensitive materials such as negative film, reversal film, photographic paper, monosheet or peel-apart instant photographic film, audio cassette tape, video cassette tape, flexible disk, magnetic tape for computer data recording Magnetic recording materials such as CD, CD-R, CD-RW, DVD, D
Examples thereof include optical recording materials such as VD-R, DVD-RW, and MD. As specific examples of the resin molded product, in photographic photosensitive materials, negative films or reversal film spools of various standards such as 135, 110, 120, 220, main body containers, storage containers, lids, etc. Constituent members such as film pack cases (for example, constituent members or parts such as a container body, a light shielding sheet, an elastic plate, a flexible light shielding sheet, a light shielding piece, a bottom light shielding sheet, etc.), a film case with a lens, and internal mechanism parts Various members or parts such as Examples of the magnetic recording material include an audio cassette tape, a video cassette tape, a computer data recording magnetic tape, a cassette housing for storing a flexible disk, etc., its components, and a case for storing them. In optical recording materials, MD cassettes, CDs, CD-
R, CD-RW, DVD, DVD-R, DVD-RW,
A case for storing MD or the like can be mentioned. DETAILED DESCRIPTION OF THE INVENTION Polylactic acid, which is the main material of the molding material used in the method of the present invention, is a homopolymer of L-lactic acid,
It is a copolymer of L-lactic acid and D-lactic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, or a mixture thereof. Examples of the hydroxycarboxylic acid include glycolic acid, 3-hydroxybutyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid and the like. In general, polylactic acid is biodegradable only in the L form. Lactic acid homopolymers are industrially produced by lactic fermentation of starch, which is a natural product, to obtain lactic acid, which is polymerized. In this process, isomerization occurs. Therefore, a homopolymer of lactic acid usually contains a small amount of D-form as an impurity. Moreover, since the crystallization of polylactic acid is inhibited when the L-isomer purity is low, the polylactic acid used in the present invention has an L-isomer purity of 8
8% or more, preferably 95% or more, particularly preferably 97
What is -100% is desirable. The resin having polylactic acid as a main component of the molding material constituting the molded article of the present invention preferably has a weight average molecular weight of 50,000 to 150,000, particularly 70.
The thing of 000-120,000 is preferable. In general, a crystalline polymer has a property of being easily crystallized as its molecular weight is low, but the mechanical strength is also reduced with crystallization. A molded article made of a resin mainly composed of polylactic acid having a weight average molecular weight lower than 50000 has a low mechanical strength and cannot be applied to applications requiring a certain level of strength. Moreover, when polylactic acid comes into contact with moisture in a molten state, it easily hydrolyzes and tends to cause a decrease in molecular weight. Therefore, the moisture content of the molding material is 100 p.
If it is sufficiently dried to pm or less and then supplied to the molding machine, the molecular weight will not decrease much, and the molecular weight of the molded product can be almost the same as the raw material. The molding material used in the present invention is mainly composed of the polylactic acid, and if necessary, other biodegradable resins, light-shielding fillers such as carbon black, and slidability such as silicon oil. Additives such as improvers, colorants such as pigments, antioxidants, antibacterial agents, antifungal agents, foaming agents, UV absorbers, flame retardants, antistatic agents, plasticizers, reinforcing fibers, crystal nucleating agents, lubricants, etc. It can be blended to such an extent that it does not inhibit the crystallization of polylactic acid. These additives can be blended alone or in combination of two or more in a range not impairing the object of the present invention. Other biodegradable resins include, for example, modified starch resins, polycaprolactone, copolymerized polyester of β-hydroxybutyric acid (3HB) and β-hydroxyvaleric acid (3HV), cellulose acetate / glycerin acetate, polyhydroxy Butyric acid, polyvinyl alcohol, polybutylene succinate, polybutylene succinate adipate, polyethylene succinate, polyester amide,
Examples include vinyl acetate. These biodegradable resins are
You may use individually by 1 type or in combination of 2 or more types. Examples of the reinforcing fiber include glass fiber,
Examples include inorganic fibers such as carbon fibers, silicon carbide fibers, alumina fibers, and silicon nitride fibers, and organic fibers such as aramid fibers, bamboo fibers, and agave fibers. These may be used alone or in combination of two or more. It may be used. When the reinforcing fiber is blended, the blending amount is 10 to 30% by mass.
Is preferred. Further, the reinforcing fiber has a silane coupling agent, a titanium coupling agent, an aluminate coupling agent, a zirconium coupling agent, and a fatty acid cup in order to improve compatibility with a molding material containing polylactic acid. It is preferable that the surface treatment is performed with a ring agent, oil, fat, wax, surfactant or the like. The method of the present invention prepares a molding material containing polylactic acid and other biodegradable resins and other additives blended as necessary, and supplies the molding material to a molding machine to melt it. Then, it is a method of obtaining a resin molded product by shaping into a required form and crystallizing. The molding material is prepared by preparing a pellet (masterbatch) in which a part or all of polylactic acid and other various components blended as necessary are mixed at a high concentration. In a molding machine so as to have a predetermined ratio (masterbatch method), a method in which polylactic acid and other necessary components are previously melted and kneaded to form pellets, or a molding machine at the time of molding Polylactic acid and other various components are supplied separately or simultaneously to a predetermined ratio, and heated, melted and kneaded in a cylinder to form a molding material, which is used according to any method. Also good. Among these, the master batch method is preferable in terms of cost and uniformity of mixing of each component. In the method of the present invention, the molten molding material is shaped after contacting with a gas in a supercritical state. Examples of supercritical gas to be brought into contact with the molding material include carbon dioxide, water, hydrocarbons, etc., but water has a strong hydrolysis action and may deteriorate the resin material, and hydrocarbons are flammable. Therefore, it is preferable to use carbon dioxide industrially. The critical temperature of carbon dioxide is 3
It is 1.2 ° C., and at a temperature higher than this, it exhibits a supercritical state in which no phase change occurs due to pressure. When a gas in a supercritical state is compressed and the density approaches a liquid, the dissolving power increases and the solubility in the resin increases rapidly. Therefore, it is practically 7MPa
A stable molding machine can be operated with carbon dioxide at the above pressure. In the method of the present invention, the molding machine used for shaping is not particularly limited, and the shape of resin molded product such as shape and size, the type and amount of molding material, and the gas in the supercritical state to be used. It is appropriately selected depending on the like. For example, a molding machine such as an injection molding machine can be used as appropriate. In the method of the present invention, when an injection molding machine is used for molding, carbon dioxide is injected into a portion where the raw material molding material of the injection cylinder portion of the molding machine is sufficiently plasticized. The press-fitted carbon dioxide is preferably mechanically kneaded with the molten molding material, so that a high concentration of carbon dioxide is uniformly dissolved in the molten molding material. The injection molding machine to be used can be either a plunger type or an in-line type. However, the molding material is sufficiently melted so that the injected carbon dioxide does not flow backward to the molding material supply side, thereby providing a gas backflow prevention seal. It is necessary to do. The screw of the injection molding machine preferably has such a function,
A two-stage screw may be used so that the melt-molded material once plasticized is kneaded with carbon dioxide again. The mold cavity into which the molding material in which carbon dioxide is dissolved at a high concentration is injected needs to be pressurized in advance with gas.
The pressure in the cavity may be equal to or higher than the critical pressure of carbon dioxide. If the pressure is excessively low, the injected molding material foams, and in a severe case, a sponge-like porous body is formed. In the method of the present invention, a rough molded product obtained by shaping a molten molding material has a glass transition temperature lower than that of the molding material under a pressure higher than the critical pressure of the gas in the critical state used. Until cooled. Thereby, a molding material is crystallized and the resin molded product which is excellent in heat resistance can be obtained. In the method of the present invention, the degree of crystallization of the resin molded product obtained is preferably one showing a heat of crystal melting of 20 mJ / mg or more in that a resin molded product having the desired heat resistance is obtained. More preferably 30 mJ / mg
As described above, since the heat resistance is further improved when the amount of crystal formation is increased, a crystal showing 40 mJ / mg or more is particularly preferable. In the present invention, the heat of crystal melting of the resin molded product is a value measured at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter (DSC). The method of the present invention is applied not only to molding materials containing polylactic acid as a main component, but also to the production of resin molded products using crystalline thermoplastic resins as molding materials. It is effective for promoting crystallization of the resin material to be obtained and obtaining a resin molded product excellent in various properties such as heat resistance and mechanical properties. EXAMPLES Examples of the present invention and comparative examples are given below.
The present invention will be described more specifically. Example 1 Polylactic acid pellets having an L-form purity of 98.5% and a weight average molecular weight of 95,000 were obtained.
A molding material was prepared by drying for 16 hours under a reduced pressure of 10 Torr. This molding material is supplied to an injection molding machine and 200 ° C.
The carbon dioxide in a supercritical state at a pressure of 8 MPa was injected from a gas inlet provided in the cylinder part of the injection molding machine and kneaded with a screw to be brought into contact with the molten molding material. A mold molding cavity attached to the tip of an injection molding machine is filled with nitrogen gas at a pressure of 8 MPa, and a molten molding material brought into contact with carbon dioxide in a supercritical state is injected into the molding cavity. Injected at a pressure of 90 MPa and shaped into a resin molded product. At this time, the nitrogen gas in the mold was released out of the system while keeping the pressure at 8 MPa or less in accordance with the injection / inflow of the molten molding material. Next, add 1 to the molding material in the mold.
In a state where a pressure of 00 MPa is applied, the molding material is solidified and taken out by cooling to 50 ° C. below the glass transition temperature,
A resin molded product was obtained. In order to evaluate the crystal production amount of the obtained resin molded product, the heat of crystal fusion was measured using DSC.
It was 48 mJ / mg. DSC measured the temperature rise, and the difference between the absolute values of the heat of crystal formation and the heat of fusion of the crystal produced at this time was defined as the heat of fusion of the crystal derived from the molded product. Comparative Example 1 Example 1 except that supercritical carbon dioxide was not injected into the cylinder of the injection molding machine.
A resin molded product was produced in the same manner as described above. An attempt was made to measure the heat of crystal fusion of the obtained resin molded product, but the heat of crystal fusion was hardly measured. Comparative Example 2 A resin molded product was produced in the same manner as in Example 1 except that the mold was not filled with nitrogen gas.
The obtained resin molded product was foamed and had insufficient strength. Example 2 A resin molded product was produced in the same manner as in Example 1 except that carbon dioxide was filled in the mold instead of nitrogen gas. The resin molded product obtained had a heat of crystal melting of 50 mJ / mg. As described above, according to the method of the present invention,
It has sufficient heat resistance, retains various functions and performances required as a resin member or component, and is deformed even after being left in a high-temperature environment such as in a car during the summer and heated to a high temperature. In addition, a resin molded product can be obtained that does not adversely affect the functions or performances of surrounding members, parts, etc., and that can sufficiently perform the functions required as members or parts. This resin molded product can be reused, and even if it is discarded and left in the natural environment, it is eventually decomposed by microorganisms and does not adversely affect the environment.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03C 3/00 G03C 3/00 560Z 590 590E 590F // B29K 67:00 B29K 67:00 C08L 67:04 C08L 67:04 Fターム(参考) 4F070 AA47 AB09 BA10 BB06 4F071 AA43 AG29 AH12 AH19 BB05 BB06 BC01 BC07 4F201 AA24 BA04 BA07 BC03 BC10 BD04 BK13 BK43 BK75 BN03 BN11 BN36 BR01 BR15 BR50Front page continuation (51) Int.Cl. 7 Identification symbol FI Theme code (reference) G03C 3/00 G03C 3/00 560Z 590 590E 590F // B29K 67:00 B29K 67:00 C08L 67:04 C08L 67:04 F-term (Reference) 4F070 AA47 AB09 BA10 BB06 4F071 AA43 AG29 AH12 AH19 BB05 BB06 BC01 BC07 4F201 AA24 BA04 BA07 BC03 BC10 BD04 BK13 BK43 BK75 BN03 BN11 BN36 BR01 BR15 BR50

Claims (1)

【特許請求の範囲】 【請求項1】ポリ乳酸を主成分とする成形材料を溶融し
て成形するに際し、溶融した成形材料と超臨界状態の気
体を接触させてから賦形し、得られる成形品を、気体の
臨界圧力以上の圧力下に該成形材料のガラス転移温度以
下となるまで冷却して成形材料を結晶化させる工程を有
する樹脂成形品の製造方法。
[Claims] [Claim 1] Molding obtained by molding a molding material containing polylactic acid as a main component by molding after bringing the molten molding material into contact with a gas in a supercritical state A method for producing a resin-molded article comprising a step of cooling the article under a pressure equal to or higher than the critical pressure of the gas until the temperature falls below the glass transition temperature of the molding material to crystallize the molding material.
JP2002038359A 2002-02-15 2002-02-15 Method for manufacturing resin molded product Withdrawn JP2003236944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038359A JP2003236944A (en) 2002-02-15 2002-02-15 Method for manufacturing resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038359A JP2003236944A (en) 2002-02-15 2002-02-15 Method for manufacturing resin molded product

Publications (1)

Publication Number Publication Date
JP2003236944A true JP2003236944A (en) 2003-08-26

Family

ID=27779699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038359A Withdrawn JP2003236944A (en) 2002-02-15 2002-02-15 Method for manufacturing resin molded product

Country Status (1)

Country Link
JP (1) JP2003236944A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276573A (en) * 2005-03-30 2006-10-12 Sanyo Chem Ind Ltd Method of manufacturing resin for rotary optical element
WO2009035101A1 (en) 2007-09-12 2009-03-19 Kao Corporation Process for production of injection-molded article of polylactic acid resin
JP2009083484A (en) * 2007-09-12 2009-04-23 Kao Corp Manufacturing method of injection-molded article of polylactic acid resin
JP2009083485A (en) * 2007-09-12 2009-04-23 Kao Corp Manufacturing method of injection-molded article of polylactic acid resin
JP2009255432A (en) * 2008-04-18 2009-11-05 Kao Corp Method for manufacturing polylactide resin injection molding
JP2009286813A (en) * 2008-05-27 2009-12-10 Kao Corp Production method of polylactic acid resin injection molded article
JP2009286812A (en) * 2008-05-27 2009-12-10 Kao Corp Production method of polylactic acid resin injection molded article
JP2010006041A (en) * 2008-05-26 2010-01-14 Kao Corp Method for producing article of injection-molded article of polylactic acid resin
JP2010006040A (en) * 2008-05-26 2010-01-14 Kao Corp Method for producing injection-molded article of polylactic acid resin

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276573A (en) * 2005-03-30 2006-10-12 Sanyo Chem Ind Ltd Method of manufacturing resin for rotary optical element
JP4530427B2 (en) * 2007-09-12 2010-08-25 花王株式会社 Method for producing polylactic acid resin injection molded body
JP2009083484A (en) * 2007-09-12 2009-04-23 Kao Corp Manufacturing method of injection-molded article of polylactic acid resin
JP2009083485A (en) * 2007-09-12 2009-04-23 Kao Corp Manufacturing method of injection-molded article of polylactic acid resin
WO2009035101A1 (en) 2007-09-12 2009-03-19 Kao Corporation Process for production of injection-molded article of polylactic acid resin
JP4530426B2 (en) * 2007-09-12 2010-08-25 花王株式会社 Method for producing polylactic acid resin injection molded body
US8062574B2 (en) 2007-09-12 2011-11-22 Kao Corporation Process for production of injection-molded article of polylactic acid resin
KR101427127B1 (en) 2007-09-12 2014-08-07 가오 가부시키가이샤 Process for production of injection-molded article of polylactic acid resin
JP2009255432A (en) * 2008-04-18 2009-11-05 Kao Corp Method for manufacturing polylactide resin injection molding
JP2010006041A (en) * 2008-05-26 2010-01-14 Kao Corp Method for producing article of injection-molded article of polylactic acid resin
JP2010006040A (en) * 2008-05-26 2010-01-14 Kao Corp Method for producing injection-molded article of polylactic acid resin
JP2009286813A (en) * 2008-05-27 2009-12-10 Kao Corp Production method of polylactic acid resin injection molded article
JP2009286812A (en) * 2008-05-27 2009-12-10 Kao Corp Production method of polylactic acid resin injection molded article

Similar Documents

Publication Publication Date Title
US8268901B2 (en) Coated particulate expandable polylactic acid
JP3217240B2 (en) Polylactic acid based molded body
JP2003236944A (en) Method for manufacturing resin molded product
JP3473714B2 (en) Heat-resistant sheet comprising lactic acid-based polymer and method for producing molded article
JP2003253009A (en) Polylactic acid based molded product and production method therefor
JP4005339B2 (en) Biodegradable garbage bag
JPWO2007142106A1 (en) Polylactic acid heat-resistant sheet
JPH115849A (en) Resin composition and its molded product
US6462105B1 (en) Aliphatic polyester composition for masterbatch and process for producing aliphatic polyester film with the composition
JP2004269765A (en) Molded resin article
JP2003183483A (en) Biodegradable fertilizer bag
US8524830B2 (en) Resin composition and resin molded product
JP2011241347A (en) Polylactic acid-based resin composition, polylactic acid-based heat-resistant sheet and molded body
JP3472644B2 (en) L-lactic acid polymer composition, molded product and film
JP2005029601A (en) Injection molding material, its manufacturing method and injection molded article
EP1281724B1 (en) Biodegrable resin molded article and production method thereof
JP4240358B2 (en) Resin molded product and manufacturing method thereof
JP2002012674A (en) Aliphatic polyester composition for master batch and method for producing aliphatic polyester film using the composition
JP2004338185A (en) Polylactic acid resin molded product and its manufacturing method
JP2015113442A (en) Polylactic acid-based resin composition and molded body composed of the same
JP2004330478A (en) Blow molded product comprising polylactic acid resin and its manufacturing method
JP2002060605A (en) Lactic acid-based polymer molded product
JP2004059887A (en) Polylactic resin molded product
US20230339168A1 (en) Method for manufacturing polyester film for embossing
JP2918724B2 (en) Manufacturing method of molding material for optical molded products

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510