JP2003229124A - Positive active material for non-aqueous lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery using the same - Google Patents

Positive active material for non-aqueous lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery using the same

Info

Publication number
JP2003229124A
JP2003229124A JP2002024025A JP2002024025A JP2003229124A JP 2003229124 A JP2003229124 A JP 2003229124A JP 2002024025 A JP2002024025 A JP 2002024025A JP 2002024025 A JP2002024025 A JP 2002024025A JP 2003229124 A JP2003229124 A JP 2003229124A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
slurry
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002024025A
Other languages
Japanese (ja)
Inventor
Fumi Inada
ふみ 稲田
Motoe Nakajima
源衛 中嶋
Teruo Uchikawa
晃夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002024025A priority Critical patent/JP2003229124A/en
Publication of JP2003229124A publication Critical patent/JP2003229124A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a positive active material for a non-aqueous lithium secondary battery that is made of fine and uniformly dispersed spherical particles without having impurities and has high purity, and its positive active material, and a secondary battery. <P>SOLUTION: In the manufacturing process of a positive active material that is a composite oxide of a transitional metal compound and a lithium compound, a grinding process by a wet jet-mill is provided. For example, it comprises a first wet jet-mill process in which, by measuring by a prescribed ratio lithium carbonate and cobalt oxide and making a slurry by adding water to these and transferring by high pressure the slurry into a nozzle arranged facing each other in the pressure container from the facing flow passage, and by making the facing flows of these slurries mutually collide and merge, the material is ground and made into particulates, and a second wet jet-mill process in which after the drying 1, firing 1 and grinding, water is added again to the complex oxide and a slurry is made, and this is again wet ground, and then by drying 2, firing 2 and grinding, the positive active material is manufactured. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムと遷移金
属の複合酸化物、特にコバルト酸リチウム或いはマンガ
ン酸リチウムを用いたリチウム二次電池用正極活物質の
製造方法及びその正極活物質並びにこれら製造方法と正
極活物質を用いたリチウム二次電池に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery using a composite oxide of lithium and a transition metal, in particular lithium cobalt oxide or lithium manganate, the positive electrode active material and the production thereof. The present invention relates to a lithium secondary battery using a method and a positive electrode active material.

【0002】[0002]

【従来の技術】近年、携帯電話やノ−ト型コンピュ−タ
−の高性能化及び急激な普及に伴って、これらに用いる
二次電池に関して小型、軽量化、高容量の要望が高まっ
てきている。リチウム二次電池はニッケルカドミウム電
池、ニッケル水素電池に比べて、エネルギ−密度が高
く、上記の分野で急速に普及している。またEVや電力
貯蔵の分野でも期待されている。リチウム二次電池は正
極、負極およびセパレータを容器内に配置し、有機溶媒
による非水電解液を充たして構成されている。正極はア
ルミニウム箔等の集電体に正極活物質を塗布し加圧成形
したものである。このリチウム二次電池の正極活物質と
しては、α-NaFeO2構造を有するコバルト酸リチウム(Li
CoO2)、ニッケル酸リチウム(LiNiO2)、スピネル型構造
を有するマンガン酸リチウム(LiMn2O4)などに代表され
るようなリチウムと遷移金属の複合酸化物(以下、リチ
ウム遷移金属酸化物と言うことがある。)の粉体が主と
して用いられ、例えば特開平8−17471号公報には
その製法が詳しく開示されている。これら正極活物質の
合成は一般にリチウム化合物(Li2CO3、LiOH等)粉末と遷
移金属化合物(MnO2、 CoO、 NiO等)粉末を混合し、乾
燥、焼成した後、解砕してリチウム遷移金属酸化物とす
る方法が広く採用されている。正極活物質を集電体に塗
布する際には、正極活物質に重量比で数%〜数十%程度
の炭素粉を混ぜ、さらにPVdF(ポリフッ化ビリニデ
ン)、PTFE(ポリテトラフルオロエチレン)等の結
着材と混練してペースト状にして集電体箔上に厚み20
?μm〜200μmに塗布、乾燥、プレス工程を経て正
電極が作られている。
2. Description of the Related Art In recent years, with the high performance and rapid spread of mobile phones and notebook computers, there has been an increasing demand for compact, lightweight and high capacity secondary batteries used therein. There is. Lithium secondary batteries have higher energy density than nickel-cadmium batteries and nickel-hydrogen batteries, and are rapidly spreading in the above fields. It is also expected in the fields of EV and electric power storage. A lithium secondary battery is configured by arranging a positive electrode, a negative electrode and a separator in a container and filling a non-aqueous electrolytic solution with an organic solvent. The positive electrode is obtained by applying a positive electrode active material to a current collector such as an aluminum foil and pressure-molding it. The positive electrode active material of the lithium secondary battery, lithium cobalt oxide having alpha-NaFeO 2 structure (Li
CoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate having a spinel structure (LiMn 2 O 4 ) and other composite oxides of lithium and transition metals (hereinafter referred to as lithium transition metal oxides and Is mainly used, and the manufacturing method thereof is disclosed in detail, for example, in JP-A-8-17471. These positive electrode active materials are generally synthesized by mixing a lithium compound (Li 2 CO 3 , LiOH, etc.) powder with a transition metal compound (MnO 2, CoO, NiO, etc.) powder, drying and firing, and then crushing to produce a lithium transition The method of using a metal oxide is widely adopted. When the positive electrode active material is applied to the current collector, the positive electrode active material is mixed with carbon powder of several% to several tens% by weight, and PVdF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), etc. Kneaded with the binder of the above to form a paste and has a thickness of 20 on the collector foil.
A positive electrode is formed by applying, drying, and pressing steps to a thickness of? m to 200 m.

【0003】また、正極活物質は、電気伝導率が10
−1〜10−6S/cmで一般の導体と比べ低く、ア
ルミニウム集電体と正極活物質間の電気伝導度および電
気的接触状況は、電池のサイクル特性、放電レート特性
に大きな影響を与える。そこで、アルミニウム集電体と
正極活物質間もしくは活物質相互間の電気伝導率を更に
高めるように、正極活物質よりも電気伝導率の高い炭素
粉等の導電助材が使用されることが多い。ここで、正極
活物質を集電体箔に塗布形成した後の正極活物質の粒形
態を見ると、活物質粒子はサブミクロンオーダーの一次
粒子と一次粒子が凝集した二次粒子から成っている。主
に二次粒子で構成され、その粒形態は様々な大きさと形
状を持ち、さらに凝集の仕方により二次粒子径も0.1
?μm〜100?μm程度のバラツキがあり、その分布に
も均一性が見られなかった。
Further, the positive electrode active material has an electric conductivity of 10
−1 to 10 −6 S / cm 2 which is lower than that of a general conductor, and the electrical conductivity and electrical contact between the aluminum current collector and the positive electrode active material have a great influence on the cycle characteristics and discharge rate characteristics of the battery. give. Therefore, in order to further increase the electric conductivity between the aluminum current collector and the positive electrode active material or between the active materials, a conductive auxiliary material such as carbon powder having a higher electric conductivity than the positive electrode active material is often used. . Here, looking at the particle morphology of the positive electrode active material after coating and forming the positive electrode active material on the current collector foil, the active material particles are composed of primary particles of submicron order and secondary particles in which primary particles are aggregated. . Mainly composed of secondary particles, the particle morphology has various sizes and shapes, and the secondary particle size is 0.1 due to the way of aggregation.
There was a variation of about 100 μm to 100 μm, and the distribution was not even.

【0004】[0004]

【発明が解決しようとする課題】電池容量は基本的に、
電池容量=正極活物質の重量あたりの容量(mAh/
g)×充填性(g/cm)で表される。即ち、一つは活
物質自身の高容量化であり、これは材料の高純度化に拠
るところが大きい。また、充填性は電極の高密度化を意
味し、これは微細粒子の球状化などの均一化に拠るとこ
ろが大きい。しかしながら、前者については、原料の混
合粉砕工程での不純物混入の問題が一つにある。例え
ば、リチウム遷移金属酸化物を合成するには、遷移金属
化合物とリチウム化合物を混合した後、乾燥し焼成する
方法がとられる。ここで混合度を上げて反応性を高める
目的でメディアと呼ばれる粉砕媒体を用いたボールミル
を使用することが多い。しかし、ボールミルを用いた場
合、メディア同士の衝突等によりメディアが摩耗して、
メディアの摩耗粉が不純物として材料中に混入する。混
入量は多ければ1wt%にもなり、この様な不純物が正
極活物質中に混入した場合は、焼成の妨げとなり、粒成
長を阻害するだけでなく、不純物が正極材中に残存する
ことで正極材中のコバルト酸リチウム等の割合が減少
し、容量低下の原因となる。従来の混合粉砕手段は、こ
のようなメディア媒体型が主に用いられるが、この他に
は攪拌型、摩粉型、超音波型等の混合方法もある。しか
しながら、何れも不純物の混入は少なからず発生するも
のであり、また処理効率や作業性、安全面等でも問題が
あった。これらのことから粉砕工程において粉砕媒体か
らの不純物混入量が少ない粉砕方法、あるいは粉砕媒体
を使用しない粉砕方法を検討する必要があった。
Basically, the battery capacity is
Battery capacity = capacity per weight of positive electrode active material (mAh /
g) × fillability (g / cm 3 ). That is, one is to increase the capacity of the active material itself, which largely depends on the purification of the material. Further, the filling property means the densification of the electrode, which largely depends on the homogenization such as spheroidization of fine particles. However, in the former case, there is one problem that impurities are mixed in the raw material mixing and grinding process. For example, in order to synthesize a lithium transition metal oxide, a method of mixing a transition metal compound and a lithium compound, followed by drying and firing is used. Here, a ball mill using a grinding medium called a medium is often used for the purpose of increasing the degree of mixing and increasing the reactivity. However, when a ball mill is used, the media wear due to collisions between media,
Abrasion powder of media is mixed in the material as an impurity. If the impurities are mixed in the positive electrode active material as much as 1% by weight, it hinders firing and hinders grain growth, and the impurities remain in the positive electrode material. The proportion of lithium cobalt oxide, etc. in the positive electrode material decreases, causing a decrease in capacity. As the conventional mixing and pulverizing means, such a media medium type is mainly used, but there are other mixing methods such as a stirring type, a grinding type and an ultrasonic type. However, in all cases, impurities are not a little generated, and there are problems in processing efficiency, workability, safety and the like. For these reasons, it was necessary to consider a pulverizing method in which the amount of impurities mixed from the pulverizing medium is small in the pulverizing step, or a pulverizing method not using the pulverizing medium.

【0005】また、後者については、上述したように正
極活物質は、粒子径がサブミクロンオーダーの一次粒子
が凝集した二次粒子から主に構成されている。このため
一次粒子の段階で粒径や分布にばらつきがあると、二次
粒子の粒径や粒度分布にも広がりが生じ、形状もさまざ
まで一定でない。粒子形状が一定でない粉末は、粒子間
の摩擦抵抗が大きく、流動性が乏しいため充填性が悪く
なる。従って、逆に言えば充填性を向上するには微細で
均一な粒子であることが望ましい。例えば、球状粒子は
望ましいものであるが球状粒子を得る手段としては、デ
ィスク式スプレードライヤを用いた噴霧乾燥法(特開2
000−223118号公報)等が提案されている。し
かしながら、得られた球状粒子の断面を観察すると図6
に示すようにほぼ球状を呈してはいるが、中空でその内
部には多くの空洞部があることが分かる。空洞部は電解
液が内部に通ずるためには必要ではあるが、過度にある
と球状粒子自体の密度が低くなり、その空洞部を持った
まま電極に塗布されてしまうことから電極密度が低く充
放電容量の低下に繋がり望ましくない。
Regarding the latter, as described above, the positive electrode active material is mainly composed of secondary particles in which primary particles having a particle size of submicron order are aggregated. Therefore, if there are variations in the particle size and distribution at the primary particle stage, the particle size and particle size distribution of the secondary particles also expand, and the shapes are various and not uniform. A powder having a non-uniform particle shape has a large frictional resistance between particles and poor fluidity, resulting in poor filling properties. Therefore, conversely, it is desirable that the particles are fine and uniform in order to improve the filling property. For example, spherical particles are desirable, but as a means for obtaining spherical particles, a spray-drying method using a disc-type spray dryer (JP-A No. 2
000-223118) and the like have been proposed. However, when observing the cross section of the obtained spherical particles, FIG.
Although it is almost spherical as shown in Fig. 3, it can be seen that it is hollow and there are many hollow parts inside. The cavity is necessary for the electrolytic solution to pass through inside, but if it is excessive, the density of the spherical particles themselves will be low, and the electrode will be applied while holding the cavity. This is not desirable because it leads to a decrease in discharge capacity.

【0006】以上のことより、本発明の目的は、コバル
ト酸リチウム等のリチウム遷移金属酸化物を用いて高容
量で充放電サイクル特性に優れた非水系リチウム二次電
池を提供せんとするもので、不純物の混入がなく高純度
のリチウム遷移金属酸化物となし、微細でかつ均一に分
散した球状粒子を得ることが出来る非水系リチウム二次
電池用正極活物質の製造方法及びその正極活物質を提供
することである。
From the above, it is an object of the present invention to provide a non-aqueous lithium secondary battery having a high capacity and excellent charge / discharge cycle characteristics using a lithium transition metal oxide such as lithium cobalt oxide. A method for producing a positive electrode active material for a non-aqueous lithium secondary battery, which is a high-purity lithium transition metal oxide free of impurities and is capable of obtaining finely and uniformly dispersed spherical particles, and a positive electrode active material thereof. Is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、メディア等の
粉砕媒体を用いない直接的な粉砕混合方法を採用するこ
とにより、不純物の混入を無くしてリチウム遷移金属酸
化物の高純度化を図り、同時に微細かつ均一に分散した
一次粒子を形成することにより充填性の良好な球状の二
次粒子を得るものである。ここで得られた球状の二次粒
子断面を観察すると、図5に示すように図6の従来のメ
ディアを用いた粉砕による球状粒子よりも空洞部が少な
くなっており、これらにより電極密度を高めて、充放電
容量が向上することを見出し、本発明に至ったものであ
る。
According to the present invention, by adopting a direct pulverizing and mixing method which does not use a pulverizing medium such as a medium, it is possible to eliminate impurities and to purify a lithium transition metal oxide with high purity. At the same time, by forming fine and uniformly dispersed primary particles, spherical secondary particles having a good filling property are obtained. When observing the cross section of the spherical secondary particles obtained here, as shown in FIG. 5, there are fewer cavities than the spherical particles obtained by crushing using the conventional media shown in FIG. 6, which increases the electrode density. As a result, they have found that the charge / discharge capacity is improved and have reached the present invention.

【0008】即ち、本発明は遷移金属化合物とリチウム
化合物を混合し、焼成して製造される非水系リチウム二
次電池用正極活物質において、湿式ジェットミルを用い
た混合又は/及び粉砕工程を有して製造され、粒径が1
〜20μmの球状粒子からなることを特徴とする非水系
リチウム二次電池用正極活物質である。また、前記球状
粒子は一次粒子が凝集した二次粒子からなり、空隙率が
20%以下であることを特徴とする非水系リチウム二次
電池用正極活物質である。ここで、さらに望ましくは空
隙率が10%以下である。本発明において、リチウム遷
移金属酸化物としては、コバルト酸リチウムやスピネル
型マンガン酸リチウムが適当である。特に、コバルト酸
リチウムを正極活物質として用いた場合、その二次電池
の充放電特性が特に大きくなる。他方、安価なマンガン
を用いているスピネル型マンガン酸リチウムを正極活物
質として用いた場合でも従来に比して大きな充放電特性
が得られる。
That is, the present invention has a mixing and / or pulverizing step using a wet jet mill in a positive electrode active material for a non-aqueous lithium secondary battery, which is produced by mixing a transition metal compound and a lithium compound and firing the mixture. Manufactured with a particle size of 1
It is a positive electrode active material for a non-aqueous lithium secondary battery, characterized in that it is composed of spherical particles having a particle size of 20 μm. The spherical particles are secondary particles formed by aggregating primary particles, and have a porosity of 20% or less, which is a positive electrode active material for a non-aqueous lithium secondary battery. Here, the porosity is more preferably 10% or less. In the present invention, lithium cobalt oxide or spinel type lithium manganate is suitable as the lithium transition metal oxide. In particular, when lithium cobalt oxide is used as the positive electrode active material, the charge / discharge characteristics of the secondary battery become particularly large. On the other hand, even when spinel type lithium manganate, which uses inexpensive manganese, is used as the positive electrode active material, large charge / discharge characteristics can be obtained as compared with the conventional case.

【0009】また、本発明のリチウム二次電池用正極活
物質の製造方法は、遷移金属化合物とリチウム化合物の
複合酸化物である正極活物質を製造する過程に、湿式ジ
ェットミルによる混合又は/及び粉砕工程を有すること
を特徴とするものである。例えば、遷移金属化合物とリ
チウム化合物を所定割合で秤量し、この混合物を湿式ジ
ェットミルにより湿式混合・粉砕する第1の湿式ジェッ
トミル処理工程と、その後、乾燥、焼成、解砕した複合
酸化物を再度湿式ジェットミルにより粉砕する第2の湿
式ジェットミル処理工程とを有するものである。尚、こ
の湿式ジェットミル処理は、所望の粒径が得られるまで
複数回にわたって繰り返して行うことが出来る。ここで
前記湿式ジェットミル処理とは、前記秤量後の混合物に
溶媒液(水)を加えてスラリーとし、圧力容器内に対向
配置されたノズルへ前記スラリーを対向する流路から高
圧で圧送し、当該スラリーの対向流を相互に衝突、合流
させることにより原料を粉砕、微粒化するものである。
Further, the method for producing a positive electrode active material for a lithium secondary battery according to the present invention comprises mixing with a wet jet mill and / or mixing in a process of producing a positive electrode active material which is a composite oxide of a transition metal compound and a lithium compound. It is characterized by having a crushing step. For example, a first wet jet mill treatment step in which a transition metal compound and a lithium compound are weighed at a predetermined ratio, and the mixture is wet mixed and pulverized by a wet jet mill, and then a dried, fired, and crushed composite oxide is mixed. And a second wet jet mill treatment step of pulverizing with a wet jet mill again. The wet jet mill treatment can be repeated a plurality of times until the desired particle size is obtained. Here, the wet jet mill treatment means that a solvent liquid (water) is added to the weighed mixture to make a slurry, and the slurry is pressure-fed from a flow path facing the nozzle to a nozzle arranged opposite in a pressure vessel, The raw materials are crushed and atomized by colliding and joining the opposite flows of the slurry.

【0010】また、本発明の正極活物質の製造方法で
は、前記第1の湿式ジェットミル処理工程の後に第1の
乾燥工程と焼成工程を、さらに前記第2の湿式ジェット
ミル処理工程の後に第2の乾燥工程と焼成工程を有して
おり、少なくとも第2の乾燥工程を4流体ノズルを用い
た噴霧乾燥となし、これにより1〜20μmの球状粒子
を形成することを特徴としている。さらに、前記第1及
び/又は第2の焼成工程は、大気中あるいは酸素雰囲気
中で700〜1100℃で行うことが望ましく、この焼
成は複数回にわたって行っても良い。700℃未満の温
度で焼成した場合は焼結がほとんど進行せず、また11
00℃を超える温度で焼成した場合は粒子同士がくっつ
いて解砕できなくなるためである。また、スピネル型マ
ンガン酸リチウムの場合は、焼成を900℃以上で行う
と、結晶格子に歪を生じてサイクル特性が劣化するた
め、焼成後に大気中あるいは酸素雰囲気中で500〜7
00℃の熱処理を行うことが望ましい。
In the method for producing a positive electrode active material of the present invention, a first drying step and a firing step are performed after the first wet jet mill treatment step, and a second drying step and a firing step are performed after the second wet jet mill treatment step. The method is characterized in that it has two drying steps and a firing step, and that at least the second drying step is spray drying using a four-fluid nozzle, whereby spherical particles of 1 to 20 μm are formed. Furthermore, it is desirable that the first and / or second firing steps be performed at 700 to 1100 ° C. in the air or an oxygen atmosphere, and this firing may be performed multiple times. Sintering hardly progresses when fired at a temperature lower than 700 ° C.
This is because when the firing is performed at a temperature higher than 00 ° C., the particles stick to each other and cannot be crushed. Further, in the case of spinel type lithium manganate, if firing is performed at 900 ° C. or higher, distortion occurs in the crystal lattice and the cycle characteristics are deteriorated.
It is desirable to perform heat treatment at 00 ° C.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。なお、本発明は以下に述べる実施例に
限定されるものではない。先ず、図1のフローチャート
により本発明の非水系リチウム二次電池用正極活物質の
製造方法を説明する。まず工程1で原料として、焼成に
よって酸化物となる遷移金属、例えばコバルト、ニッケ
ル、マンガンの化合物(例えばCo3O4, CoO, Co(OH)2, N
iO, MnO2, Mn 3O4, Mn2O3, MnCO3)と焼成によって酸化
物となるリチウム化合物(例えばLi2CO 3, LiOH, LiCl)
とを所定の割合で秤量する。これらの原料粉末を工程2
で溶媒液である水を加えて攪拌してスラリーを作製し、
以下で説明する湿式ジェットミル(第1の湿式ジェット
ミル処理)を行い原料を混合及び粉砕する。この粉砕は
所望の粒子径に近づくまで繰り返し湿式ジェットミル処
理を行ってもよい。この湿式ジェットミル処理の処理条
件としては、処理圧力を50〜300MPaとすること
が望ましい。処理圧力が50MPa以下の場合、粉末を
粉砕する能力が劣る。また300MPaを超える場合
は、巨大な装置が必要となり実作業が困難となる。ま
た、処理流量については装置のサイズにより異なる為、
装置の処理能力の範囲で適切な条件を設定することが望
ましい。以下で説明する第2の湿式ジェットミル処理に
おいても、同様である。尚、スラリーを作製する際に分
散剤を添加してもよい。湿式ジェットミル処理後のスラ
リーを工程3においてスプレードライヤで噴霧乾燥さ
せ、1〜100μm程度の顆粒を作製する。噴霧乾燥と
は、微粒化装置を用いて乾燥室に微粒化したスラリーを
供給し、乾燥させて球状粒子を得る方法である。ここで
球状粒子を作製する方法としては、例えば回転する円盤
(ディスク)上にスラリーを滴下することにより微粒化
するディスク式と、ノズルエッジ先端でスラリーと気体
を衝突させて液滴となすノズル式がある。ノズル式の中
には加圧ノズル式、2流体ノズル式、4流体ノズル式が
あり、計4種類の球状化の方法がある。しかし、従来用
いられてきたディスク式、加圧ノズル式、2流体ノズル
式の3種類の方法では、一般に30μm以上の球状粒子
しか製造できなかった。しかしながら、以下で説明する
4流体ノズルを用いれば1〜20μmの球状粒子が製造
可能となる。なお、噴霧乾燥前には、スラリーにPVA
溶液を固形分に換算して1wt%前後添加することが好
ましい。次に工程4で焼成を行う。この焼成によって一
次粒子が凝集した二次粒子からなる複合酸化物となり、
いわゆるスピネル型マンガン酸リチウム、コバルト酸リ
チウムなどリチウム遷移金属酸化物となる。ここでの焼
成は、大気中や酸素雰囲気中で700℃〜1100℃で
10分から24時間行う。この焼成は2回以上行っても
良い。そして、焼成後の粒子の粒子径を調整する場合に
は、焼成後工程5においてライカイ機などで解砕(粉
砕)し、さらに工程6にて篩い分けを行う。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will now be described with reference to the drawings.
I will explain. The present invention is not limited to the examples described below.
It is not limited. First, the flowchart of FIG.
Of the positive electrode active material for a non-aqueous lithium secondary battery of the present invention
The manufacturing method will be described. First, in step 1, as a raw material,
Therefore, transition metals that become oxides, such as cobalt and nickel
And manganese compounds (eg Co3OFour, CoO, Co (OH)2, N
iO, MnO2, Mn 3OFour, Mn2O3, MnCO3) And oxidize by firing
Lithium compound (eg Li2CO 3, LiOH, LiCl)
And are weighed at a predetermined ratio. Step 2 of these raw material powders
Then, add water as a solvent liquid and stir to prepare a slurry,
Wet jet mill described below (first wet jet
Milling) to mix and crush the raw materials. This crush
Repeated wet jet mill treatment until the desired particle size is approached.
You may make sense. This wet jet mill process strip
As a matter, the processing pressure should be 50 to 300 MPa.
Is desirable. If the processing pressure is 50 MPa or less, powder
Poor ability to crush. When it exceeds 300 MPa
Requires a huge device, which makes actual work difficult. Well
Also, since the processing flow rate depends on the size of the device,
It is desirable to set appropriate conditions within the processing capacity of the device.
Good For the second wet jet mill process described below
The same applies to the above. When preparing the slurry,
A powder may be added. Slur after wet jet mill treatment
Lee is spray dried in step 3 with a spray dryer.
To prepare granules of about 1 to 100 μm. Spray drying and
Uses the atomizer to put the atomized slurry into the drying chamber.
It is a method of supplying and drying to obtain spherical particles. here
As a method for producing spherical particles, for example, a rotating disk
Atomization by dropping the slurry onto the (disk)
Disk type and slurry and gas at the nozzle edge tip
There is a nozzle type that collides with each other to form a droplet. Inside the nozzle type
There are pressure nozzle type, 2-fluid nozzle type and 4-fluid nozzle type.
There are four types of spheroidizing methods. But for conventional
Disc type, pressure nozzle type, two-fluid nozzle that have been used
In the three methods of the formula, spherical particles of 30 μm or more are generally used.
It could only be manufactured. However, as explained below
1- to 20-μm spherical particles can be produced using a 4-fluid nozzle
It will be possible. Before spray drying, PVA was added to the slurry.
It is preferable to add about 1 wt% of the solution converted to solid content.
Good Next, in step 4, firing is performed. By this firing
A composite oxide composed of secondary particles formed by aggregating secondary particles,
So-called spinel type lithium manganate, cobalt oxide
It becomes a lithium transition metal oxide such as titanium. Grilled here
The temperature is 700 ° C to 1100 ° C in the air or oxygen atmosphere.
Do 10 minutes to 24 hours. Even if this firing is done more than once
good. And when adjusting the particle size of the particles after firing
Is crushed with a raikai machine in the post-baking step 5 (powder
And sieving in step 6.

【0012】本発明ではこうして得られたスピネル型マ
ンガン酸リチウム、コバルト酸リチウムなどリチウム遷
移金属酸化物に、工程7において再度水を加え、攪拌し
てスラリーを作製し、再び湿式ジェットミル(第2の湿
式ジェットミル処理)を行い、前記酸化物を湿式粉砕す
る。この粉砕では、所望の粒子径に近づくまで繰り返し
湿式ジェットミル処理を行う。次に、工程8でこのスラ
リーを4流体ノズルを用いたスプレードライヤにより噴
霧乾燥させて、平均粒径1〜20μmの球状粒子を作製
する。工程3における噴霧乾燥はディスク式あるいはノ
ズル式のいずれかのスプレードライヤで足りるが、第2
の乾燥工程では4流体ノズルを用いた噴霧乾燥を行うこ
とが極めて有効である。そして、噴霧乾燥前には、スラ
リーにPVA溶液を固形分に換算して1wt%前後添加
することが好ましい。工程8で得られた球状粒子を、工
程9で再び焼成する。この焼成は第1の焼成1と同様に
大気中や酸素中700℃〜1100℃で10分から24
時間行うものである。この焼成2によって一次粒子が凝
集したほぼ中実球形状の二次粒子が形成される。この焼
成2は2回以上行ってもよい。また、スピネル型マンガ
ン酸リチウムの場合は、この焼成2のあと更に大気中あ
るいは酸素中で500〜700℃で熱処理を行う。そし
て、焼成後の粒子の粒子径を調整する場合には、焼成
後、工程10においてライカイ機などで解砕(粉砕)
し、さらに工程11にて篩い分けをして平均粒径10μ
m程度の球状の二次粒子を分級することが望ましく、こ
の様な工程を経て正極材料としたものである。
In the present invention, water is again added in step 7 to the lithium transition metal oxide such as spinel type lithium manganate and lithium cobalt oxide thus obtained, and the mixture is stirred to prepare a slurry, and the wet jet mill (second Wet jet mill treatment) to wet pulverize the oxide. In this pulverization, the wet jet mill treatment is repeated until the desired particle size is approached. Next, in step 8, this slurry is spray-dried by a spray dryer using a 4-fluid nozzle to produce spherical particles having an average particle size of 1 to 20 μm. For the spray drying in step 3, either a disc type or a nozzle type spray dryer is sufficient.
It is extremely effective to perform spray drying using a four-fluid nozzle in the drying process of. Then, before spray drying, it is preferable to add about 1 wt% of the PVA solution to the slurry in terms of solid content. The spherical particles obtained in step 8 are fired again in step 9. This firing is performed in the air or oxygen at 700 ° C. to 1100 ° C. for 10 minutes to 24 as in the first firing 1.
It's something to do on time. By this firing 2, secondary particles having a substantially solid spherical shape in which primary particles are aggregated are formed. This firing 2 may be performed twice or more. In the case of spinel type lithium manganate, after this firing 2, heat treatment is further performed in the air or oxygen at 500 to 700 ° C. Then, in the case of adjusting the particle size of the particles after firing, in the step 10 after firing, crushing (grinding) with a liquor machine or the like
And further sifted in step 11 to obtain an average particle size of 10 μm.
It is desirable to classify spherical secondary particles of about m, which is used as a positive electrode material through such a process.

【0013】さて次に、湿式ジェットミルについて説明
する。まずジェットミルには乾式と湿式のものが知られ
ているが、本発明の目的を達成するためには湿式ジェッ
トミルを用いることが必須である。即ち、乾式ジェット
ミルは、気相流内で被処理物質の粒子同士または粒子と
流路壁との衝突によって粒子を微粒化するものである
が、湿式ジェットミルは、液相流内で被処理物質の粒子
同士または粒子と流路壁との衝突によって粒子を微粒化
するものである。よって、湿式ジェットミルの場合は、
上記衝突による微粒化に加えて液相内で生じるキャビテ
ーションや乱流・剪断等の複合的物理要因も加わり微粒
化が著しく促進される点で好ましいのである。
Next, the wet jet mill will be described. First, a dry type and a wet type are known as jet mills, but it is essential to use a wet jet mill in order to achieve the object of the present invention. That is, the dry jet mill atomizes the particles by colliding the particles of the substance to be treated or the particles with the flow path wall in the gas phase flow, whereas the wet jet mill uses the wet jet mill in the liquid phase flow. The particles are atomized by collision between the particles of the substance or between the particles and the flow path wall. Therefore, in the case of a wet jet mill,
In addition to the atomization due to the collision, complex physical factors such as cavitation, turbulent flow and shearing generated in the liquid phase are also added, which is preferable because atomization is remarkably promoted.

【0014】本発明で言うところの湿式ジェットミルと
は、任意の方法で高速流を発生させ、液体同士または液
体と流路壁との衝突を起こさせると共に、高速流によっ
て生じる乱流・剪断及びキャビテーション効果などを有
効に活用し、被処理原料を微粒化して分散を促進する機
能を備えた装置を総称するものである。具体的には、プ
ランジャーポンプやロータリーポンプ等によって被処理
スラリーをノズルから噴射させ、固定板に高速で衝突さ
せる方式と、噴射される被処理スラリー同士を正面から
衝突させる方式がある。そしてスラリーが流路内のノズ
ルを高速で通過し或いは衝突しながら通過する際に乱流
・剪断を受け、被処理流体中に含まれる原料は破砕され
ると共に、衝突直後に減圧解放されるときにキャビテー
ション効果が生じ、急激な放圧による衝撃を受けて原料
内部からの破砕が起こり、被処理液中の原料は著しく微
粒化されるのである。
The wet jet mill as referred to in the present invention is to generate a high-speed flow by an arbitrary method to cause the liquids to collide with each other or the liquid and the flow path wall, and to generate turbulence and shearing caused by the high-speed flow. This is a general term for a device having a function of effectively utilizing the cavitation effect and the like to atomize the raw material to be treated and promote dispersion. Specifically, there are a method in which the slurry to be treated is jetted from a nozzle by a plunger pump, a rotary pump, or the like so as to collide with a fixed plate at a high speed, and a method in which the jetted slurry to be treated collides from the front. When the slurry passes through the nozzles in the flow path at high speed or undergoes turbulent flow / shear when passing while colliding, the raw materials contained in the fluid to be treated are crushed and released under reduced pressure immediately after the collision. The cavitation effect occurs in the material, and the material is crushed from the inside of the material under the influence of a sudden pressure release, and the material in the liquid to be treated is remarkably atomized.

【0015】この様な湿式ジェットミルとしては、「高
圧ホモジナイザー」として市販されているバルププレー
トによる高速噴射を利用したタイプ(APVゴーリン社
製、ラニー社製、ソアビ社製、日本精機社製など)、ス
リット状に形成した流路内で高速衝突させるタイプ
(「マイクロフルイダイザー」マイクロフルイディクス
社製)、90°位相させて連通せしめた夫々一文字の流
路内で高速衝突を起こさせるタイプ(「ナノマイザー」
ナノマイザー社製)、同一ノズル内で流体同士の衝突回
数を複数回発生させるタイプ(「ナノメーカー」エスジ
ー・エンジニアリング社製)、偏平流路素子内で流体同
士を衝突させるタイプ(「アクア」アクアテック社
製)、或いは、対向するオリフィスから非球面構造の部
屋へ噴出させて衝突させるタイプ(「アルティマイザ
ー」スギノマシン社製)などが挙げられる。それぞれの
装置タイプの特性により、リチウム遷移金属酸化物の分
散効果に多少の差を生じるが、前述したような従来のメ
ディア媒体型をはじめとする分散混合装置を用いた場合
に比べると、密封状態の圧力容器内で、且つエネルギー
密度の高い粉砕方法であるため、不純物の混入が無く、
微粒化が短時間で飛躍的に高い効率で行えることが特徴
である。
As such a wet jet mill, a type utilizing high-speed injection with a valve plate which is commercially available as "high pressure homogenizer" (manufactured by APV Gorin Co., Rani Co., Soavi Co., Nippon Seiki Co., Ltd.) , A type that causes high-speed collision in a slit-shaped flow path ("Microfluidizer" manufactured by Microfluidics Co., Ltd.), a type that causes high-speed collision in the flow path of each letter that is in phase communication with each other by 90 ° phase ((" Nanomizer "
Nanomizer), a type in which fluids collide multiple times in the same nozzle ("Nanomaker" SG Engineering), a type in which fluids collide in a flat flow path element ("Aqua" Aquatech) Or manufactured by Sugino Machine Co., Ltd., or the like, which is ejected from a facing orifice into a chamber having an aspherical structure to collide with it. Although there are some differences in the dispersion effect of the lithium transition metal oxide depending on the characteristics of each device type, compared to the case where the conventional media mixing type and other dispersion mixing devices described above are used, the sealed state is improved. Since it is a crushing method with a high energy density in the pressure vessel of No, there is no mixing of impurities,
The feature is that atomization can be performed with extremely high efficiency in a short time.

【0016】さて、本発明で使用する湿式ジェットミル
のタイプは特に制限されないが、噴射される被処理スラ
リー同士を正面から衝突させる方式が好ましい。そして
下記する実施例では、株式会社スギノマシン製の湿式ジ
ェットミルを用いた。この湿式ジェットミルの概念図を
図2に示す。圧力容器1と、容器内で分岐したスラリー
の流入流路2、3と、中央の合流部6を介して対向配置
したノズル4、5と、合流部6から微粒化したスラリー
原料を取り出す流出流路7とが備わっている。従って、
耐圧容器内で高圧スラリーを2流路に分岐させ、密封状
態で対向配置されたノズル4、5へ向けてスラリーを圧
送することによって、加速されたスラリーが合流部6内
で対向衝突し、粉砕して超微粒子化と分散が行われるタ
イプの湿式ジェットミルである。尚、ここで処理圧力や
流量を制御することにより、リチウム遷移金属酸化物の
粒子径や分散が効率よく行うことができる。
The type of the wet jet mill used in the present invention is not particularly limited, but a method of colliding the jetted slurry to be treated from the front is preferable. In the examples described below, a wet jet mill manufactured by Sugino Machine Limited was used. A conceptual diagram of this wet jet mill is shown in FIG. Pressure vessel 1, slurry inflow channels 2 and 3 branched in the vessel, nozzles 4 and 5 facing each other through a central confluence section 6, and an outflow for extracting atomized slurry raw material from the confluence section 6. It is equipped with road 7. Therefore,
The high-pressure slurry is branched into two flow paths in the pressure vessel, and the slurry is pressure-fed toward the nozzles 4 and 5 that are opposed to each other in a sealed state. It is a wet jet mill of a type in which ultrafine particles are dispersed and dispersed. By controlling the processing pressure and the flow rate here, the particle size and dispersion of the lithium transition metal oxide can be efficiently performed.

【0017】次に、本発明で用いる噴霧乾燥について説
明する。図1の工程8は4流体ノズルを用いたスプレー
ドライヤによる噴霧乾燥であり、図3、図4に示すよう
な4流体ノズルおよび噴霧乾燥装置を用いることができ
る。図3に示した4流体ノズルは、2つのスラリー路1
a、1bと2つの噴霧気体路2a、2bから出た流体が
1点で衝突するノズルエッジ部3とからなっている。よ
って、原料と液体(例えば、水)からなるスラリーを超
高速気体流により薄く引き伸ばし、ノズルエッジ部分で
気体(例えば、空気)を衝突させた衝撃波で霧状の微細
な液滴を形成する装置である。この液滴は表面張力によ
り平均粒子径が数ミクロンの微細な球状粒子となってお
り、これを図4の噴霧乾燥装置により、4流体ノズルで
微粒化した液滴を乾燥室で熱風に接触させ、瞬時に乾燥
することができる。このため、4流体ノズルで作製した
球状の微粒子をそのまま乾燥でき、20μm以下の球状
粒子を安定的に得ることができる。
Next, the spray drying used in the present invention will be described. Step 8 in FIG. 1 is spray drying by a spray dryer using a four-fluid nozzle, and a four-fluid nozzle and a spray drying device as shown in FIGS. 3 and 4 can be used. The four-fluid nozzle shown in FIG.
a and 1b, and the nozzle edge portion 3 on which the fluids discharged from the two spray gas passages 2a and 2b collide at one point. Therefore, in a device that forms thin mist-like liquid droplets by a shock wave generated by colliding a gas (for example, air) at the nozzle edge portion with a slurry composed of a raw material and a liquid (for example, water) thinly drawn by a super-high-speed gas flow. is there. The droplets are fine spherical particles having an average particle diameter of several microns due to surface tension, and the droplets atomized by the four-fluid nozzle are brought into contact with hot air in the drying chamber by the spray dryer of FIG. Can be dried instantly. Therefore, the spherical fine particles produced by the four-fluid nozzle can be dried as they are, and spherical particles of 20 μm or less can be stably obtained.

【0018】以下、正極活物質としてコバルト酸リチウ
ムを用いた実施例について説明する。 (実施例1)図1に従い、Li/Co=1.00となる
ように炭酸リチウムと酸化コバルトを秤量し、これに水
を加えて攪拌してスラリーを作製した。このスラリーを
湿式ジェットミルを用いて処理流量3l/min、処理
圧力245MPaで5回繰り返し処理した。処理後にス
ラリーの粒度分布を測定したところ、平均粒径は2μm
であった。次に、スラリーをスプレードライヤで乾燥さ
せ、得られた乾燥粒子を電気炉中で焼成温度を950
℃、持続時間を4時間として焼成し、ライカイ機にて解
砕を行い、目開き63μmの篩に通して分級した。こう
して得られたコバルト酸リチウムに再び水を加えて攪拌
してスラリーを作製し、再度湿式ジェットミルで処理流
量3l/min、処理圧力245MPaで10回繰り返
し処理した。処理後のスラリーの粒度分布を測定したと
ころ、平均粒径は1μmであった。このスラリーにPV
A溶液を添加した後、4流体ノズルを備えた噴霧乾燥装
置を用いて、噴霧エアー圧力0.2MPa、乾燥温度2
00℃で噴霧乾燥し、球状粒子を得た。得られた球状粒
子を電気炉中で950℃で4時間焼成し、ライカイ機に
て解砕を行い、平均粒径7μmの球状Li−Co複合酸
化物粒子(正極活物質)を合成した。ここで得られた球
状の二次粒子断面を観察したところ、図5に示すように
粒径数μmの一次粒子が密に凝集してほぼ球状のニ次粒
子を構成していることを確認した。この二次粒子の空隙
率を測定したところ9.2%であることが分かった。一
次粒子が凝集して構成するニ次粒子の空隙率とは、二次
粒子の見かけ上の体積に占める空隙体積の割合をいう
が、ここでは二次粒子断面の面積(粒子部分面積と空隙
部分面積の和)に占める空隙面積の割合とした。実際に
は二次粒子断面を走査型電子顕微鏡で観察し、画面上で
粒子部分と空隙部分の面積を測定して空隙率を計算し
た。以下同様に測定した。
Examples using lithium cobalt oxide as the positive electrode active material will be described below. Example 1 According to FIG. 1, lithium carbonate and cobalt oxide were weighed so that Li / Co = 1.00, water was added thereto, and the mixture was stirred to prepare a slurry. This slurry was repeatedly treated 5 times using a wet jet mill at a treatment flow rate of 3 l / min and a treatment pressure of 245 MPa. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm.
Met. Next, the slurry is dried by a spray dryer, and the obtained dried particles are heated in an electric furnace at a firing temperature of 950.
Firing was carried out at a temperature of 4 hours for 4 hours, followed by crushing with a raikai machine and passing through a sieve having a mesh of 63 μm for classification. Water was again added to the lithium cobalt oxide thus obtained and stirred to prepare a slurry, and the slurry was again processed 10 times with a wet jet mill at a processing flow rate of 3 l / min and a processing pressure of 245 MPa. When the particle size distribution of the treated slurry was measured, the average particle size was 1 μm. PV in this slurry
After adding solution A, using a spray dryer equipped with a 4-fluid nozzle, spray air pressure 0.2 MPa, drying temperature 2
Spray drying was performed at 00 ° C to obtain spherical particles. The obtained spherical particles were fired at 950 ° C. for 4 hours in an electric furnace and crushed by a Likai machine to synthesize spherical Li—Co composite oxide particles (positive electrode active material) having an average particle size of 7 μm. As a result of observing the cross section of the spherical secondary particles obtained here, it was confirmed that primary particles having a particle size of several μm were densely aggregated to form almost spherical secondary particles as shown in FIG. . The porosity of the secondary particles was measured and found to be 9.2%. The porosity of the secondary particles formed by aggregating the primary particles refers to the ratio of the void volume to the apparent volume of the secondary particles, but here, the area of the cross section of the secondary particles (particle part area and void part The ratio of the void area to the total area). Actually, the cross section of the secondary particles was observed with a scanning electron microscope, the areas of the particle portions and the void portions were measured on the screen, and the porosity was calculated. The same measurement was performed thereafter.

【0019】(実施例2)実施例1と同様の製造方法を
用いて得た工程8の球状粒子を、焼成2として1000
℃で4時間焼成し、解砕を行い平均粒径8μmの球状L
i−Co複合酸化物粒子を合成した。
(Example 2) The spherical particles of step 8 obtained by using the same manufacturing method as in Example 1 were burned to 1000
Spherical L with average particle size 8μm
i-Co composite oxide particles were synthesized.

【0020】(実施例3)図1に従い、Li/Co=
1.00となるように炭酸リチウムと酸化コバルトを秤
量し、これに水を加えて攪拌してスラリーを作製した。
このスラリーを湿式ジェットミルを用いて処理流量3l
/min、処理圧力245MPaで5回繰り返し処理し
た。処理後にスラリーの粒度分布を測定したところ、平
均粒径は2μmであった。次に、スラリーをスプレード
ライヤで乾燥させ、得られた乾燥粒子を電気炉中で焼成
温度を950℃、持続時間を4時間として焼成し、ライ
カイ機にて解砕を行い、目開き63μmの篩に通して分
級した。こうして得られたコバルト酸リチウムに再び水
を加えて攪拌してスラリーを作製し、再度湿式ジェット
ミルで処理流量3l/min、処理圧力245MPaで
5回繰り返し処理した。処理後のスラリーの粒度分布を
測定したところ、平均粒径は2μmであった。このスラ
リーにPVA溶液を添加した後、4流体ノズルを備えた
噴霧乾燥装置を用いて、噴霧エアー圧力0.2MPa、
乾燥温度200℃で噴霧乾燥し、球状粒子を得た。得ら
れた球状粒子を電気炉中で950℃で4時間焼成し、ラ
イカイ機にて解砕を行い、平均粒径10μmの球状Li
−Co複合酸化物粒子を合成した。
Example 3 According to FIG. 1, Li / Co =
Lithium carbonate and cobalt oxide were weighed so as to be 1.00, water was added thereto, and the mixture was stirred to prepare a slurry.
Processing flow rate of this slurry is 3 l using a wet jet mill
/ Min, the treatment pressure was 245 MPa, and the treatment was repeated 5 times. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm. Next, the slurry is dried with a spray dryer, and the obtained dried particles are fired in an electric furnace at a firing temperature of 950 ° C. for a duration of 4 hours, crushed with a raikai machine, and sieved with a mesh of 63 μm. I passed through and classified. Water was again added to the lithium cobalt oxide thus obtained and stirred to prepare a slurry, and the slurry was again processed 5 times with a wet jet mill at a processing flow rate of 3 l / min and a processing pressure of 245 MPa. When the particle size distribution of the treated slurry was measured, the average particle size was 2 μm. After the PVA solution was added to this slurry, a spray air pressure of 0.2 MPa was obtained using a spray dryer equipped with a 4-fluid nozzle.
Spray drying was performed at a drying temperature of 200 ° C. to obtain spherical particles. The obtained spherical particles were fired at 950 ° C. for 4 hours in an electric furnace and crushed with a Likai machine to obtain spherical Li particles having an average particle size of 10 μm.
-Co composite oxide particles were synthesized.

【0021】(実施例4)実施例3と同様の製造方法を
用いて得た工程8の球状粒子を、1000℃で4時間焼
成し解砕を行い平均粒径12μmの球状Li−Co複合
酸化物粒子を合成した。
(Example 4) The spherical particles of step 8 obtained by using the same manufacturing method as in Example 3 were fired at 1000 ° C for 4 hours to be crushed to obtain spherical Li-Co composite oxide having an average particle diameter of 12 µm. Particles were synthesized.

【0022】(実施例5)図1に従い、Li/Co=
1.00となるように炭酸リチウムと酸化コバルトを秤
量し、これに水を加えて攪拌してスラリーを作製した。
このスラリーを湿式ジェットミルを用いて処理流量3l
/min、処理圧力245MPaで5回繰り返し処理し
た。処理後にスラリーの粒度分布を測定したところ、平
均粒径は2μmであった。次に、スラリーをスプレード
ライヤで乾燥させ、得られた乾燥粒子を電気炉中で焼成
温度を700℃、持続時間を4時間として焼成し、ライ
カイ機にて解砕を行い、目開き63μmの篩に通して分
級した。こうして得られたコバルト酸リチウムに再び水
を加えて攪拌してスラリーを作製し、再度湿式ジェット
ミルで処理流量3l/min、処理圧力245MPaで
3回繰り返し処理した。処理後のスラリーの粒度分布を
測定したところ、平均粒径は1μmであった。このスラ
リーにPVA溶液を添加した後、4流体ノズルを備えた
噴霧乾燥装置を用いて、噴霧エアー圧力0.2MPa、
乾燥温度200℃で噴霧乾燥し、球状粒子を得た。得ら
れた球状粒子を電気炉中で900℃で4時間焼成し、ラ
イカイ機にて解砕を行い、平均粒径7μmの球状Li−
Co複合酸化物粒子を合成した。
Example 5 According to FIG. 1, Li / Co =
Lithium carbonate and cobalt oxide were weighed so as to be 1.00, water was added thereto, and the mixture was stirred to prepare a slurry.
Processing flow rate of this slurry is 3 l using a wet jet mill
/ Min, the treatment pressure was 245 MPa, and the treatment was repeated 5 times. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm. Next, the slurry is dried with a spray dryer, and the obtained dried particles are fired in an electric furnace at a firing temperature of 700 ° C. for a duration of 4 hours, crushed with a raikai machine, and sieved with a mesh of 63 μm. I passed through and classified. Water was again added to the lithium cobalt oxide thus obtained and stirred to prepare a slurry, and the slurry was again processed three times with a wet jet mill at a processing flow rate of 3 l / min and a processing pressure of 245 MPa. When the particle size distribution of the treated slurry was measured, the average particle size was 1 μm. After the PVA solution was added to this slurry, a spray air pressure of 0.2 MPa was obtained using a spray dryer equipped with a 4-fluid nozzle.
Spray drying was performed at a drying temperature of 200 ° C. to obtain spherical particles. The obtained spherical particles were fired at 900 ° C. for 4 hours in an electric furnace and crushed with a Likai machine to obtain spherical Li- particles having an average particle diameter of 7 μm.
Co composite oxide particles were synthesized.

【0023】(実施例6)実施例5と同様の製造方法を
用いて得た工程8の球状粒子を、1000℃で4時間焼
成し解砕を行い平均粒径10μmの球状Li−Co複合
酸化物粒子を合成した。
(Example 6) The spherical particles of step 8 obtained by using the same manufacturing method as in Example 5 were fired at 1000 ° C for 4 hours to be crushed to obtain spherical Li-Co composite oxide having an average particle diameter of 10 µm. Particles were synthesized.

【0024】(実施例7)この実施例は、正極活物質と
してマンガン酸リチウムを用いた例を示している。図1
に従い、Li/Mn=0.578となるように炭酸リチ
ウムと二酸化マンガンを秤量し、これに水を加えて攪拌
してスラリーを作製した。このスラリーを湿式ジェット
ミルを用いて処理流量3l/min、処理圧力245M
Paで5回繰り返し処理した。処理後にスラリーの粒度
分布を測定したところ、平均粒径は2μmであった。次
に、スラリーをスプレードライヤで乾燥させ、得られた
乾燥粒子を電気炉中で焼成温度を950℃、持続時間を
4時間として焼成し、ライカイ機にて解砕を行い、目開
き63μmの篩に通して分級した。こうして得られたマ
ンガン酸リチウムに再び水を加えて攪拌してスラリーを
作製し、再度湿式ジェットミルで処理流量3l/mi
n、処理圧力245MPaで10回繰り返し処理した。
処理後のスラリーの粒度分布を測定したところ、平均粒
径は1μmであった。このスラリーにPVA溶液を添加
した後、4流体ノズルを備えた噴霧乾燥装置を用いて、
噴霧エアー圧力0.2MPa、乾燥温度200℃で噴霧
乾燥し、球状粒子を得た。得られた球状粒子を電気炉中
で1000℃で4時間焼成し、600℃で熱処理をした
後、ライカイ機にて解砕を行い、平均粒径18μmの球
状Li−Mn複合酸化物粒子(正極活物質)を合成し
た。
Example 7 This example shows an example in which lithium manganate is used as the positive electrode active material. Figure 1
According to the above, lithium carbonate and manganese dioxide were weighed so that Li / Mn = 0.578, water was added thereto, and the mixture was stirred to prepare a slurry. This slurry is processed using a wet jet mill at a processing flow rate of 3 l / min and a processing pressure of 245M.
The treatment was repeated 5 times in Pa. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm. Next, the slurry is dried with a spray dryer, and the obtained dried particles are fired in an electric furnace at a firing temperature of 950 ° C. for a duration of 4 hours, crushed with a raikai machine, and sieved with a mesh of 63 μm. I passed through and classified. Water is again added to the lithium manganate thus obtained and stirred to prepare a slurry, and the treatment flow rate is again 3 l / mi by the wet jet mill.
n, the treatment pressure was 245 MPa, and the treatment was repeated 10 times.
When the particle size distribution of the treated slurry was measured, the average particle size was 1 μm. After adding the PVA solution to this slurry, using a spray dryer equipped with a four-fluid nozzle,
Spray drying was performed at a spray air pressure of 0.2 MPa and a drying temperature of 200 ° C. to obtain spherical particles. The obtained spherical particles were baked in an electric furnace at 1000 ° C. for 4 hours, heat-treated at 600 ° C., and then crushed by a Likai machine to obtain spherical Li-Mn composite oxide particles (positive electrode having an average particle diameter of 18 μm). Active material) was synthesized.

【0025】(比較例1)Li/Co=1.00となる
ように炭酸リチウムと酸化コバルトを秤量し、これに水
を加えて攪拌してスラリーを作製した。このスラリーを
湿式ジェットミルを用いて処理流量3l/min、処理
圧力245MPaで5回繰り返し処理した。処理後にス
ラリーの粒度分布を測定したところ、平均粒径は2μm
であった。次に、スラリーをスプレードライヤで乾燥さ
せ、得られた乾燥粒子を電気炉中で焼成温度を950
℃、持続時間を4時間として焼成し、ライカイ機にて解
砕を行い、目開き63μmの篩に通して分級した。こう
して得られたコバルト酸リチウムに水を加えて攪拌して
スラリーを作製し、アルミナボールを用いたボールミル
により湿式で20時間粉砕した。混合後のスラリーの粒
度分布を測定したところ、平均粒径は1μmであった。
このスラリーにPVA溶液を添加した後、4流体ノズル
を備えた噴霧乾燥装置を用いて、噴霧エアー圧力0.2
MPa、乾燥温度200℃で噴霧乾燥し、球状粒子を得
た。得られた球状粒子を電気炉中で1000℃で4時間
焼成し、ライカイ機にて解砕を行い、平均粒径9μmの
球状Li/Co複合酸化物粒子を合成した。本比較例に
より得られた正極活物質のAl含有量を表3に示す。
尚、正極活物質中に含まれる元素の量はICP(高周波
誘導結合プラズマ発光分光分析装置)で測定した。以下
の分析も同様である。
Comparative Example 1 Lithium carbonate and cobalt oxide were weighed so that Li / Co = 1.00, water was added thereto, and the mixture was stirred to prepare a slurry. This slurry was repeatedly treated 5 times using a wet jet mill at a treatment flow rate of 3 l / min and a treatment pressure of 245 MPa. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm.
Met. Next, the slurry is dried by a spray dryer, and the obtained dried particles are heated in an electric furnace at a firing temperature of 950.
Firing was carried out at a temperature of 4 hours for 4 hours, followed by crushing with a raikai machine and passing through a sieve having a mesh of 63 μm for classification. Water was added to the lithium cobalt oxide thus obtained and stirred to prepare a slurry, which was wet-milled for 20 hours by a ball mill using alumina balls. When the particle size distribution of the slurry after mixing was measured, the average particle size was 1 μm.
After the PVA solution was added to this slurry, the spray air pressure was adjusted to 0.2 using a spray dryer equipped with a 4-fluid nozzle.
Spray drying was performed at MPa and a drying temperature of 200 ° C. to obtain spherical particles. The obtained spherical particles were fired at 1000 ° C. for 4 hours in an electric furnace and crushed by a Likai machine to synthesize spherical Li / Co composite oxide particles having an average particle diameter of 9 μm. Table 3 shows the Al content of the positive electrode active material obtained in this comparative example.
The amount of elements contained in the positive electrode active material was measured by ICP (high frequency inductively coupled plasma optical emission spectroscopy analyzer). The following analysis is also the same.

【0026】(比較例2)Li/Co=1.00となる
ように炭酸リチウムと酸化コバルトを秤量し、これに水
を加えて攪拌してスラリーを作製した。このスラリーを
湿式ジェットミルを用いて処理流量3l/min、処理
圧力245MPaで5回繰り返し処理した。処理後にス
ラリーの粒度分布を測定したところ、平均粒径は2μm
であった。次に、スラリーをスプレードライヤで乾燥さ
せ、得られた乾燥粒子を電気炉中で焼成温度を600
℃、持続時間を4時間として焼成し、ライカイ機にて解
砕を行い、目開き63μmの篩に通して分級した。こう
して得られたコバルト酸リチウムに再び水を加えて攪拌
してスラリーを作製し、再度湿式ジェットミルで処理流
量3l/min、処理圧力245MPaで3回処理し
た。処理後のスラリーの粒度分布を測定したところ、平
均粒径は1μmであった。このスラリーにPVA溶液を
添加した後、4流体ノズルを備えた噴霧乾燥装置を用い
て、噴霧エアー圧力0.2MPa、乾燥温度200℃で噴霧乾
燥し、球状粒子を得た。得られた球状粒子を電気炉中で
600℃で4時間焼成し、ライカイ機にて解砕を行い、
平均粒径5μmのLi−Co複合酸化物粒子を合成し
た。
Comparative Example 2 Lithium carbonate and cobalt oxide were weighed so that Li / Co = 1.00, water was added thereto, and the mixture was stirred to prepare a slurry. This slurry was repeatedly treated 5 times using a wet jet mill at a treatment flow rate of 3 l / min and a treatment pressure of 245 MPa. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm.
Met. Next, the slurry is dried with a spray dryer, and the obtained dried particles are heated at a firing temperature of 600 in an electric furnace.
Firing was carried out at a temperature of 4 hours for 4 hours, followed by crushing with a raikai machine and passing through a sieve having a mesh of 63 μm for classification. Water was again added to the lithium cobalt oxide thus obtained and stirred to prepare a slurry, and the slurry was again treated with a wet jet mill at a treatment flow rate of 3 l / min and a treatment pressure of 245 MPa three times. When the particle size distribution of the treated slurry was measured, the average particle size was 1 μm. After adding the PVA solution to this slurry, it was spray-dried at a spray air pressure of 0.2 MPa and a drying temperature of 200 ° C. using a spray dryer equipped with a four-fluid nozzle to obtain spherical particles. The obtained spherical particles are fired at 600 ° C. for 4 hours in an electric furnace and crushed with a raikai machine,
Li-Co composite oxide particles having an average particle size of 5 μm were synthesized.

【0027】(比較例3)Li/Co=1.00となる
ように炭酸リチウムと酸化コバルトを秤量し、これに水
を加えて攪拌してスラリーを作製した。このスラリーを
湿式ジェットミルを用いて処理流量3l/min、処理
圧力245MPaで5回繰り返し処理した。処理後にス
ラリーの粒度分布を測定したところ、平均粒径は2μm
であった。次に、スラリーをスプレードライヤで乾燥さ
せ、得られた乾燥粒子を電気炉中で焼成温度を800
℃、持続時間を4時間として焼成し、ライカイ機にて解
砕を行い、目開き63μmの篩に通して分級した。こう
して得られたコバルト酸リチウムに再び水を加えて攪拌
してスラリーを作製し、再度湿式ジェットミルで処理流
量3l/min、処理圧力245MPaで3回処理し
た。処理後のスラリーの粒度分布を測定したところ、平
均粒径は1μmであった。このスラリーにPVA溶液を
添加した後、4流体ノズルを備えた噴霧乾燥装置を用い
て、噴霧エアー圧力0.2MPa、乾燥温度200℃で
噴霧乾燥し、球状粒子を得た。得られた球状粒子を電気
炉中で1200℃で4時間焼成し、ライカイ機にて解砕
を行い、平均粒径52μmの球状Li−Co複合酸化物
粒子を合成した。
(Comparative Example 3) Lithium carbonate and cobalt oxide were weighed so that Li / Co = 1.00, water was added thereto, and the mixture was stirred to prepare a slurry. This slurry was repeatedly treated 5 times using a wet jet mill at a treatment flow rate of 3 l / min and a treatment pressure of 245 MPa. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm.
Met. Next, the slurry is dried by a spray dryer, and the obtained dried particles are heated in an electric furnace at a firing temperature of 800.
Firing was carried out at a temperature of 4 hours for 4 hours, followed by crushing with a raikai machine and passing through a sieve having a mesh of 63 μm for classification. Water was again added to the lithium cobalt oxide thus obtained and stirred to prepare a slurry, and the slurry was again treated with a wet jet mill at a treatment flow rate of 3 l / min and a treatment pressure of 245 MPa three times. When the particle size distribution of the treated slurry was measured, the average particle size was 1 μm. After adding the PVA solution to this slurry, it was spray-dried at a spraying air pressure of 0.2 MPa and a drying temperature of 200 ° C. using a spray-drying device equipped with a 4-fluid nozzle to obtain spherical particles. The obtained spherical particles were calcined in an electric furnace at 1200 ° C. for 4 hours and crushed by a Likai machine to synthesize spherical Li—Co composite oxide particles having an average particle diameter of 52 μm.

【0028】(比較例4)Li/Co=1.00となる
ように炭酸リチウムと酸化コバルトを秤量し、これに水
を加えて攪拌してスラリーを作製した。このスラリーを
湿式ジェットミルを用いて処理流量3l/min、処理
圧力245MPaで5回繰り返し処理した。処理後にス
ラリーの粒度分布を測定したところ、平均粒径は2μm
であった。次に、スラリーをスプレードライヤで乾燥さ
せ、得られた乾燥粒子を電気炉中で焼成温度を900
℃、持続時間を4時間として焼成し、ライカイ機にて解
砕を行い、目開き63μmの篩に通して分級した。こう
して得られたコバルト酸リチウムに再び水を加えて攪拌
してスラリーを作製し、再度湿式ジェットミルで処理流
量3l/min、処理圧力245MPaで4回処理し
た。処理後のスラリーの粒度分布を測定したところ、平
均粒径は1μmであった。このスラリーにPVA溶液を
添加した後、ディスク式スプレードライヤーを用いて乾
燥温度200℃で噴霧乾燥し、球状粒子を得た。得られ
た球状粒子を電気炉中で950℃で4時間焼成し、ライ
カイ機にて解砕を行い、平均粒径33μmの球状Li−
Co複合酸化物粒子を合成した。
(Comparative Example 4) Lithium carbonate and cobalt oxide were weighed so that Li / Co = 1.00, water was added thereto, and the mixture was stirred to prepare a slurry. This slurry was repeatedly treated 5 times using a wet jet mill at a treatment flow rate of 3 l / min and a treatment pressure of 245 MPa. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm.
Met. Next, the slurry is dried with a spray dryer, and the obtained dried particles are heated in an electric furnace at a firing temperature of 900.
Firing was carried out at a temperature of 4 hours for 4 hours, followed by crushing with a raikai machine and passing through a sieve having a mesh of 63 μm for classification. Water was again added to the lithium cobalt oxide thus obtained, and the mixture was stirred to prepare a slurry, which was again treated with a wet jet mill four times at a treatment flow rate of 3 l / min and a treatment pressure of 245 MPa. When the particle size distribution of the treated slurry was measured, the average particle size was 1 μm. After the PVA solution was added to this slurry, it was spray-dried at a drying temperature of 200 ° C. using a disc spray dryer to obtain spherical particles. The obtained spherical particles were fired at 950 ° C. for 4 hours in an electric furnace and crushed with a Likai machine to obtain spherical Li- particles having an average particle diameter of 33 μm.
Co composite oxide particles were synthesized.

【0029】(従来例1)Li/Co=1.00となる
ように炭酸リチウムと酸化コバルトを秤量し、アルミナ
ボールを用いたボールミルにより湿式で10時間混合し
た。処理後にスラリーの粒度分布を測定したところ、平
均粒径は2μmであった。次にスラリーをスプレードラ
イヤで乾燥させ、得られた乾燥粒子を電気炉中で焼成温
度を950℃、持続時間を4時間として焼成し、ライカ
イ機にて解砕を行い、目開き63μmの篩に通して分級
した。こうして得られたコバルト酸リチウムに水を加え
て攪拌してスラリーを作製し、再びアルミナボールを用
いたボールミルにより湿式で20時間混合した。混合後
のスラリーの粒度分布を測定したところ、平均粒径は1
μmであった。このスラリーにPVA溶液を添加した
後、4流体ノズルを備えた噴霧乾燥装置を用いて、噴霧
エアー圧力0.2MPa、乾燥温度200℃で噴霧乾燥
し、球状粒子を得た。得られた球状粒子を電気炉中で9
50℃で焼成し、ライカイ機にて解砕を行い、平均粒径
8μmの球状Li−Co複合酸化物粒子を合成した。本
比較例により得られた正極活物質のAl含有量を表3に
示す。
(Conventional Example 1) Lithium carbonate and cobalt oxide were weighed so that Li / Co = 1.00, and wet-mixed for 10 hours with a ball mill using alumina balls. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm. Next, the slurry is dried with a spray dryer, and the obtained dried particles are fired in an electric furnace at a firing temperature of 950 ° C. for a duration of 4 hours, crushed with a raikai machine, and sieved with a sieve having an opening of 63 μm. I passed through and classified. Water was added to the lithium cobalt oxide thus obtained and stirred to prepare a slurry, which was again wet mixed for 20 hours by a ball mill using alumina balls. When the particle size distribution of the slurry after mixing was measured, the average particle size was 1
was μm. After adding the PVA solution to this slurry, it was spray-dried at a spraying air pressure of 0.2 MPa and a drying temperature of 200 ° C. using a spray-drying device equipped with a 4-fluid nozzle to obtain spherical particles. The obtained spherical particles were placed in an electric furnace for 9
The mixture was fired at 50 ° C. and crushed with a Raiki machine to synthesize spherical Li—Co composite oxide particles having an average particle diameter of 8 μm. Table 3 shows the Al content of the positive electrode active material obtained in this comparative example.

【0030】(従来例2)Li/Co=1.00となる
ように炭酸リチウムと酸化コバルトを秤量し、カーボン
鋼球を用いたボールミルにより湿式で10時間混合し
た。処理後にスラリーの粒度分布を測定したところ、平
均粒径は2μmであった。次にスラリーをスプレードラ
イヤで乾燥させ、得られた乾燥粒子を電気炉中で焼成温
度を950℃、持続時間を4時間として焼成し、ライカ
イ機にて解砕を行い、目開き63μmの篩に通して分級
した。こうして得られたコバルト酸リチウムに水を加え
て攪拌してスラリーを作製し、再びカーボン鋼球を用い
たボールミルにより湿式で20時間混合した。混合後の
スラリーの粒度分布を測定したところ、平均粒径は1μ
mであった。このスラリーにPVA溶液を添加した後、
4流体ノズルを備えた噴霧乾燥装置を用いて、噴霧エア
ー圧力0.2MPa、乾燥温度200℃で噴霧乾燥し、
球状粒子を得た。得られた球状粒子を電気炉中で950
℃で焼成し、ライカイ機にて解砕を行い、平均粒径8μ
mの球状Li−Co複合酸化物粒子を合成した。本比較
例により得られた正極活物質のFe含有量を表3に示
す。
(Conventional Example 2) Lithium carbonate and cobalt oxide were weighed so that Li / Co = 1.00, and wet-mixed for 10 hours by a ball mill using carbon steel balls. When the particle size distribution of the slurry was measured after the treatment, the average particle size was 2 μm. Next, the slurry is dried with a spray dryer, and the obtained dried particles are fired in an electric furnace at a firing temperature of 950 ° C. for a duration of 4 hours, crushed with a raikai machine, and sieved with a sieve having an opening of 63 μm. I passed through and classified. Water was added to the lithium cobalt oxide thus obtained and stirred to prepare a slurry, which was again wet mixed for 20 hours by a ball mill using carbon steel balls. When the particle size distribution of the slurry after mixing was measured, the average particle size was 1 μm.
It was m. After adding the PVA solution to this slurry,
Using a spray dryer equipped with a four-fluid nozzle, spray drying at a spray air pressure of 0.2 MPa and a drying temperature of 200 ° C.,
Spherical particles were obtained. The obtained spherical particles were 950 in an electric furnace.
Baking at ℃, crushing with a raikai machine, average particle size 8μ
m spherical Li-Co composite oxide particles were synthesized. Table 3 shows the Fe content of the positive electrode active material obtained in this comparative example.

【0031】(従来例3)Li/Co=1.00となる
ように炭酸リチウムと酸化コバルトを秤量し、ジルコニ
アボールを用いたボールミルにより湿式で10時間混合
した。処理後にスラリーの粒度分布を測定したところ、
平均粒径は2μmであった。次にスラリーをスプレード
ライヤで乾燥させ、得られた乾燥粒子を電気炉中で焼成
温度を950℃、持続時間を4時間として焼成し、ライ
カイ機にて解砕を行い、目開き63μmの篩に通して分
級した。こうして得られたコバルト酸リチウムに水を加
えて攪拌してスラリーを作製し、再びジルコニアボール
を用いたボールミルにより湿式で20時間混合した。混
合後のスラリーの粒度分布を測定したところ、平均粒径
は1μmであった。このスラリーにPVA溶液を添加し
た後、4流体ノズルを備えた噴霧乾燥装置を用いて、噴
霧エアー圧力0.2MPa、乾燥温度200℃で噴霧乾
燥し、球状粒子を得た。得られた球状粒子を電気炉中で
950℃で焼成し、ライカイ機にて解砕を行い、平均粒
径8μmの球状Li−Co複合酸化物粒子を合成した。
本比較例により得られた正極活物質のZr含有量を表3
に示す。
(Conventional Example 3) Lithium carbonate and cobalt oxide were weighed so that Li / Co = 1.00, and wet-mixed for 10 hours by a ball mill using zirconia balls. When the particle size distribution of the slurry was measured after the treatment,
The average particle size was 2 μm. Next, the slurry is dried with a spray dryer, and the obtained dried particles are fired in an electric furnace at a firing temperature of 950 ° C. for a duration of 4 hours, crushed with a raikai machine, and sieved with a sieve having an opening of 63 μm. I passed through and classified. Water was added to the lithium cobalt oxide thus obtained and stirred to prepare a slurry, which was again wet mixed for 20 hours by a ball mill using zirconia balls. When the particle size distribution of the slurry after mixing was measured, the average particle size was 1 μm. After adding the PVA solution to this slurry, it was spray-dried at a spraying air pressure of 0.2 MPa and a drying temperature of 200 ° C. using a spray-drying device equipped with a 4-fluid nozzle to obtain spherical particles. The obtained spherical particles were fired at 950 ° C. in an electric furnace and disintegrated by a Likai machine to synthesize spherical Li—Co composite oxide particles having an average particle diameter of 8 μm.
Table 3 shows the Zr content of the positive electrode active material obtained in this comparative example.
Shown in.

【0032】以上の実施例1〜7及び比較例1〜4、従
来例1〜3の製造方法の一覧を表1に示す。
Table 1 shows a list of the manufacturing methods of Examples 1 to 7 and Comparative Examples 1 to 4 and Conventional Examples 1 to 3 described above.

【0033】[0033]

【表1】 [Table 1]

【0034】次に、上記実施例及び比較例、従来例によ
る正極活物質の特性評価を以下の手順で行った。まず、
レーザー回折式粒度分布計にて、正極材(正極活物質)
の平均粒径及び粒度分布を測定した。次に正極材、導電
助材(炭素粉)、結着剤(8wt%PVdF/NMP)
を重量比で85:10:5の割合でメノウ鉢にて混練し
スラリー状の合材とした。得られた合材を厚さ20μm
の集電体(Al箔)上に約200μm厚に塗布した。こ
の時、電極の塗布状態を目視にて確認した。塗布した合
材は乾燥後、所定の寸法(巾10mm、長さはおよそ5
0mm)に切断し金型を用いて1.5×10ton/
の圧力でプレスした。このときの塗布厚と、単位面
積あたりの重量から、電極密度を測定した。得られた正
極は十分に電解液(エチレンカーボネート:ジメチルカ
ーボネート=1:2、電解質1M−LiPF)に浸潤
した後、セパレータ(25μm厚ポリエチレン)、金属
リチウム対極、試験用電池とした。セルが電気化学的に
平衡になるように数時間程度放置してから、充放電測定
装置に接続し、電池の放電容量の測定を行った。
Next, the characteristics of the positive electrode active materials according to the above-mentioned examples, comparative examples and conventional examples were evaluated by the following procedure. First,
Laser diffraction particle size distribution meter, positive electrode material (positive electrode active material)
The average particle size and particle size distribution of Next, positive electrode material, conduction aid (carbon powder), binder (8 wt% PVdF / NMP)
Was mixed in an agate bowl at a weight ratio of 85: 10: 5 to obtain a slurry-like mixture. The obtained mixture is 20 μm thick
It was applied to a current collector (Al foil) having a thickness of about 200 μm. At this time, the coating state of the electrodes was visually confirmed. After the applied mixture is dried, it has the specified dimensions (width 10 mm, length about 5
0 mm) and cut with a mold to 1.5 × 10 4 ton /
Pressed at a pressure of m 2 . The electrode density was measured from the coating thickness at this time and the weight per unit area. The obtained positive electrode was sufficiently infiltrated with an electrolytic solution (ethylene carbonate: dimethyl carbonate = 1: 2, electrolyte 1M-LiPF 6 ), and then used as a separator (25 μm thick polyethylene), a metallic lithium counter electrode, and a test battery. The cell was left for several hours so that it became electrochemically in equilibrium, and then connected to a charge / discharge measuring device to measure the discharge capacity of the battery.

【0035】以上の実施例及び比較例、従来例について
特性評価を行った結果を表2に示す。
Table 2 shows the results of the characteristic evaluation of the above-mentioned examples, comparative examples and conventional examples.

【0036】[0036]

【表2】 [Table 2]

【0037】上記した比較例1及び従来例により得られ
た正極活物質のAl、Fe、Zr含有量を表3に示す。
Table 3 shows the Al, Fe, and Zr contents of the positive electrode active materials obtained in Comparative Example 1 and Conventional Example described above.

【0038】[0038]

【表3】 [Table 3]

【0039】以上の結果より、本発明の製造条件に沿っ
て製造した球状粉体によれば、電極密度及び放電容量に
おいて好ましい結果を得ることができた。この理由の一
つとしては、本発明では正極活物質中の不純物の含有量
がゼロとなり混入が認められなかったのに対し、従来例
及び比較例1においては、ボールミル混合・粉砕時にメ
ディアの摩耗粉が不純物として材料中に混入すること
で、高い放電容量が得られなかったと言うことが考えら
れる。他方、比較例については比較例2のように第2の
焼成工程において焼成温度が700℃未満になると、反
応不足のため解砕時に球状粒子が破壊されて粒径が小さ
くなり電極密度や放電容量が低下する結果となった。ま
た、比較例3のように焼成温度が1100℃を超える
と、反応過剰となって球状粒子同士がくっついて粒径が
大きくなり、電極密度の低下が起こることが分かった。
また比較例4のようにディスク式スプレードライヤを用
いた場合は、球状粒子の平均粒径が33μmとなり、電
極密度や放電容量が低下した。そして表2から明らかな
ように、空隙率が比較的低いものは高い電極密度、放電
容量を示すことが分かった。本実施例の正極材料の空隙
率は、比較例及び従来例の正極材料に比較して低い値で
あり、電極密度、放電容量共に改善されていることが分
かる。これは湿式ジェットミル処理により均一な微細粒
子が得られたこと、また4流体ノズルの噴霧乾燥による
球状化などが効果的に作用していると考えられる。本発
明のリチウム二次電池用正極活物質の二次粒子はその空
隙率が20%以下のものであるが、本実施例1、2、
4、6に見られるようにより電極密度、放電容量を高め
る為には、前記空隙率は10%以下であることがさらに
望ましい。尚、実施例7については、マンガン酸リチウ
ムを用いた場合の例であり、正極活物質重量当たりの放
電容量及び密度がコバルト酸リチウムに比べて低いた
め、体積当たりの放電容量は低くなっているが、マンガ
ン酸リチウムとしては、十分に高い容量が得られてい
る。
From the above results, it was possible to obtain preferable results in the electrode density and the discharge capacity according to the spherical powder manufactured according to the manufacturing conditions of the present invention. One of the reasons for this is that in the present invention, the content of impurities in the positive electrode active material was zero and no mixing was recognized, whereas in the conventional example and the comparative example 1, abrasion of the media during ball mill mixing / grinding was observed. It is conceivable that the high discharge capacity could not be obtained because the powder was mixed in the material as an impurity. On the other hand, in Comparative Example, when the firing temperature was lower than 700 ° C. in the second firing step as in Comparative Example 2, spherical particles were destroyed during crushing due to insufficient reaction and the particle size was reduced, resulting in electrode density and discharge capacity. Has resulted in a decrease. It was also found that when the firing temperature exceeds 1100 ° C. as in Comparative Example 3, the reaction becomes excessive and the spherical particles stick to each other to increase the particle size, resulting in a decrease in the electrode density.
When a disc spray dryer was used as in Comparative Example 4, the average particle size of the spherical particles was 33 μm, and the electrode density and discharge capacity were reduced. As is clear from Table 2, it was found that those having a relatively low porosity exhibited high electrode density and discharge capacity. The porosity of the positive electrode material of this example is lower than those of the positive electrode materials of the comparative example and the conventional example, and it can be seen that both the electrode density and the discharge capacity are improved. It is considered that uniform fine particles were obtained by the wet jet mill treatment and that spheroidization by spray drying of the four-fluid nozzle was effective. The secondary particles of the positive electrode active material for a lithium secondary battery of the present invention have a porosity of 20% or less.
In order to increase the electrode density and the discharge capacity as seen in Nos. 4 and 6, the porosity is more preferably 10% or less. In addition, Example 7 is an example using lithium manganate, and since the discharge capacity and density per weight of the positive electrode active material are lower than that of lithium cobalt oxide, the discharge capacity per volume is low. However, as lithium manganate, a sufficiently high capacity has been obtained.

【0040】[0040]

【発明の効果】本発明による非水系リチウム二次電池用
正極活物質の製造方法によれば、不純物の混入がなく、
微細で空隙率が比較的低く均一に分散した球状粒子から
なる高純度の正極活物質を得ることができた。そして、
これを用いることによって電極密度が高く放電容量能力
の高い非水系リチウム二次電池を提供することが出来
た。
According to the method for producing a positive electrode active material for a non-aqueous lithium secondary battery according to the present invention, no impurities are mixed in,
It was possible to obtain a high-purity positive electrode active material composed of fine spherical particles having a relatively low porosity and uniformly dispersed. And
By using this, it was possible to provide a non-aqueous lithium secondary battery having a high electrode density and a high discharge capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による正極活物質の製造方法を示すフロ
ーチャートである。
FIG. 1 is a flowchart showing a method for producing a positive electrode active material according to the present invention.

【図2】本発明の実施例で用いた湿式ジェットミルの概
略を説明する概略図である。
FIG. 2 is a schematic view illustrating the outline of a wet jet mill used in an example of the present invention.

【図3】本発明の実施例で用いた4流体ノズルの概略を
説明する概略図である。
FIG. 3 is a schematic diagram illustrating the outline of a four-fluid nozzle used in an example of the present invention.

【図4】本発明の実施例で用いた噴霧乾燥装置の概略図
である。
FIG. 4 is a schematic view of a spray dryer used in an example of the present invention.

【図5】本発明の実施例で得た正極活物質の走査型電子
顕微鏡写真(5000倍)である。
FIG. 5 is a scanning electron micrograph (5000 ×) of a positive electrode active material obtained in an example of the present invention.

【図6】従来の方法で得た正極活物質の走査型電子顕微
鏡写真(5000倍)である。
FIG. 6 is a scanning electron micrograph (5000 ×) of a positive electrode active material obtained by a conventional method.

【符号の説明】[Explanation of symbols]

1:圧力容器 2、3:流入流路 4、5:ノズル 6:合流部 7:流出流路 1a、1b:スラリー路 2a、2b:噴霧気体路 3a:ノズルエッジ 1: Pressure vessel 2, 3: Inflow channel 4, 5: Nozzle 6: Confluence part 7: Outflow channel 1a, 1b: slurry path 2a, 2b: spray gas path 3a: Nozzle edge

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK03 AM03 AM05 AM07 CJ02 CJ03 CJ08 CJ28 DJ16 HJ05 HJ09 HJ14 5H050 AA07 AA08 BA17 CA08 CA09 FA17 GA02 GA03 GA05 GA10 GA26 GA27 HA05 HA09 HA14   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H029 AJ03 AJ05 AK03 AM03 AM05                       AM07 CJ02 CJ03 CJ08 CJ28                       DJ16 HJ05 HJ09 HJ14                 5H050 AA07 AA08 BA17 CA08 CA09                       FA17 GA02 GA03 GA05 GA10                       GA26 GA27 HA05 HA09 HA14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属化合物とリチウム化合物を混合
し、焼成して製造される非水系リチウム二次電池用正極
活物質において、湿式ジェットミルを用いた混合又は/
及び粉砕工程を有して製造され、粒径が1〜20μmの
球状粒子からなることを特徴とする非水系リチウム二次
電池用正極活物質。
1. A positive electrode active material for a non-aqueous lithium secondary battery, which is produced by mixing a transition metal compound and a lithium compound and firing the mixture, or using a wet jet mill.
And a positive electrode active material for a non-aqueous lithium secondary battery, which is manufactured by a crushing process and is composed of spherical particles having a particle size of 1 to 20 μm.
【請求項2】 前記球状粒子は一次粒子が凝集した二次
粒子からなり、空隙率が20%以下であることを特徴と
する請求項1記載の非水系リチウム二次電池用正極活物
質。
2. The positive electrode active material for a non-aqueous lithium secondary battery according to claim 1, wherein the spherical particles are composed of secondary particles obtained by aggregating primary particles, and have a porosity of 20% or less.
【請求項3】 遷移金属化合物とリチウム化合物の複合
酸化物である正極活物質の製造方法において、湿式ジェ
ットミルによる混合又は/及び粉砕工程を有することを
特徴とする非水系リチウム二次電池用正極活物質の製造
方法。
3. A positive electrode for a non-aqueous lithium secondary battery, which comprises a step of mixing and / or pulverizing with a wet jet mill in a method for producing a positive electrode active material which is a composite oxide of a transition metal compound and a lithium compound. Method of manufacturing active material.
【請求項4】 遷移金属化合物とリチウム化合物の複合
酸化物である正極活物質の製造方法において、前記遷移
金属化合物とリチウム化合物を所定割合で秤量し、この
混合物を湿式ジェットミルにより湿式混合・粉砕する第
1の湿式ジェットミル処理工程と、その後、乾燥、焼
成、解砕した複合酸化物を再度湿式ジェットミルにより
粉砕する第2の湿式ジェットミル処理工程とを有するこ
とを特徴とする非水系リチウム二次電池用正極活物質の
製造方法。
4. A method for producing a positive electrode active material, which is a composite oxide of a transition metal compound and a lithium compound, wherein the transition metal compound and the lithium compound are weighed in a predetermined ratio, and the mixture is wet-mixed and ground by a wet jet mill. And a second wet jet mill treatment step of again pulverizing the dried, fired, and crushed composite oxide with a wet jet mill. A method for producing a positive electrode active material for a secondary battery.
【請求項5】 前記湿式ジェットミル処理工程は、混合
物に溶媒液を加えスラリー状となし、圧力容器内に対向
配置されたノズルへ前記スラリーを対向する流路から高
圧で圧送し、当該スラリーの対向流を相互に衝突、合流
させることにより粉砕し微粒化する湿式ジェットミル処
理であることを特徴とする請求項3又は4記載の非水系
リチウム二次電池用正極活物質の製造方法。
5. In the wet jet mill treatment step, a solvent liquid is added to the mixture to form a slurry, and the slurry is pressure-fed from a flow path facing the nozzle to a nozzle disposed opposite to the pressure vessel, and the slurry The method for producing a positive electrode active material for a non-aqueous lithium secondary battery according to claim 3 or 4, wherein the method is a wet jet mill treatment in which opposing flows collide with each other and are combined to pulverize and atomize.
【請求項6】 前記第1の湿式ジェットミル処理工程の
後に第1の乾燥工程と焼成工程を有し、さらに前記第2
の湿式ジェットミル処理工程の後に第2の乾燥工程と焼
成工程を有しており、少なくとも第2の乾燥工程を4流
体ノズルを用いた噴霧乾燥としたことを特徴とする請求
項3乃至5の何れかに記載の非水系リチウム二次電池用
正極活物質の製造方法。
6. A first drying step and a calcination step are provided after the first wet jet mill treatment step, and further, the second step.
6. The method according to claim 3, further comprising a second drying step and a firing step after the wet jet mill treatment step, wherein at least the second drying step is spray drying using a 4-fluid nozzle. The method for producing the positive electrode active material for a non-aqueous lithium secondary battery according to any one of claims.
【請求項7】 前記第1の焼成工程及び/又は第2の焼
成工程は、大気中あるいは酸素雰囲気中で700〜11
00℃で行い、前記遷移金属酸化物がマンガン化合物の
ときは、前記第2の焼成工程の後に、更に大気中あるい
は酸素雰囲気中で500〜700℃の熱処理を行うこと
を特徴とする請求項4乃至6記載の非水系リチウム二次
電池用正極活物質の製造方法。
7. The first baking step and / or the second baking step is performed in the air or oxygen atmosphere at 700 to 11 times.
It is performed at 00 ° C., and when the transition metal oxide is a manganese compound, after the second firing step, heat treatment is further performed at 500 to 700 ° C. in the air or an oxygen atmosphere. 7. A method for producing a positive electrode active material for a non-aqueous lithium secondary battery according to any one of 6 to 6.
【請求項8】 請求項1乃至7の正極活物質又は正極活
物質の製造方法を用いてなる正極活物質を用いて構成さ
れたことを特徴とする非水系リチウム二次電池。
8. A non-aqueous lithium secondary battery comprising a positive electrode active material obtained by using the positive electrode active material or the method for producing a positive electrode active material according to claim 1. Description:
JP2002024025A 2002-01-31 2002-01-31 Positive active material for non-aqueous lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery using the same Pending JP2003229124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024025A JP2003229124A (en) 2002-01-31 2002-01-31 Positive active material for non-aqueous lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024025A JP2003229124A (en) 2002-01-31 2002-01-31 Positive active material for non-aqueous lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2003229124A true JP2003229124A (en) 2003-08-15

Family

ID=27746579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024025A Pending JP2003229124A (en) 2002-01-31 2002-01-31 Positive active material for non-aqueous lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2003229124A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005105A (en) * 2003-06-11 2005-01-06 Hitachi Ltd Positive electrode material, its manufacturing method, and lithium secondary battery
JP2006066170A (en) * 2004-08-26 2006-03-09 Daiken Kagaku Kogyo Kk Lithium manganate powder of spinel structure, manufacturing method of the same, electrode, and lithium group secondary battery
JP2006062911A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Multiple oxide material and positive-electrode active material for lithium secondary battery
JP2007531245A (en) * 2003-07-09 2007-11-01 マックスウェル テクノロジーズ, インク Dry particle-based electrochemical device and method of manufacturing the same
JP2009205974A (en) * 2008-02-28 2009-09-10 Agc Seimi Chemical Co Ltd Method for manufacturing lithium cobalt composite oxide for lithium-ion secondary battery cathode active material
WO2011086690A1 (en) * 2010-01-15 2011-07-21 トヨタ自動車株式会社 Method for evaluating positive electrode active material
JP2011249338A (en) * 2010-05-27 2011-12-08 Harmony Brother Co Ltd Method for sintering lithium-containing electrode material
JP2013194299A (en) * 2012-03-21 2013-09-30 Kobelco Kaken:Kk Oxide sintered compact, sputtering target and manufacturing method thereof
CN103733394A (en) * 2012-07-13 2014-04-16 株式会社Lg化学 High density anode active material and preparation method thereof
JP2014067694A (en) * 2012-09-04 2014-04-17 Ngk Insulators Ltd Method for producing positive electrode active material for lithium secondary battery or precursor thereof
US9525168B2 (en) 2003-07-09 2016-12-20 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
JP2019021425A (en) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP2019515460A (en) * 2016-11-03 2019-06-06 エルジー・ケム・リミテッド Lithium ion secondary battery
CN110915031A (en) * 2017-07-19 2020-03-24 日本斯频德制造株式会社 Method and apparatus for producing slurry for positive electrode of nonaqueous electrolyte secondary battery
CN112038547A (en) * 2019-06-03 2020-12-04 河北金力新能源科技股份有限公司 Ceramic coating slurry without dispersant, preparation method thereof, lithium battery diaphragm and lithium battery
WO2020264206A1 (en) * 2019-06-28 2020-12-30 eJoule, Inc. System with power jet modules and method thereof
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
JP2022543985A (en) * 2019-06-28 2022-10-17 イージュール,アイエヌシー. Assist gas flow inside the reaction chamber of the processing system
US11511251B2 (en) 2013-05-06 2022-11-29 Liang-Yuh Chen Multi-stage process for producing a material of a battery cell
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604898B2 (en) 2003-06-11 2009-10-20 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium secondary battery
US7910246B2 (en) 2003-06-11 2011-03-22 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium secondary battery
JP2005005105A (en) * 2003-06-11 2005-01-06 Hitachi Ltd Positive electrode material, its manufacturing method, and lithium secondary battery
US8097363B2 (en) 2003-06-11 2012-01-17 Hitachi, Ltd. Positive electrode material, its manufacturing method and lithium secondary battery
US10547057B2 (en) 2003-07-09 2020-01-28 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
JP2007531245A (en) * 2003-07-09 2007-11-01 マックスウェル テクノロジーズ, インク Dry particle-based electrochemical device and method of manufacturing the same
US9525168B2 (en) 2003-07-09 2016-12-20 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
JP4772673B2 (en) * 2003-07-09 2011-09-14 マックスウェル テクノロジーズ, インク Dry particle-based electrochemical device and method of manufacturing the same
JP2006066170A (en) * 2004-08-26 2006-03-09 Daiken Kagaku Kogyo Kk Lithium manganate powder of spinel structure, manufacturing method of the same, electrode, and lithium group secondary battery
JP2006062911A (en) * 2004-08-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Multiple oxide material and positive-electrode active material for lithium secondary battery
JP4630021B2 (en) * 2004-08-26 2011-02-09 大研化学工業株式会社 Spinel type lithium manganate powder, method for producing the same, electrode and lithium secondary battery
JP2009205974A (en) * 2008-02-28 2009-09-10 Agc Seimi Chemical Co Ltd Method for manufacturing lithium cobalt composite oxide for lithium-ion secondary battery cathode active material
WO2011086690A1 (en) * 2010-01-15 2011-07-21 トヨタ自動車株式会社 Method for evaluating positive electrode active material
JPWO2011086690A1 (en) * 2010-01-15 2013-05-16 トヨタ自動車株式会社 Method for evaluating positive electrode active material
US8765007B2 (en) 2010-01-15 2014-07-01 Toyota Jidosha Kabushiki Kaisha Method of evaluating positive electrode active material
JP5696904B2 (en) * 2010-01-15 2015-04-08 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
JP2011249338A (en) * 2010-05-27 2011-12-08 Harmony Brother Co Ltd Method for sintering lithium-containing electrode material
JP2013194299A (en) * 2012-03-21 2013-09-30 Kobelco Kaken:Kk Oxide sintered compact, sputtering target and manufacturing method thereof
US9608260B2 (en) 2012-07-13 2017-03-28 Lg Chem, Ltd. Anode active material having high density and preparation method thereof
CN103733394A (en) * 2012-07-13 2014-04-16 株式会社Lg化学 High density anode active material and preparation method thereof
JP2014524653A (en) * 2012-07-13 2014-09-22 エルジー・ケム・リミテッド High density negative electrode active material and method for producing the same
JP2014067694A (en) * 2012-09-04 2014-04-17 Ngk Insulators Ltd Method for producing positive electrode active material for lithium secondary battery or precursor thereof
US11511251B2 (en) 2013-05-06 2022-11-29 Liang-Yuh Chen Multi-stage process for producing a material of a battery cell
JP2019515460A (en) * 2016-11-03 2019-06-06 エルジー・ケム・リミテッド Lithium ion secondary battery
US10923717B2 (en) 2016-11-03 2021-02-16 Lg Chem, Ltd. Lithium ion secondary battery
JP2019021425A (en) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
CN110915031A (en) * 2017-07-19 2020-03-24 日本斯频德制造株式会社 Method and apparatus for producing slurry for positive electrode of nonaqueous electrolyte secondary battery
CN110915031B (en) * 2017-07-19 2023-04-21 日本斯频德制造株式会社 Method and apparatus for producing positive electrode slurry for nonaqueous electrolyte secondary battery
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11545662B2 (en) 2017-12-15 2023-01-03 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN112038547A (en) * 2019-06-03 2020-12-04 河北金力新能源科技股份有限公司 Ceramic coating slurry without dispersant, preparation method thereof, lithium battery diaphragm and lithium battery
TWI742742B (en) * 2019-06-28 2021-10-11 美商壹久公司 System with power jet modules and method thereof
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
JP2022542648A (en) * 2019-06-28 2022-10-06 イージュール,アイエヌシー. Processing system and method for producing particulate material
JP2022543985A (en) * 2019-06-28 2022-10-17 イージュール,アイエヌシー. Assist gas flow inside the reaction chamber of the processing system
CN114008816A (en) * 2019-06-28 2022-02-01 壹久公司 System with power injection module and method thereof
US11121354B2 (en) * 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
WO2020264206A1 (en) * 2019-06-28 2020-12-30 eJoule, Inc. System with power jet modules and method thereof
JP7385304B2 (en) 2019-06-28 2023-11-22 イージュール,アイエヌシー. System with power jet module and method thereof
JP7417298B2 (en) 2019-06-28 2024-01-18 イージュール,アイエヌシー. Processing systems and methods for producing particulate materials
JP7417299B2 (en) 2019-06-28 2024-01-18 イージュール,アイエヌシー. Assist gas flow inside the reaction chamber of the processing system
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber

Similar Documents

Publication Publication Date Title
JP2003229124A (en) Positive active material for non-aqueous lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery using the same
JP7203610B2 (en) Method for making cathode material for lithium-ion batteries
CN109473642B (en) Nano carbon material modified lithium nickel cobalt manganese oxide positive electrode material and preparation method thereof
JP6026997B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP2005347134A (en) Manufacturing method of positive electrode active material for lithium ion secondary battery
KR20020012295A (en) Positive plate active material, method for producing the same, and secondary cell
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
JP2014067546A (en) Positive electrode active material of lithium secondary battery, and lithium secondary battery
JP6088923B2 (en) Method for producing positive electrode active material for lithium secondary battery or precursor thereof
WO2021238202A1 (en) Composite cobalt-free positive electrode material and preparation method therefor
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
JP4735617B2 (en) Method for producing lithium transition metal composite oxide
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP4868271B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery, positive electrode using this active material, and non-aqueous lithium secondary battery
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2003183022A (en) Method for producing lithium-transition metal complex oxide
JP2002104826A (en) Method of manufacturing lithium transition metal composite oxide
TWI460906B (en) Production method of positive electrode active material for lithium ion battery
JP5062534B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
JP4032784B2 (en) Method for producing lithium transition metal composite oxide
JP2009021260A (en) Positive active material for nonaqueous lithium secondary battery, positive electrode using the active material, and nonaqueous lithium secondary battery
JPH1149502A (en) Production of oxide powder
JPH10106562A (en) Manufacture of active material for nonaqueous electrolyte secondary battery