JP2003213450A - Method of fabricating composite structure - Google Patents

Method of fabricating composite structure

Info

Publication number
JP2003213450A
JP2003213450A JP2002077992A JP2002077992A JP2003213450A JP 2003213450 A JP2003213450 A JP 2003213450A JP 2002077992 A JP2002077992 A JP 2002077992A JP 2002077992 A JP2002077992 A JP 2002077992A JP 2003213450 A JP2003213450 A JP 2003213450A
Authority
JP
Japan
Prior art keywords
fine particles
aerosol
substrate
temperature
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002077992A
Other languages
Japanese (ja)
Other versions
JP3874683B2 (en
Inventor
Tomokazu Ito
朋和 伊藤
Masakatsu Kiyohara
正勝 清原
Hironori Hatono
広典 鳩野
Katsuhiko Mori
勝彦 森
Atsushi Yoshida
篤史 吉田
Kaori Yamaguchi
香織里 山口
Jun Aketo
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toto Ltd
Priority to JP2002077992A priority Critical patent/JP3874683B2/en
Publication of JP2003213450A publication Critical patent/JP2003213450A/en
Application granted granted Critical
Publication of JP3874683B2 publication Critical patent/JP3874683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for fabricating a composite structure with good productivity stably for a long time in making the composite structure by blowing an aerosol containing particulates at a high velocity to a base material. <P>SOLUTION: The aluminum oxide particulates to which an internal stress is imparted are prepared and are packed into an aerosol generator 103 and gaseous nitrogen is introduced into the aerosol generator 103 packed with a powder mixture through a conveyance pipe 102 from a gaseous nitrogen cylinder 101 to activate the aerosol generator 103 and to generate the aerosol containing the aluminum oxide particulates. The aerosol is introduced through the conveyance pipe 102 into a gas heating apparatus 104. The aerosol is heated in the apparatus 104 to a prescribed temperature and is jetted as a particulate beam at a high velocity toward a substrate 109 from a nozzle 107 installed in a structure fabricating chamber 106 through a conveyance pipe 105 with a heat insulating function. The temperature of the particulate beam is detected by a thermocouple 108. The substrate 109 is oscillated simultaneously when the particulate beam is jetted, by which the structure is formed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子をガス中に
分散させたエアロゾルを基板に吹き付け、微粒子の材料
からなる構造物を基板上に形成させることによって基板
と構造物からなる複合構造物を作製する複合構造物作製
方法に関する。
TECHNICAL FIELD The present invention relates to a composite structure composed of a substrate and a structure by spraying an aerosol in which fine particles are dispersed in a gas onto a substrate to form a structure composed of the material of the fine particles on the substrate. The present invention relates to a method for manufacturing a composite structure.

【0002】[0002]

【従来の技術】基板上の膜の形成方法としては数μm以
上の厚膜の場合、溶射法が一般に知られているが、その
他ガスデポジション法(加集誠一郎:金属 1989年
1月号)が提案されている。この方法は金属やセラミッ
クスの超微粒子をガス攪拌にてエアロゾル化し、微小な
ノズルを通して加速せしめ、基板表面に超微粒子の圧粉
体層を形成させ、これを加熱して焼成させることにより
被膜を形成する。
2. Description of the Related Art A thermal spraying method is generally known as a method for forming a film on a substrate in the case of a film having a thickness of several μm or more, but other gas deposition method (Seijiro Kaji: Metal, January 1989). Is proposed. In this method, ultrafine particles of metal or ceramics are aerosolized by gas agitation, accelerated through a minute nozzle to form a powder compact layer of ultrafine particles on the substrate surface, which is heated and baked to form a film. To do.

【0003】前記ガスデポジション法による微粒子膜の
形成装置において、ノズルの温度を制御する技術として
は、特開平6−49656号公報が開示されており、ノ
ズルの先端にノズルを加熱自在とする加熱装置を配置
し、またノズルの先端に近接して基板上に堆積される超
微粒子を加熱するレーザービーム加熱装置を配置するこ
とで、基板上に堆積される超微粒子を加熱された状態で
の噴射と、基板上に堆積中の超微粒子膜への加熱とを単
独に或いは併用して行うことができ、基板上に堆積され
る超微粒子膜に部分的な特性を有する膜を形成すること
ができるというものである。実施例としてBaTiO3
超微粒子を使用する際には、約700℃に加熱したノズ
ルから噴射し、基板に堆積中の超微粒子に表面温度約1
000℃でレーザービームを照射することにより焼成処
理を同時に行えるといったものが挙げられている。
Japanese Patent Laid-Open No. 6-49656 discloses a technique for controlling the temperature of the nozzle in the apparatus for forming a fine particle film by the gas deposition method, in which the tip of the nozzle is heated to freely heat the nozzle. By arranging the device, and by disposing a laser beam heating device that heats the ultrafine particles deposited on the substrate in the vicinity of the tip of the nozzle, the ultrafine particles deposited on the substrate are jetted in a heated state. And heating of the ultrafine particle film being deposited on the substrate can be performed alone or in combination, and a film having partial characteristics can be formed on the ultrafine particle film deposited on the substrate. That is. As an example, BaTiO 3
When ultrafine particles are used, they are jetted from a nozzle heated to about 700 ° C, and the surface temperature of the ultrafine particles being deposited on the substrate is about 1
It is mentioned that firing treatment can be performed at the same time by irradiating a laser beam at 000 ° C.

【0004】また、これに関連して、特開平7−166
332号公報記載の実施例の様に、基板上に超微粒子膜
あるいは圧粉体を形成させる際に、搬送管単独または搬
送管とノズルとの両者を、搬送管は300℃以上、ノズ
ルは500℃以上といった高温に加熱することで、その
内壁に超微粒子が付着凝集せず、凝集体が再飛散するこ
とによる凝集体を含んだ膜の形成やノズル詰まりが抑制
されるといったものもある。
Further, in connection with this, Japanese Patent Laid-Open No. Hei 7-166.
In the case of forming an ultrafine particle film or a green compact on a substrate as in the example described in Japanese Patent No. 332, the transport pipe alone or both the transport pipe and the nozzle, the transport pipe is 300 ° C. or higher, and the nozzle is 500. By heating to a high temperature such as ℃ or more, ultrafine particles do not adhere to and agglomerate on the inner wall of the inner wall, and formation of a film containing an agglomerate and nozzle clogging due to re-scattering of the agglomerate are suppressed.

【0005】また、これに関連して、金属微粒子に限定
した技術としては、特公昭63−54075号公報に開
示されている。該手法においては、130℃以上の水素
ガスに制御することで、超微粒子膜の電気抵抗が10^
2Ω−cmにまで抑えられ、更に高温にガス加熱するこ
とによって、より電気抵抗を小さくでき、且つ効率的に
製膜できることを特徴としている。この方法では、13
0℃以下においては抵抗が大きく導通が見られず、即ち
高温加熱を良しとしている。
Further, in this connection, a technique limited to metal fine particles is disclosed in Japanese Patent Publication No. 63-54075. In this method, the electric resistance of the ultrafine particle film is 10 ^ by controlling the hydrogen gas at 130 ° C or higher.
It is characterized in that it can be suppressed to 2 Ω-cm, and the electric resistance can be made smaller and the film can be efficiently formed by gas heating to a higher temperature. With this method,
At 0 ° C. or lower, resistance is high and no conduction is observed, that is, high temperature heating is considered to be good.

【0006】一方、前記ガスデポジション法を改良した
先行技術として微粒子ビーム堆積法あるいはエアロゾル
デポジション法と呼ばれる脆性材料の膜あるいは構造物
の形成方法がある。エアロゾルデポジション法とは脆性
材料の微粒子をガス中に分散させたエアロゾルを搬送
し、高速で基板表面に噴射して衝突させ、微粒子を破砕
・変形せしめ、基板との界面にアンカー層を形成して接
合させるとともに、破砕した断片粒子同士を接合させる
ことにより、基板との密着性が良好で強度の大きい脆性
材料構造物を基板上にダイレクトに形成させることがで
きる手法であり、特開2001−247979号公報、
特開2001−3180号公報に等に開示されている。
該手法は、粒径が10nmから5μmの範囲にあるセラ
ミックスなどの微粒子をガスに分散させてエアロゾルと
した後、ノズルより100m/sec以上に加速せしめ
た微粒子を微粒子ビームとして基板に向けて噴射して構
造物を形成させるものであり、該手法によって得られた
構造物は緻密で強固であることを特徴としている。ま
た、該手法では、常温においても膜若しくは構造物を形
成できるため、必ずしも熱エネルギーを付与する必要は
ないが、超微粒子や基板に、イオン、原子、分子ビーム
や低温プラズマ等の高エネルギーを付与することによっ
て、製膜効率の向上や作製される構造物の機械的物性の
改善を行うなどの工夫がなされている。
On the other hand, there is a method of forming a film or a structure of a brittle material called a particle beam deposition method or an aerosol deposition method as a prior art which is an improvement of the gas deposition method. The aerosol deposition method conveys an aerosol in which fine particles of a brittle material are dispersed in a gas and jets them at high speed onto the surface of the substrate to collide with them, crushing and deforming the fine particles, and forming an anchor layer at the interface with the substrate. Is a method of directly forming on the substrate a brittle material structure having good adhesion to the substrate and high strength by joining the crushed fragment particles together. 247979 publication,
It is disclosed in Japanese Patent Laid-Open No. 2001-3180.
In this method, fine particles such as ceramics having a particle size in the range of 10 nm to 5 μm are dispersed in a gas to form an aerosol, and the fine particles accelerated by a nozzle at 100 m / sec or more are jetted toward a substrate as a fine particle beam. To form a structure, and the structure obtained by the method is dense and strong. Further, in this method, since it is possible to form a film or a structure even at room temperature, it is not always necessary to apply thermal energy, but it is possible to apply high energy such as ions, atoms, molecular beams or low temperature plasma to ultrafine particles or a substrate. By doing so, the film forming efficiency is improved, and the mechanical properties of the manufactured structure are improved.

【0007】[0007]

【発明が解決しようとする課題】従来のガスデポジショ
ン法は、微粒子の衝突エネルギーが熱エネルギーに変換
されて微粒子の結合を発生させるといったメカニズムで
成り立っているため、その結合を促進させるため、非常
に高温を必要とした。しかし、微粒子ビーム堆積法ある
いはエアロゾルデポジション法では、前述の通り、微粒
子をエアロゾルとして高速で基板表面に噴射して衝突さ
せ、その運動エネルギーを直接利用して微粒子間の結合
を発生させるために、通常の焼結温度に匹敵するほどの
高温を必要としないが、室温では構造物の形成効率が低
いため、構造物の形成時間が長くなってしまうといった
問題があった。ここで、室温とは10〜30℃であり、
構造物形成における外環境の温度であり、高速とは10
0m/sec以上の速度である。また、イオン、原子、
分子ビームや低温プラズマ等の高エネルギーの原子、分
子ビームを付与することは構造物作製における制御因子
が複雑となり、また、大掛かりな装置を必要とするため
好ましくない。
The conventional gas deposition method has a mechanism in which the collision energy of fine particles is converted into thermal energy to generate the bond of the fine particles. Needed high temperature. However, in the particle beam deposition method or the aerosol deposition method, as described above, in order to generate a bond between the particles by directly injecting the particles as an aerosol onto the substrate surface at high speed to collide and directly using the kinetic energy thereof, Although it does not require a temperature as high as a normal sintering temperature, there is a problem that the formation time of the structure becomes long because the formation efficiency of the structure is low at room temperature. Here, room temperature is 10 to 30 ° C.,
High temperature is the temperature of the external environment during structure formation, and high speed is 10
The speed is 0 m / sec or more. Ions, atoms,
It is not preferable to apply a high-energy atom or molecular beam such as a molecular beam or a low-temperature plasma, because the control factor in the structure fabrication becomes complicated and a large-scale device is required.

【0008】一方で、特開平6−49656号公報、特
開平7−166332号公報、特公昭63−54075
号公報に記載されている様に、高温のガスを用いて熱エ
ネルギーを付与することも考えられるが、微粒子を高速
で基板表面に噴射して衝突させ粒子間の結合を発生させ
るエアロゾルデポジション法においては、ガスによって
微粒子を130℃以上に加熱すると、構造物の表面及び
内部に欠陥を多数含んで白濁し、得られた構造物の機械
物性が悪化するといった不具合が発生した。このこと
は、特に脆性材料や脆性材料と延性材料の複合微粒子を
用いた場合においてより顕著であり、場合によっては構
造物を形成できないこともある。
On the other hand, JP-A-6-49656, JP-A-7-166332 and JP-B-63-54075.
Although it is possible to apply thermal energy using a high temperature gas as described in Japanese Patent Laid-Open Publication No. JP-A No. 2003-242, an aerosol deposition method in which fine particles are jetted onto a substrate surface at high speed to collide with each other to generate a bond between particles. In the above, when the fine particles were heated to 130 ° C. or higher by the gas, a large number of defects were contained on the surface and the inside of the structure, resulting in turbidity, and mechanical properties of the obtained structure deteriorated. This is more remarkable especially when brittle materials or composite fine particles of brittle materials and ductile materials are used, and in some cases, a structure cannot be formed.

【0009】この直接的な要因については明確になって
はいないが、現象としては、高温域において衝突による
破砕が不十分な微粒子が基材表面に付着し、これらを構
造物中に内包してしまう、或いはこれらが凝集、沈着す
ることでマスクとなり、その後沈着した凝集体の上層に
は微粒子の堆積が起こらないことにより構造物に欠陥が
形成されるといったものであった。即ち、エアロゾルデ
ポジション法において、数百度といったガス加熱は必要
なく、エアロゾルの温度には微粒子固有の最適な温度範
囲が存在することが示唆される。
Although the direct factor has not been clarified, the phenomenon is that fine particles, which are not sufficiently crushed by collision in the high temperature region, adhere to the surface of the substrate and are included in the structure. Or, they are aggregated and deposited to serve as a mask, and then the deposition of fine particles does not occur in the upper layer of the deposited agglomerates, so that defects are formed in the structure. That is, in the aerosol deposition method, gas heating such as several hundreds of degrees is not required, and it is suggested that the temperature of the aerosol has an optimum temperature range peculiar to the fine particles.

【0010】また、基板にガラス、金属、樹脂などの低
融点のものを用いた場合、数百度といった高温の装置加
熱、或いは高温のガス温度を使用すれば、基板を傷めて
しまうといった懸念もある。
Further, when a substrate having a low melting point such as glass, metal, or resin is used, there is a possibility that the substrate may be damaged if the device is heated at a temperature as high as several hundreds of degrees or a gas temperature at a high temperature is used. .

【0011】[0011]

【課題を解決するための手段】即ちこれらの問題を解決
すべく、本発明では微粒子をガス中に分散させたエアロ
ゾルをノズル先端から噴射して基板に吹き付けて微粒子
の材料からなる堆積層を基板上に形成させることによっ
て基板と堆積層からなる複合構造物を作製する複合構造
物作製方法において、前記エアロゾルの温度を室温より
高く120℃以下の範囲に制御して前記複合構造物を形
成することを特徴とする複合構造物作製方法を提供する
ものである。
That is, in order to solve these problems, in the present invention, an aerosol in which fine particles are dispersed in a gas is jetted from the tip of a nozzle and sprayed onto a substrate to form a deposited layer of a fine particle material on the substrate. A composite structure manufacturing method for forming a composite structure composed of a substrate and a deposited layer by forming the composite layer on a substrate, wherein the temperature of the aerosol is controlled to a range higher than room temperature and 120 ° C. or less to form the composite structure. A method for producing a composite structure is provided.

【0012】本発明によれば、室温においての構造物の
形成効率と比して効率的で、且つ同等若しくはそれ以上
の機械強度を有した構造物を形成させることができる。
これによって、構造物作製時間の大幅な短縮、並びに過
加熱によるエネルギーコスト削減が可能になる。また、
一部の樹脂を除いては、熱によって基板に損傷を与える
ことはない。
According to the present invention, it is possible to form a structure that is more efficient than the formation efficiency of the structure at room temperature and has mechanical strength equal to or higher than that.
As a result, it is possible to significantly reduce the structure manufacturing time and reduce the energy cost due to overheating. Also,
Except for some resins, heat does not damage the substrate.

【0013】また、本発明の好ましい態様においては、
使用されるガスは乾燥空気、窒素、酸素、アルゴン、ヘ
リウムなどであるが、これ以外の種類のガスでも良い。
最も効果的な態様はエアロゾルの温度を約120℃に保
つことで、この温度域において室温と同等の機械強度を
持ち、且つ構造物の形成効率が良く好適である。脆性材
料微粒子は酸化物、窒化物、炭化物、ホウ化物、半導体
などであり、その一次粒子径は0.2〜0.6μmが適
当であるが、これ以外の種類、粒子径のものでも良い。
また延性材料としては各種金属材料やプラスチック材料
が挙げられ、混合微粒子は単純に脆性材料微粒子と延性
材料微粒子をボールミルなどで乾式攪拌混合させて作製
する。また複合微粒子は脆性材料微粒子の表面にめっき
やPVD、CVD、機械的混砕によるメカノケミカル被
覆、吸着、蒸気析出などの表面改質方法にて金属や有機
物の層を形成したものである。これら混合、複合微粒子
は主体的には脆性材料微粒子であり、本発明で挙げてい
る作用、効果が期待されるものである。
In a preferred embodiment of the present invention,
The gas used is dry air, nitrogen, oxygen, argon, helium, etc., but other types of gas may be used.
The most effective mode is to maintain the temperature of the aerosol at about 120 ° C., which has a mechanical strength equivalent to room temperature in this temperature range and has a good formation efficiency of the structure, which is preferable. The brittle material fine particles are oxides, nitrides, carbides, borides, semiconductors, etc., and their primary particle diameter is suitably 0.2 to 0.6 μm, but other kinds and particle diameters may be used.
The ductile material includes various metal materials and plastic materials, and the mixed fine particles are prepared by simply mixing the brittle material fine particles and the ductile material fine particles by dry stirring with a ball mill or the like. Further, the composite fine particles are formed by forming a metal or organic material layer on the surface of brittle material fine particles by a surface modification method such as plating, PVD, CVD, mechanochemical coating by mechanical mixing, adsorption, vapor deposition and the like. The mixed and composite fine particles are mainly brittle material fine particles, and are expected to have the actions and effects mentioned in the present invention.

【0014】[0014]

【発明の実施の形態】エアロゾルデポジション法で見ら
れる現象について、発明者らは以下の様に考察してい
る。セラミックスは自由電子をほとんど持たない共有結
合性あるいはイオン結合性が強い原子結合状態にある。
それゆえ硬度は高いが衝撃に弱い。従ってこれらの脆性
材料に機械的衝撃力を印加した場合、例えば結晶同士の
界面などの劈開面に沿って結晶格子のずれを生じたり、
あるいは破砕されたりなどする。これらの現象が起こる
と、ずれ面や破面にはもともと内部に存在し、別の原子
と結合していた原子が剥き出しの状態となり、すなわち
新生面が形成される。この新生面の原子一層の部分は、
もともと安定した原子結合状態から外力により強制的に
不安定な表面状態に晒される。すなわち表面エネルギー
が高い状態となる。この活性面の一部が隣接した脆性材
料表面や同じく隣接した脆性材料の新生面あるいは基板
表面と接合して安定状態に移行して構造物が形成される
が、その多くは雰囲気中に存在する気体分子などの吸着
によって不活性となってしまう。しかし、雰囲気の温度
が高くなるにつれて活性面は長寿命となり、構造物の形
成に寄与する確率が増す。外部からの連続した機械的衝
撃力の付加は、この現象を継続的に発生させ、微粒子の
変形、破砕などの繰り返しにより接合の進展、それによ
って形成された構造物の緻密化が行われる。このように
して脆性材料の構造物が形成される。また構造物と基材
との界面には、微粒子が衝突する衝撃を受けて微細な凹
凸が形成される。こうして構造物が食い込んだアンカー
層が形成されることにより、構造物と基材の間に非常に
大きな密着力が生み出される。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors consider the phenomenon observed in the aerosol deposition method as follows. Ceramics are in a state of atomic bonding with few free electrons and strong covalent bond or ionic bond.
Therefore, it has high hardness but is weak against shock. Therefore, when a mechanical impact force is applied to these brittle materials, for example, the crystal lattice shifts along the cleavage plane such as the interface between crystals,
Or it is crushed. When these phenomena occur, the atoms originally existing inside the slip surface and the fracture surface and bonded to another atom are exposed, that is, a new surface is formed. The part of the atomic layer of this new surface is
Originally stable atomic bond state is forced to be exposed to unstable surface state by external force. That is, the surface energy is high. A part of this active surface is bonded to the adjacent brittle material surface, the adjacent new surface of the brittle material, or the substrate surface to move to a stable state to form a structure, but most of them are gases existing in the atmosphere. It becomes inactive due to adsorption of molecules. However, as the temperature of the atmosphere increases, the active surface has a longer life, and the probability of contributing to the formation of the structure increases. The continuous application of a mechanical impact force from the outside causes this phenomenon continuously, and the deformation of the fine particles, the crushing, and the like lead to the progress of the joining and the densification of the structure formed thereby. In this way, a structure of brittle material is formed. Further, at the interface between the structure and the base material, fine unevenness is formed due to the impact of collision of fine particles. The formation of the anchor layer in which the structure bites in this way creates a very large adhesion between the structure and the substrate.

【0015】構造物の強度やアンカー層による基材と構
造物との密着強度を語る場合、基材、若しくは構造物の
最表層の汚染はこれらの物性に大きく影響を及ぼす。通
常、基板若しくは構造物に衝突し、表面に付着した微粒
子の破砕片は、新たに飛行してきた微粒子によって除去
される。しかし、付着した破砕片が大きい、若しくは凝
集すると、新たに飛行してきた微粒子によってなかなか
除去できない凝集体が現れる。一度この凝集体が形成さ
れると、これが障壁となってその箇所には構造物が形成
されないため欠陥となって構造物中に内包されたり、弱
い結合の構造物いわゆる圧粉体を形成してしまう。本発
明においてはエアロゾルの温度が120℃より高い領域
では破砕片の付着による障壁の形成がより顕著となり、
構造物の脆弱化が見られた。
When talking about the strength of the structure or the adhesion strength between the base material and the structure by the anchor layer, the contamination of the base material or the outermost surface layer of the structure has a great influence on these physical properties. Usually, the crushed particles of the fine particles that collide with the substrate or the structure and adhere to the surface are removed by the newly flying fine particles. However, if the attached crushed pieces are large or agglomerate, agglomerates that cannot be easily removed appear due to newly flying fine particles. Once this agglomerate is formed, this acts as a barrier and the structure is not formed at that location, so it becomes a defect and is encapsulated in the structure or forms a weakly bonded structure, so-called green compact. I will end up. In the present invention, the formation of the barrier due to the adherence of the fragments becomes more remarkable in the region where the temperature of the aerosol is higher than 120 ° C.
Weakness of the structure was observed.

【0016】以下に、エアロゾルデポジション法の一適
用例について図に基づき説明する。遊星ミルにより歪付
与を行なった平均粒径0.4μmの酸化アルミニウム微
粒子粉体を予め準備して、これを用いてエアロゾルデポ
ジション法により鉄基板上に構造物を形成させた。図1
に使用したエアロゾルデポジション装置の装置図を示
す。図1では、エアロゾルデポジション装置10は、窒
素ガスボンベ101が、搬送管102を介してエアロゾ
ル発生器103に接続され、その下流側にガス加熱装置
104が設置され、更に下流にはガス保温機能付き搬送
管105が接続され、これは構造物作製室106内に導
入されており、その先端に10mm×0.4mmの開口
部を有し、図示しない保温・加熱装置を具備したノズル
107が配置される。ノズル107の上方には支持台1
10に固定された基板109が配置され、支持台110
はXYステージ111によって2次元で駆動可能であ
る。また、支持台110には熱電対108が支持されて
おり、支持台110を移動させることによってノズル1
07と基材112との間に挿入可能である。構造物作製
室106は真空ポンプ112に接続されている。エアロ
ゾル発生器103は酸化アルミニウム微粒子を内蔵して
いる。
An application example of the aerosol deposition method will be described below with reference to the drawings. Aluminum oxide fine particle powder having an average particle size of 0.4 μm, which was subjected to strain by a planetary mill, was prepared in advance, and this was used to form a structure on an iron substrate by an aerosol deposition method. Figure 1
The apparatus figure of the aerosol deposition apparatus used for is shown. In FIG. 1, in the aerosol deposition apparatus 10, a nitrogen gas cylinder 101 is connected to an aerosol generator 103 via a carrier pipe 102, a gas heating device 104 is installed on the downstream side thereof, and a gas heat insulation function is further provided on the downstream side. A transfer pipe 105 is connected to the transfer pipe 105, which is introduced into the structure manufacturing chamber 106, has a 10 mm × 0.4 mm opening at its tip, and is provided with a nozzle 107 having a heat retention / heating device (not shown). It A support 1 is provided above the nozzle 107.
The substrate 109 fixed to 10 is arranged, and the support 110
Can be two-dimensionally driven by the XY stage 111. Further, the thermocouple 108 is supported on the support base 110, and the nozzle 1 is moved by moving the support base 110.
It can be inserted between 07 and the base material 112. The structure manufacturing chamber 106 is connected to the vacuum pump 112. The aerosol generator 103 contains fine particles of aluminum oxide.

【0017】以上の構成からなるエアロゾルデポジショ
ン装置10の作用を次に述べる。予め図示しない歪付与
装置である遊星ミルにて粉砕することにより、内部ひず
みを与えられた酸化アルミニウム微粒子を準備し、これ
をエアロゾル発生器103内に充填する。窒素ガスボン
ベ101より搬送管102を通じて混合粉末を装填した
エアロゾル発生器103内に窒素ガスを導入し、エアロ
ゾル発生器103を作動させて酸化アルミニウム微粒子
を含むエアロゾルを発生させる。ガス流量は6.0l/
minで供給した。エアロゾルは搬送管102を通じて
ガス加熱装置104に導入される。エアロゾルはガス加
熱装置104内で所定の温度に加熱され、保温機能付き
搬送管105を介して構造物作製室106内に設置され
たノズル107から基板109に向けて高速で微粒子ビ
ームとして噴射する。また、微粒子ビームの温度は熱電
対108にて検知している。微粒子ビームを噴射させる
と同時に基板109をXYステージ111によって3分
間揺動させて10mm×3mmの面積を有する複合構造
物を形成させた。また、複合構造物作製装置106内は
真空ポンプ112によって1kPa以下に保たれる。
The operation of the aerosol deposition apparatus 10 having the above structure will be described below. Aluminum oxide fine particles to which internal strain has been applied are prepared by pulverizing in advance with a planetary mill which is a strain imparting device (not shown), and this is filled in the aerosol generator 103. Nitrogen gas is introduced from the nitrogen gas cylinder 101 through the carrier pipe 102 into the aerosol generator 103 loaded with the mixed powder, and the aerosol generator 103 is operated to generate an aerosol containing aluminum oxide fine particles. Gas flow rate is 6.0l /
It was supplied at min. The aerosol is introduced into the gas heating device 104 through the carrier pipe 102. The aerosol is heated to a predetermined temperature in the gas heating device 104, and is sprayed as a fine particle beam at a high speed toward the substrate 109 from the nozzle 107 installed in the structure manufacturing chamber 106 via the carrier tube 105 with a heat retaining function. The temperature of the particle beam is detected by the thermocouple 108. At the same time when the particle beam was jetted, the substrate 109 was swung by the XY stage 111 for 3 minutes to form a composite structure having an area of 10 mm × 3 mm. Further, the inside of the composite structure manufacturing apparatus 106 is kept at 1 kPa or less by the vacuum pump 112.

【0018】以上の構成からなる本実施例の効果を次に
述べる。図1に示した複合構造物作製装置を使用して、
微粒子ビームの温度を変化させて酸化アルミニウムとガ
ラス基板の複合構造物を作製した。微粒子ビームの温度
は予めノズル107と基板109の間に挿入された熱電
対108に微粒子ビームを吹き付けて確認し、同条件に
て構造物の作製を行った。構造物形成速度は1分当りに
形成される構造物の高さとステージ駆動距離との積で評
価し、構造物の硬さはダイナミック超微小硬度計(島津
製作所製DUH−W201)、にて行い、試験条件は負
荷除荷試験、押し込み荷重1gfで行った。
The effects of the present embodiment having the above configuration will be described below. Using the composite structure manufacturing apparatus shown in FIG. 1,
A composite structure of aluminum oxide and a glass substrate was produced by changing the temperature of the particle beam. The temperature of the particle beam was confirmed by spraying the particle beam on the thermocouple 108 previously inserted between the nozzle 107 and the substrate 109, and the structure was manufactured under the same conditions. The structure formation speed is evaluated by the product of the height of the structure formed per minute and the stage driving distance, and the hardness of the structure is measured by a dynamic ultra-micro hardness meter (DUH-W201 manufactured by Shimadzu Corporation). The test conditions were a load unloading test and a pushing load of 1 gf.

【0019】図2に微粒子ビーム温度に対する構造物形
成速度と構造物の硬度の結果を示す。室温では透明で緻
密な構造物が得られたが、構造物形成速度は低い値を示
した。微粒子ビームの温度を室温より上げていくと構造
物形成速度は向上し、微粒子ビーム温度約120℃にお
いて室温の約3倍となった。約120℃を境にしてそれ
以上の温度領域において構造物形成速度は急激に上昇す
るが、得られた構造物は白濁し、欠陥を多く含んでい
た。また、室温から120℃までは硬度に変化はなく透
明で緻密な構造物を形成したのに対し、120℃より高
温域では急激に低下した。
FIG. 2 shows the results of the structure formation rate and the structure hardness with respect to the particle beam temperature. A transparent and dense structure was obtained at room temperature, but the structure formation rate was low. When the temperature of the particle beam was raised from room temperature, the structure formation rate was improved, and at a particle beam temperature of about 120 ° C., it was about three times the room temperature. The structure formation rate rapidly increased in a temperature range higher than about 120 ° C., but the obtained structure became cloudy and contained many defects. Further, the hardness did not change from room temperature to 120 ° C., and a transparent and dense structure was formed, whereas it drastically decreased in a temperature range higher than 120 ° C.

【0020】図3、図4、図5にはそれぞれ室温、75
℃、145℃における複合構造物の断面SEM像を示
す。図3より、室温では緻密体でガラス基板上に良好に
密着していることが確認できる。また、図4より、75
℃においても構造物中に一部欠落が見られるものの、か
なりの緻密性をもち、基板に良好に密着していることが
確認できる。一方で、図5より、微粒子ビーム温度14
5℃においては、アルミナ構造物内に多数の欠陥が存在
することが確認できる。以上の様に、構造物の強度の低
下は構造物中に含まれる欠陥によるものであることは明
らかであり、即ち本発明では、微粒子ビームには最適な
温度が存在することを示唆するものである。
In FIGS. 3, 4 and 5, room temperature and 75 are shown, respectively.
The cross-sectional SEM image of the composite structure at 145 ° C and 145 ° C is shown. From FIG. 3, it can be confirmed that at room temperature, it is a dense body and adheres well to the glass substrate. Moreover, from FIG.
It can be confirmed that the structure has a certain degree of compactness and is in good contact with the substrate, although some defects are observed in the structure even at ° C. On the other hand, from FIG. 5, the particle beam temperature 14
At 5 ° C., it can be confirmed that many defects are present in the alumina structure. As described above, it is clear that the decrease in the strength of the structure is due to the defects contained in the structure, that is, the present invention suggests that the particle beam has an optimum temperature. is there.

【0021】本実施例においては、窒素ガスを用いた
が、この他使用するガスは乾燥空気、酸素、アルゴン、
ヘリウムなどでも良い。また、最も効果的な態様は微粒
子ビームの温度を約120℃に保つことで、この温度域
において室温と同等の機械強度を持ち、且つ構造物の形
成効率が良く好適である。本実施例においては、酸化ア
ルミニウム微粒子を用いたが、この他の酸化物、窒化
物、炭化物、ホウ化物、半導体などの脆性材料微粒子や
脆性材料と延性材料の複合微粒子などでも良く、本実施
例では一次粒子径0.4μmの微粒子を用いたが、これ
0.6μm以下の粒子径のものであれば良い。
In this embodiment, nitrogen gas was used, but other gases used are dry air, oxygen, argon,
Helium or the like is also acceptable. Further, the most effective mode is to maintain the temperature of the particle beam at about 120 ° C., which has a mechanical strength equivalent to room temperature in this temperature range and has a good formation efficiency of the structure, which is preferable. Although aluminum oxide fine particles are used in the present embodiment, other oxide, nitride, carbide, boride, semiconductor or other brittle material fine particles or composite particles of brittle material and ductile material may be used. In the above, fine particles having a primary particle diameter of 0.4 μm were used, but particles having a particle diameter of 0.6 μm or less may be used.

【0022】[0022]

【本発明の効果】以上の様に、本発明に係るエアロゾル
若しくは微粒子ビームの温度を制御することによって、
効率的に緻密且つ高強度の構造物を形成させることが可
能となる。その結果、構造物の欠陥率の低減と作製時間
の短縮が実現できる。また、従来の様に高温を必要とし
ないため、省エネルギー化にも効果的である。
As described above, by controlling the temperature of the aerosol or particle beam according to the present invention,
It is possible to efficiently form a dense and high-strength structure. As a result, the defect rate of the structure can be reduced and the manufacturing time can be shortened. Further, since it does not require high temperature as in the past, it is also effective in energy saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】エアロゾルデポジション法装置概略図FIG. 1 Schematic diagram of an aerosol deposition method apparatus

【図2】微粒子ビーム温度に対する構造物形成速度と硬
度の関係を示すグラフ
FIG. 2 is a graph showing the relationship between the particle formation temperature and the structure formation rate and hardness.

【図3】微粒子ビーム温度室温における複合構造物の断
面SEM像(写真)
FIG. 3 is a cross-sectional SEM image (photograph) of the composite structure at a particle beam temperature of room temperature.

【図4】微粒子ビーム温度75℃における複合構造物の
断面SEM像(写真)
FIG. 4 is a cross-sectional SEM image (photograph) of the composite structure at a particle beam temperature of 75 ° C.

【図5】微粒子ビーム温度143℃における複合構造物
の断面SEM像(写真)
FIG. 5 is a cross-sectional SEM image (photograph) of the composite structure at a particle beam temperature of 143 ° C.

【符号の簡単な説明】[Simple explanation of symbols]

10…エアロゾルデポジション装置、101…ガスボン
ベ、102…搬送管、103…エアロゾル発生器、10
4…ガス加熱装置、105…保温機能付き搬送管、10
6…構造物作製室、107…保温・加熱機能付きノズ
ル、108…熱電対、109…ガラス基板、110…支
持台、111…XYステージ、112…真空ポンプ
10 ... Aerosol deposition device, 101 ... Gas cylinder, 102 ... Transport pipe, 103 ... Aerosol generator, 10
4 ... Gas heating device, 105 ... Transport tube with heat retention function, 10
6 ... Structure manufacturing chamber, 107 ... Nozzle with heat retention / heating function, 108 ... Thermocouple, 109 ... Glass substrate, 110 ... Support base, 111 ... XY stage, 112 ... Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清原 正勝 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 鳩野 広典 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 森 勝彦 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 吉田 篤史 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 山口 香織里 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 明渡 純 茨城県つくば市東1−1−1 独立行政法 人 産業技術総合研究所 つくばセンター 内 Fターム(参考) 4K044 AA01 AA12 AA16 BA01 BA11 BA12 BA21 BB01 BB03 CA23 CA24    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masakatsu Kiyohara             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Hironori Hatono             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Katsuhiko Mori             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Atsushi Yoshida             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Kaori Yamaguchi             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Jun Akito             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             National Institute of Advanced Industrial Science and Technology Tsukuba Center             Within F term (reference) 4K044 AA01 AA12 AA16 BA01 BA11                       BA12 BA21 BB01 BB03 CA23                       CA24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微粒子をガス中に分散させたエアロゾル
をノズル先端から噴射して基板に吹き付けて微粒子の材
料からなる堆積層を基板上に形成させることによって基
板と堆積層からなる複合構造物を作製する複合構造物作
製方法において、前記エアロゾルの温度を室温より高く
120℃以下の範囲に制御して前記複合構造物を形成す
ることを特徴とする複合構造物作製方法。
1. A composite structure composed of a substrate and a deposited layer is formed by spraying an aerosol in which fine particles are dispersed in a gas from a tip of a nozzle and spraying the spray on the substrate to form a deposited layer made of the material of the particulate on the substrate. In the method for producing a composite structure to be produced, the temperature of the aerosol is controlled to a range higher than room temperature and 120 ° C. or less to form the composite structure.
【請求項2】 前記エアロゾル温度範囲において得られ
る前記堆積層は、少なくともエアロゾルの温度を室温に
制御したときに得られる堆積層と同等の硬さであること
を特徴とする請求項1記載の複合構造物作製方法。
2. The composite according to claim 1, wherein the deposition layer obtained in the aerosol temperature range has hardness at least equivalent to that of the deposition layer obtained when the temperature of the aerosol is controlled to room temperature. Structure manufacturing method.
【請求項3】 前記微粒子には脆性材料微粒子または脆
性材料微粒子と延性材料微粒子が混合された混合微粒子
または脆性材料微粒子の表面に延性材料を被覆した複合
微粒子を使用することを特徴とする請求項1または2に
記載の複合構造物作製方法。
3. The fine particles are brittle material fine particles or mixed fine particles in which brittle material fine particles and ductile material fine particles are mixed, or composite fine particles in which the surface of the brittle material fine particles is coated with a ductile material. 1. The method for producing a composite structure according to 1 or 2.
【請求項4】 前記微粒子の平均一次粒子径は少なくと
も0.6μm以下であることを特徴とする請求項1乃至
3複合構造物作製方法。
4. The composite structure manufacturing method according to claim 1, wherein the average primary particle diameter of the fine particles is at least 0.6 μm or less.
【請求項5】 前記微粒子は酸化アルミニウムであるこ
とを特徴とする請求項3乃至4の複合構造物作製方法。
5. The method for manufacturing a composite structure according to claim 3, wherein the fine particles are aluminum oxide.
JP2002077992A 2001-10-11 2002-03-20 Composite structure manufacturing method Expired - Lifetime JP3874683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077992A JP3874683B2 (en) 2001-10-11 2002-03-20 Composite structure manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001-314448 2001-10-11
JP2001314448 2001-10-11
JP2001-352144 2001-11-16
JP2001352144 2001-11-16
JP2002077992A JP3874683B2 (en) 2001-10-11 2002-03-20 Composite structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2003213450A true JP2003213450A (en) 2003-07-30
JP3874683B2 JP3874683B2 (en) 2007-01-31

Family

ID=27670237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077992A Expired - Lifetime JP3874683B2 (en) 2001-10-11 2002-03-20 Composite structure manufacturing method

Country Status (1)

Country Link
JP (1) JP3874683B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130703A (en) * 2004-11-02 2006-05-25 National Institute Of Advanced Industrial & Technology Inorganic film-substrate composite material improved in transparency and its manufacturing method
JP2020084309A (en) * 2018-11-30 2020-06-04 日本ペイントホールディングス株式会社 Brittle material composition, composite structure and brittle material film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130703A (en) * 2004-11-02 2006-05-25 National Institute Of Advanced Industrial & Technology Inorganic film-substrate composite material improved in transparency and its manufacturing method
JP2020084309A (en) * 2018-11-30 2020-06-04 日本ペイントホールディングス株式会社 Brittle material composition, composite structure and brittle material film
JP7219445B2 (en) 2018-11-30 2023-02-08 国立研究開発法人産業技術総合研究所 Brittle material compositions, composite structures and brittle material films

Also Published As

Publication number Publication date
JP3874683B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP2006161161A (en) Vacuum cold spray process
US9524888B2 (en) Stage heater and method of manufacturing shaft
JP3897623B2 (en) Composite structure manufacturing method
JP4201502B2 (en) Electrostatic chuck and manufacturing method thereof
KR100682740B1 (en) Coating layer preparing method of semiconductor manufacturing equipment
JP2007320797A (en) Composite structure and its manufacturing method
JP2003119575A (en) Method and apparatus for forming composite structure
US10329670B2 (en) Apparatus and method for cold spraying and coating processing
JP2003213450A (en) Method of fabricating composite structure
JP2008111154A (en) Method for forming coating film
US8574687B2 (en) Method and device for depositing a non-metallic coating by means of cold-gas spraying
JP4565136B2 (en) Electrostatic chuck
JP6644070B2 (en) Thermal spraying method integrating selective removal of particles
KR20100052628A (en) Deposition apparatus of solid powder with thermal shock control units &amp; temperature control method for eliminating thermal shock in solid powder spray deposition
JP4925520B2 (en) Composite structure forming nozzle, composite structure forming apparatus, and composite structure forming method
WO2007105670A1 (en) Method for fabricating film-formed body by aerosol deposition
JP2007246943A (en) Method for making body having formed from brittle material by aerosol deposition method
JP3812660B2 (en) Composite structure manufacturing method and composite structure manufacturing apparatus
KR101543891B1 (en) Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition
JP2007077447A (en) Composite structure, and its production method
KR102150586B1 (en) Apparatus for forming coating layer with guide nozzle
JP2008196012A (en) Aerosol-producing apparatus
JP2008001968A (en) Fine particle aggregate crushing device and film formation apparatus
US11560319B1 (en) Manufacturing method for spherical YOF-based powder, and spherical YOF-based powder and YOF-based coating layer manufactured thereby
JP4591498B2 (en) Composite structure manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3874683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term