JP2003209996A - Controller of synchronous machine - Google Patents

Controller of synchronous machine

Info

Publication number
JP2003209996A
JP2003209996A JP2002005815A JP2002005815A JP2003209996A JP 2003209996 A JP2003209996 A JP 2003209996A JP 2002005815 A JP2002005815 A JP 2002005815A JP 2002005815 A JP2002005815 A JP 2002005815A JP 2003209996 A JP2003209996 A JP 2003209996A
Authority
JP
Japan
Prior art keywords
axis current
output
command
synchronous motor
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002005815A
Other languages
Japanese (ja)
Other versions
JP4076348B2 (en
Inventor
Shigenori Hagiwara
茂教 萩原
Yoichi Omori
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2002005815A priority Critical patent/JP4076348B2/en
Publication of JP2003209996A publication Critical patent/JP2003209996A/en
Application granted granted Critical
Publication of JP4076348B2 publication Critical patent/JP4076348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid an uncontrollable state caused by voltage saturation and to obtain a higher speed response. <P>SOLUTION: A controller of synchronous machine comprises a power converter for supplying power to a synchronous motor, and a current controller for separating the primary current of the synchronous motor into a d-axis, i.e., the direction of field pole of the synchronous motor, and a q-axis orthogonal thereto and regulating them independently to follow a d-axis current command and a q-axis current command to deliver a voltage command for controlling the torque or speed of the synchronous motor to the power converter. The controller is further provided with a means comprising a maximum d-axis current operating unit, a torque limit value operating unit, a torque command limiter, a high efficiency d-axis current operating unit, a saturation detector, a saturation integrator, a d-axis current command selector, and a d-axis current command operating unit. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、同期機又は同期発
電機のトルクや速度を制御する制御装置において、電圧
飽和による制御不能状態を回避するとともに、簡単な構
成で高速な応答を行う技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling torque and speed of a synchronous machine or a synchronous generator, which avoids an uncontrollable state due to voltage saturation and provides a quick response with a simple structure. It is a thing.

【0002】[0002]

【従来の技術】図3に、一例として従来の技術による永
久磁石型同期電動機の制御装置のブロック図を示し、以
下この図に基づいて従来の技術を説明する。電流制御器
3は、永久磁石型同期電動機1の一次電流のd軸電流i
dとq軸電流iqとがそれぞれd軸電流指令id*とq
軸電流指令iq*とに追従するような電圧指令を電力変
換器2に出力する。電力変換器2は、電圧指令通りの電
圧を永久磁石型同期電動機1に印加する。
2. Description of the Related Art FIG. 3 shows, as an example, a block diagram of a controller for a permanent magnet type synchronous motor according to a conventional technique, and the conventional technique will be described below with reference to this figure. The current controller 3 controls the d-axis current i of the primary current of the permanent magnet type synchronous motor 1.
d and q-axis current iq are d-axis current commands id * and q, respectively.
A voltage command that follows the shaft current command iq * is output to the power converter 2. The power converter 2 applies a voltage according to the voltage command to the permanent magnet type synchronous motor 1.

【0003】q軸電流指令演算器11は、永久磁石型同
期電動機1のトルク指令T*とd軸電流指令id*とか
らq軸電流指令iq*を出力する。永久磁石型同期電動
機1の出力トルクTは、次式(1)に示す
The q-axis current command calculator 11 outputs a q-axis current command iq * from the torque command T * of the permanent magnet type synchronous motor 1 and the d-axis current command id *. The output torque T of the permanent magnet type synchronous motor 1 is expressed by the following equation (1).

【0004】[0004]

【数1】 [Equation 1]

【0005】で表されることから、(1)式をq軸電流
iqについて解いた式をq軸電流指令iq*として次式
(2)で演算される。
Since the equation (1) is solved for the q-axis current iq, the following equation (2) is used as the q-axis current command iq *.

【0006】[0006]

【数2】 [Equation 2]

【0007】ここで、φは永久磁石型同期電動機1の永
久磁石の磁束、LdとLqはd軸とq軸インダクタンス
である。よって、永久磁石型同期電動機1の出力トルク
Tはq軸電流指令iq*を(2)式とすることで、トル
ク指令T*通りに追従することが出来る。
Here, φ is the magnetic flux of the permanent magnet of the permanent magnet type synchronous motor 1, and Ld and Lq are d-axis and q-axis inductances. Therefore, the output torque T of the permanent magnet type synchronous motor 1 can follow the torque command T * according to the q-axis current command iq * by the expression (2).

【0008】フィルタ12は、q軸電流指令iq*を低
域通過フィルタに通したiqfを出力する。高効率d軸
電流C演算器13は、次式(3)に示される
The filter 12 outputs iqf obtained by passing the q-axis current command iq * through a low pass filter. The high-efficiency d-axis current C calculator 13 is expressed by the following equation (3).

【0009】[0009]

【数3】 [Equation 3]

【0010】を用いて最大効率で運転できるd軸電流電
流指令CとなるidCを演算する。(3)式は、公知技
術であり、永久磁石型同期電動機1を最大効率運転する
条件式である。
The idC which is the d-axis current / current command C capable of operating at maximum efficiency is calculated by using. The formula (3) is a known technique and is a conditional formula for operating the permanent magnet synchronous motor 1 at maximum efficiency.

【0011】高効率d軸電流C演算器13にq軸電流指
令iq*をフィルタ12に通したiqfを用いる理由を
説明する。トルク指令T*が変化すると、(2)式より
q軸電流指令iq*が変化する。(3)式のiqfの代
わりにiq*を用いると、q軸電流指令iq*が変化す
ると、id*=idCの場合にd軸電流id*が変化す
る。(2)式よりid*が変化するとiq*が変化し、
さらにid*が変化することになり不安定になる恐れが
ある。よって、上記不安定性を抑制するために、iq*
が急変してもゆっくりと変化するiqfを(3)式に用
いる。
The reason why the high-efficiency d-axis current C calculator 13 uses iqf in which the q-axis current command iq * is passed through the filter 12 will be described. When the torque command T * changes, the q-axis current command iq * changes according to the equation (2). When iq * is used instead of iqf in the equation (3), when the q-axis current command iq * changes, the d-axis current id * changes when id * = idC. From equation (2), if id * changes, iq * changes,
Furthermore, id * may change and become unstable. Therefore, in order to suppress the above instability, iq *
The iqf that changes slowly even if is suddenly changed is used in the equation (3).

【0012】飽和検出器8は、電力変換器2が出力でき
る最大電圧Vcよりも入力した電圧指令が大きい場合に
は電圧飽和信号を−1とし、そうでない場合は電圧飽和
信号を1として出力する。つまり、電圧飽和信号が−1
の場合は電圧飽和状態で、電圧飽和信号が1の場合は電
圧飽和でない状態である。
The saturation detector 8 outputs a voltage saturation signal of -1 when the input voltage command is larger than the maximum voltage Vc that the power converter 2 can output, and outputs a voltage saturation signal of 1 otherwise. . That is, the voltage saturation signal is -1
In the case of, the voltage is saturated, and when the voltage saturation signal is 1, the voltage is not saturated.

【0013】d軸電流指令生成器14は、飽和検出器8
の出力が1の場合は正の固定値を時間積分し、飽和検出
器8の出力が−1の場合は負の固定値を時間積分するd
軸電流idxを求め、idxと高効率d軸電流C演算器
13の出力idCとを比較し負の方向に大きい方を選択
してd軸電流指令id*として出力する。その時間積分
の際の初期値はd軸電流指令生成器14の出力のd軸電
流指令id*とする。またidxは上限が0に制限され
る。
The d-axis current command generator 14 is a saturation detector 8
If the output of 1 is 1, the positive fixed value is integrated over time, and if the output of the saturation detector 8 is -1, the negative fixed value is integrated over time d.
The axial current idx is obtained, idx is compared with the output idC of the high-efficiency d-axis current C calculator 13, and the larger one in the negative direction is selected and output as the d-axis current command id *. The initial value of the time integration is the d-axis current command id * output from the d-axis current command generator 14. The upper limit of idx is limited to 0.

【0014】次に、d軸電流指令生成器14の動作につ
いて説明する。永久磁石型同期電動機1の電圧方程式は
次式(4)、(5)で表される。
Next, the operation of the d-axis current command generator 14 will be described. The voltage equation of the permanent magnet type synchronous motor 1 is expressed by the following equations (4) and (5).

【0015】[0015]

【数4】 [Equation 4]

【0016】ここで、vdとvqはd軸、q軸電圧、R
は永久磁石型同期電動機1の電機子巻線抵抗、pは微分
演算子、ωは永久磁石型同期電動機1の回転速度であ
る。高効率d軸電流C演算器13の出力idCは、負の
値である。電圧飽和でない場合は、idxはd軸電流指
令id*を初期値として最大で0まで正の固定値を時間
積分する。よって、通常はidx>idCなのでd軸電
流指令生成器14は負の方向に大きいidCをid*と
して出力し、永久磁石型同期電動機1は高効率に運転さ
れる。
Here, vd and vq are d-axis, q-axis voltage, R
Is the armature winding resistance of the permanent magnet synchronous motor 1, p is the differential operator, and ω is the rotational speed of the permanent magnet synchronous motor 1. The output idC of the high-efficiency d-axis current C calculator 13 is a negative value. If the voltage is not saturated, idx time-integrates a positive fixed value up to 0 with the d-axis current command id * as the initial value. Therefore, normally idx> idC, so that the d-axis current command generator 14 outputs a large idC in the negative direction as id *, and the permanent magnet type synchronous motor 1 is operated with high efficiency.

【0017】電圧飽和の場合は、d軸電流指令id*を
初期値として負の固定値を時間積分する。よって、id
x<idCなのでd軸電流指令生成器14は負の方向に
大きいidxをid*として出力する。(5)式より分
かるように、d軸電流idを負の方向に増加すればq軸
電圧vqの大きさは減る。よって、電圧飽和の場合に負
の固定値を時間積分することで徐々にd軸電流を負の方
向に増加させ、電圧指令を電力変換器2の出力可能な最
大電圧Vcまで減らし、電圧飽和を回避するようにして
いる。
In the case of voltage saturation, a negative fixed value is time-integrated with the d-axis current command id * as an initial value. Therefore, id
Since x <idC, the d-axis current command generator 14 outputs a large idx in the negative direction as id *. As can be seen from the equation (5), if the d-axis current id increases in the negative direction, the magnitude of the q-axis voltage vq decreases. Therefore, in the case of voltage saturation, the negative fixed value is integrated over time to gradually increase the d-axis current in the negative direction, reduce the voltage command to the maximum voltage Vc that the power converter 2 can output, and reduce the voltage saturation. I try to avoid it.

【0018】ここで、idxを求める際に最大値を0で
制限するのは、Ld<Lqの関係があることから(1)
式第2項のリラクタンストルクが負となり、永久磁石型
同期電動機1が出力するトルクTが減少するためであ
る。
Here, the reason for limiting the maximum value to 0 when obtaining idx is that there is a relationship of Ld <Lq (1)
This is because the reluctance torque in the second term of the formula becomes negative and the torque T output by the permanent magnet synchronous motor 1 decreases.

【0019】[0019]

【発明が解決しようとする課題】永久磁石型同期電動機
のトルクは、(1)式から分かるように、第1項の永久
磁石による磁石トルクと第2項のインダクタンス差によ
るリラクタンストルクとに分けられる。同期電動機の一
次電流の大きさに制限がある場合、永久磁石の磁束φが
小さな永久磁石型同期電動機や又は永久磁石のないシン
クロナスリラクタンスモータのような同期電動機を高速
な応答が得られるようにするには、リラクタンストルク
を用いなければならない。リラクタンストルクにはd軸
電流も必要である。高効率d軸電流C演算器13の出力
idCをd軸電流指令id*に用いる場合、q軸電流指
令iq*をフィルタに通したiqfを用いて演算してい
る。すると、トルク指令T*の変化に対してiqfの変
化は遅いためid*は高速に変化することが出来ず、同
期電動機の高速なトルク応答が得られない。
The torque of the permanent magnet type synchronous motor is divided into the magnet torque by the permanent magnet of the first term and the reluctance torque by the inductance difference of the second term, as can be seen from the equation (1). . When there is a limit to the primary current of the synchronous motor, the permanent magnet type synchronous motor with a small magnetic flux φ of the permanent magnet or the synchronous motor such as the synchronous reluctance motor without the permanent magnet should be able to obtain high-speed response. To do this, reluctance torque must be used. The reluctance torque also requires d-axis current. When the output idC of the high-efficiency d-axis current C calculator 13 is used for the d-axis current command id *, the q-axis current command iq * is calculated using the filtered iqf. Then, since the change of iqf is slow with respect to the change of the torque command T *, id * cannot change at high speed, and the high-speed torque response of the synchronous motor cannot be obtained.

【0020】また、電圧飽和時にはd軸電流を徐々に負
の方向に増加させている。こうすることによって、
(5)式から分かるようにvqの大きさが小さくなるこ
とが分かる。しかし、d軸電流を負の方向に増加し続け
ると、(4)式から分かるようにvdの大きさが増加す
るので、vd、vqを成分とする電圧ベクトルの大きさ
である電圧は逆に増加するようになる。特に、永久磁石
の磁束φが小さな永久磁石型同期電動機や又は永久磁石
のないシンクロナスリラクタンスモータのような同期電
動機は、その傾向が強い。
When the voltage is saturated, the d-axis current is gradually increased in the negative direction. By doing this,
As can be seen from the equation (5), the magnitude of vq becomes small. However, as the d-axis current continues to increase in the negative direction, the magnitude of vd increases as can be seen from equation (4), so the voltage, which is the magnitude of the voltage vector having vd and vq as components, is reversed. Will increase. In particular, a permanent magnet type synchronous motor having a small permanent magnet magnetic flux φ or a synchronous motor such as a synchronous reluctance motor having no permanent magnet has a strong tendency.

【0021】本発明は上述した点に鑑みて創案されたも
ので、その目的とするところは、同期機を最大効率で運
転できるd軸電流をトルク指令で決定し、さらに同期機
に出力可能な電圧によってd軸電流とトルクを制限する
ことで上記問題点を解決するものである。
The present invention was devised in view of the above-mentioned points, and an object thereof is to determine a d-axis current capable of operating a synchronous machine with maximum efficiency by a torque command and output it to the synchronous machine. The above problem is solved by limiting the d-axis current and the torque by the voltage.

【0022】[0022]

【課題を解決するための手段】上記問題点を解決するた
めに、請求項1に示す如く、同期電動機に電力を供給す
る電力変換器と、前記同期電動機の一次電流を前記同期
電動機の界磁極の方向であるd軸とそれと直交する方向
であるq軸とに分離し各々をd軸電流指令とq軸電流指
令に追従するように独立に調整して前記同期電動機のト
ルクや速度を制御するための電圧指令を前記電力変換器
に出力する電流制御器とを有する同期機の制御装置にお
いて、前記電力変換器が前記同期電動機に出力可能な最
大電圧と前記同期電動機の回転速度とから前記最大電圧
で前記同期電動機の最大トルクを得るためd軸電流の負
の最大制限値を出力する最大d軸電流演算器と、前記最
大d軸電流演算器の出力と前記最大電圧と前記回転速度
とから前記最大電圧で前記同期電動機が出力可能なトル
クを求め該トルクを前記同期電動機のトルクの制限値と
して出力するトルク制限値演算器と、前記同期電動機の
トルク指令を前記トルク制限値演算器の出力に制限する
トルク指令制限器と、前記トルク指令制限器の出力の絶
対値に高効率ゲインを乗ずることで前記同期電動機を最
大効率で運転するためのd軸電流指令Aを出力する高効
率d軸電流演算器と、前記電圧指令が前記電力変換器で
出力可能な最大電圧を越えた時は−1となり、超えない
時は1となる電圧飽和信号を出力する飽和検出器と、前
記飽和検出器の出力が1の時は正の固定値を時間積分
し、前記飽和検出器の出力が−1の時は前記d軸電流指
令を初期値として負の固定値を時間積分し、0から前記
最大d軸電流演算器の出力までの範囲に制限して出力す
る飽和積分器と、前記飽和積分器の出力と前記高効率d
軸電流演算器の出力とを比較して負の方向に大きい方の
出力を選択して前記d軸電流指令として出力するd軸電
流指令選択器と、前記トルク指令制限器の出力と前記d
軸電流指令選択器の出力とから前記q軸電流指令を出力
するq軸電流指令演算器とを具備し、前記d軸電流指令
選択器の出力は前記飽和積分器とq軸電流指令演算器と
電流制御器へ伝達されるよう構成したものである。
In order to solve the above problems, as described in claim 1, a power converter for supplying electric power to a synchronous motor and a primary current of the synchronous motor to a magnetic field pole of the synchronous motor. , And the q-axis, which is the direction orthogonal thereto, are separated and each is independently adjusted to follow the d-axis current command and the q-axis current command to control the torque and speed of the synchronous motor. In a controller for a synchronous machine having a voltage controller for outputting a voltage command to the power converter, the maximum from the maximum voltage that the power converter can output to the synchronous motor and the rotation speed of the synchronous motor. From the maximum d-axis current calculator that outputs a negative maximum limit value of the d-axis current to obtain the maximum torque of the synchronous motor with voltage, the output of the maximum d-axis current calculator, the maximum voltage, and the rotation speed. Maximum power And a torque limit value calculator that obtains the torque that the synchronous motor can output and outputs the torque as a torque limit value of the synchronous motor, and limits the torque command of the synchronous motor to the output of the torque limit value calculator. A torque command limiter and a high efficiency d-axis current calculator that outputs a d-axis current command A for operating the synchronous motor at maximum efficiency by multiplying the absolute value of the output of the torque command limiter by a high efficiency gain. And a saturation detector that outputs a voltage saturation signal that becomes -1 when the voltage command exceeds the maximum voltage that can be output by the power converter and becomes 1 when the voltage command does not exceed, and an output of the saturation detector. When it is 1, a positive fixed value is integrated over time, and when the output of the saturation detector is -1, a negative fixed value is integrated over time with the d-axis current command as an initial value, and 0 to the maximum d-axis current. Range to output of calculator The saturated integrator limit and outputs, as the output of the saturated integrator High Efficiency d
A d-axis current command selector that compares the output of the shaft current calculator with the output of the larger one in the negative direction and outputs it as the d-axis current command, the output of the torque command limiter, and the d
A q-axis current command calculator that outputs the q-axis current command from the output of the axis current command selector, and the output of the d-axis current command selector is the saturation integrator and the q-axis current command calculator. It is configured to be transmitted to the current controller.

【0023】また、請求項2に示す如く、前記高効率ゲ
インを前記トルク指令制限器の出力と前記q軸電流指令
演算器の出力とから求める前記高効率d軸電流演算器を
具備する請求項1記載のものである。
According to a second aspect of the present invention, the high-efficiency d-axis current calculator is provided for obtaining the high-efficiency gain from the output of the torque command limiter and the output of the q-axis current command calculator. 1 is described.

【0024】また、請求項3に示す如く、請求項1およ
び請求項2の同期電動機の代わりに同期発電機を適用す
る。以下、本発明の一実施例を図面に基づいて詳述す
る。
Further, as described in claim 3, a synchronous generator is applied instead of the synchronous motors of claims 1 and 2. An embodiment of the present invention will be described in detail below with reference to the drawings.

【0025】[0025]

【発明の実施の形態】図1は、請求項1を表す本発明の
一実施例を示すブロック線図であり、この図に基づいて
説明するが、従来の技術と同一部分は説明を省略する。
図1において、最大d軸電流演算器4は、永久磁石型同
期電動機1の回転速度ωと電力変換器2の出力可能な最
大電圧Vcとを入力して、最大電圧Vcで最大トルクが
得られるd軸電流の負の最大値idmを出力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of the present invention which represents claim 1, and description will be given based on this drawing, but the description of the same parts as the conventional art will be omitted. .
In FIG. 1, the maximum d-axis current calculator 4 inputs the rotation speed ω of the permanent magnet type synchronous motor 1 and the maximum voltage Vc that can be output from the power converter 2 to obtain the maximum torque at the maximum voltage Vc. The negative maximum value idm of the d-axis current is output.

【0026】定常状態で電機子巻線抵抗Rの項を無視し
たvd、vqを成分とする電圧ベクトルの大きさが最大
電圧Vcに等しいとすると、(4)式と(5)式とによ
り、次式(6)
Assuming that the magnitude of the voltage vector having vd and vq as components, ignoring the term of the armature winding resistance R in the steady state, is equal to the maximum voltage Vc, according to the equations (4) and (5), Formula (6)

【0027】[0027]

【数5】 [Equation 5]

【0028】となる。(6)式の平方根は永久磁石型同
期電動機1の一次磁束の大きさを表し、(6)式を一次
磁束の大きさについて解いたものは永久磁石型同期電動
機1が最大電圧Vcで出力できる次式(7)に示す一次
磁束の大きさの最大値φ1mとなる。
[0028] The square root of the expression (6) represents the magnitude of the primary magnetic flux of the permanent magnet type synchronous motor 1, and the solution of the expression (6) for the magnitude of the primary magnetic flux allows the permanent magnet type synchronous motor 1 to output at the maximum voltage Vc. The maximum value of the magnitude of the primary magnetic flux represented by the following equation (7) is φ1 m.

【0029】[0029]

【数6】 [Equation 6]

【0030】(7)式に(1)式を代入し、トルクTの
2乗について解くと、次式(8)で表される
By substituting the equation (1) into the equation (7) and solving for the square of the torque T, the following equation (8) is obtained.

【0031】[0031]

【数7】 [Equation 7]

【0032】となり、次式(9)、Then, the following equation (9),

【0033】[0033]

【数8】 [Equation 8]

【0034】を満たすidがd軸電流の負の最大値id
mとなる。よって、最大d軸電流演算器4では、最大電
圧Vcと回転速度ωとを入力して、(9)式をidにつ
いて解いた負の最大値idmを出力する。
The id satisfying the condition is the negative maximum value id of the d-axis current.
m. Therefore, the maximum d-axis current calculator 4 inputs the maximum voltage Vc and the rotation speed ω, and outputs the negative maximum value idm obtained by solving the equation (9) for id.

【0035】トルク制限値演算器5は、最大d軸電流演
算器4の出力idmと回転速度ωと最大電圧Vcとから
最大電圧Vcで永久磁石型同期電動機1が出力可能なト
ルクの制限値Tmを出力する。(8)式にidmとωと
Vcとを代入し平方根をとったものが出力可能なトルク
の制限値Tmとなる。
The torque limit value calculator 5 uses the output idm of the maximum d-axis current calculator 4, the rotation speed ω, and the maximum voltage Vc to limit the torque Tm that the permanent magnet synchronous motor 1 can output at the maximum voltage Vc. Is output. Substituting idm, ω, and Vc into the equation (8) and taking the square root is the limit value Tm of the output torque.

【0036】トルク指令制限器6は、永久磁石型同期電
動機1のトルク指令T*’の絶対値をトルク制限値演算
器5の出力Tmに制限したものを新たなトルク指令T*
として出力する。こうすることによって、トルク指令T
*は最大電圧Vcで出力可能なトルクTmに制限される
ため、電圧飽和で不安定になることを抑制することが出
来る。
The torque command limiter 6 limits the absolute value of the torque command T * 'of the permanent magnet type synchronous motor 1 to the output Tm of the torque limit value calculator 5 to obtain a new torque command T *.
Output as. By doing so, the torque command T
Since * is limited to the torque Tm that can be output at the maximum voltage Vc, it is possible to suppress instability due to voltage saturation.

【0037】高効率d軸電流演算器7は、トルク指令制
限器6の出力T*の絶対値に高効率ゲインCを乗じて永
久磁石型同期電動機1を最大効率で運転するためのd軸
電流指令AであるidAを出力する。
The high-efficiency d-axis current calculator 7 multiplies the absolute value of the output T * of the torque command limiter 6 by the high-efficiency gain C to operate the permanent magnet type synchronous motor 1 at the maximum efficiency. It outputs idA which is the command A.

【0038】永久磁石型同期電動機1の一次電流の大き
さIは次式(10)で表される。
The magnitude I of the primary current of the permanent magnet type synchronous motor 1 is expressed by the following equation (10).

【0039】[0039]

【数9】 [Equation 9]

【0040】(10)式に(1)式を代入すると、Substituting equation (1) into equation (10),

【0041】[0041]

【数10】 [Equation 10]

【0042】となり、次式(12)Then, the following equation (12)

【0043】[0043]

【数11】 [Equation 11]

【0044】を満たすidが最大効率条件のidAとな
る。よって、高効率ゲインCはid=C・Tを(12)
式に代入した式を満たす値である。こうして求めた高効
率ゲインCを用いることによって、高効率d軸電流演算
器7は、トルク指令制限器6の出力T*の絶対値を入力
して、永久磁石型同期電動機1を最大効率で運転するた
めのd軸電流指令AであるidAを出力することが出来
る。
The id satisfying the condition becomes idA of the maximum efficiency condition. Therefore, the high-efficiency gain C is given by id = C · T (12)
It is a value that satisfies the expression assigned to the expression. By using the high-efficiency gain C thus obtained, the high-efficiency d-axis current calculator 7 inputs the absolute value of the output T * of the torque command limiter 6 to operate the permanent magnet type synchronous motor 1 at maximum efficiency. It is possible to output idA which is the d-axis current command A for performing.

【0045】飽和積分器9は、飽和検出器8の出力であ
る電圧飽和信号が1の場合は正の固定値を時間積分し、
電圧飽和信号が−1の場合はid*を初期値として負の
固定値を時間積分し、0から最大d軸電流演算器4の出
力であるidmまでの範囲に制限したidBを出力す
る。
The saturation integrator 9 time-integrates a positive fixed value when the voltage saturation signal output from the saturation detector 8 is 1.
When the voltage saturation signal is -1, the negative fixed value is time-integrated with id * as the initial value, and idB limited to the range from 0 to idm which is the output of the maximum d-axis current calculator 4 is output.

【0046】d軸電流指令選択器10は、飽和積分器の
出力idBと高効率d軸電流演算器7の出力idAとを
比較して、負の方向に大きい方をd軸電流指令id*と
して出力する。
The d-axis current command selector 10 compares the output idB of the saturation integrator with the output idA of the high-efficiency d-axis current calculator 7 and sets the larger one in the negative direction as the d-axis current command id *. Output.

【0047】ここで、飽和積分器9とd軸電流指令選択
器10の動作について説明する。まず電圧飽和になる
と、飽和積分器9は速やかに電圧飽和を回避するため
に、d軸電流指令id*を初期値として負の固定値を時
間積分する。こうすることによって、d軸電流指令選択
器10は負の方向に大きい飽和積分器9の出力であるi
dBを選択し、電圧飽和を回避することが出来る。
The operation of the saturation integrator 9 and the d-axis current command selector 10 will be described. First, when voltage saturation occurs, the saturation integrator 9 time-integrates a negative fixed value with the d-axis current command id * as an initial value in order to quickly avoid voltage saturation. By doing so, the d-axis current command selector 10 outputs a large output i of the saturation integrator 9 in the negative direction.
It is possible to choose dB and avoid voltage saturation.

【0048】従来技術のように電圧飽和でない場合もd
軸電流指令id*を初期値として正の固定値を時間積分
すると、idBはidAより少し正の方向に大きな値と
なる。トルク指令T*が大きな値から小さな値に急変す
ると、idAは最大が0で正の方向に増加する。する
と、トルク指令T*の変化速度と正の固定値を時間積分
する速度との関係によっては、idA>idBとなる。
そうすると、d軸電流指令選択器10はidBを選択
し、トルク指令T*が急変しているにも拘わらずid*
がなかなか変化しないため、応答性が悪くなるとともに
高効率な運転が不可能となる。そのために、電圧飽和で
ない場合は初期値をid*としないで正の固定値を時間
積分する。
Even when the voltage is not saturated as in the prior art, d
When a positive fixed value is time-integrated using the axis current command id * as an initial value, idB becomes a value slightly larger than idA in the positive direction. When the torque command T * suddenly changes from a large value to a small value, the maximum idA is 0 and increases in the positive direction. Then, idA> idB depending on the relationship between the speed of change of the torque command T * and the speed of time integration of a positive fixed value.
Then, the d-axis current command selector 10 selects idB, and id * is selected despite the sudden change in the torque command T *.
However, the responsiveness deteriorates and highly efficient operation becomes impossible. Therefore, when the voltage is not saturated, the initial value is not set to id * and a positive fixed value is integrated over time.

【0049】飽和積分器9の出力は、0からidmの間
に制限している。まず、飽和積分器9の出力を0で制限
するのは、前述したように出力トルクTの減少を防ぐた
めである。また、飽和積分器9の出力をidmに制限す
るのは、idが負に増加しすぎて最大電圧Vcで最大ト
ルクTmが得られるd軸電流の負の最大値を超えないよ
うにするためである。
The output of the saturation integrator 9 is limited to 0 to idm. First, the reason why the output of the saturation integrator 9 is limited to 0 is to prevent the output torque T from decreasing as described above. Further, the output of the saturation integrator 9 is limited to idm in order to prevent id from increasing excessively negatively and exceeding the negative maximum value of the d-axis current at which the maximum torque Tm is obtained at the maximum voltage Vc. is there.

【0050】図2は、請求項2を表す本発明の一実施例
を示すブロック線図であり、この図に基づいて説明する
が、従来の技術と図1で示した本発明の実施例と同一部
分は説明を省略する。高効率ゲイン演算器15は、トル
ク指令制限器6の出力とq軸電流指令演算器11の出力
とを入力して、永久磁石型同期電動機1を最大効率で運
転するためのd軸電流指令Aをトルク指令T*の絶対値
に高効率ゲインCを乗じて演算する際のその高効率ゲイ
ンCを出力する。
FIG. 2 is a block diagram showing an embodiment of the present invention which represents Claim 2. The explanation will be given based on this figure. The conventional technique and the embodiment of the present invention shown in FIG. Description of the same parts is omitted. The high-efficiency gain calculator 15 inputs the output of the torque command limiter 6 and the output of the q-axis current command calculator 11, and inputs the d-axis current command A for operating the permanent magnet synchronous motor 1 at maximum efficiency. Is output when the absolute value of the torque command T * is multiplied by the high efficiency gain C to calculate.

【0051】高効率ゲインCは、上述したようにid=
C・Tを(12)式に代入した式を満たす値であるが、
id=C・Tを(12)式に代入した式をCで解くこと
は困難なので、高効率ゲインCはニュートン法などの数
値解析手法で求めなければならなくなる。そこで、
(3)式の最大効率条件式よりidC=C・Tを満たす
高効率ゲインCを高効率ゲイン演算器15で次式(1
3)で求める。
As described above, the high efficiency gain C is id =
Although it is a value that satisfies the expression in which C · T is substituted into the expression (12),
Since it is difficult to solve the equation in which id = C · T is substituted in the equation (12) with C, the high efficiency gain C must be obtained by a numerical analysis method such as the Newton method. Therefore,
From the maximum efficiency conditional expression of the expression (3), the high efficiency gain C that satisfies idC = C · T is calculated by the following expression (1
Obtained in 3).

【0052】[0052]

【数12】 [Equation 12]

【0053】ここで、iqfはq軸電流指令iqfを低
域通過フィルタに通した値で、Tf*はトルク指令T*
の絶対値を低域通過フィルタに通した値である。(1
3)式にiq*とT*とを用いると、トルク指令T*が
変化するとid*も変化する。するとiq*が変化しさ
らにid*が変化して不安定となるために、(13)式
にはゆっくりと変化する低域通過フィルタを通したiq
fとTf*とを用いる。
Here, iqf is a value obtained by passing the q-axis current command iqf through a low-pass filter, and Tf * is a torque command T *.
The absolute value of is a value that is passed through a low-pass filter. (1
When iq * and T * are used in the equation 3), id * changes when the torque command T * changes. Then, iq * changes and id * also changes and becomes unstable. Therefore, in equation (13), iq through the low-pass filter that changes slowly is used.
f and Tf * are used.

【0054】本発明の一例として永久磁石型同期電動機
について説明したが、この制御装置は永久磁石のないシ
ンクロリラクタンスモータ等の同期電動機にも有効に適
用できることは明らかである。
Although a permanent magnet type synchronous motor has been described as an example of the present invention, it is obvious that this control device can be effectively applied to a synchronous motor such as a synchronous reluctance motor without a permanent magnet.

【0055】また、同期電動機を同期発電機としても同
様である。
The same applies when the synchronous motor is used as a synchronous generator.

【0056】[0056]

【発明の効果】以上説明したように本発明によれば、電
圧飽和により制御不可能状態を回避することが可能とな
り、さらに高速な応答特性を得ることが出来る。
As described above, according to the present invention, it becomes possible to avoid an uncontrollable state due to voltage saturation, and it is possible to obtain a faster response characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1を表す本発明の1実施例を表したブロ
ック図である。
FIG. 1 is a block diagram showing an embodiment of the present invention representing claim 1. FIG.

【図2】請求項2を表す本発明の1実施例を表したブロ
ック図である。
FIG. 2 is a block diagram showing an embodiment of the present invention which represents claim 2. FIG.

【図3】従来の技術による永久磁石型同期電動機の制御
装置のブロック図である。
FIG. 3 is a block diagram of a conventional permanent magnet type synchronous motor control device.

【符号の説明】[Explanation of symbols]

1 永久磁石型同期電動機 2 電力変換器 3 電流制御器 4 最大d軸電流演算器 5 トルク制限値演算器 6 トルク指令制限器 7 高効率d軸電流演算器 8 飽和検出器 9 飽和積分器 10 d軸電流指令選択器 11 q軸電流指令演算器 12 フィルタ 13 高効率d軸電流C演算器 14 d軸電流指令生成器 15 高効率ゲイン演算器 1 Permanent magnet type synchronous motor 2 power converter 3 Current controller 4 Maximum d-axis current calculator 5 Torque limit value calculator 6 Torque command limiter 7 High efficiency d-axis current calculator 8 Saturation detector 9 Saturation integrator 10 d-axis current command selector 11 q-axis current command calculator 12 filters 13 High efficiency d-axis current C calculator 14 d-axis current command generator 15 High efficiency gain calculator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同期電動機に電力を供給する電力変換器
と、前記同期電動機の一次電流を前記同期電動機の界磁
極の方向であるd軸とそれと直交する方向であるq軸と
に分離し各々をd軸電流指令とq軸電流指令に追従する
ように独立に調整して前記同期電動機のトルクや速度を
制御するための電圧指令を前記電力変換器に出力する電
流制御器とを有する同期機の制御装置において、 前記電力変換器が前記同期電動機に出力可能な最大電圧
と前記同期電動機の回転速度とから前記最大電圧で前記
同期電動機の最大トルクを得るためd軸電流の負の最大
制限値を出力する最大d軸電流演算器と、 前記最大d軸電流演算器の出力と前記最大電圧と前記回
転速度とから前記最大電圧で前記同期電動機が出力可能
なトルクを求め該トルクを前記同期電動機のトルクの制
限値として出力するトルク制限値演算器と、 前記同期電動機のトルク指令を前記トルク制限値演算器
の出力に制限するトルク指令制限器と、 前記トルク指令制限器の出力の絶対値に高効率ゲインを
乗ずることで前記同期電動機を最大効率で運転するため
のd軸電流指令Aを出力する高効率d軸電流演算器と、 前記電圧指令が前記電力変換器で出力可能な最大電圧を
越えた時は−1となり、超えない時は1となる電圧飽和
信号を出力する飽和検出器と、 前記飽和検出器の出力が1の時は正の固定値を時間積分
し、前記飽和検出器の出力が−1の時は前記d軸電流指
令を初期値として負の固定値を時間積分し、0から前記
最大d軸電流演算器の出力までの範囲に制限して出力す
る飽和積分器と、 前記飽和積分器の出力と前記高効率d軸電流演算器の出
力とを比較して負の方向に大きい方の出力を選択して前
記d軸電流指令として出力するd軸電流指令選択器と、 前記トルク指令制限器の出力と前記d軸電流指令選択器
の出力とから前記q軸電流指令を出力するq軸電流指令
演算器とを具備し、 前記d軸電流指令選択器の出力は前記飽和積分器とq軸
電流指令演算器と電流制御器へ伝達されるよう構成した
ことを特徴とする同期機の制御装置。
1. A power converter for supplying electric power to a synchronous motor, and a primary current of the synchronous motor is divided into a d-axis which is a direction of a field pole of the synchronous motor and a q-axis which is a direction orthogonal thereto. , A current controller that independently adjusts so as to follow the d-axis current command and the q-axis current command and outputs a voltage command for controlling the torque and speed of the synchronous motor to the power converter. The maximum negative voltage of the d-axis current for obtaining the maximum torque of the synchronous motor at the maximum voltage from the maximum voltage that the power converter can output to the synchronous motor and the rotation speed of the synchronous motor. From the maximum d-axis current calculator, the output of the maximum d-axis current calculator, the maximum voltage, and the rotation speed, the torque that can be output by the synchronous motor at the maximum voltage is obtained, and the torque is calculated as the synchronous current. Torque limit value calculator that outputs as a torque limit value of the machine, a torque command limiter that limits the torque command of the synchronous motor to the output of the torque limit value calculator, and an absolute value of the output of the torque command limiter. A high-efficiency d-axis current calculator that outputs a d-axis current command A for operating the synchronous motor at maximum efficiency by multiplying by a high-efficiency gain, and the maximum voltage that the voltage command can output in the power converter A saturation detector that outputs a voltage saturation signal that becomes -1 when it exceeds, and becomes 1 when it does not exceed, and a positive fixed value when the output of the saturation detector is 1 Saturation integrator that outputs a negative fixed value with the d-axis current command as an initial value when the output of the device is -1 and limits it to the range from 0 to the maximum d-axis current calculator output. And the output of the saturation integrator and the high The d-axis current command selector that compares the output of the efficiency d-axis current calculator and selects the larger output in the negative direction and outputs it as the d-axis current command; the output of the torque command limiter; A q-axis current command calculator that outputs the q-axis current command from the output of the d-axis current command selector, wherein the outputs of the d-axis current command selector are the saturation integrator and the q-axis current command calculator. And a control device for a synchronous machine, which is configured to be transmitted to a current controller.
【請求項2】 前記高効率ゲインを前記トルク指令制限
器の出力と前記q軸電流指令演算器の出力とから求める
前記高効率d軸電流演算器とする請求項1記載の同期機
の制御装置。
2. The control device for a synchronous machine according to claim 1, wherein the high-efficiency gain is the high-efficiency d-axis current calculator that is obtained from the output of the torque command limiter and the output of the q-axis current command calculator. .
【請求項3】 同期電動機の代わりに同期発電機とする
請求項1又は2記載の同期機の制御装置。
3. The synchronous machine control device according to claim 1, wherein a synchronous generator is used instead of the synchronous motor.
JP2002005815A 2002-01-15 2002-01-15 Control device for synchronous machine Expired - Lifetime JP4076348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005815A JP4076348B2 (en) 2002-01-15 2002-01-15 Control device for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005815A JP4076348B2 (en) 2002-01-15 2002-01-15 Control device for synchronous machine

Publications (2)

Publication Number Publication Date
JP2003209996A true JP2003209996A (en) 2003-07-25
JP4076348B2 JP4076348B2 (en) 2008-04-16

Family

ID=27644751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005815A Expired - Lifetime JP4076348B2 (en) 2002-01-15 2002-01-15 Control device for synchronous machine

Country Status (1)

Country Link
JP (1) JP4076348B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061445A (en) * 2006-09-01 2008-03-13 Honda Motor Co Ltd Controller of motor
WO2009063786A1 (en) 2007-11-15 2009-05-22 Kabushiki Kaisha Yaskawa Denki Motor control device and control method thereof
JP2009124876A (en) * 2007-11-15 2009-06-04 Fuji Electric Systems Co Ltd Control device of permanent magnet type synchronous motor
JP2010213512A (en) * 2009-03-12 2010-09-24 Hitachi Car Eng Co Ltd Torque controller for permanent-magnet synchronous motor
JP2012065464A (en) * 2010-09-16 2012-03-29 Seiko Epson Corp Motor control device
JP2012139105A (en) * 2012-04-24 2012-07-19 Seiko Epson Corp Motor control device
CN103988419A (en) * 2011-12-09 2014-08-13 松下电器产业株式会社 Electric motor control device
US9054623B2 (en) 2011-08-10 2015-06-09 Panasonic Intellectual Property Management Co., Ltd. Motor control device
US9116527B2 (en) 2013-03-19 2015-08-25 Fanuc Corporation Motor control system that detects voltage saturation
CN105515481A (en) * 2016-01-29 2016-04-20 扬州恒春电子有限公司 CKDY electro-hydraulic execution advanced motor control algorithm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029368B2 (en) * 2018-09-06 2022-03-03 株式会社日立産機システム Synchronous motor control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061445A (en) * 2006-09-01 2008-03-13 Honda Motor Co Ltd Controller of motor
US8269441B2 (en) 2007-11-15 2012-09-18 Kabushiki Kaisha Yaskawa Denki Motor control apparatus
WO2009063786A1 (en) 2007-11-15 2009-05-22 Kabushiki Kaisha Yaskawa Denki Motor control device and control method thereof
JP2009124876A (en) * 2007-11-15 2009-06-04 Fuji Electric Systems Co Ltd Control device of permanent magnet type synchronous motor
JP2010213512A (en) * 2009-03-12 2010-09-24 Hitachi Car Eng Co Ltd Torque controller for permanent-magnet synchronous motor
US8305019B2 (en) 2009-03-12 2012-11-06 Hitachi Car Engineering Co., Ltd. Torque controller for permanent magnet synchronous motor
JP2012065464A (en) * 2010-09-16 2012-03-29 Seiko Epson Corp Motor control device
US9054623B2 (en) 2011-08-10 2015-06-09 Panasonic Intellectual Property Management Co., Ltd. Motor control device
CN103988419A (en) * 2011-12-09 2014-08-13 松下电器产业株式会社 Electric motor control device
US9219439B2 (en) 2011-12-09 2015-12-22 Panasonic Intellectual Property Management Co., Ltd. Electric motor control device
JP2012139105A (en) * 2012-04-24 2012-07-19 Seiko Epson Corp Motor control device
US9116527B2 (en) 2013-03-19 2015-08-25 Fanuc Corporation Motor control system that detects voltage saturation
DE102014003631B4 (en) 2013-03-19 2022-05-19 Fanuc Corporation Motor controller that detects voltage saturation
CN105515481A (en) * 2016-01-29 2016-04-20 扬州恒春电子有限公司 CKDY electro-hydraulic execution advanced motor control algorithm

Also Published As

Publication number Publication date
JP4076348B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP5957704B2 (en) Electric motor control device
JP5948613B2 (en) Motor control device
KR100442494B1 (en) Control method and controller for torque of inverter
JP2001339998A (en) Method and device for controlling induction motor
US6876169B2 (en) Method and controller for field weakening operation of AC machines
EP2869461A1 (en) Motor controller
CN107395078B (en) Flux weakening control method for permanent magnet synchronous motor
JP4076348B2 (en) Control device for synchronous machine
JP2000236694A (en) Controller for permanent-magnet synchronous motor
JPH08275599A (en) Control method for permanent magnet synchronous motor
CN110588365A (en) Motor torque control method, system, device and storage medium
JP3672457B2 (en) Control device for permanent magnet type synchronous motor
JP4053511B2 (en) Vector controller for wound field synchronous machine
JP4056237B2 (en) Control device for synchronous machine
TWI587623B (en) Synchronous motor control circuit and control method
Abu-Rub et al. Maximum torque production in rotor field oriented control of an induction motor at field weakening
Liaw et al. A fuzzy adapted field-oriented mechanism for induction motor drive
Patel et al. Development of a nonlinear loss minimization control of an IPMSM drive with flux estimation
JP6391096B2 (en) AC motor current control device
JP3468123B2 (en) Servo motor controller
JP6963172B2 (en) Synchronous motor control device and control method
JP2000050697A (en) Synchronous motor control device
JP7029368B2 (en) Synchronous motor control device
WO2010116769A1 (en) Rotating electric machine control device
JP5350239B2 (en) Driving apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R150 Certificate of patent or registration of utility model

Ref document number: 4076348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

EXPY Cancellation because of completion of term