JP2003207811A - Polarization inverted crystal and its manufacturing method - Google Patents

Polarization inverted crystal and its manufacturing method

Info

Publication number
JP2003207811A
JP2003207811A JP2002005253A JP2002005253A JP2003207811A JP 2003207811 A JP2003207811 A JP 2003207811A JP 2002005253 A JP2002005253 A JP 2002005253A JP 2002005253 A JP2002005253 A JP 2002005253A JP 2003207811 A JP2003207811 A JP 2003207811A
Authority
JP
Japan
Prior art keywords
substrate
electrode
recess
inverted
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002005253A
Other languages
Japanese (ja)
Inventor
Koichi Taniguchi
浩一 谷口
Masahiro Koto
雅弘 湖東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002005253A priority Critical patent/JP2003207811A/en
Publication of JP2003207811A publication Critical patent/JP2003207811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization inverted crystal forming a polarization inverted area deeper than that of a conventional one in spite of using an X-cut substrate or an off-cut substrate, and a method of manufacturing the polarization inverted crystal. <P>SOLUTION: An X-cut or off-cut ferroelectric crystal substrate 1 is used, an upper electrode 2 is arranged on the upper surface 1a of the substrate 1 in each area based on a polarization inversion period, a lower electrode 3 is partially arranged on the lower surface 1b of the substrate 1 and polarization inversion voltage is applied between both the electrodes 2, 3. The lower electrode 3 is constituted as a partial electrode so that an electric field e1 between both the electrodes 2, 3 has a specific directivity and the position of the lower electrode 3 is determined in accordance with the position of the upper electrode 2 so that the electric field e1 includes a directional component for inverting the polarization of a Z axis. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学結晶の技術分
野に属し、特に、XカットまたはX軸についてオフカッ
トされた強誘電体結晶基板を用いた分極反転結晶とその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of optical crystals, and more particularly to a domain-inverted crystal using a ferroelectric crystal substrate that is X-cut or off-cut with respect to the X-axis and a method for manufacturing the same. .

【0002】[0002]

【従来の技術】分極反転結晶は、周期的分極反転構造
(以下、「分極反転構造」とも呼ぶ)が形成された強誘
電体結晶(以下、「結晶」とも呼ぶ)であって、該分極
反転構造は、結晶の自発分極の方向を特定領域毎に反転
させ、1つの結晶内に、異なる分極方向の領域を特定周
期で交互に並べたものである。分極反転構造を用いるこ
とによって、擬似位相整合(quasi-phase matching)が
可能となり、従来の他の位相整合法と比べて、第2高調
波発生や光パラメトリック発振などをより効率良く達成
できるようになる。
2. Description of the Related Art A domain-inverted crystal is a ferroelectric crystal (hereinafter also referred to as "crystal") in which a periodic domain-inverted structure (hereinafter also referred to as "domain-inverted structure") is formed. The structure is such that the direction of spontaneous polarization of the crystal is inverted for each specific region, and regions of different polarization directions are alternately arranged in one crystal at a specific period. By using the polarization inversion structure, quasi-phase matching becomes possible, and second harmonic generation and optical parametric oscillation can be achieved more efficiently than other conventional phase matching methods. Become.

【0003】分極反転構造の代表的な態様としては、図
8(a)に示すように、Z板を用いたものが挙げられ
る。Z板は、結晶のZ軸の方向が基板面に垂直となるよ
うにカット(所謂、Zカット)された結晶基板である。
図8(a)の例では、Z板に分極反転加工が施され、該
Z板の上面(図の例では+Z面)には、意図された領域
面に−Zの分極が現れ、分極反転された結晶中の領域は
結晶基板の裏面にまで達している。図では、ハッチング
を施した部分が分極反転領域であって、結晶内に描かれ
た太い矢印は、−Zから+Zに向かっている。他の図も
同様である。
As a typical mode of the polarization inversion structure, as shown in FIG. 8 (a), a structure using a Z plate can be mentioned. The Z plate is a crystal substrate that is cut (so-called Z-cut) so that the direction of the Z axis of the crystal is perpendicular to the substrate surface.
In the example of FIG. 8A, the Z plate is subjected to polarization reversal processing, and −Z polarization appears in the intended area surface on the upper surface of the Z plate (+ Z plane in the example of the drawing), and the polarization reversal occurs. The region in the formed crystal reaches the back surface of the crystal substrate. In the figure, the hatched portion is the domain inversion region, and the thick arrow drawn in the crystal extends from -Z to + Z. The same applies to the other figures.

【0004】Z板に対する分極反転加工では、基板の上
面、下面に、電極を互いに真裏の位置で対向するように
配置し、反転用電圧(電界)を印加し、分極方向を反転
させる。反転用電圧を好ましく印加するために、液体電
極を用いた外部電圧印加法など、種々の方法が提案され
ている。
In the polarization reversal process for the Z plate, electrodes are arranged on the upper surface and the lower surface of the substrate so as to face each other at positions directly opposite to each other, and a reversing voltage (electric field) is applied to reverse the polarization direction. In order to preferably apply the inversion voltage, various methods such as an external voltage applying method using a liquid electrode have been proposed.

【0005】一方、図8(b)に示すように、Xカット
(X軸が基板面に垂直となるようなカット)された結晶
基板(「Xカット基板」とも呼ぶ)を用いた分極反転結
晶も知られている。例えば、入射光の光源として半導体
レーザー(LD)を用い、同一サブマウント上にLDと
分極反転素子の双方を位置合わせして固定し光源モジュ
ールとする場合などには、Xカット基板を用いた分極反
転素子は、両者の偏光方向を容易にあわせることができ
るというメリットがある。Xカット基板は、X−Z平
面、X−Y平面が基板の側面となるようにカットされる
場合が多く、光路はY軸方向を中心に取られる場合が多
い。
On the other hand, as shown in FIG. 8 (b), a domain-inverted crystal using an X-cut (cut so that the X axis is perpendicular to the substrate surface) crystal substrate (also called "X-cut substrate"). Is also known. For example, when a semiconductor laser (LD) is used as a light source of incident light and both the LD and the polarization inversion element are aligned and fixed on the same submount to form a light source module, polarization using an X-cut substrate is used. The inverting element has an advantage that the polarization directions of both can be easily adjusted. In many cases, the X-cut substrate is cut so that the XZ plane and the XY plane are the side surfaces of the substrate, and the optical path is often centered on the Y axis direction.

【0006】Xカット基板に対する分極反転加工では、
図9(a)に示すように、結晶基板の片面に+、−の電
極を対向して配置し、分極+Z、−Zの反転が行われ
る。これによって、図8(b)に示すように、結晶基板
の表層部分に薄い反転領域が形成される。その反転領域
の厚さは、例えば、通常0.5μm〜1μm程度であ
る。しかし、反転領域がこのように薄い表層部分である
ために、光Lの通路としては厚さ方向に狭く、素子とし
て利用することが困難である。
In polarization reversal processing for an X-cut substrate,
As shown in FIG. 9A, + and-electrodes are arranged facing each other on one surface of the crystal substrate, and polarization + Z and -Z are inverted. As a result, as shown in FIG. 8B, a thin inversion region is formed in the surface layer portion of the crystal substrate. The thickness of the inverted region is, for example, usually about 0.5 μm to 1 μm. However, since the inversion region is such a thin surface layer portion, the passage of the light L is narrow in the thickness direction, and it is difficult to use it as an element.

【0007】Xカット基板における上記問題を緩和する
ための態様として、図8(c)に示すように、X軸が基
板面の法線と特定の角度(オフ角度)θをなすように行
うカット、即ちX軸についてのオフカット(off-cut)
によって形成された結晶基板を用いた分極反転結晶が知
られている。以下、本明細書では、断りのない限り、X
軸についてのオフカットを単に「オフカット」と呼び、
また、X軸についてオフカットされた結晶基板を「オフ
カット基板」とも呼ぶ。文献(OPTICS LETTERS / Vol.2
4, No.22 / November 15, 1999)では、X軸が基板面の
法線とオフ角度3°をなすようにオフカットされた結晶
基板への分極反転加工が開示されている。該文献の表記
法では、Z軸についてのオフ角度87°が記載されてい
るが、これは、X軸についてのオフ角度3°と同じ意味
である。
As a mode for alleviating the above problem in the X-cut substrate, as shown in FIG. 8C, a cut is performed so that the X-axis makes a specific angle (off angle) θ with the normal to the substrate surface. , Ie, off-cut about the X-axis
A polarization inversion crystal using a crystal substrate formed by the method is known. Hereinafter, in the present specification, unless otherwise specified, X
The offcut about the axis is simply called "offcut",
A crystal substrate that is off-cut with respect to the X axis is also referred to as an "off-cut substrate". Literature (OPTICS LETTERS / Vol.2
4, No.22 / November 15, 1999) discloses polarization reversal processing to a crystal substrate that is off-cut so that the X axis forms an off angle of 3 ° with the normal to the substrate surface. The notation of the document describes an off angle of 87 ° about the Z axis, which has the same meaning as an off angle of 3 ° about the X axis.

【0008】オフカット基板を用いた分極反転結晶(入
出力面はX−Z平面)では、図8(c)に示すように、
分極反転領域が、オフ角度の分だけ結晶表面から内部方
向へ深く入り込んでいるので、上記Xカット基板の場合
と比べて、光Lが通過するための断面形状が幾分か深さ
方向に広くなっている。その厚さは、基板表面から1μ
m〜2μm程度である。
In a domain-inverted crystal using an off-cut substrate (input / output plane is XZ plane), as shown in FIG.
Since the domain-inverted region penetrates deeper inward from the crystal surface by the amount of the off angle, the cross-sectional shape for passing the light L is somewhat wider in the depth direction than in the case of the X-cut substrate. Has become. The thickness is 1μ from the substrate surface
It is about m to 2 μm.

【0009】オフカット基板に対する分極反転加工で
は、図9(b)に示すように、該基板の上面に、+、−
の主電極が対向配置され、かつ、該基板の下面には、電
界の作用方向をZ軸方向へ傾斜させるための補助電極が
全面に設けられる。これら、上面の両主電極間の電界
と、下面全面の補助電極による電界の調節によって、図
8(c)、図9(b)に示すように、基板表面から斜め
に基板内部に入り込んだ反転領域が形成される。
In the polarization reversal process for an off-cut substrate, +,-is formed on the upper surface of the substrate as shown in FIG. 9 (b).
The main electrodes are arranged to face each other, and an auxiliary electrode for inclining the action direction of the electric field in the Z-axis direction is provided on the entire lower surface of the substrate. By adjusting the electric field between the main electrodes on the upper surface and the electric field by the auxiliary electrodes on the entire lower surface, as shown in FIGS. 8 (c) and 9 (b), the inversion that obliquely enters the inside of the substrate from the substrate surface. A region is formed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、本発明
者等が上記のようなXカット基板、オフカット基板に対
する分極反転加工、およびそれによって得られる分極反
転結晶を検討したところ、次のような問題点を含んでい
ることがわかった。
However, the inventors of the present invention have studied the above-described polarization reversal processing for the X-cut substrate and the off-cut substrate, and the polarization reversal crystal obtained thereby, and found the following problems. It turned out to contain dots.

【0011】先ず、図9(a)、(b)に示すように、
Xカット基板、オフカット基板のいずれの場合でも、結
晶基板の上面に+、−の主電極を対向配置し、分極反転
電圧を基板の同一面上に作用させている。そのため、両
電極間には強い電界が生じるが、同時に、基板表面に沿
ったリーク電流や放電が生じ易く、製品毎に一定した品
質の分極反転構造が得られないという問題がある。
First, as shown in FIGS. 9 (a) and 9 (b),
In both cases of the X-cut substrate and the off-cut substrate, + and-main electrodes are arranged opposite to each other on the upper surface of the crystal substrate, and the polarization inversion voltage is applied to the same surface of the substrate. Therefore, a strong electric field is generated between both electrodes, but at the same time, a leak current or discharge along the substrate surface is likely to occur, and there is a problem that a domain-inverted structure of constant quality cannot be obtained for each product.

【0012】また、たとえオフカット基板を用いた分極
反転結晶であっても、分極反転領域は基板表面から十分
に深く入り込んではおらず、光の通路が狭いという問題
は、未だ十分に解決されていない。
Further, even in a domain-inverted crystal using an off-cut substrate, the domain-inverted region does not go deep enough into the substrate surface, and the problem that the light path is narrow has not been sufficiently solved. Absent.

【0013】本発明の課題は、上記問題を解決し、Xカ
ット基板、オフカット基板を用いながらも、加工時のリ
ーク電流や放電を抑制でき、分極反転領域を従来より深
く形成することも可能な製造方法、およびそれによって
得られる分極反転結晶を提供することにある。
The object of the present invention is to solve the above-mentioned problems and to suppress leakage current and discharge during processing while using an X-cut substrate or an off-cut substrate, and to form a domain inversion region deeper than before. Another object of the present invention is to provide a simple manufacturing method and a domain-inverted crystal obtained thereby.

【0014】[0014]

【課題を解決するための手段】本発明は以下の特徴を有
するものである。 (1)XカットまたはX軸についてオフカットされた強
誘電体結晶基板を用い、該基板の上面には、分極反転周
期に従った領域毎に上部電極を配置し、該基板の下面に
は、下記(A)、(B)の条件を同時に満たすように下
部電極を部分的に配置し、これら両電極間に分極反転電
圧を印加する工程を有することを特徴とする、分極反転
結晶の製造方法。
The present invention has the following features. (1) A ferroelectric crystal substrate that is X-cut or off-cut with respect to the X-axis is used, and an upper electrode is arranged on each of the regions according to the polarization inversion period on the upper face of the substrate, and on the lower face of the substrate, A method for producing a domain-inverted crystal, which comprises a step of partially arranging a lower electrode so as to simultaneously satisfy the following conditions (A) and (B) and applying a domain-inverting voltage between these two electrodes. .

【0015】(A)下部電極は、両電極間の電界が特定
の方向性を有するように、該基板の下面全体のうちの一
部に配置すること。 (B)下部電極の位置は、両電極間の電界がZ軸の分極
を反転させる方向成分を含むように、上部電極の位置に
対して決定すること。
(A) The lower electrode should be arranged on a part of the entire lower surface of the substrate so that the electric field between the two electrodes has a specific directionality. (B) The position of the lower electrode should be determined with respect to the position of the upper electrode so that the electric field between the two electrodes includes a direction component that reverses the polarization of the Z axis.

【0016】(2)下部電極を部分的に配置する態様
が、上記基板の下面に部分的に凹部を形成し、該凹部内
に下部電極を配置する態様である、上記(1)記載の製
造方法。
(2) The manufacturing method according to (1) above, wherein the lower electrode is partially disposed so that a recess is partially formed in the lower surface of the substrate and the lower electrode is disposed in the recess. Method.

【0017】(3)上記凹部が、(i)個々の上部電極
に個別に対応するよう設けられた単発的な凹部の集合で
あるか、または(ii)前記(i)の凹部の一部または全
部を互いに連通させて溝状とした凹部である、上記
(2)記載の製造方法。
(3) The recess is (i) a set of discrete recesses provided so as to individually correspond to individual upper electrodes, or (ii) a part of the recess of (i) or The manufacturing method according to (2) above, which is a groove-shaped recess formed by communicating all of them with each other.

【0018】(4)上記凹部内に配置される下部電極
が、該凹部内に充填される液体電極である、上記(2)
記載の製造方法。
(4) The lower electrode arranged in the recess is a liquid electrode filled in the recess.
The manufacturing method described.

【0019】(5)上記基板のX−Z平面によって任意
の上部電極を切断したとき、該X−Z平面に下部電極の
断面が現われるように、かつ、上記基板上面における上
部電極断面の全幅の中心線と、下部電極断面の全幅の中
心線とが互いに一致しないように、下部電極を配置する
ものである、上記(1)または(2)記載の製造方法。
(5) When an arbitrary upper electrode is cut by the XZ plane of the substrate, the cross section of the lower electrode appears on the XZ plane, and the entire width of the cross section of the upper electrode on the upper surface of the substrate is reduced. The manufacturing method according to (1) or (2) above, wherein the lower electrode is arranged so that the center line and the center line of the entire width of the cross section of the lower electrode do not coincide with each other.

【0020】(6)さらに、上部電極と下部電極との間
の電界に影響を与え、該電界の方向を調整するための補
助電極を、上記基板の上面および/または下面に部分的
に配置するものである、上記(1)記載の製造方法。
(6) Further, an auxiliary electrode for affecting the electric field between the upper electrode and the lower electrode and adjusting the direction of the electric field is partially arranged on the upper surface and / or the lower surface of the substrate. The production method according to (1) above.

【0021】(7)XカットまたはX軸についてオフカ
ットされた強誘電体結晶基板の少なくとも上面に、分極
反転領域と、分極反転されていない領域とが交互に現わ
れるように周期的分極反転構造が形成された分極反転結
晶であって、該基板の下面には、下記(C)、(D)の
条件を同時に満たす凹部が少なくとも形成されているこ
とを特徴とする分極反転結晶。
(7) A periodically domain-inverted structure is formed on at least the upper surface of the ferroelectric crystal substrate that is X-cut or off-cut with respect to the X-axis so that domain-inverted regions and regions that are not domain-inverted appear alternately. A domain-inverted crystal that is formed, wherein at least a concave portion that simultaneously satisfies the following conditions (C) and (D) is formed on the lower surface of the substrate.

【0022】(C)前記分極反転領域に上部電極を配置
し、凹部内に下部電極を配置して、これら両電極間に電
圧を印加したとき、両電極間の電界が特定の方向性を有
するように、該凹部が該基板の下面全体のうちの一部に
配置されていること。 (D)前記分極反転領域に上部電極を配置し、凹部内に
下部電極を配置して、これら両電極間に電圧を印加した
とき、両電極間の電界がZ軸方向成分を含むように、該
凹部の位置が前記分極反転領域に対して決定されている
こと。
(C) When the upper electrode is arranged in the domain-inverted region and the lower electrode is arranged in the concave portion and a voltage is applied between the both electrodes, the electric field between the two electrodes has a specific directionality. Thus, the concave portion is arranged on a part of the entire lower surface of the substrate. (D) When an upper electrode is arranged in the domain-inverted region and a lower electrode is arranged in the recess and a voltage is applied between the two electrodes, an electric field between the two electrodes includes a Z-axis direction component, The position of the recess is determined with respect to the domain-inverted region.

【0023】(8)上記基板のX−Z平面によって該基
板上面の任意の分極反転領域を切断したとき、該X−Z
平面に上記凹部の断面が現われるように、かつ、該基板
上面における前記分極反転領域の全幅の中心線と、該下
部電極断面の全幅の中心線とが互いに一致しないよう
に、該凹部が形成されている、上記(7)記載の分極反
転結晶。
(8) When an arbitrary domain inversion region on the upper surface of the substrate is cut by the XZ plane of the substrate, the XZ
The recess is formed so that the cross section of the recess appears on a plane and the center line of the full width of the domain-inverted region on the upper surface of the substrate does not coincide with the center line of the full width of the lower electrode cross section. The polarization-inverted crystal according to (7) above.

【0024】(9)上記凹部が、(i)個々の上部電極
に個別に対応するよう設けられた単発的な凹部の集合で
あるか、または、(ii)前記(i)の凹部の一部または
全部を互いに連通させて溝状とした凹部である、上記
(7)記載の分極反転結晶。
(9) The above-mentioned recess is (i) a set of discrete recesses provided so as to individually correspond to each upper electrode, or (ii) a part of the recess of (i) above. Alternatively, the domain-inverted crystal according to (7) above, which is a groove-shaped recess formed by communicating all of them with each other.

【0025】本明細書では、明確な説明のために、結晶
基板の表裏の基板面をそれぞれ「上面」、「下面」と呼
び、それぞれの面に配置する電極を「上部電極」、「下
部電極」と呼んでいる。これら上下を用いた呼び方は、
表裏の基板面と、それぞれの面に配置される電極とを簡
便かつ明確に関係付けて説明するためだけのものであっ
て、例えば、「上面」・「下面」は、「一方の面」・
「他方の面」と同じ意味である。
In this specification, for clear explanation, the front and back substrate surfaces of the crystal substrate are referred to as "upper surface" and "lower surface", and the electrodes arranged on the respective surfaces are referred to as "upper electrode" and "lower electrode". ". The name using these top and bottom is
It is only for explaining the front and back substrate surfaces and the electrodes arranged on the respective surfaces simply and clearly in relation to each other. For example, "upper surface" / "lower surface" means "one surface" /
It has the same meaning as "the other side".

【0026】[0026]

【発明の実施の形態】以下に、本発明の製造方法およ
び、それによって得られる本発明の分極反転結晶を説明
する。図1は、当該製造方法に従って強誘電体結晶基板
1に電極2、3を配置し、分極反転電圧を印加している
状態を模式的に示す図である。図1(a)はXカット基
板を用いた例であり、図1(b)はオフカット基板を用
いた例である。また、図2は、形成すべき分極反転構造
に従って、基板に配置される電極(特に上部電極)の周
期的な配置パターンを見せるための斜視図である。結晶
基板に配置される電極の形態は、例えば後述の液体電極
など、種々の好ましい態様のものがあるが、図1、2で
は説明のために電極を単純な平板電極として描き、種々
のタイプの電極が結晶に接している状態を象徴してい
る。また、各図の右下に付記した座標軸に示すように、
結晶基板の自発分極の方向を、図面の左方向が+Z、上
方向が+Xとなるように取り、上部電極を+側の電極と
して説明している。
BEST MODE FOR CARRYING OUT THE INVENTION The manufacturing method of the present invention and the domain-inverted crystal of the present invention obtained thereby will be described below. FIG. 1 is a diagram schematically showing a state in which electrodes 2 and 3 are arranged on a ferroelectric crystal substrate 1 according to the manufacturing method and a polarization inversion voltage is applied. 1A shows an example using an X-cut substrate, and FIG. 1B shows an example using an off-cut substrate. Further, FIG. 2 is a perspective view for showing a periodic arrangement pattern of electrodes (particularly upper electrodes) arranged on the substrate according to the polarization inversion structure to be formed. The form of the electrode arranged on the crystal substrate has various preferable embodiments such as a liquid electrode described later, but in FIGS. 1 and 2, the electrode is drawn as a simple flat plate electrode for the sake of description, and various types of electrodes are shown. It symbolizes that the electrode is in contact with the crystal. Also, as shown in the coordinate axes attached to the bottom right of each figure,
The direction of spontaneous polarization of the crystal substrate is set such that the left direction in the drawing is + Z and the upper direction is + X, and the upper electrode is described as the + side electrode.

【0027】当該製造方法は、図1、図2に示すよう
に、結晶基板1の上面1aに、分極反転周期に従った領
域毎に上部電極2を配置し、該基板の下面1bには、上
記した(A)、(B)の条件を同時に満たすように下部
電極3を下面全体に対して部分的に配置し、両電極間に
分極反転電圧を印加する工程を有する。各図中、ハッチ
ングを施した領域Dが、電圧印加によって形成された分
極反転領域である。
In the manufacturing method, as shown in FIGS. 1 and 2, the upper electrode 2 is arranged on the upper surface 1a of the crystal substrate 1 for each region according to the polarization inversion period, and the lower surface 1b of the substrate is There is a step of partially disposing the lower electrode 3 on the entire lower surface so as to simultaneously satisfy the above conditions (A) and (B), and applying a polarization reversal voltage between both electrodes. In each figure, a hatched region D is a domain-inverted region formed by applying a voltage.

【0028】上記(A)の条件は、下部電極が、Xカッ
ト基板・オフカット基板に配置される主電極の一方であ
りながら、結晶基板の下面に配置され、しかも下面全面
ではなく部分的に配置される特殊な電極であることを限
定している。この条件によって、先ず、結晶基板の同一
面上でのリーク電流、放電の問題が解消される。また、
下部電極を、結晶基板の下面に部分的に配置することに
よって、両電極間の電界は、特定の上部電極からそれに
対応する下部電極へと、明確な方向性を有することにな
る。後述の電極配置パターンによっては、両電極間の電
界全体が、弧状、S字状などにわい曲する場合もある
が、電界全体として+電極から−電極へ明確に向かい、
方向性が認識される。
The condition (A) is that the lower electrode is one of the main electrodes arranged on the X-cut substrate and the off-cut substrate, but is arranged on the lower surface of the crystal substrate, and not on the entire lower surface but partially. It is limited to the special electrodes that are placed. Under this condition, first, the problems of leak current and discharge on the same surface of the crystal substrate are solved. Also,
By partially arranging the lower electrode on the lower surface of the crystal substrate, the electric field between the two electrodes has a clear directionality from a specific upper electrode to the corresponding lower electrode. Depending on the electrode arrangement pattern described below, the entire electric field between the electrodes may be bent in an arc shape, an S shape, or the like, but as a whole electric field, the electric field clearly goes from the positive electrode to the negative electrode,
Direction is recognized.

【0029】これに対して、従来のXカット基板に対す
る分極反転加工では、図9(a)で説明したように、+
−の両主電極は、結晶基板の一方の面(上面)のみに対
向配置されるだけであって、上面・下面との間で電極が
対向するように配置されることはなかった。また、従来
のオフカット基板に対する分極反転加工では、図9
(b)で説明したように、結晶基板の上面に対向配置さ
れる両方の主電極の他に、下面にも補助電極が配置され
る。しかし、該補助電極は、あくまで補助として下面全
面を覆って設けられ、上面の電極と下面の電極とを結ぶ
電界があったとしても、特定の方向性は持たず、上部電
極から下面の不定部位に到達する不定の電界である。
On the other hand, in the conventional polarization reversal processing for the X-cut substrate, as described with reference to FIG.
Both of the main electrodes of − were only arranged so as to face only one surface (upper surface) of the crystal substrate, and the electrodes were not so arranged as to face each other between the upper surface and the lower surface. In addition, in the case of the polarization reversal processing for the conventional off-cut substrate,
As described in (b), in addition to both main electrodes arranged to face the upper surface of the crystal substrate, auxiliary electrodes are also arranged to the lower surface. However, the auxiliary electrode is provided to cover the entire lower surface as an auxiliary, and even if there is an electric field connecting the electrode on the upper surface and the electrode on the lower surface, the auxiliary electrode does not have a specific directionality and the uncertain portion from the upper electrode to the lower surface. It is an indefinite electric field that reaches.

【0030】上記(B)の条件は、上記(A)の条件に
よって特定の方向性を与えられた電界が、さらにZ軸の
分極を反転させる成分を必ず持つように、下部電極の位
置を定めるものである。即ち、図1(a)、(b)に模
式的に示すように、両電極間に分極反転電圧を印加した
とき、〔+側の電極(上部電極2)から−側の電極(下
部電極3)へ向かう電気力線e1〕が、〔該基板のZ軸
に沿って+Z分極側から−Z分極側へ向かう方向の成分
e2、e3〕を有することが必須条件であって、そうな
るように、上部電極2の中心位置に対して下部電極3の
中心位置をずらせて決定すればよい。図1では、説明の
為に、電気力線e1を直線的に描いているが、実際の湾
曲した電界であってもよく、電気力線の出発点から到着
点までを平均した方向が、成分e2、e3を有するよう
に、電極位置を決定すればよい。
The above condition (B) determines the position of the lower electrode so that the electric field given a specific directionality according to the above condition (A) has a component that further inverts the polarization of the Z axis. It is a thing. That is, as schematically shown in FIGS. 1A and 1B, when a polarization inversion voltage is applied between both electrodes, the [+ side electrode (upper electrode 2) to the − side electrode (lower electrode 3 It is an essential condition that the line of electric force e1] toward [) has [components e2, e3 in the direction from the + Z polarization side to the −Z polarization side along the Z axis of the substrate]. The center position of the lower electrode 3 may be shifted with respect to the center position of the upper electrode 2. In FIG. 1, the electric force line e1 is drawn linearly for the sake of explanation, but it may be an actual curved electric field, and the average direction from the start point to the arrival point of the electric force line is the component. The electrode position may be determined so as to have e2 and e3.

【0031】両電極間の主電界が、Z軸の分極を反転さ
せようとする方向成分を含むことによって、この方向成
分が、結晶基板の表層付近のみならず、さらに深い部分
においてもZ軸マイナス方向に作用し、分極を反転させ
る。従って、Xカット基板、オフカット基板を用いなが
らも、図1にハッチングを施して示したように、分極反
転領域が従来よりも深く内部に広がった分極反転結晶が
得られる。
Since the main electric field between both electrodes includes a directional component that tends to invert the polarization of the Z axis, this directional component is not only near the surface layer of the crystal substrate but also in the Z axis minus It acts in the direction and reverses the polarization. Therefore, while using the X-cut substrate and the off-cut substrate, as shown by hatching in FIG. 1, a domain-inverted crystal having a domain-inverted region deeper and deeper than the conventional one can be obtained.

【0032】図1(a)、(b)に示すように、両電極
間の中心的な電気力線e1と、Z軸に沿って+Z分極側
から−Z分極側へ向かうZ軸方向成分e2、e3とのな
す角度は、該角度が小さい程、該方向成分は大きくなる
が、同時に、下部電極と上部電極との基板面方向のずれ
が大きくなり、深い分極反転領域を形成するためには広
い基板や薄い基板が必要になる。逆に、該角度が90°
に近い程、主電界は直下に近い方向に作用するが、該方
向成分は小さくなる。これらを考慮すると、該角度は、
共に、1°〜70°程度、特に1°〜45°程度が好ま
しい。
As shown in FIGS. 1A and 1B, a central electric force line e1 between both electrodes and a Z-axis direction component e2 extending from the + Z polarization side to the −Z polarization side along the Z axis. , E3, the smaller the angle is, the larger the directional component is, but at the same time, the deviation in the substrate surface direction between the lower electrode and the upper electrode becomes large, and in order to form a deep domain inversion region, Wide or thin substrates are needed. Conversely, the angle is 90 °
The closer to, the main electric field acts in a direction closer to immediately below, but the directional component becomes smaller. Considering these, the angle is
Both are preferably about 1 ° to 70 °, particularly preferably about 1 ° to 45 °.

【0033】上部電極と下部電極とは、必ずしも同じX
−Z平面上で対応している必要はなく、Y軸方向にずれ
ていても、両電極間の電界が、Z軸方向成分e2、e3
を有する位置関係にあればよい。しかし、主電界がより
有効なZ軸方向成分を持つには、図1に示すように、上
部電極と下部電極とは、必ずしも同じX−Z平面上で対
応する配置が好ましい。即ち、基板のX−Z平面によっ
て、任意の上部電極を切断したとき、該X−Z平面に下
部電極の断面が現われる配置態様が好ましい。
The upper electrode and the lower electrode are not necessarily the same X
It is not necessary to correspond on the −Z plane, and the electric field between the two electrodes may have the Z-axis direction components e2 and e3 even if they are deviated in the Y-axis direction.
It suffices if it has a positional relationship with. However, in order for the main electric field to have a more effective Z-axis direction component, as shown in FIG. 1, it is preferable that the upper electrode and the lower electrode necessarily correspond to each other on the same XZ plane. That is, an arrangement mode is preferable in which, when an arbitrary upper electrode is cut by the XZ plane of the substrate, the cross section of the lower electrode appears on the XZ plane.

【0034】この配置態様では、図3(a)に示すよう
に、基板上面1aにおける上部電極断面の全幅W1の中
心線m1と、下部電極断面の全幅W2の中心線m2とが
互いに一致しないように、下部電極を配置することが好
ましい。さらに付言すると、上記(B)の条件を満たす
には、下部電極の中心は上部電極の中心よりも−Z方向
にずれるべきである。
In this arrangement, as shown in FIG. 3A, the center line m1 of the total width W1 of the upper electrode section and the center line m2 of the total width W2 of the lower electrode section on the upper surface 1a of the substrate do not coincide with each other. It is preferable to arrange the lower electrode. In addition, in order to satisfy the above condition (B), the center of the lower electrode should be displaced from the center of the upper electrode in the −Z direction.

【0035】本発明に用いられる強誘電体結晶は、公知
のものであってよく、例えば、LiNbO3、LiTa
3、XATiOXB4(XA=K、Rb、Tl、Cs、
B=P、As)などの代表的なものや、これらにMg
などの種々の元素をドープしたものが挙げられる。Li
NbO3やLiTaO3は、コングルーエント組成であっ
てもストイキオメトリック組成であってもよい。これら
の結晶のなかでも特にMgOドープLiNbO3は、耐
光損傷性に優れている。
The ferroelectric crystal used in the present invention may be a known one, for example, LiNbO 3 or LiTa.
O 3 , X A TiO X B O 4 (X A = K, Rb, Tl, Cs,
X B = P, As) and other typical ones, as well as Mg
Those doped with various elements such as Li
NbO 3 and LiTaO 3 may have a congruent composition or a stoichiometric composition. Among these crystals, MgO-doped LiNbO 3 is particularly excellent in light damage resistance.

【0036】本発明では、Xカット基板、オフカット基
板を分極反転加工の対象とする。これら結晶基板の最も
普通の形態は、図1に示すように、X−Z平面に平行な
端面を有するようにカットされた直方体であるが、これ
に限定されず、Xカット、オフカットであれば結晶基板
の外周形状はどのようなものであってもよい。
In the present invention, the X-cut substrate and the off-cut substrate are subjected to polarization reversal processing. The most common form of these crystal substrates is a rectangular parallelepiped cut to have an end face parallel to the XZ plane as shown in FIG. 1, but is not limited to this, and may be an X cut or an off cut. For example, the outer peripheral shape of the crystal substrate may be any shape.

【0037】オフカット基板を用いる場合の、該基板の
オフカット角度(図1(b)のθ)は、特に限定されな
いが、Xカット基板の反転領域をより深く改善した代替
品として用いるのであれば、0<θ≦45°程度、特
に、0<θ≦15°程度が好ましい角度である。X軸か
らのオフカット角度は小さい程、X板に近いものとな
る。
When an off-cut substrate is used, the off-cut angle (θ in FIG. 1 (b)) of the substrate is not particularly limited, but it may be used as a substitute with a deeper improvement in the inversion region of the X-cut substrate. For example, about 0 <θ ≦ 45 °, particularly about 0 <θ ≦ 15 ° is a preferable angle. The smaller the off-cut angle from the X-axis, the closer to the X-plate.

【0038】結晶基板の寸法は限定されないが、板状の
直方体である場合の寸法例を挙げると、光路方向(図1
において紙面に垂直の方向)の基板寸法が5mm〜70
mm程度、光路方向に垂直な断面の寸法が(3mm×7
0mm)〜(0.2mm×5mm)程度である。
The size of the crystal substrate is not limited, but an example of the size in the case of a plate-shaped rectangular parallelepiped is shown in FIG.
In the direction perpendicular to the paper surface) of 5 mm to 70 mm
mm, the dimension of the cross section perpendicular to the optical path direction is (3 mm × 7
It is about 0 mm) to (0.2 mm × 5 mm).

【0039】結晶基板を平坦な状態としたままで下部電
極を配置するならば、該結晶基板の厚さが、両電極間の
距離や、上記(B)の条件角度に大きく影響する。この
ような場合、両電極間に効果的で強い電界を作用させる
加工上の点からは、該結晶基板の厚さを0.1mm〜1
mm、特に0.2mm〜0.5mmとすることが好まし
い。
If the lower electrode is arranged with the crystal substrate kept flat, the thickness of the crystal substrate greatly affects the distance between the electrodes and the condition angle of (B). In such a case, the thickness of the crystal substrate is 0.1 mm to 1 from the viewpoint of processing in which an effective and strong electric field is applied between both electrodes.
mm, and particularly preferably 0.2 mm to 0.5 mm.

【0040】下部電極を結晶基板の下面に部分的に配置
する際の態様は限定されず、上部電極と同様の電極構造
のものを用いてもよい。例えば、液体電極を部分的に接
触させるために、絶縁層(レジスト膜)を被覆してもよ
いし、Oリングなどのガスケットで周囲への漏れをシー
ルしながら液体電極を接触させてもよい。
The mode of partially disposing the lower electrode on the lower surface of the crystal substrate is not limited, and an electrode structure similar to that of the upper electrode may be used. For example, an insulating layer (resist film) may be coated in order to bring the liquid electrode into partial contact, or the liquid electrode may be brought into contact with the gasket such as an O-ring to prevent leakage to the surroundings.

【0041】本発明の製造方法では、下部電極の好まし
い配置態様として、図4、図5に示すように、結晶基板
1の下面に部分的に凹部4を形成し、該凹部内に下部電
極3aを配置する態様を提案している。この配置態様に
よって、結晶基板がどのように厚くとも、下部電極を上
部電極に接近させることができ、かつ、下部電極を無駄
に横方向に移動させることなく、上記(B)の条件であ
るZ軸の分極を反転させる方向成分を、より大きく設定
できるようになる。
In the manufacturing method of the present invention, as a preferable arrangement mode of the lower electrode, as shown in FIGS. 4 and 5, a concave portion 4 is partially formed on the lower surface of the crystal substrate 1, and the lower electrode 3a is formed in the concave portion. Is proposed. With this arrangement, no matter how thick the crystal substrate is, the lower electrode can be brought close to the upper electrode, and the lower electrode is not moved laterally unnecessarily. The direction component for reversing the polarization of the axis can be set larger.

【0042】凹部内に配置する下部電極は、従来公知の
電極を用いて、該凹部内の任意の部位(凹部底面など)
に配置すればよいが、液体電極を用いて該凹部内全体に
充填する態様が好ましい。液体電極を用いた態様は、凹
部内への配置(充填)、凹部内からの除去が容易であ
り、凹部の形状によく追従するので、凹部を形成するこ
とによる特長が最も顕著となる。以下の説明では、凹部
内に液体電極を充填し、凹部全体が下部電極となること
を前提として、有用な凹部の形状を説明する。
As the lower electrode arranged in the recess, a conventionally known electrode is used, and an arbitrary portion in the recess (bottom surface of the recess, etc.) is formed.
However, it is preferable to fill the entire inside of the recess with a liquid electrode. In the embodiment using the liquid electrode, the arrangement (filling) in the recess and the removal from the recess are easy, and the shape of the recess is closely followed, so that the feature of forming the recess is most remarkable. In the following description, assuming that the liquid electrode is filled in the recess and the entire recess serves as the lower electrode, a useful shape of the recess will be described.

【0043】凹部は、(i)単発的な態様であっても、
(ii)一括的な態様であってもよい。上記(i)の単発
的な態様では、凹部は、上部電極(分極反転周期に従っ
て配置されている)に対して、1(上部電極)対1(凹
部)、または1(上部電極)対複数(凹部)にて対応さ
せて設けられる。この場合、凹部は、上部電極の配置パ
ターンと同様のパターンにて、下面に配列することが好
ましい。また、上記(ii)の一括的な態様では、凹部
は、前記(i)で配列された単発的な凹部を隣同士互い
に連通させた如く、溝状として設けられる。凹部同士の
連通は、数個だけの連通(残りは単発のまま)、破線を
描くような数個毎の連通、不規則な連通、全部の連通で
あってよい。凹部を溝状とする場合、互いに平行に伸び
る複数本の溝であってもよい。また、上記(i)、(i
i)の組合せとして、一括的な溝の内部底面にさらに単
発的な凹部を設ける態様であってもよい。
Even if the concave portion is (i) a sporadic form,
(Ii) It may be a collective mode. In the sporadic mode of (i) above, the recesses are provided with 1 (upper electrode) to 1 (recess) or 1 (upper electrode) to multiple (upper electrode (arranged according to the polarization inversion period)). It is provided correspondingly in the concave portion). In this case, the recesses are preferably arranged on the lower surface in the same pattern as the arrangement pattern of the upper electrodes. Further, in the collective mode of (ii) above, the recesses are provided in a groove shape such that the discrete recesses arranged in (i) are communicated with each other. The communication between the recesses may be only a few communication (the rest remains a single shot), several communication as drawn with a broken line, irregular communication, or all communication. When the recess has a groove shape, it may be a plurality of grooves extending in parallel with each other. In addition, (i) and (i
As a combination of i), a mode in which a single concave portion is further provided on the inner bottom surface of the collective groove may be used.

【0044】凹部を上記(i)の単発的な態様とするこ
とによって、上下電極間の主電界は個別に発生し、該電
界の方向性はより明確になるという利点や、基板全体の
機械的強度を損なわないという利点があるが、凹部の加
工には手間がかかる。これに対して、上記(ii)の一括
的な態様、特に、凹部全てを連通し溝状とする態様で
は、研磨工具を端面から端面まで通す溝加工などが可能
になり、凹部の加工が格段に容易になる。また、上記
(i)の態様で、凹部が互いに接近して密に配列されて
いる場合などでは、それらを連通して溝としても、主電
界の方向性に大きな劣化はなく、加工の容易性だけが顕
著となる場合が多い。凹部の態様は、これら個々の特長
を考慮して選択すればよい。
By making the recesses a single mode of (i) above, the main electric field between the upper and lower electrodes is individually generated, and the directionality of the electric field becomes clearer, and the mechanical strength of the entire substrate is increased. Although it has the advantage of not impairing the strength, it takes time to process the recess. On the other hand, in the collective aspect of the above (ii), in particular, in the aspect in which all the recesses are communicated with each other in the form of a groove, it is possible to perform groove processing for passing the polishing tool from one end face to the other, so that the recesses can be processed significantly. To be easier. Further, in the above aspect (i), when the recesses are arranged close to each other and densely arranged, even if the recesses are communicated with each other to form a groove, the directionality of the main electric field is not significantly deteriorated, and the processing is easy. Only often becomes noticeable. The form of the recess may be selected in consideration of these individual features.

【0045】凹部の断面形状(X−Z断面形状)が、矩
形のように中心線を持つ単純な対称形の場合には、該凹
部の配置態様は、図3(a)の場合と同様、基板上面1
aにおける上部電極断面の全幅W1の中心線m1と、凹
部断面の全幅W2の中心線m2とが互いに一致しないこ
とが好ましい。
When the cross-sectional shape (XZ cross-sectional shape) of the recess is a simple symmetrical shape having a center line like a rectangle, the arrangement of the recess is the same as in the case of FIG. 3 (a). Board top 1
It is preferable that the center line m1 of the total width W1 of the upper electrode cross section in a and the center line m2 of the total width W2 of the recess cross section do not coincide with each other.

【0046】凹部の断面形状に限定はないが、図4、図
5に、凹部の種々の態様のうちの数例を断面図として模
式的に例示する。これらの凹部の断面例は、上記(i)
の単発的な凹部、または上記(ii)の一括的な凹部のい
ずれの断面とみなしてもよい。
The sectional shape of the recess is not limited, but FIGS. 4 and 5 schematically illustrate several examples of various modes of the recess as sectional views. A cross-sectional example of these recesses is shown in (i) above.
The cross section may be regarded as either one of the single concave section of (1) or the collective concave section of (ii).

【0047】図4(a)は、断面が矩形の例である。単
発的な凹部の場合には、凹部全体の穴としての形状は、
円柱状、四角柱状、多角注状などであってよく、主電界
の経路、集中度、凹部の加工性などを考慮して選択すれ
ばよい。以下の他の例においても同様である。
FIG. 4A shows an example in which the cross section is rectangular. In the case of a single recess, the shape of the entire recess as a hole is
It may be a columnar shape, a quadrangular prism shape, a polygonal cast shape, or the like, and may be selected in consideration of the path of the main electric field, the degree of concentration, the workability of the concave portion, and the like. The same applies to the other examples below.

【0048】図4(b)は、凹部の底部(下部電極の先
端部)が平坦ではなく、上面に向かって凸状をなした例
である。同図の例では、底部は上面に向かって尖ってい
るが、曲面であってもよい。
FIG. 4B shows an example in which the bottom of the recess (the tip of the lower electrode) is not flat, but is convex toward the upper surface. In the example of the figure, the bottom portion is sharpened toward the upper surface, but may be a curved surface.

【0049】図5(a)は、凹部の壁面形状、特に上部
電極に対向する側の壁面が、上部電極との間で平行電界
などを誘導し易い形状とされた例である。図の例では、
壁面が放物線状に湾曲した斜面となっているが、単純な
傾斜平面や、任意の曲面・平面を組み合せた面であって
もよい。このような、特殊な断面形状の場合には、図3
(c)に示すように、上部電極断面の全幅W1の中心線
m1と、凹部断面の図心を基板厚さ方向に通過する直線
m3とが、互いに一致しないことが重要となる。
FIG. 5A shows an example in which the wall shape of the recess, particularly the wall surface on the side facing the upper electrode, has a shape that easily induces a parallel electric field with the upper electrode. In the example shown,
Although the wall surface is a parabolic curved slope, it may be a simple inclined flat surface or a surface formed by combining arbitrary curved surfaces and flat surfaces. In the case of such a special cross-sectional shape, FIG.
As shown in (c), it is important that the center line m1 of the entire width W1 of the upper electrode cross section and the straight line m3 that passes through the centroid of the recess cross section in the substrate thickness direction do not coincide with each other.

【0050】図5(b)は、1つの上部電極に対して、
複数の凹部を対応させた例である。上記したように、同
図の3つの凹部は、紙面に垂直に伸びる3本の溝であっ
てもよい。1つの上部電極に対して複数の凹部を集合さ
せるに際しては、複数の凹部が任意の包絡線的な外形を
描くように集合させることが好ましい。例えば、図5
(b)の例では、3つの凹部による包絡面は斜面を描い
ており、図5(a)の斜面に類似している。
FIG. 5B shows that for one upper electrode,
This is an example in which a plurality of recesses are associated. As described above, the three recesses in the figure may be three grooves extending perpendicularly to the paper surface. When assembling a plurality of recesses with respect to one upper electrode, it is preferable that the plurality of recesses be assembled so as to draw an arbitrary envelope-shaped outer shape. For example, in FIG.
In the example of (b), the envelope surface formed by the three recesses is a slope, and is similar to the slope of FIG. 5 (a).

【0051】凹部の各部の寸法(開口寸法、深さなど)
は、製造すべき分極反転結晶全体の規模によっても異な
るが、主電界の角度、広がり、均一性などを考慮して、
分極反転領域がより深く形成されるように設計、決定す
ればよい。
Dimensions of each part of the recess (opening size, depth, etc.)
Varies depending on the scale of the entire domain-inverted crystal to be manufactured, but considering the angle, spread, and uniformity of the main electric field,
It may be designed and determined so that the domain-inverted region is formed deeper.

【0052】凹部の寸法の数値範囲の例を挙げる。例え
ば、厚さ0.5mmのXカットLiNbO3結晶基板を
用い、上部電極のZ軸方向の寸法(電極幅)を0.01
7mmとし、基板下面の凹部を図4(a)に示すような
断面矩形の溝として、液体電極を凹部内に充填するとい
う組合せの場合ならば、凹部の溝幅(Z軸方向の寸法)
は0.03mm〜0.05mm程度、凹部の深さは0.
3mm〜0.45mm程度、上部電極幅の中心線と凹部
幅中心線とのZ軸方向のずれは0.4mm〜0.5mm
程度が好ましい。これによって、上記(B)の条件であ
るZ軸方向成分は、十分に大きくなり、分極反転に効果
的な主電界を形成し得るものとなる。用いる結晶基板が
オフカット基板の場合、オフ角度によっては、凹部中心
が上部電極の直下であっても、さらには直下よりも+Z
方向にずれていても、上記(B)の条件を満たすことが
可能である。
An example of the numerical range of the size of the recess will be given. For example, an X-cut LiNbO 3 crystal substrate having a thickness of 0.5 mm is used, and the dimension (electrode width) of the upper electrode in the Z-axis direction is 0.01.
In the case of a combination of 7 mm, the recess on the lower surface of the substrate is a groove having a rectangular cross section as shown in FIG. 4A, and the liquid electrode is filled in the recess, the groove width of the recess (dimension in the Z-axis direction)
Is about 0.03 mm to 0.05 mm, and the depth of the recess is 0.
About 3 mm to 0.45 mm, the deviation between the center line of the upper electrode width and the center line of the recess width in the Z-axis direction is 0.4 mm to 0.5 mm
A degree is preferable. As a result, the Z-axis direction component, which is the condition (B) above, becomes sufficiently large, and a main electric field effective for polarization reversal can be formed. When the crystal substrate used is an off-cut substrate, depending on the off-angle, even if the center of the recess is directly below the upper electrode, it may be + Z more than directly below.
The condition (B) above can be satisfied even if the direction is deviated.

【0053】上記寸法例は、結晶基板の電磁気的特性、
厚さ、上部電極の寸法、凹部の形状など、種々のパラメ
ータを特定した場合の一例であって、各パラメータを変
化させた場合には、それぞれ分極反転に効果的な主電界
を形成し得るように各部の寸法を決定すればよい。
The above dimension examples are electromagnetic characteristics of the crystal substrate,
This is an example when various parameters such as thickness, size of upper electrode, and shape of recess are specified. When each parameter is changed, a main electric field effective for polarization reversal can be formed. Then, the dimensions of each part may be determined.

【0054】電極を結晶基板に配置するに際しては、公
知技術を参照し、電極を直接的にまたは導電性の膜(金
属薄膜等)などを介して結晶基板に接触させればよい。
図6(a)は、液体電極の使用例を示す模式図である。
また、図6(b)は電極の配置パターンを見せるための
斜視図であり、液体電極は省略している。基板上面につ
いては、上部電極の配置領域だけが露出するように絶縁
膜R1で覆い、液体電極2aを接触させてもよいが、高
温下での電圧印加では、これらの図に示すように、さら
に高導電性の金属薄膜Mで全体を覆い、絶縁膜R1を保
護してもよい。このとき、上部電極の配置領域では、金
属薄膜Mを介して液体電極が接触している。
When arranging the electrode on the crystal substrate, the electrode may be brought into contact with the crystal substrate directly or through a conductive film (metal thin film or the like) by referring to a known technique.
FIG. 6A is a schematic diagram showing a usage example of the liquid electrode.
Further, FIG. 6B is a perspective view for showing the arrangement pattern of the electrodes, and the liquid electrode is omitted. The upper surface of the substrate may be covered with the insulating film R1 so that only the arrangement region of the upper electrode is exposed, and the liquid electrode 2a may be brought into contact therewith, but when voltage is applied at high temperature, as shown in these figures, The insulating film R1 may be protected by covering the whole with a highly conductive metal thin film M. At this time, the liquid electrode is in contact with the arrangement region of the upper electrode via the metal thin film M.

【0055】基板下面への電極配置については、図4、
図5のように、液体電極を下面全面に接触させてもよ
い。この場合、下面全面電極とはならず、凹部の部分だ
けが特異的に上部電極へ接近しているので、集中的な主
電界が生じる。また、凹部だけが露出するように絶縁膜
R2で覆ってもよいし、図6の上部電極と同様に、金属
薄膜でさらに覆ってもよい。
The arrangement of electrodes on the lower surface of the substrate is shown in FIG.
As shown in FIG. 5, the liquid electrode may be brought into contact with the entire lower surface. In this case, since it is not the entire lower surface electrode but only the recessed portion approaches the upper electrode specifically, a concentrated main electric field is generated. Further, it may be covered with the insulating film R2 so that only the concave portion is exposed, or may be further covered with a metal thin film similarly to the upper electrode of FIG.

【0056】液体電極としては、公知の液体電極法で用
いられている電界液を用いてよいが、高温下での電圧印
加を行うのであれば、その温度に応じて、沸騰せず、利
用可能なものを選択すればよい。例えば、電解液を構成
する溶媒としては、水、ポリオール、またはこれらの混
合物などが挙げられる。また、電解質材料としては、塩
化リチウム、塩化ナトリウム、塩化カリウムなどが挙げ
られる。またガリウム、インジウム、水銀などの液体金
属などを使うことも可能である。
As the liquid electrode, an electrolytic solution used in a known liquid electrode method may be used, but if a voltage is applied at a high temperature, it can be used without boiling depending on the temperature. You can select the right one. For example, the solvent that constitutes the electrolytic solution may be water, a polyol, or a mixture thereof. Further, examples of the electrolyte material include lithium chloride, sodium chloride, potassium chloride and the like. It is also possible to use liquid metals such as gallium, indium and mercury.

【0057】上部電極、下部電極の両主電極に加えて、
さらに、両電極間の主電界の方向を調整するために、図
7に示すように、補助電極S1、S2を結晶基板の上面
および/または下面に部分的に配置してもよい。補助電
極は、調整目的に従って、主電極2、3間の主電界に影
響を与え得る位置に配置すればよく、上部電極、下部電
極と同様の材料、形態の電極を用いてよい。
In addition to both main electrodes of the upper and lower electrodes,
Further, in order to adjust the direction of the main electric field between both electrodes, as shown in FIG. 7, auxiliary electrodes S1 and S2 may be partially arranged on the upper surface and / or the lower surface of the crystal substrate. The auxiliary electrode may be arranged at a position that can affect the main electric field between the main electrodes 2 and 3 according to the purpose of adjustment, and an electrode having the same material and form as the upper electrode and the lower electrode may be used.

【0058】図7(a)は、結晶基板の上面に、上部電
極(図では+極)とは異なる極(−)の補助電極S1を
配置した例であって、主電界に影響を与え、分極反転方
向成分を部分的に増加させる作用を示す。図7(b)
は、図7(a)の例にさらに加えて、結晶基板下面の上
部電極直下の位置に、下部電極(図では−極)とは異な
る極(+)の補助電極S2を配置した例である。この場
合も、主電界に影響を与え、分極反転方向成分を部分的
に増加させる作用を示す。図7では、説明のために固体
の電極を配置した例として示しているが、液体電極と置
き換えてもよく、また、下面の電極の配置態様として凹
部を形成する態様としてもよい。また、これらの配置パ
ターン以外にも、主電界に効果的な影響を与え得るよ
う、任意の位置に、任意の極の補助電極を配置してもよ
い。
FIG. 7A shows an example in which an auxiliary electrode S1 having a pole (−) different from the upper electrode (+ pole in the figure) is arranged on the upper surface of the crystal substrate, which affects the main electric field. It shows the effect of partially increasing the polarization inversion direction component. Figure 7 (b)
7 is an example in which, in addition to the example of FIG. 7A, an auxiliary electrode S2 having a pole (+) different from the lower electrode (− pole in the figure) is arranged at a position just below the upper electrode on the lower surface of the crystal substrate. . In this case also, the main electric field is affected and the component of the polarization inversion direction is partially increased. In FIG. 7, a solid electrode is shown as an example for the sake of description, but it may be replaced with a liquid electrode, or a recess may be formed as the arrangement of the electrode on the lower surface. In addition to these arrangement patterns, auxiliary electrodes of arbitrary poles may be arranged at arbitrary positions so as to effectively affect the main electric field.

【0059】上部電極・下部電極に接続する主電源に
は、電圧調整可能なように、配線の途中に可変抵抗を含
むものや、電源自体に電圧調整機能を有するものを用い
てもよい。該補助電極に接続する電源も同様であり、主
電源を兼用して、配線の途中に調整用の可変抵抗を挿入
してもよいし、補助電極専用の電圧調整機能を有する電
源を用いてもよい。
The main power source connected to the upper and lower electrodes may include a variable resistor in the middle of the wiring so that the voltage can be adjusted, or one having a voltage adjusting function in the power source itself. The same applies to the power source connected to the auxiliary electrode. A variable resistor for adjustment may be inserted in the middle of the wiring by also using the main power source, or a power source having a voltage adjusting function dedicated to the auxiliary electrode may be used. Good.

【0060】本発明の製造方法に従って、結晶基板の下
面に凹部を形成し、凹部内に下部電極を配置して分極反
転を行った後は、電極の除去後、凹部が無くなるように
結晶基板全体を厚さ方向に研磨してもよいし、凹部を残
したまま、目的の素子として用いてもよい。また、その
場合には、凹部内に補強用の材料を充填してもよい。
According to the manufacturing method of the present invention, after forming a recess in the lower surface of the crystal substrate and arranging the lower electrode in the recess to perform polarization reversal, after removing the electrode, the entire crystal substrate is removed so that the recess does not exist. May be polished in the thickness direction, or may be used as an intended element while leaving the concave portion. In that case, the reinforcing material may be filled in the recess.

【0061】本発明の製造方法によって得られる分極反
転結晶は、全て、従来品には無い深い分極反転領域を有
するものであるが、その中でも、凹部をそのまま残した
結晶が、上記(7)の分極反転結晶である。その凹部
は、上記(A)、(B)の条件を満たすように形成され
たものであるから、分極反転結晶として完成された後
に、各分極反転領域に一致するよう上部電極を配置し、
凹部内に下部電極を配置して電圧を印加すれば、その主
電界は、Z軸方向の成分を有することになる。即ち、分
極反転結晶に残された凹部は、上記(C)、(D)の条
件を満たす。
The domain-inverted crystals obtained by the manufacturing method of the present invention all have deep domain-inverted regions which are not present in conventional products. Among them, the crystal in which the recesses are left as it is is the above (7). It is a polarization inversion crystal. Since the concave portion is formed so as to satisfy the above conditions (A) and (B), the upper electrode is arranged so as to correspond to each polarization inversion region after being completed as a polarization inversion crystal,
When the lower electrode is placed in the recess and a voltage is applied, the main electric field has a component in the Z-axis direction. That is, the recesses left in the domain-inverted crystal satisfy the above conditions (C) and (D).

【0062】本発明の製造方法によって得られた分極反
転結晶は、Xカット基板であっても、従来得られなかっ
た深さまで分極反転領域が入りこんでいる。例えば、従
来のXカット基板、オフカット基板に形成されていた分
極反転領域の、2倍〜10倍の深さまで、また、基板の
下面や凹部まで到達させることも可能である。
The domain-inverted crystal obtained by the manufacturing method of the present invention has a domain-inverted region that extends to a depth that cannot be obtained even with an X-cut substrate. For example, it is possible to reach the depth of 2 to 10 times that of the domain-inverted regions formed in the conventional X-cut substrate or the off-cut substrate, or to reach the lower surface or the concave portion of the substrate.

【0063】周期的分極反転構造は、同一周期で反転・
非反転を繰り返すことだけではなく、目的とする特性に
沿って不定に変化する周期(寸法)で反転・非反転を繰
り返すものであってもよい。
The periodic polarization inversion structure has the same inversion and
Not only the non-inversion is repeated, but the inversion / non-inversion may be repeated at a cycle (dimension) that varies indefinitely according to the target characteristic.

【0064】[0064]

【実施例】実施例1 本実施例では、Xカット基板を用い、図6に示す製造方
法に従って、本発明による分極反転結晶を実際に製作し
た例を示す。用いたXカット基板は、MgO添加ニオブ
酸リチウム基板(厚さ0.5mm、MgO添加濃度5m
ol%)である。
EXAMPLE 1 In this example, an X-cut substrate was used to actually manufacture a domain-inverted crystal according to the present invention according to the manufacturing method shown in FIG. The X-cut substrate used was a MgO-added lithium niobate substrate (thickness 0.5 mm, MgO-added concentration 5 m).
ol%).

【0065】〔上部電極の形成〕図6に示すように、分
極反転周期を17μmとしたストライプ状のレジストパ
ターンR1を、フォトリソグラフィー技術を用いて基板
上面に形成した上に、スパッタリング法により金属膜
(クロム/アルミニウム積層膜)Mを全面に形成した。
[Formation of Upper Electrode] As shown in FIG. 6, a stripe-shaped resist pattern R1 having a domain inversion period of 17 μm is formed on the upper surface of the substrate by photolithography, and a metal film is formed by sputtering. (Chromium / aluminum laminated film) M was formed on the entire surface.

【0066】〔凹部(矩形断面)の形成〕凹部の幅(Z
方向)0.05mm、深さ(X方向)0.45mm、上
部電極断面の中心線と凹部断面の中心線とのZ軸方向の
ずれを0.5mmとした。これによって、両電極間に作
用する主電界と、Z軸とのなす角度は、およそ5°程度
となった。
[Formation of recess (rectangular cross section)] Width of recess (Z
Direction) 0.05 mm, depth (X direction) 0.45 mm, and Z-axis direction deviation between the center line of the upper electrode cross section and the center line of the recess cross section was 0.5 mm. As a result, the angle formed between the main electric field acting between both electrodes and the Z axis was about 5 °.

【0067】液体電極としては、塩化リチウム水溶液を
用い、MgO添加ニオブ酸リチウムの抗電界(kV/m
m)に相当する電圧を印加し、基板表面および表層付近
に周期17μmの分極反転分極領域が形成された分極反
転結晶を得た。該分極反転結晶を、フッ酸硝酸混合液
(1:2)でエッチングし、表層の分極反転領域の状態
を確認したところ、基板表面から2μm以上の深さまで
分極反転されていることが確認された。
An aqueous solution of lithium chloride was used as the liquid electrode, and the coercive electric field (kV / m) of lithium niobate containing MgO was used.
A voltage corresponding to m) was applied to obtain a domain-inverted crystal in which a domain-inverted domain having a period of 17 μm was formed on the substrate surface and near the surface layer. The polarization-inverted crystal was etched with a hydrofluoric acid-nitric acid mixture (1: 2), and the state of the domain-inverted region of the surface layer was confirmed. As a result, it was confirmed that the domain-inverted crystal was inverted to a depth of 2 μm or more from the substrate surface. .

【0068】実施例2 本実施例では、X軸からのオフ角度θ=3°のオフカッ
トMgO添加ニオブ酸リチウム基板を用いたこと以外
は、上記実施例1と同様に分極反転結晶を製作した。得
られた分極反転結晶をフッ酸硝酸混合液(1:2)でエ
ッチングし、表層の分極反転領域の状態を確認したとこ
ろ、基板表面から3μm以上の深さまで分極反転されて
いることが確認された。
Example 2 In this example, a polarization inversion crystal was manufactured in the same manner as in Example 1 except that an off-cut MgO-added lithium niobate substrate having an off angle θ = 3 ° from the X axis was used. . The obtained domain-inverted crystals were etched with a hydrofluoric acid-nitric acid mixture (1: 2), and the state of the domain-inverted region of the surface layer was confirmed. It was confirmed that the domain-inverted region was deeper than 3 μm from the substrate surface. It was

【0069】[0069]

【発明の効果】Xカット基板、オフカット基板であって
も、上面と下面にそれぞれ主電極を配置することで、リ
ーク電流・放電の問題が解消される。また、下面に対し
て電極を部分的に設け、Z軸に対して分極反転に寄与し
得る成分を有するように電界を作用させることによっ
て、従来よりも分極反転領域が深く形成された分極反転
結晶を提供することが可能となった。
EFFECTS OF THE INVENTION Even with the X-cut substrate and the off-cut substrate, the problems of leak current and discharge can be solved by disposing the main electrodes on the upper surface and the lower surface, respectively. In addition, a domain-inverted crystal in which a domain-inverted region is formed deeper than in the prior art by providing an electrode partially on the lower surface and applying an electric field to the Z-axis so as to have a component that can contribute to domain-inversion It has become possible to provide.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法に従って強誘電体結晶基板の
上下面にそれぞれ電極を配置し、分極反転電圧を印加し
ている状態を模式的に示す断面図である。図1(a)は
Xカット基板を用いた例であり、図1(b)はオフカッ
ト基板を用いた例である。以下、各図の同じ部分には、
本図と同じ符号を用いている。
FIG. 1 is a cross-sectional view schematically showing a state in which electrodes are arranged on the upper and lower surfaces of a ferroelectric crystal substrate according to the manufacturing method of the present invention and a polarization inversion voltage is applied. 1A shows an example using an X-cut substrate, and FIG. 1B shows an example using an off-cut substrate. Below, in the same part of each figure,
The same reference numerals as in this figure are used.

【図2】結晶基板に対する上部電極の周期的な配置を見
せるための斜視図である。
FIG. 2 is a perspective view showing a periodic arrangement of upper electrodes with respect to a crystal substrate.

【図3】上下の電極のこの位置関係を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing this positional relationship between upper and lower electrodes.

【図4】本発明において、結晶基板の下面に凹部を形成
し、該凹部内に下部電極を配置する態様を例示する断面
図である。
FIG. 4 is a cross-sectional view illustrating a mode in which a recess is formed in the lower surface of a crystal substrate and a lower electrode is arranged in the recess in the present invention.

【図5】本発明において、結晶基板の下面に凹部を形成
し、該凹部内に下部電極を配置する態様を例示する断面
図である。
FIG. 5 is a cross-sectional view illustrating a mode in which a recess is formed in the lower surface of a crystal substrate and a lower electrode is placed in the recess in the present invention.

【図6】液体電極の使用例を示す模式図である。図6
(b)では、斜視図によって電極の配置パターンを見せ
ている。
FIG. 6 is a schematic view showing a usage example of a liquid electrode. Figure 6
In (b), the arrangement pattern of the electrodes is shown in a perspective view.

【図7】本発明において、上部電極、下部電極間に作用
する電界を調節するための補助電極を例示する断面図で
ある。
FIG. 7 is a cross-sectional view illustrating an auxiliary electrode for adjusting an electric field that acts between an upper electrode and a lower electrode in the present invention.

【図8】従来の分極反転結晶の分極反転構造を例示する
斜視図である。
FIG. 8 is a perspective view illustrating a polarization inversion structure of a conventional polarization inversion crystal.

【図9】従来の、Xカット基板、オフカット基板に対す
る、分極反転加工のための電極配置の例を模式的に示す
断面図である。
FIG. 9 is a cross-sectional view schematically showing an example of an electrode arrangement for polarization reversal processing on a conventional X-cut substrate and off-cut substrate.

【符号の説明】[Explanation of symbols]

1 強誘電体結晶基板 1a 結晶基板の上面 1b 結晶基板の下面 2 上部電極 3 下部電極 e1 電気力線 1 Ferroelectric crystal substrate 1a top surface of crystal substrate 1b Lower surface of crystal substrate 2 upper electrode 3 Lower electrode e1 Electric line of force

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 XカットまたはX軸についてオフカット
された強誘電体結晶基板を用い、該基板の上面には、分
極反転周期に従った領域毎に上部電極を配置し、該基板
の下面には、下記(A)、(B)の条件を同時に満たす
ように下部電極を部分的に配置し、これら両電極間に分
極反転電圧を印加する工程を有することを特徴とする、
分極反転結晶の製造方法。 (A)下部電極は、両電極間の電界が特定の方向性を有
するように、該基板の下面全体のうちの一部に配置する
こと。 (B)下部電極の位置は、両電極間の電界がZ軸の分極
を反転させる方向成分を含むように、上部電極の位置に
対して決定すること。
1. A ferroelectric crystal substrate that is X-cut or off-cut with respect to the X-axis is used, and an upper electrode is arranged on the upper surface of the substrate for each region according to a polarization inversion period, and the lower surface of the substrate is provided. Includes a step of partially disposing a lower electrode so as to simultaneously satisfy the following conditions (A) and (B), and applying a polarization reversal voltage between these electrodes,
Method of manufacturing polarization-inverted crystal. (A) The lower electrode should be arranged on a part of the entire lower surface of the substrate so that the electric field between both electrodes has a specific directionality. (B) The position of the lower electrode should be determined with respect to the position of the upper electrode so that the electric field between the two electrodes includes a direction component that reverses the polarization of the Z axis.
【請求項2】 下部電極を部分的に配置する態様が、上
記基板の下面に部分的に凹部を形成し、該凹部内に下部
電極を配置する態様である、請求項1記載の製造方法。
2. The manufacturing method according to claim 1, wherein the mode in which the lower electrode is partially disposed is a mode in which a recess is partially formed in the lower surface of the substrate and the lower electrode is disposed in the recess.
【請求項3】 上記凹部が、(i)個々の上部電極に個
別に対応するよう設けられた単発的な凹部の集合である
か、または(ii)前記(i)の凹部の一部または全部を
互いに連通させて溝状とした凹部である、請求項2記載
の製造方法。
3. The recess is (i) a set of discrete recesses provided so as to individually correspond to individual upper electrodes, or (ii) a part or all of the recess of (i). 3. The manufacturing method according to claim 2, wherein the recesses are grooved by communicating with each other.
【請求項4】 上記凹部内に配置される下部電極が、該
凹部内に充填される液体電極である、請求項2記載の製
造方法。
4. The manufacturing method according to claim 2, wherein the lower electrode arranged in the recess is a liquid electrode filled in the recess.
【請求項5】 上記基板のX−Z平面によって任意の上
部電極を切断したとき、 該X−Z平面に下部電極の断面が現われるように、か
つ、上記基板上面における上部電極断面の全幅の中心線
と、下部電極断面の全幅の中心線とが互いに一致しない
ように、下部電極を配置するものである、請求項1また
は2記載の製造方法。
5. The cross section of the lower electrode appears on the XZ plane when an arbitrary upper electrode is cut by the XZ plane of the substrate, and the center of the entire width of the cross section of the upper electrode on the upper surface of the substrate. 3. The manufacturing method according to claim 1, wherein the lower electrode is arranged so that the line and the center line of the entire width of the lower electrode cross section do not coincide with each other.
【請求項6】 さらに、上部電極と下部電極との間の電
界に影響を与え、該電界の方向を調整するための補助電
極を、上記基板の上面および/または下面に部分的に配
置するものである、請求項1記載の製造方法。
6. An auxiliary electrode for partially adjusting the electric field between the upper electrode and the lower electrode and adjusting the direction of the electric field is partially arranged on the upper surface and / or the lower surface of the substrate. The manufacturing method according to claim 1, wherein
【請求項7】 XカットまたはX軸についてオフカット
された強誘電体結晶基板の少なくとも上面に、分極反転
領域と、分極反転されていない領域とが交互に現われる
ように周期的分極反転構造が形成された分極反転結晶で
あって、 該基板の下面には、下記(C)、(D)の条件を同時に
満たす凹部が少なくとも形成されていることを特徴とす
る分極反転結晶。 (C)前記分極反転領域に上部電極を配置し、凹部内に
下部電極を配置して、これら両電極間に電圧を印加した
とき、両電極間の電界が特定の方向性を有するように、
該凹部が該基板の下面全体のうちの一部に配置されてい
ること。 (D)前記分極反転領域に上部電極を配置し、凹部内に
下部電極を配置して、これら両電極間に電圧を印加した
とき、両電極間の電界がZ軸方向成分を含むように、該
凹部の位置が前記分極反転領域に対して決定されている
こと。
7. A periodic domain-inverted structure is formed on at least the upper surface of a ferroelectric crystal substrate that is X-cut or off-cut with respect to the X-axis so that domain-inverted regions and regions that are not domain-inverted appear alternately. A polarization-inverted crystal obtained by the above method, wherein at least a recessed portion that simultaneously satisfies the following conditions (C) and (D) is formed on the lower surface of the substrate. (C) When the upper electrode is arranged in the domain-inverted region and the lower electrode is arranged in the recess and a voltage is applied between the two electrodes, the electric field between the two electrodes has a specific directionality,
The concave portion is arranged on a part of the entire lower surface of the substrate. (D) When an upper electrode is arranged in the domain-inverted region and a lower electrode is arranged in the recess and a voltage is applied between the two electrodes, an electric field between the two electrodes includes a Z-axis direction component, The position of the recess is determined with respect to the domain-inverted region.
【請求項8】 上記基板のX−Z平面によって該基板上
面の任意の分極反転領域を切断したとき、 該X−Z平面に上記凹部の断面が現われるように、か
つ、該基板上面における前記分極反転領域の全幅の中心
線と、該下部電極断面の全幅の中心線とが互いに一致し
ないように、該凹部が形成されている、請求項7記載の
分極反転結晶。
8. The polarization of the polarization on the upper surface of the substrate such that the cross section of the recess appears on the XZ plane when an arbitrary domain-inverted region on the upper surface of the substrate is cut by the XZ plane of the substrate. 8. The domain-inverted crystal according to claim 7, wherein the recess is formed so that the center line of the full width of the inversion region and the center line of the full width of the lower electrode cross section do not coincide with each other.
【請求項9】 上記凹部が、(i)個々の上部電極に個
別に対応するよう設けられた単発的な凹部の集合である
か、または、(ii)前記(i)の凹部の一部または全部
を互いに連通させて溝状とした凹部である、請求項7記
載の分極反転結晶。
9. The recess is (i) a set of discrete recesses provided so as to individually correspond to individual upper electrodes, or (ii) a part of the recess of (i) or The domain-inverted crystal according to claim 7, wherein the domain-inverted crystals are groove-shaped recesses that are all in communication with each other.
JP2002005253A 2002-01-11 2002-01-11 Polarization inverted crystal and its manufacturing method Pending JP2003207811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005253A JP2003207811A (en) 2002-01-11 2002-01-11 Polarization inverted crystal and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005253A JP2003207811A (en) 2002-01-11 2002-01-11 Polarization inverted crystal and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003207811A true JP2003207811A (en) 2003-07-25

Family

ID=27644349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005253A Pending JP2003207811A (en) 2002-01-11 2002-01-11 Polarization inverted crystal and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003207811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275121A (en) * 2004-03-25 2005-10-06 Sumitomo Osaka Cement Co Ltd Polarization reversal forming method
JP2005292287A (en) * 2004-03-31 2005-10-20 Sumitomo Osaka Cement Co Ltd Method of forming polarization inversion
US8193004B2 (en) 2004-03-18 2012-06-05 Sumitomo Osaka Cement Co., Ltd. Method for forming ferroelectric spontaneous polarization reversal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193004B2 (en) 2004-03-18 2012-06-05 Sumitomo Osaka Cement Co., Ltd. Method for forming ferroelectric spontaneous polarization reversal
US8293543B2 (en) 2004-03-18 2012-10-23 Sumitomo Osaka Cement Co., Ltd. Method for forming polarization reversal
US8524509B2 (en) 2004-03-18 2013-09-03 Sumitomo Osaka Cement Co., Ltd. Method for forming polarization reversal
US8669121B2 (en) 2004-03-18 2014-03-11 Sumitomo Osaka Cement Co., Ltd. Method for forming polarization reversal
JP2005275121A (en) * 2004-03-25 2005-10-06 Sumitomo Osaka Cement Co Ltd Polarization reversal forming method
JP4521859B2 (en) * 2004-03-25 2010-08-11 住友大阪セメント株式会社 Polarization inversion formation method
JP2005292287A (en) * 2004-03-31 2005-10-20 Sumitomo Osaka Cement Co Ltd Method of forming polarization inversion
JP4587366B2 (en) * 2004-03-31 2010-11-24 住友大阪セメント株式会社 Polarization inversion formation method

Similar Documents

Publication Publication Date Title
WO2005091066A1 (en) Optical device and method for forming polarization-reversed region
JP4646333B2 (en) Harmonic generator
KR101363790B1 (en) Optical waveguide substrate manufacturing method
JP2002040502A (en) Optical waveguide element
JP2003207811A (en) Polarization inverted crystal and its manufacturing method
JPH1082921A (en) Optical waveguide substrate, optical waveguide parts, second harmonics generating device and manufacturing method of optical waveguide substrate
US7482175B2 (en) Method of manufacturing substrate having periodically poled regions
JP5420810B1 (en) Wavelength conversion element
KR101363782B1 (en) Device manufacturing method
JPWO2004081647A1 (en) Method for producing domain-inverted crystal
JP2008209449A (en) Wavelength conversion element
JP2002031826A (en) Method for manufacturing polarization reversal part
JP2008268547A (en) Laser device, wavelength conversion element, and manufacturing method thereof
JP4201244B2 (en) Method for manufacturing polarization reversal part
KR101135827B1 (en) Production method for polarization inversion unit
JP2005070195A (en) Method for manufacturing periodical polarization reversal structure, and optical device
JP2002006353A (en) Polarization reversal crystal
JP3885939B2 (en) Manufacturing method of optical waveguide device
JP2007121515A (en) Optical element substrate and wavelength conversion device using substrate
JP4067039B2 (en) Method for forming periodically poled structure
JP2004070207A (en) Method of manufacturing polarization reversal crystal
JP2003330053A (en) Method for manufacturing polarization inverting crystal
JP2005070194A (en) Method for manufacturing periodical polarization reversal structure and optical device
JP2004163619A (en) Method for manufacturing poled crystal with domain inversion
JP3487727B2 (en) Method of forming domain inversion structure of ferroelectric and optical wavelength conversion element