JP2003206540A - Construction method of multistage submerged timbering - Google Patents

Construction method of multistage submerged timbering

Info

Publication number
JP2003206540A
JP2003206540A JP2002005544A JP2002005544A JP2003206540A JP 2003206540 A JP2003206540 A JP 2003206540A JP 2002005544 A JP2002005544 A JP 2002005544A JP 2002005544 A JP2002005544 A JP 2002005544A JP 2003206540 A JP2003206540 A JP 2003206540A
Authority
JP
Japan
Prior art keywords
bracket
sheet pile
timbering
stage
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002005544A
Other languages
Japanese (ja)
Other versions
JP3794682B2 (en
Inventor
Yasuharu Yuzuguchi
安春 柚口
Naoaki Yamamoto
直明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002005544A priority Critical patent/JP3794682B2/en
Publication of JP2003206540A publication Critical patent/JP2003206540A/en
Application granted granted Critical
Publication of JP3794682B2 publication Critical patent/JP3794682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To largely shorten a construction period of multistage timbering, to reduce a cost, and to obtain accuracy, a speed, and safety of work for installing the timbering in a sheet pile well foundation construction method. <P>SOLUTION: This method constructs a foundation lower part of a bridge by the sheet pile well foundation construction method. The construction period is shortened by excavating while replacing water and sediment in a well in an excavating process. A bracket for arranging second stage timbering on the inner peripheral side of a sheet pile is constituted as a collapsible bracket. A flat bar is fixed to a sheet pile inner peripheral side curved surface top surface, and a suspending bracket for arranging third stage timbering is fixed to the lower end. After tentatively assembling the third stage timbering by the collapsible bracket, the timbering is suspended by a suspending tool, the collapsible bracket is folded up, and the third stage timbering is slid downward and immersed, and is placed, assembled, and installed on the suspending bracket. Afterwards, the collapsible bracket is restored to a present state, and the second stage timbering is placed, tentatively assembled, and installed on the bracket. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明が属する技術分野】本発明は、河川、海上工事等
において、橋梁下部工事を矢板井筒基礎工法により、多
段の水中支保工を設置する施工法に関するものである。 【0002】 【従来の技術】矢板井筒基礎工法を用いて支保工を設置
するには、排水による井筒内地盤の気中での掘削と、上
段部(2〜4段)の支保工をポンツーン上に設置し、腹
起材、切梁の装着とを交互に繰り返す工程により、支保
工を気中で架設するために工期が非常に長くなってい
た。更に、下段部(3〜6段)の支保工は、地盤を水中
掘削によって所定深さまで掘削し、地盤に底盤コンクリ
ートを打設した後に下段支保工を所定水位まで水替えを
行いながら順次支保工を設置し、最下段の支保工の設置
後に最終の水替えを行っていた。 【0003】 【発明が解決しようとする課題】しかしながら、この種
の施工法は、 支保工を気中で施工するで井筒内の水を排水と支保工
設置が交互の繰り返し作業となり、作業工程が繁雑にな
るので工期が長くなる。 掘削深度において井筒外側の水圧対抗手段として支保
工の段数が6段以上が必要であった。 6段以上の多段の支保工の設置は工程が多くなり、工
期が長期化し、コストアップの主因となる。 支保工の設置はポンツー船上での作業のため作業能率
が悪く、危険な作業となる。 等の欠点があった。 【課題を解決するための手段】 【0004】本発明は、このような欠点を除去するため
鋼管矢板井筒基礎工法において、第一段支保工を気中で
行い、鋼管矢板の上端部に設置して鋼管矢板井筒の形状
の安定維持構造とし、所定深さまで井筒内の地盤を、土
砂と水を置換しながら水中掘削し、所定の地盤におい
て、水中コンクリートを打設して底盤を形成し、かつ鋼
板矢板井筒部内,外の水圧差を低減することにより支保
工を最小段数に、例えば、3段に設定し、第3段目の支
保工を水中で設置するため、折り畳み式ブラケットおよ
び吊りブラケットを鋼板矢板連結部および鋼管矢板に設
け、地組された支保工を、吊り冶具により目的のブラケ
ットに載置して組み付けることにより、支保工の段数低
減と工期の短縮、および作業の安全性を図ると共に、大
幅なコストダウンを達成した多段水中支保工の施工法を
提供するものである。 【0005】以下に、図面を用いて本発明に係る多段水
中支保工の施工法の一実施例について説明する。図1
(a)〜(c)は、本発明に係る鋼管矢板井筒基礎工法
によって構成した多段水中支保工の平面図と、矢印イで
示す部分の拡大図と、中央断面図、図2は、本発明に係
る多段水中支保工を示す一部切り欠き概略説明図であ
る。 【0006】図1において、1は鋼管矢板井筒であり、
地盤Aに打ち込んだ鋼管2が、継手部材3で連結して楕
円形状の井筒部1aと隔壁部1bとを構成し、河川の水
と、井筒部1a内の水Bとを隔離するための防水枠して
機能するものである。 【0007】4は第1段目支保工で、鋼管矢板井筒1の
上端部内周面側に気中で設置されており、鋼管矢板2の
内周側曲面頂部に、所定間隔で多数個、固定した三角形
状のブラケット5と、H形鋼形状の腹起材6と、腹起材
6間の寸法を調整、維持する切梁材7と、井筒部1aの
半円形状の端部を補強する火打材8により構成されてい
る。 【0008】なお、施工時は、上記支保工4が大きいの
と、施工工数の短縮および精度アップのため地組ヤード
で、例えば、図1(a)において、L1,L2,L3のよ
うに3分割したユニットに構成し、これをポンツーン船
上のクレーンにより、ブラケット5上に載置、架設して
設置するものである。 【0009】9は底盤コンクリートで、第1段目支保工
4を設置した後に、前記鋼管矢板井筒1内の地盤Aを掘
削しながら鋼管矢板井筒1内で土砂と水とを置換し、所
定の深さまで掘削した後、目的地盤A1上に水中コンク
リートが打設される。なお、土砂と鋼管矢板井筒1内の
水の置換は、鋼管矢板井筒1が内外の水圧差で破壊され
るのを阻止するためであり、工期短縮に大きく寄与する
ものである。 【0010】10は第2段目支保工、18は第3段目支
保工で、構造および構成材は第1段目支保工4とほぼ同
様であるが、切梁材7を載置するブラケットと設置工程
が気中と水中の大きな差がある。即ち、第2段目支保工
10は、図3(a)、(b)に示すように、折り畳み式ブラ
ケット11上に載置、架設して設置されるものであり、
図1(c)、図2に示すように、前記鋼管矢板井筒1の
第1段目支保工4の下方の所定位置に設置するものであ
る。なお、折り畳みブラケット11は、第3段目支保工
18の気中地組ヤードと第2段目支保工10のブラケッ
ト機能も具備するものである。 【0011】さらに説明すると、折り畳みブラケット1
1は、図3(a),(b)で示すように、3角形状に構成
し、鋼管矢板2の連結部材3に溶接等の手段で固定する
垂直部アーム12と、腹起材6,足場板C等を載置する
2部材から成る水平部アーム13と、筋違的機能を有す
る外側、内側補強アーム14,15と、補強アーム14
の下端を装着する取り付け台16と、各アームを回転、
あるいは取り外し可能に装着するボルト17により構成
したものである。 【0012】さらに説明すると、水平部アーム13は、
短尺アーム13aと長尺アーム13bとが同一平面上に
あり、短尺アーム13aは垂直部アーム12の上端部
に、他端は長尺アーム13bの一端にボルト17で回転
可能に装着されている。この実施例では、水平部のアー
ム13は、短尺アーム13aと長尺アーム13bの二部
材から成っているが、長尺部材による一部材で、水平部
のアーム13を形成してもよい。 【0013】また、外側補強アーム14は、上端を水平
部アーム13の他端に、下端を取り付け台16にボルト
17で締結し、内側補強アーム15の上端は、長尺アー
ム13bの他端に、短尺アーム13aの一端と一緒にボ
ルト17で締結して成り、その下端は、垂直アーム12
の下端と一緒に溶接、ボルト等の手段で固定したもので
ある。 【0014】勿論、ボルト17による締結部13−、
13−、13−は、ブラケットの機能により緩めた
り、取り外しが可能な装着であり、3段目支保工18を
水中へ沈設する際には、図3(b)に示すように、鋼管
矢板2の前記曲面頂部から突出しない構造に折り畳める
構造になっている。 【00015】19は、第3段目支保工載置用の吊りブ
ラケットであり、図4(a)、(b)に抽出して示すよう
に、折り畳みブラケット11の下方に、所謂、水中の位
置にフラットバー21を介して固定したものである。 【00016】即ち、ブラケット19は、補強アーム2
0を3角形状に固定し、その垂直アーム20aをフラッ
トバー21に溶接等の手段で固定する。また、フラット
バー21の上端は、気中で鋼管矢板2の内周側曲面頂部
に溶接し、吊りブラケット(第3段目支保工18を載
置、設置する)19を水中に吊した状態で、フラットバ
ー21の水中にある側面を水中溶接22により鋼管矢板
2と一体化すると共に、吊りブラケット19も同様に鋼
管矢板2に水中溶接により固定する。 【00017】23はキャンバーで、フラットバー21
を鋼管矢板2の前記頂部に溶接する際に、溶接の熱によ
りフラットバー21が歪まないように隙間を埋める楔状
の保持具である。 【0018】次に、本発明に係る多段水中支保工の施工
法の工程について、前記した図面と図7(a)〜(c)の
概略斜視図と図6のフロー図を用いて説明する。まず、
鋼管矢板井筒基礎工法で、図2に示すような支保工を架
設すると仮定する。そこで、鋼管を地盤Aに楕円形状の
平面、所謂、鋼管矢板井筒1の形状に多数本を打ち込
み、図1(a)、(b)のように連結部材3を介して一
体に構成するものである。 【0019】また、中間部には、図5(a )、(b)に
示すように隔壁部1bを設け、井筒部1aを例えば4つに
区分し、鋼管矢板井筒1の補強を図るものである。な
お、隔壁部1bの鋼管矢板2は、次工程の障害となるた
め目的長さの寸法で切断する。 【0020】次に、鋼管矢板井筒1の内周面側、所謂、
鋼管矢板2の内周側曲面頂部に、同一レベルの高さで固
定ブラケット5を、気中で溶接等の手段で固定する。固
定ブラッケト5は、図1(c)に示すように、第1段目
支保工4を気中で地組、載置、架設して設置するのに役
立つものである。勿論、上記鋼管矢板井筒1の補強材と
しても機能する。 【0021】第1段目支保工4を架設した後は、井筒部
1a内の水位を維持しながら土砂と水Bとを置換し、地
盤Aを掘削し、所定深さに到達した地盤A上に、図5
(d)に示すように底盤コンクリート9を打設する。 【0022】次に、図6のフロー図に示すような工程
で、図1(c)、図2に示すような、第2段支保工1
0,第3段支保工18を架設するものである。更に説明
すると、折り畳み式ブラケット11を井筒部1aの内周
側連結部3上で、かつ図1(c)の位置で、図2に示す
ように、所定間隔で多数個固定する。折り畳みブラケッ
ト(11)は、図3(a)(b)に示すように、ボルト
17で支点となる部分が締結され、ボルト17を緩める
ことにより折り畳める構造である。 【0023】そこで、折り畳み式ブラケット11の設置
が完了した段階で、第3段支保工18を架設する吊りブ
ラケット19を、フラットバー21を介して、水中の所
定位置に、前記のブラケット11と同様に多数個、溶接
等の手段で固定する。なお、この際、フラットバー21
は、気中或いは水中溶接等の手段により必要長さ部分を
固定する。更に、吊りブラケット19は、フラットバー
21を介して、水中で鋼管矢板2の前記頂部2aに再
度、水中溶接等の手段で固定するものである。 【0024】折り畳み式ブラケット11、吊りブラケッ
ト19の装着が完了した段階で、第3段目支保工18
を、折り畳み式ブラケット11上で全体を3分割のユニ
ットL1、L2、L3として載置し、図7(a)に示す
ように地組する。なお、図7(a)においてCは足場板、
Dはスタンションである。 【0025】次に、折り畳みブラッケット11に載置さ
れた第3段支保工18は、図7(b)に示すように吊り
冶具24で吊り上げ、折り畳み式ブラケット11のボル
ト17(13ー、13−)を緩め、13−のボル
ト17を外して第3段支保工18をダイバー等の指示で
バランスを見ながら矢印のように下方へスライドさせ水
中に沈設し、これを図7(c)に示すように吊りブラケ
ット19上に載置せしめ、腹起継ぎ手部のボルトを水中
でダイバーが締結して第3段支保工18を架設した後、
折り畳み式ブラッケト11を現状に復帰させ、ボルト1
7も元の状態に締結して第3段支保工18の設置が完了
する。 【0026】次に折り畳み式ブラケット11上には、図
示しない地組ヤードから前記のように3分割ユニットを
クレーンで移設し、腹起継ぎ手等をボルト等で締結して
第2段支保工10を気中で組み立て架設、設置が完了す
る。なお、これ以降の橋梁下部形成の工程は、例えば図
6において、一点鎖線で示すブロック内の工程は従来の
ような順序で行い、橋梁下部を完成させるものである。 【0027】 【その他の実施例】以上、説明したのは支保工を3段と
した場合の架設例であり、支保工をこれ以上の段数に構
成することも可能である。勿論、その際は前記したよう
な折り畳み式ブラケットを数段に亘って装着する必要が
ある。 【0028】 【発明の効果】上述したように、本発明に係る多段支保
工施工法によれば、 鋼管矢板井筒基礎工法で井筒内の地盤を土砂と水を置
換しながら掘削し、水圧が井筒内外でほぼ同じような圧
力になるようにしたため、少ない支保工でも鋼板矢板が
倒壊せず、工期が大幅に短縮できる。 第2段支保工のブラケットを折り畳み式構成としたた
め、第3段支保工お地組と組付けと第2段支保工のブラ
ケットととして使用できるので支保工設置が容易となり
施工期間が短縮される。 折り畳み式ブラケットは第3段支保工をつ吊り冶具で
吊り上げた後それを下方へスライドさせ沈設する際に折
り畳めるため、施工が容易であり、しかも作業能率のア
ップと精度の向上が図れる。 フラットバーの下端に吊りブラッケトを一体に固定
し、さらにフラットバーの上端を気中で鋼管矢板曲面頂
部に固定し、水中にある部分は、水中溶接等の手段でフ
ラットバーの側壁とブラケット(吊りブラケット)を固
定して補強したため、施工精度の向上と装着スピード
(工期短縮)が大幅に改善でき、信頼性も増す。 フラットバーと鋼管矢板曲面頂部間の隙間にキャンバ
ーを打ち込んだため、フラットバーを溶接する際に歪む
こともなく吊りブラケットの位置精度が高い。 各工程の施工精度が高く、安全に、効率的に作業でき
るため全工程で短縮でき、コストダウンが図れる。 等の特徴がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a construction method for installing a multi-stage underwater support structure in a river or offshore construction work by using a sheet pile foundation method for a bridge lower part construction. It is. 2. Description of the Related Art In order to install a shoring using a sheet pile foundation method, excavation of the ground in a well by drainage and a shoring of an upper part (two to four steps) are performed on a pontoon. In the process of alternately repeating the installation of the raised material and the mounting of the girder, the construction period was extremely long because the erection work was erected in the air. In addition, the shoring of the lower part (3 to 6 steps) is performed by excavating the ground to a predetermined depth by underwater excavation, placing the bottom concrete on the ground, and sequentially replacing the lower shoring with water to a predetermined water level. Was installed, and the final water change was performed after the bottom shoring was installed. [0003] However, in this type of construction method, when the shoring work is carried out in mind, drainage of water in the well and installation of the shoring work are alternately repeated. The construction period becomes longer because it becomes complicated. At the excavation depth, more than six support steps were required as countermeasures against water pressure outside the well. The installation of a multi-stage support having six or more steps increases the number of steps, lengthens the construction period, and is a major cause of cost increase. The installation of the shoring works on a pontoe ship, which is inefficient and dangerous. And the like. SUMMARY OF THE INVENTION In order to eliminate such a drawback, the present invention provides a steel pipe sheet pile well foundation method in which a first-stage support is carried out in the air, and the steel pipe sheet pile is installed at the upper end of the steel pipe sheet pile. The structure in the stable shape of the steel pipe sheet pile is maintained, the ground in the well to a predetermined depth, excavated underwater while replacing the soil and water, in the predetermined ground, submerged concrete to form a bottom, and To reduce the water pressure difference between the inside and outside of the steel sheet pile, the number of supports is set to the minimum number of steps, for example, three steps, and the foldable bracket and the suspension bracket are used to install the third-stage supports underwater. Provided on steel sheet pile connection and steel pipe sheet pile, grounded shoring is mounted on the target bracket with a hanging jig, and assembled to reduce the number of shoring steps, shorten the construction period, and work safety Together, there is provided a method of applying a multi-stage water shoring that have achieved significant cost down. Hereinafter, an embodiment of a construction method of a multistage underwater support according to the present invention will be described with reference to the drawings. FIG.
(A) to (c) are a plan view of a multistage underwater support structure constructed by the steel pipe sheet pile well foundation method according to the present invention, an enlarged view of a portion indicated by an arrow a, a central sectional view, and FIG. It is a partially notched schematic explanatory drawing which shows the multistage underwater support which concerns on. In FIG. 1, reference numeral 1 denotes a steel tube sheet pile,
The steel pipe 2 driven into the ground A is connected by the joint member 3 to form an elliptical well portion 1a and a partition wall 1b, and waterproof for separating river water and water B in the well portion 1a. It functions as a frame. Reference numeral 4 denotes a first-stage support, which is installed in the air on the inner peripheral surface side of the upper end of the steel pipe sheet pile 1 and is fixed to the top of the inner peripheral curved surface of the steel pipe sheet pile 2 at predetermined intervals. Triangular bracket 5, H-shaped steel raised material 6, cut beam 7 for adjusting and maintaining the dimensions between raised materials 6, and reinforcing the semicircular end of well portion 1 a It is composed of a fired material 8. [0008] At the time of construction, the above-mentioned support 4 is large, and it is necessary to reduce the number of construction steps and increase the accuracy in the ground yard. For example, in FIG. It is configured as a divided unit, which is mounted on a bracket 5 by a crane on a pontoon ship, erected and installed. Reference numeral 9 denotes bottom concrete. After the first-stage support 4 is installed, soil and water are displaced in the steel pipe sheet pile well 1 while excavating the ground A in the steel pipe pile well 1, and a predetermined amount is replaced. After excavating to the depth, underwater concrete is poured onto the destination ground A1. The displacement of the soil and the water in the steel pipe sheet pile 1 is to prevent the steel pipe sheet pile 1 from being destroyed by the difference in water pressure between the inside and the outside, which greatly contributes to shortening the construction period. Reference numeral 10 denotes a second-stage support, and 18 denotes a third-stage support. The structure and components are almost the same as those of the first-stage support 4, but a bracket on which the cutting beam 7 is placed. And the installation process has a big difference between air and water. That is, as shown in FIGS. 3 (a) and 3 (b), the second-stage support 10 is placed and erected on the foldable bracket 11, and is installed.
As shown in FIGS. 1C and 2, the steel pipe sheet pile 1 is installed at a predetermined position below the first-stage support 4. The folding bracket 11 also has a bracket function of the aerial ground yard of the third-stage support 18 and the bracket function of the second-stage support 10. More specifically, the folding bracket 1
As shown in FIGS. 3 (a) and 3 (b), a vertical arm 12 is formed in a triangular shape and fixed to the connecting member 3 of the steel pipe sheet pile 2 by welding or the like. A horizontal arm 13 composed of two members on which a scaffold plate C and the like are placed; outer and inner reinforcing arms 14 and 15 having staggered functions;
The mounting base 16 for mounting the lower end of the
Alternatively, it is constituted by a bolt 17 which is detachably mounted. More specifically, the horizontal arm 13 is
The short arm 13a and the long arm 13b are on the same plane, and the short arm 13a is rotatably mounted to the upper end of the vertical arm 12 and the other end to one end of the long arm 13b with a bolt 17. In this embodiment, the arm 13 of the horizontal portion is composed of two members, the short arm 13a and the long arm 13b. However, the arm 13 of the horizontal portion may be formed by one member of the long member. The outer reinforcing arm 14 has an upper end fastened to the other end of the horizontal arm 13 and a lower end fastened to the mounting base 16 by a bolt 17, and the upper end of the inner reinforcing arm 15 is connected to the other end of the long arm 13b. , Which are fastened together with one end of the short arm 13a with a bolt 17, and the lower end thereof is connected to the vertical arm 12a.
Is fixed together with the lower end by means such as welding or bolts. Of course, the fastening portions 13- by the bolts 17,
Reference numerals 13- and 13- denote attachments that can be loosened or removed by the function of a bracket. When the third-stage support 18 is submerged in water, as shown in FIG. Is folded so as not to protrude from the top of the curved surface. Reference numeral 19 denotes a suspension bracket for mounting a third-stage support, as shown in FIGS. 4A and 4B, a so-called underwater position below the folding bracket 11. Are fixed via a flat bar 21. That is, the bracket 19 is attached to the reinforcing arm 2.
0 is fixed in a triangular shape, and the vertical arm 20a is fixed to the flat bar 21 by means such as welding. In addition, the upper end of the flat bar 21 is welded in the air to the top of the inner peripheral curved surface of the steel pipe sheet pile 2, and a suspension bracket (where the third-stage support 18 is placed and installed) 19 is suspended in water. The underwater side surface of the flat bar 21 is integrated with the steel pipe sheet pile 2 by underwater welding 22, and the suspension bracket 19 is similarly fixed to the steel pipe sheet pile 2 by underwater welding. Reference numeral 23 denotes a camber, which is a flat bar 21.
When welding the flat bar 21 to the top of the steel pipe sheet pile 2, the flat bar 21 is a wedge-shaped holder for filling the gap so that the flat bar 21 is not distorted by the heat of welding. Next, the steps of the construction method of the multistage underwater support according to the present invention will be described with reference to the above-mentioned drawings, the schematic perspective views of FIGS. 7A to 7C and the flow chart of FIG. First,
It is assumed that a shoring as shown in FIG. 2 is erected in the steel pipe sheet pile well foundation method. Therefore, a large number of steel pipes are driven into the ground A into an elliptical flat surface, that is, a shape of a steel pipe sheet pile 1 and are integrally formed via the connecting member 3 as shown in FIGS. 1 (a) and 1 (b). is there. 5 (a) and 5 (b), a partition wall 1b is provided in the intermediate portion, and the well portion 1a is divided into, for example, four, so as to reinforce the steel tube sheet pile well 1. is there. In addition, the steel pipe sheet pile 2 of the partition wall part 1b is cut to the target length dimension, because it obstructs the next step. Next, the inner peripheral side of the steel pipe sheet pile 1 is a so-called
The fixing bracket 5 is fixed to the top of the curved surface on the inner peripheral side of the steel pipe sheet pile 2 at the same level by air or other means such as welding. The fixed bracket 5, as shown in FIG. 1 (c), is useful for installing the first-stage support 4 by laying, placing, and erection in the air. Of course, it also functions as a reinforcing material for the steel pipe sheet pile 1. After the first-stage support 4 is erected, the soil A and the water B are replaced while the water level in the well 1a is maintained, the ground A is excavated, and the ground A reaches a predetermined depth. Figure 5
As shown in (d), the bottom concrete 9 is cast. Next, as shown in the flowchart of FIG. 6, the second stage support 1 shown in FIG. 1 (c) and FIG.
0, the third-stage shoring 18 is erected. More specifically, as shown in FIG. 2, a plurality of foldable brackets 11 are fixed at predetermined intervals on the inner peripheral side connecting portion 3 of the well portion 1a and at the position of FIG. As shown in FIGS. 3A and 3B, the folding bracket (11) has a structure in which a portion serving as a fulcrum is fastened by a bolt 17, and the folding bracket (11) can be folded by loosening the bolt 17. When the installation of the foldable bracket 11 is completed, the suspension bracket 19 for erection of the third-stage shoring 18 is placed at a predetermined position in the water via the flat bar 21 in the same manner as the bracket 11 described above. Are fixed by means such as welding. At this time, the flat bar 21
Is to fix the required length by air or underwater welding. Further, the suspension bracket 19 is again fixed underwater to the top portion 2a of the steel pipe sheet pile 2 through a flat bar 21 by means of underwater welding or the like. When the mounting of the foldable bracket 11 and the suspension bracket 19 is completed, the third stage support 18
Are placed on the folding bracket 11 as units L1, L2, L3 divided into three parts, and laid as shown in FIG. 7A. In FIG. 7A, C is a scaffold plate,
D is a stanchion. Next, the third stage support 18 placed on the folding bracket 11 is lifted by a lifting jig 24 as shown in FIG. 7B, and bolts 17 (13-, 13-) of the folding bracket 11 are provided. ) Is loosened, the 13-bolt 17 is removed, and the third-stage shoring 18 is slid downward as indicated by an arrow while observing the balance by the instruction of a diver or the like, and is submerged in water. And the diver fastens the bolts at the joints of the belly in the water to construct the third-stage supporter 18.
Return the foldable bracket 11 to its current state,
7 is also fastened to the original state, and the installation of the third stage support 18 is completed. Next, on the foldable bracket 11, the three-part unit is transferred by a crane from a ground yard (not shown) as described above, and a bellows joint or the like is fastened with bolts or the like, so that the second stage support 10 is mounted. Completely assembling and erection, installation is completed. In the subsequent steps of forming the bridge lower part, for example, the steps in the block indicated by the dashed line in FIG. 6 are performed in a conventional order to complete the bridge lower part. Other Embodiments The above is an example of the installation in the case where the number of the supports is three, and the number of the supports can be increased. Of course, in this case, it is necessary to mount the folding bracket as described above in several steps. As described above, according to the multi-stage support construction method according to the present invention, the ground in the well is excavated by the steel pipe sheet pile well foundation method while replacing the soil and water with the water pressure. Since the pressure is almost the same inside and outside, the steel sheet pile will not collapse even with a small amount of support, and the construction period can be significantly reduced. Since the bracket for the second-stage shoring is of a foldable type, it can be used as a third-stage shoring structure, assembling, and as a second-stage shoring bracket, which facilitates installation of the shoring and shortens the construction period. . Since the folding bracket can be folded when the third-stage support is lifted by a hanging jig and then slid downward to be laid down, the work is easy, and the work efficiency is improved and the accuracy is improved. The hanging bracket is fixed integrally to the lower end of the flat bar, and the upper end of the flat bar is fixed in the air to the top of the steel sheet pile curved surface. Brackets) are fixed and reinforced, so the construction accuracy can be improved and the mounting speed (reduction of construction period) can be greatly improved, increasing reliability. Since the camber is driven into the gap between the flat bar and the top of the curved sheet pile, the position of the suspension bracket is high without distortion when welding the flat bar. Since the work accuracy of each process is high, the work can be done safely and efficiently, it can be shortened in all processes and cost can be reduced. And so on.

【図面の簡単な説明】 【図1】本発明に係る多段支保工の施工法により構成さ
れる鋼板矢板井筒基礎下部の概略を示す説明図である。 【図2】本発明に係る多段支保工の工法により構成され
る各支保工を示す一部切り欠き斜視図である。 【図3】本発明に係る多段支保工の施工法を要部の機能
等を示す説明図である。 【図4】本発明に係る多段支保工の各段に用いるブラッ
ケットの固定状態を示す説明図である。 【図5】本発明に係る多段支保工の工法を工程順に説明
するための概略斜視図である。 【図6】本発明に係る多段支保工の工法の工程順を説明
するためのフロー図である。 【図7】本発明に係る多段支保工の第3段支保工の施工
の工程を示す説明図である。 【符号の説明】 1・・鋼管矢板井筒 1a・楕円形の井筒部 1b・隔壁部 2・・鋼管矢板 2a・内周側曲面頂部 3・・継手部材 4・・第1段目支保工 5・・ブラケット 6・・腹起材 7・・切梁材 8・・火打材 9・・底盤コンクリート 10・・第2段目支保工 11・・ブラケット 12・・垂直アーム 13・・水平部アーム 13a・短尺アーム 13b・長尺アーム 14・・内側補強アーム 15・・内側補強アーム 16・・取り付け台 17・・ボルト 18・・第3段目支保工 19・・吊りブラケット 20・・補強アーム 20a・垂直アーム 21・・フラットバー 22・・溶接 23・・キャンバー 24・・吊り冶具 A・・地盤 B・・水 C・・足場板 D・・スタンション L1・ユニット L2・ユニット L3・ユニット
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view schematically showing a lower part of a steel sheet pile welled tube foundation constructed by a multi-stage support construction method according to the present invention. FIG. 2 is a partially cutaway perspective view showing each of the supports constructed by the multi-stage support method according to the present invention. FIG. 3 is an explanatory view showing a function and the like of a main part in a construction method of a multi-stage support according to the present invention. FIG. 4 is an explanatory view showing a fixed state of a bracket used for each step of the multi-stage support according to the present invention. FIG. 5 is a schematic perspective view for explaining a multi-stage support method according to the present invention in the order of steps. FIG. 6 is a flowchart for explaining a process order of a multi-stage support method according to the present invention. FIG. 7 is an explanatory view showing a step of construction of a third-stage support of the multi-stage support according to the present invention. [Description of Signs] 1. Steel pipe sheet pile well 1a-Elliptical well pipe part 1b-Partition wall section-Steel pipe sheet pile 2a-Inner circumferential curved surface top 3-Joint member 4-First stage support 5-・ Bracket 6 ・ ・ Wall material 7 ・ ・ Cut beam 8 ・ ・ Blowing material 9 ・ ・ Bottom concrete 10 ・ ・ Second stage support 11 ・ ・ Bracket 12 ・ ・ Vertical arm 13 ・ ・ Horizontal arm 13a ・Short arm 13b, long arm 14, inner reinforcing arm 15, inner reinforcing arm 16, mounting base 17, bolt 18, third stage support 19, suspension bracket 20, reinforcing arm 20a, vertical Arm 21, flat bar 22, welding 23, camber 24, hanging jig A, ground B, water C, scaffold plate D, stanchion L1, unit L2, unit L3, unit

Claims (1)

【特許請求の範囲】 【請求項1】橋梁下部等を矢板井筒基礎工法で少なくと
も複数段の支保工を設置する方法において、矢板を地盤
に打設後その上端部に第1段目支保工を気中で架設する
工程と、次に矢板井筒内の地盤を水中で掘削する工程
と、所定深さの地盤に水中コンクリートを打設して底盤
コンクリート層を形成する工程と、下段の支保工の地組
み機能を兼ねる折り畳み可能なブラケットを、気中で矢
板の所定位置に固定する工程と、該工程後それより下段
で井筒内の水中に埋没するブラケットを固定する工程
と、前記折り畳み式ブラケットに地組みした支保工を持
ち上げ、上記折り畳み可能なブラケットを折り畳んで前
記下段のブラケット上に載置し、前記折り畳みブラッケ
ットを元に復帰させ、該折り畳みブラケット上に支保工
を地組み設置する工程とから成ることを特徴とする、多
段水中支保工の施工法。
Claims: 1. A method for installing at least a plurality of supports on a lower part of a bridge or the like by means of a sheet pile foundation method, the method comprising: installing a sheet pile on the ground; A step of erection in the air, a step of excavating the ground in the sheet pile in the water, a step of placing underwater concrete on the ground of a predetermined depth to form a bottom concrete layer, and a step of Fixing a foldable bracket that also serves as a groundworking function at a predetermined position of the sheet pile in the air, fixing the bracket immersed in the water in the well at a lower stage after the step, and Lift the grounded shoring, fold the foldable bracket and place it on the lower bracket, return the foldable bracket to its original position, and place the shoring on the folding bracket. A method of constructing a multi-stage underwater support, characterized by comprising a step of installing a terrain.
JP2002005544A 2002-01-15 2002-01-15 Construction method of multistage underwater support Expired - Lifetime JP3794682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005544A JP3794682B2 (en) 2002-01-15 2002-01-15 Construction method of multistage underwater support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005544A JP3794682B2 (en) 2002-01-15 2002-01-15 Construction method of multistage underwater support

Publications (2)

Publication Number Publication Date
JP2003206540A true JP2003206540A (en) 2003-07-25
JP3794682B2 JP3794682B2 (en) 2006-07-05

Family

ID=27644558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005544A Expired - Lifetime JP3794682B2 (en) 2002-01-15 2002-01-15 Construction method of multistage underwater support

Country Status (1)

Country Link
JP (1) JP3794682B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061706A (en) * 2010-12-09 2011-05-18 江苏省水利机械制造有限公司 Assembly steel box cofferdam and construction method thereof
JP6200550B1 (en) * 2016-05-27 2017-09-20 鹿島建設株式会社 Temporary deadline method, temporary deadline structure
JP2018017111A (en) * 2016-12-27 2018-02-01 東亜建設工業株式会社 Construction method of water cutoff work space
JP2019007232A (en) * 2017-06-26 2019-01-17 鹿島建設株式会社 Installation method of timbering

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131570B (en) * 2014-06-26 2018-10-16 中冶天工上海十三冶建设有限公司 Steel case enclosure device and its construction method for foundation pit construction
CN109778882B (en) * 2019-01-30 2021-01-01 华北水利水电大学 Closed system channel steel cofferdam assembled at inclination angle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253923A (en) * 1997-03-07 1998-09-25 Canon Inc Illuminator, and projector device and display device using the same
JP3079748U (en) * 2001-02-21 2001-08-31 中強光電股▲ふん▼有限公司 Heat source shielding device for hollow integrating rod in projection device
JP2002318423A (en) * 2001-04-23 2002-10-31 Mitsubishi Electric Corp Video display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253923A (en) * 1997-03-07 1998-09-25 Canon Inc Illuminator, and projector device and display device using the same
JP3079748U (en) * 2001-02-21 2001-08-31 中強光電股▲ふん▼有限公司 Heat source shielding device for hollow integrating rod in projection device
JP2002318423A (en) * 2001-04-23 2002-10-31 Mitsubishi Electric Corp Video display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061706A (en) * 2010-12-09 2011-05-18 江苏省水利机械制造有限公司 Assembly steel box cofferdam and construction method thereof
CN102061706B (en) * 2010-12-09 2013-06-05 江苏省水利机械制造有限公司 Assembly steel box cofferdam and construction method thereof
JP6200550B1 (en) * 2016-05-27 2017-09-20 鹿島建設株式会社 Temporary deadline method, temporary deadline structure
JP2018017111A (en) * 2016-12-27 2018-02-01 東亜建設工業株式会社 Construction method of water cutoff work space
JP2019007232A (en) * 2017-06-26 2019-01-17 鹿島建設株式会社 Installation method of timbering

Also Published As

Publication number Publication date
JP3794682B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
WO2013040890A1 (en) Partially floating marine platform for offshore wind-power, bridges and marine buildings, and construction method
JP2011069183A (en) Construction method of cofferdam structure around bridge pier, and platform used for the construction
JP6274688B1 (en) Temporary deadline construction method
JP2006090026A (en) Repairing/reinforcing structure of existing steel member arch bridge
JP6454674B2 (en) Construction method of water stop working space
JP2017210865A (en) Temporary cut-off method, temporary cut-off structure, supporting, supporting unit
JP2011208389A (en) Self-standing cofferdam structure and self-standing cofferdam method
KR101900648B1 (en) Way of installing Precast structure of foundation under water
CN107882055A (en) A kind of construction method of blower fan cushion cap
JP6929503B2 (en) Concrete structure and its construction method
JP3790452B2 (en) Jacket structure
JP2004183324A (en) Repair structure and repair construction method for existing pile pier
JP2003206540A (en) Construction method of multistage submerged timbering
CN114457668A (en) Large-span spatial special-shaped arch rib flying-swallow type basket steel box arch bridge and rapid construction method
JP6889743B2 (en) Manufacturing method of erected concrete structure in water area
JP5035505B2 (en) Temporary scaffolding for pile-type offshore structures
JP2001348888A (en) Method and device for constructing underwater foundation structure
JP2006083610A (en) Inverted construction method
JP3854799B2 (en) Work box and installation method
JPH08100464A (en) Joint structure and work execution method for structure using it
JP3745027B2 (en) Deep foundation and its forming method, eccentric prevention metal fittings and inner mold fixing metal fittings used for them
JP6826956B2 (en) Dismantling method
JPH10331568A (en) Steel segment piece with concrete placed in hollow part thereof and method for constructing sunk body using the same
JP3776751B2 (en) Jacket structure
CN115506324A (en) Drilling platform for deep-water shallow-covering-layer riverbed and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150421

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250