JP2003205454A - Polishing method and device for thin plate - Google Patents

Polishing method and device for thin plate

Info

Publication number
JP2003205454A
JP2003205454A JP2001401925A JP2001401925A JP2003205454A JP 2003205454 A JP2003205454 A JP 2003205454A JP 2001401925 A JP2001401925 A JP 2001401925A JP 2001401925 A JP2001401925 A JP 2001401925A JP 2003205454 A JP2003205454 A JP 2003205454A
Authority
JP
Japan
Prior art keywords
polishing
thin plate
plate
polished
partially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001401925A
Other languages
Japanese (ja)
Inventor
Teruto Hirata
照人 平田
Masae Wada
正衛 和田
Seiichi Kudo
誠一 工藤
Takashi Miyajima
隆司 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Prefecture
Nagano Electronics Industrial Co Ltd
Original Assignee
Nagano Prefecture
Nagano Electronics Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Prefecture, Nagano Electronics Industrial Co Ltd filed Critical Nagano Prefecture
Priority to JP2001401925A priority Critical patent/JP2003205454A/en
Publication of JP2003205454A publication Critical patent/JP2003205454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To polish a plate-like thin sheet to a surface having excellent flatness in wide polishing conditions with various polishing devices. <P>SOLUTION: A polishing surface has a structure partially not exerting the polishing action to the surface of the sheet to be polished, whereby the relative sliding distance between arbitrary points within the surface of the sheet to be polished is substantially equal regardless of the positions in the surface of the sheet to be polished, and under the pressure of the polishing surface and the surface of the sheet to be polished, polishing slurry is applied in mutual contact of the surfaces to be polished. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は主として電子部品用
の部材として用いられる薄板状の、とくに平面度、ある
いは平坦度の優れた素材の研磨方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for polishing a thin plate-like material mainly used as a member for electronic parts and having excellent flatness or flatness.

【0002】[0002]

【従来の技術】電子機器の機能の向上に対応して、それ
らの製造に用いられる部品、例えば半導体素子、液晶表
示素子、圧電素子、磁気記録媒体等々の機能や精度の向
上が急速に進展している。したがって、これらの部品の
製造に用いられる素材に対しては、材料の特性だけでな
く、製品の形状に対してますます厳しい品質や仕様が要
求されている。また、製品によっては、素材の寸法をま
すます大きくすることが求められている。
2. Description of the Related Art In response to improvements in the functions of electronic equipment, the functions and precision of parts used in their manufacture, such as semiconductor elements, liquid crystal display elements, piezoelectric elements, magnetic recording media, etc., are rapidly improving. ing. Therefore, for the materials used for manufacturing these parts, increasingly strict quality and specifications are required for not only the characteristics of the materials but also the shapes of the products. Further, depending on the product, it is required to increase the dimensions of the material.

【0003】このような高い平面度や平坦度を要求され
る薄板状の素材(以下、単に薄板という)の製造におい
ては、その外面を高い精度で平面状に加工することが最
も重要な工程で、この加工には、例えば、精密加工実用
便覧(日刊工業新聞社、2000年12月26日刊)4
75から500ページに記載されているように、これま
でにも種々の装置を用いて研磨する方法が採用されてき
た。
In the production of such a thin plate material (hereinafter simply referred to as a thin plate) which is required to have high flatness and flatness, it is the most important step to process the outer surface into a flat shape with high accuracy. For this processing, for example, a precision processing practical handbook (Nikkan Kogyo Shimbun, December 26, 2000) 4
As described on pages 75 to 500, a method of polishing using various devices has been adopted so far.

【0004】研磨加工を、(1)薄板の片面のみを研磨
するか、あるいは両面を同時に研磨するか、(2)一回
の研磨で一枚のみを研磨するか、あるいは複数枚を研磨
するか(3)薄板を薄板保持盤に固定して研磨するか、
あるいは固定せずに研磨するかによって、またこれらの
方式を組み合わせることによって種々の方式の装置が考
案されている。
Whether the polishing process is (1) only one side of the thin plate is polished, or both sides are simultaneously polished, (2) only one sheet is polished by one polishing, or plural sheets are polished. (3) Fix the thin plate on the thin plate holding plate and polish it, or
Alternatively, various types of devices have been devised depending on whether polishing is performed without fixing or by combining these types.

【0005】最も古くから、主に光学用レンズの研磨に
用いられてきた、いわゆる「レンズ研磨機」は、これら
各種の研磨装置の原型ともいえるものである。その基本
構造は図1、図2あるいは図3に示すように、下皿{こ
れは素材の研磨される外面(以下、被研磨面という)に
対して物理的な研磨作用を及ぼす装置の構成材料である
研磨盤(以下、単に研磨盤という)であっても、被研磨
面であってもよい}を強制的に回転させ、その上面に上
皿(下皿に対応して、被研磨面であったり、研磨盤であ
ったりする)を対向するように載せて、上皿の中心を背
面からピボット軸で押さえつつクランク機構によって上
皿を直線状、または円弧状、あるいは円形、ないし楕円
形状の周期的運動をさせるように構成されている。上皿
には下皿との間に作用する研磨抵抗によって回転トルク
が発生し、それによって上皿は自動的に回転する。上皿
の回転を強制的に制御したり、さらには全体の運転条件
をコンピュータで制御するように設計された装置も考案
されている。
The so-called "lens polishing machine", which has been used mainly for polishing optical lenses for the longest time, can be said to be the prototype of these various polishing apparatuses. As shown in FIG. 1, FIG. 2 or FIG. 3, the basic structure of the lower plate is a constituent material of a device that exerts a physical polishing action on the outer surface of the material to be polished (hereinafter referred to as the surface to be polished). The polishing plate (hereinafter, simply referred to as the polishing plate) or the polishing surface may be forcibly rotated, and the upper plate (corresponding to the lower plate, corresponding to the surface to be polished) (There is a disc or a polishing machine) so that they face each other, and while the center of the upper plate is pressed from the back by the pivot shaft, the upper plate is linear, arc-shaped, circular, or oval by the crank mechanism. It is configured to have a periodic movement. Rotational torque is generated in the upper plate by a polishing resistance acting between the upper plate and the lower plate, whereby the upper plate automatically rotates. Devices have also been devised that are designed to forcefully control the rotation of the upper plate or even control the overall operating conditions with a computer.

【0006】これらの装置において研磨が行われる際の
研磨作用は、いずれも被研磨面に対し研磨作用を及ぼす
研磨盤の外面(以下、研磨面という)を加圧下に被研磨
面に接触させつつ両者を相互に摺動させ、同時に化学
的、ないしは物理的な研磨作用を有する液状の研磨剤
(以下、研磨スラリという)を両者が接触する面(以
下、単に接触面という)の間に供給して実現される。
The polishing action when polishing is performed in these devices is such that the outer surface of the polishing plate (hereinafter referred to as the polishing surface), which exerts a polishing action on the surface to be polished, is brought into contact with the surface to be polished under pressure. The two slide on each other, and at the same time, a liquid abrasive having chemical or physical polishing action (hereinafter referred to as polishing slurry) is supplied between the surfaces contacting each other (hereinafter simply referred to as contact surface). Will be realized.

【0007】したがって、ある与えられた条件の下で、
接触面の全域において研磨面から被研磨面に対して作用
する力(以下、研磨圧力という)の大きさと研磨スラリ
の組成、およびそれらによる物理的作用あるいは化学的
作用が均等であるときには、一定の時間内に被研磨面内
の任意の点において、研磨作用によって外面から削り取
られ研磨される素材の厚さ(以下、研磨量という)は、
その点がその時間内に研磨面上に描く軌跡の長さ、すな
わち相対摺動距離に比例する。
Therefore, under certain given conditions,
When the magnitude of the force acting from the polishing surface to the surface to be polished (hereinafter referred to as polishing pressure) and the composition of the polishing slurry, and the physical or chemical action by them, are uniform over the entire contact surface, a constant value is obtained. At any point within the surface to be polished within a period of time, the thickness of the material that is scraped off from the outer surface by the polishing action (hereinafter referred to as the polishing amount) is
That point is proportional to the length of the locus drawn on the polishing surface within that time, that is, the relative sliding distance.

【0008】各種の研磨方式、あるいは研磨装置におい
て従来行なわれてきた平板状の薄板の研磨では、研磨盤
は平板状でその研磨面は一様な平面で、かつ一様な特性
を有することが理想とされていた。
In the polishing of a flat thin plate which has been conventionally performed in various polishing methods or polishing apparatuses, the polishing plate is flat and its polishing surface is a flat surface and has uniform characteristics. It was supposed to be ideal.

【0009】被研磨面内にある任意の点の相対摺動距離
は、例えば図10に模式的に示した研磨方式すなわち薄
板保持盤21の保持面全体が研磨盤22の研磨面全域内
にあって、かつその中心軸が研磨盤の中心軸から離れた
位置にある構造の装置において、薄板保持盤21の回転
速度が研磨盤22の回転速度と等しい場合を除いては、
被研磨面の全域で等しくはならない。したがって、この
条件を除いては原理的に被研磨面内の任意の点における
研磨量は被研磨面の全域で等しくはならない。換言すれ
ば、薄板被研磨面を理想的な平面に加工することができ
ない。
The relative sliding distance of an arbitrary point within the surface to be polished is, for example, the polishing method schematically shown in FIG. 10, that is, the entire holding surface of the thin plate holding plate 21 is within the entire polishing surface of the polishing plate 22. In a device having a structure in which its central axis is located away from the central axis of the polishing plate, except when the rotation speed of the thin plate holding plate 21 is equal to the rotation speed of the polishing plate 22,
It is not equal over the entire surface to be polished. Therefore, except for this condition, the amount of polishing at any point on the surface to be polished is not equal in principle over the entire surface to be polished. In other words, the surface to be polished of the thin plate cannot be processed into an ideal flat surface.

【0010】このため、先に述べた特定の条件以外で研
磨を行う場合には、研磨作用に関する他の要因、例え
ば、研磨圧力の分布、研磨盤の物性、あるいは研磨スラ
リの物性等の条件を種々工夫して研磨を行っている。
Therefore, when polishing is performed under other than the specific conditions described above, other factors relating to the polishing action, such as the distribution of polishing pressure, the physical properties of the polishing plate, or the physical properties of the polishing slurry, are to be satisfied. Polishing is done in various ways.

【0011】[0011]

【発明が解決しようとする課題】本発明は、先に述べた
特定の条件以外で研磨を行う場合においても、「被研磨
面内における任意の点の相対摺動距離を被研磨面の全域
で等しくする」ことによって、薄板被研磨面を理想的な
平面に加工することができる新規な技術思想に基づく方
法と装置を提供するものである。
SUMMARY OF THE INVENTION Even when polishing is performed under a condition other than the above-mentioned specific conditions, the present invention provides "the relative sliding distance of an arbitrary point within the surface to be polished over the entire surface to be polished. By "equalizing", a method and an apparatus based on a novel technical idea capable of processing a thin plate polishing surface into an ideal flat surface are provided.

【0012】[0012]

【課題を解決するための手段】すなわち、本発明の全く
新しい技術思想の基本は、研磨面と薄板被研磨面を加圧
下に研磨スラリを作用させつつ接触させて両者を摺動し
て研磨する際に、研磨面を部分的に薄板被研磨面に対し
て研磨作用を及ぼさない構造とすることによって薄板被
研磨面内における任意の点の相対摺動距離を、任意の点
の薄板被研磨面内における位置に係わらずほぼ等しくす
ることを特徴とする。
That is, the basis of a completely new technical idea of the present invention is to bring a polishing surface and a thin plate surface to be polished into contact with each other while causing a polishing slurry to act under a pressure and to slide the two surfaces for polishing. At this time, by making the polishing surface partially have a structure that does not exert a polishing action on the thin plate polishing surface, the relative sliding distance at any point within the thin plate polishing surface can be set to the thin plate polishing surface at any point. It is characterized in that they are made almost equal regardless of the position within.

【0013】したがって、この技術思想は、研磨方式、
あるいは研磨装置の構造に全く制約はなく、全ての研磨
方式あるいは研磨装置に適用することが出来る。また、
研磨加工の諸条件を幅広く選択することが出来る。
Therefore, this technical idea is based on the polishing method,
Alternatively, there is no restriction on the structure of the polishing apparatus, and it can be applied to all polishing methods or polishing apparatuses. Also,
A wide variety of polishing conditions can be selected.

【0014】この技術思想を実現するための本発明の手
法は、例えば (1) 研磨盤の研磨クロスを貼り付ける外面(以下、
研磨盤面という)に部分的な凹みを設ける。 (2) 研磨クロスを部分的に切除する。 (3) 研磨クロスの表層部を部分的に削ぎ落とす。 こと等を特徴とする。
The method of the present invention for realizing this technical idea is, for example, (1) the outer surface (hereinafter,
(Refer to the surface of the polishing plate). (2) Part of the polishing cloth is cut off. (3) The surface layer of the polishing cloth is partially scraped off. It is characterized by such things.

【0015】さらに、本発明はこれらの切除、ないし削
除する等の部分(以下、これらを総称して非接触部分と
いう)の形状、配置を、研磨装置の設計仕様(研磨盤の
直径、薄板保持盤の直径等)や運転条件(薄板の形状、
同時に研磨する枚数、研磨盤の回転数、薄板保持板の回
転数等)との関係において理論的に算出することを特徴
とする。
Further, according to the present invention, the shape and arrangement of the portions to be cut or removed (hereinafter, these are collectively referred to as non-contact portions) are determined by the design specifications of the polishing apparatus (diameter of polishing plate, holding thin plate). Board diameter, etc. and operating conditions (thin plate shape,
It is theoretically calculated in relation to the number of polishing at the same time, the number of revolutions of the polishing plate, the number of revolutions of the thin plate holding plate, etc.).

【0016】本発明の薄板を研磨する方法、あるいは装
置は、研磨の方式が前記した「レンズ研磨機」方式であ
ることを特徴とする。
The thin plate polishing method or apparatus of the present invention is characterized in that the polishing system is the "lens polishing machine" system described above.

【0017】すなわち、ここでいう「レンズ研磨機方
式」は、先に説明したレンズ研磨機の基本動作に準拠す
る研磨方式を意味するもので、図1、あるいは図2およ
び図3に示すように、薄板保持盤15の面積に比べて、
研磨クロス12の研磨面の面積が小さく、研磨クロス1
2の中心軸は薄板保持盤15の中心軸から離れた位置に
固定されているか、あるいはある範囲内の直線状で揺動
運動をするか、またはある範囲内で二次元の軌跡を描く
運動をするように構成されている。
That is, the "lens polishing machine system" here means a polishing system which complies with the basic operation of the lens polishing machine described above, and as shown in FIG. 1 or FIGS. 2 and 3. , Compared to the area of the thin plate holding plate 15,
The area of the polishing surface of the polishing cloth 12 is small, and the polishing cloth 1
The central axis of 2 is fixed at a position distant from the central axis of the thin plate holding plate 15, or oscillates linearly within a certain range, or moves in a two-dimensional trajectory within a certain range. Is configured to.

【0018】[0018]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、材質、形状、その相対配置などは特
に特定的記載が無い限り、この発明の範囲をそれのみに
限定する趣旨ではなく単なる説明例に過ぎない。 (相対摺動距離の算出)先に引用した、図1、あるいは
図2および図3に示す「レンズ研磨機方式」による本発
明の装置を例にとって相対摺動距離の理論計算方法を説
明する。図1は装置の外観図、図2は研磨作用部位の概
要を示す立面図、図3はその摺動面を表した平面図であ
る。既述のように、研磨面の径は薄板保持盤15の径よ
り小さい。薄板保持盤15には複数の円形の薄板Wが保
持されている。「レンズ研磨機方式」では、薄板保持盤
15の径は研磨面の径より大きいので、研磨スラリの流
出を抑制するために普通薄板被研磨面が上向きになるよ
うに薄板保持盤15を下に、研磨盤12をその上に研磨
面を下向きに配置することが多い。すなわち、この例で
は研磨クロスをその研磨面が下向きになるように配置し
ている。不図示の回転機構によって、薄板保持盤15は
所定の回転数で時計回り、あるいは反時計回りのいずれ
かの方向に回転される。研磨盤は不図示の回転機構によ
って所定の回転数で薄板保持盤15と同方向、あるいは
反対方向に回転されつつ、不図示の加圧機構によって、
その研磨面を所定の研磨圧力で薄板被研磨面に接触させ
る。それと同時に研磨中は、不図示の研磨スラリ供給手
段によって、所定量の研磨スラリを薄板被研磨面に常に
供給する。また、この例では、研磨盤12は揺動駆動機
構14によって、揺動用ガイドレール13を介して周期
的直線往復運動、すなわち揺動可能なように構成されて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are merely illustrative examples, not the intention to limit the scope of the present invention thereto, unless otherwise specified. . (Calculation of Relative Sliding Distance) The theoretical calculation method of the relative sliding distance will be described with reference to the device of the present invention based on the “lens polishing machine method” shown in FIG. 1 or FIGS. 2 and 3 cited above as an example. FIG. 1 is an external view of the apparatus, FIG. 2 is an elevation view showing an outline of a polishing action portion, and FIG. 3 is a plan view showing a sliding surface thereof. As described above, the diameter of the polishing surface is smaller than the diameter of the thin plate holding plate 15. The thin plate holding plate 15 holds a plurality of circular thin plates W. In the "lens polishing machine method", since the diameter of the thin plate holding plate 15 is larger than the diameter of the polishing surface, the thin plate holding plate 15 is usually placed downward so that the polishing target surface of the thin plate faces upward in order to prevent the polishing slurry from flowing out. In many cases, the polishing board 12 is arranged with the polishing surface facing downward. That is, in this example, the polishing cloth is arranged so that its polishing surface faces downward. The thin plate holding plate 15 is rotated in a clockwise or counterclockwise direction at a predetermined rotation speed by a rotation mechanism (not shown). The polishing platen is rotated in the same direction as the thin plate holding plate 15 or in the opposite direction at a predetermined rotation speed by a rotation mechanism (not shown),
The polishing surface is brought into contact with the surface to be polished of the thin plate with a predetermined polishing pressure. At the same time, during polishing, a predetermined amount of polishing slurry is constantly supplied to the surface to be polished of the thin plate by a polishing slurry supply means (not shown). Further, in this example, the polishing platen 12 is configured to be capable of periodic linear reciprocating motion, that is, swinging by the swinging drive mechanism 14 via the swinging guide rail 13.

【0019】この装置を例に薄板被研磨面内の任意に定
めた点の相対摺動距離を算出する。図4に示すように、
薄板保持盤15の回転中心、すなわち薄板保持盤15の
中心軸を座標原点として、直行するXY座標軸、および
正のX軸を基線とする極座標を定め、装置の仕様、運転
条件を以下のように定める。 1. 装置の仕様に関する変数 (1)薄板保持盤の半径(mm):R (2)研磨盤の半径(mm):R 2. 運転条件に関する変数 (1)薄板保持盤の回転速度(rad/sec):Ω (2)研磨盤の回転速度(rad/sec):Ω (3)研磨盤の中心軸のX座標位置(mm):Osx (4)研磨盤の中心軸のY座標位置(mm):Osy (5)研磨盤の揺動周期(Hz):F (6)研磨盤の揺動振幅(mm):A
Using this device as an example, it is possible to arbitrarily determine the inside surface of a thin plate to be polished.
Calculate the relative sliding distance between the points. As shown in FIG.
The center of rotation of the thin plate holding plate 15, that is, the thin plate holding plate 15
With the central axis as the coordinate origin, orthogonal XY coordinate axes, and
Determine polar coordinates with the positive X-axis as the base line, and specify the device specifications and operation
The conditions are set as follows. 1. Variables related to device specifications (1) Radius of thin plate holder (mm): R1 (2) Radius of polishing plate (mm): RS 2. Variables related to operating conditions (1) Rotational speed (rad / sec) of thin plate holder: Ωl (2) Rotating speed of the polishing plate (rad / sec): Ωs (3) X coordinate position (mm) of the central axis of the polishing plate: Osx (4) Y coordinate position (mm) of the central axis of the polishing plate: Osy (5) Swinging cycle of polishing machine (Hz): Fs (6) Oscillation amplitude (mm) of polishing machine: As

【0020】薄板保持盤内にある、すなわち(1)式を
満たす任意に定めた点O x+y≦R (1) の時間tにおけるXY座標を(x,y)、極座標を
(r,θ)とし、研磨盤の中心軸の位置(Osx,O
sy)を原点とするX座標軸と平行な正のX座標軸を基
線とした時の点Oの時間tにおける極座標を(r,θ
)とする。時間tにおける、点Oと点Oに対応する研
磨面内の点との間の相対速度V(t)は(2)式で与え
らる。 |V(t)|={ Vx(t)+ Vy(t)1/2 (2) ここで、Vx(t)、Vy(t)はそれぞれV(t)の
X軸方向、Y軸方向の成分で、極座標で表せば、それぞ
れ(3)式、および(4)式となる。 Vx(t)=− rΩsinθ+ rΩsinθ −2πFcos(2πFt+α) (3 ) Vy(t)= rΩcosθ− rΩcosθ (4) ここで、αは研磨盤の直線揺動運動を周期的三角函数運
動とした時に、t=0における研磨盤の中心軸の位置を
揺動中心から角度で換算した値である。
In the thin plate holding plate, that is, the formula (1) is
An arbitrarily defined point O to satisfy xTwo+ YTwo≤ Rl Two(1) XY coordinates at time t of (x, y), polar coordinates
(R, θ) and the position of the central axis of the polishing machine (Osx, O
sy) Is the origin and is based on a positive X coordinate axis that is parallel to the X coordinate axis.
The polar coordinate of the point O at the time t when the line is drawn is (rs, Θ
s). At time t, the point O and the study corresponding to the point O are
The relative velocity V (t) between the point on the polished surface is given by the equation (2).
Raru             | V (t) | = {Vx (t)Two+ Vy (t)Two}1/2           (2) Here, Vx (t) and Vy (t) are V (t)
It is the component of the X-axis direction and the component of the Y-axis direction.
Equations (3) and (4) are obtained.             Vx (t) =-rΩlsin θ + rsΩssin θs                           -2πFsAscos (2πFst + α) (3 )             Vy (t) = rΩlcos θ−rsΩscos θs             (4) Here, α is the linear triangular motion of the polishing machine
The position of the center axis of the polishing table at t = 0
It is a value converted from the center of swing to an angle.

【0021】薄板保持盤15がn回転する時間T(se
c)の間に点Oが研磨面と接触しつつ相対的に移動する
距離、すなわち相対摺動距離(RSDall)の値は次
式で与えられる。 RSDall=∫ |V(t)|dt ( 5) ただし、点Oが次式(6)の範囲にある場合、すなわち
点Oが研磨面と接触しない間における相対摺動距離は時
間積分から除外する。 (x−Osx+(y−Osy > R (6)
The time T (se
The value of the relative sliding distance (RSD all ) that the point O relatively moves while being in contact with the polishing surface during c) is given by the following equation. RSD all = ∫ 0 T | V (t) | dt (5) However, when the point O is within the range of the following equation (6), that is, the relative sliding distance when the point O does not contact the polishing surface is time-integrated. Exclude from. (X-O sx) 2 + (y-O sy) 2> R s 2 (6)

【0022】この条件で積分した相対摺動距離(RSD
all)の値から、薄板保持盤の1回転当たりの平均相
対摺動距離(RSD)は(7)式で与えられる。 RSD=(1/n)(RSDall) (7 )
Relative sliding distance (RSD) integrated under these conditions
All ), the average relative sliding distance (RSD) per one rotation of the thin plate holding plate is given by the equation (7). RSD = (1 / n) (RSD all ) (7)

【0023】(比較例)比較例として、従来技術による
研磨方法で、装置の仕様、運転条件に関する変数の値を
以下のように設定した場合について、薄板保持盤内に任
意に選んだ1600点のそれぞれの相対摺動距離(RS
all)を、これら1600点のRSDallの値の
平均値が500mとなるまでの時間に亘って算出した。
この算出は、計算のためのプログラムを作成し、計算機
を用いて行なった。 1. 装置の仕様に関する変数 (1)R:315mm (2)R:245mm(=0.78Rl) 2. 運転条件に関する変数 (3)Ω=2Ω=4π rad/sec (4)Osx:85mm (5)Osy:0mm (6)F:0Hz (7)A:0mm
(Comparative Example) As a comparative example, in the case where the values of the variables relating to the specifications of the apparatus and the operating conditions were set as follows by the conventional polishing method, 1600 points arbitrarily selected in the thin plate holding plate were used. Relative sliding distance of each (RS
D all ) was calculated over the time until the average value of these 1600 RSD all values reached 500 m.
This calculation was performed using a computer by creating a program for calculation. 1. Variables related to device specifications (1) R l : 315 mm (2) R s : 245 mm (= 0.78 Rl) 2. Variables related to operating conditions (3) Ω l = 2 Ω s = 4π rad / sec (4) O sx : 85 mm (5) O sy : 0 mm (6) F s : 0 Hz (7) A s : 0 mm

【0024】計算によって得られた相対摺動距離(RS
all)の薄板保持盤内における分布を示したのが図
6である。この図で、X軸、およびY軸の座標は薄板保
持盤の半径で規格化されており、Z軸は相対摺動距離
(RSDall)の値から、距離500mが研磨量5μ
mに相当するものとして求めた研磨量(μm)で図示さ
れている。
Relative sliding distance (RS
FIG. 6 shows the distribution of D all ) in the thin plate holding plate. In this figure, the coordinates of the X-axis and the Y-axis are standardized by the radius of the thin plate holding plate, and the Z-axis is the relative sliding distance (RSD all ) value, and the distance 500 m is the polishing amount 5 μm.
The polishing amount (μm) determined as corresponding to m is shown.

【0025】実際に薄板保持盤の回転数を52rpm
(Ω≒1.73π rad/sec)、研磨盤の回転
数を26rpm(Ω≒0.87π rad/sec)
としたほかは上記の設定条件で、硬質発泡ウレタン製の
研磨クロスを用い、研磨圧力0.5kg/cm、研磨
スラリとしてコロイダルシリカの10%水溶液を100
ml/minの割合で供給しつつ、シリコン単結晶の薄
板(以下、シリコン基板という)7枚(直径200m
m)を薄板保持盤にワックスで貼り付けて保持し、30
min間研磨した。得られたシリコン基板の被研磨面に
ついてその平面度を測定した例を図7に示した。
Actually, the number of rotations of the thin plate holding plate is 52 rpm.
l ≈1.73 π rad / sec), the rotation number of the polishing plate is 26 rpm (Ω s ≈0.87 π rad / sec)
In addition to the above, a hard urethane foam polishing cloth was used under the above set conditions, a polishing pressure was 0.5 kg / cm 2 , and a 10% aqueous solution of colloidal silica was used as a polishing slurry.
While supplying at a rate of ml / min, 7 silicon single crystal thin plates (hereinafter referred to as silicon substrates) (diameter 200 m
m) is attached to the thin plate holder with wax and held,
Polished for min. An example of measuring the flatness of the surface to be polished of the obtained silicon substrate is shown in FIG.

【0026】(実施例)比較例と同様の装置の仕様、運
転条件の下で、本発明の技術思想に基づいて相対摺動距
離を薄板被研磨面の全域において等しくするように、以
下に記載する計算プログラムを用いて研磨面内に設ける
非接触部分の形状と配置を決定した。その一例を以下に
示す。
(Example) Under the same device specifications and operating conditions as in the comparative example, the following description is made so that the relative sliding distance is made equal over the entire surface of the thin plate to be polished based on the technical idea of the present invention. The calculation program was used to determine the shape and arrangement of the non-contact portion provided in the polishing surface. An example is shown below.

【0027】この計算プログラムでは、 (1)非接触部分の中心Cntの座標 (2)非接触部分の径方向の幅D (3)非接触部分が占める径方向の幅の中心線の半径R
、および (4)中心をCntとし、半径Rを中心線とする幅D
の円環状の領域の面積に対する実際に非接触とする面積
の割合 を設計変数とし、薄板保持盤内における各点の相対摺動
距離(RSDall)の値の中の最大値と最小値との差
(以下、この差の値を最大差という)を目的函数とする
最適設計問題を数値的に計算する。すなわち、研磨され
た薄板の高低差に対応する最大差を最小とする設計変数
の解を求める計算を行う。
In this calculation program, (1) the coordinates of the center Cnt of the non-contact portion (2) the radial width D of the non-contact portion (3) the radius R of the center line of the radial width occupied by the non-contact portion
t, and (4) the width center and C nt, and the center line of the radius R t D
The ratio of the actual non-contact area to the area of the annular area of is the design variable, and the maximum and minimum values of the relative sliding distance (RSD all ) of each point in the thin plate holding plate The optimal design problem with the difference (hereinafter, the value of this difference is called the maximum difference) as the objective function is numerically calculated. That is, the calculation of the solution of the design variable that minimizes the maximum difference corresponding to the height difference of the polished thin plate is performed.

【0028】本実施例においては、大域的な設計変数空
間の最適設計問題に有効な最適化計算手法とされている
遺伝的アルゴリズムを基本とする手法を用いた。目的函
数を最小とするための設計変数を求める最適化計算の部
分は、サイバネットシステム株式会社の市販の最適設計
支援プログラム「OPTIMUS」を用いた。また、設
計変数から目的函数を導く部分は、前述の計算式を基本
とし、非接触部分を考慮して独自の計算プログラムを作
成した。計算によって求めた非接触部分の形状と配置の
一例を以下に示す。
In the present embodiment, a method based on a genetic algorithm, which is an optimization calculation method effective for the optimum design problem of the global design variable space, is used. The commercially available optimum design support program "OPTIMUS" of Cybernet System Co., Ltd. was used for the part of the optimization calculation for obtaining the design variable for minimizing the objective function. Moreover, the part which derives the objective function from the design variables is based on the above-mentioned calculation formula, and the original calculation program was created considering the non-contact part. An example of the shape and arrangement of the non-contact part obtained by calculation is shown below.

【0029】図5に示すように、薄板保持盤15の中心
軸Cptから30mm離れた点C に研磨面の中心を
定め、Cpcから90mmの距離にある点Cntを中心
とする半径140mmから234mmの間の円環に該当
する研磨面の領域内に直径20mmの円形の非接触部分
を、該円形の面積の総和が該領域の面積のおよそ75%
で、かつそれらの配置がほぼ均等になるように配置す
る。この配置において、検証のために比較例と同じく薄
板保持盤内に任意に選んだ1600点のそれぞれの相対
摺動距離(RSDallを、これら1600点のRSD
allの値の平均値が500mとなるまでの時間に亘っ
て算出した。その結果を図6と同様の座標表示で相対摺
動距離(RSDall)の値から求めた研磨量として示
したのが図8である。図8から明らかなように、研磨量
が薄板保持盤の全域においてほとんど一定となることが
予想される。
As shown in FIG. 5, it defines the center of the polishing surface to C p c point away 30mm from the central axis C pt of the sheet holding plate 15, around the C nt point from C pc at a distance of 90mm A circular non-contact portion having a diameter of 20 mm is provided in a region of the polishing surface corresponding to a ring having a radius of 140 mm to 234 mm, and the total area of the circular regions is about 75% of the area of the region.
And so that they are almost evenly arranged. In this arrangement, the relative sliding distances (RSD all) of 1600 points arbitrarily selected in the thin plate holding plate for verification as in the comparative example are calculated by comparing the RSD all of these 1600 points.
It was calculated over time until the average value of all values reached 500 m. FIG. 8 shows the result as the polishing amount obtained from the value of the relative sliding distance (RSD all ) in the same coordinate display as in FIG. As is clear from FIG. 8, it is expected that the polishing amount will be almost constant over the entire area of the thin plate holding plate.

【0030】実際に、研磨クロスから前記円形の形状と
分布に該当する部分を切除して、比較例と同様の設定条
件、運転条件でシリコン基板7枚を研磨した。得られた
シリコン基板の被研磨面についてその平面度を測定した
例を図9に示した。図7に示した従来の方法における結
果(高低差:約5μm)と比較して、極めて平坦な高い
平面度(いずれも高低差:約1μm)が達成されてい
る。
Actually, a portion corresponding to the circular shape and distribution was cut out from the polishing cloth, and seven silicon substrates were polished under the same setting conditions and operating conditions as those of the comparative example. An example of measuring the flatness of the surface to be polished of the obtained silicon substrate is shown in FIG. As compared with the result (height difference: about 5 μm) in the conventional method shown in FIG. 7, extremely flat high flatness (all height difference: about 1 μm) is achieved.

【0031】さらに、上記の実施例の装置の仕様、運転
条件のほかに、研磨盤を薄板保持盤の半径と直交する直
線に沿って振幅10mmとし、薄板保持盤の回転周期に
対し3倍の周期で三角函数運動を行わせた場合の相対摺
動距離(RSDall)を求めた結果は、前記の実施例
の場合と大差がなかった。
Further, in addition to the specifications and operating conditions of the apparatus of the above-mentioned embodiment, the polishing plate has an amplitude of 10 mm along a straight line orthogonal to the radius of the thin plate holding plate, which is three times the rotation cycle of the thin plate holding plate. The result of the relative sliding distance (RSD all ) obtained when the triangular function motion was performed in a cycle was not significantly different from that in the above-mentioned example.

【0032】以上、本発明を実施例によって詳しく説明
したが、本発明はこれらの実施例に限定されるものでは
なく、本発明の技術思想、ならびに特許請求項に記載の
内容に従う限りにおいて、いかなる技術をも広く包含す
るものである。すなわち、本技術思想は「レンズ研磨機
方式」による実施例以外の他の研磨装置や研磨条件のほ
かに、その他の研磨方式による研磨方法、研磨装置にも
適用可能であり、適正な非接触部分の形状、配置は装置
の設計仕様、研磨加工の運転条件との関係で決定される
ものである。さらに、適正な非接触部分の形状、配置は
その装置の設計仕様、研磨加工の運転条件の下において
唯一ではなく、幾つかの解が存在するので、上記の実施
例における解はその一例に過ぎない。また、非接触部分
の形成の仕方も研磨盤面に部分的に凹みを設けたり、研
磨クロスに既述のような部分的な加工を施す以外にも種
々の方法を採用することが可能である。また、本文中の
説明のように、研磨面を下向きとする研磨の仕方とは逆
に、研磨面を上向きとし、薄板保持盤の盤面を下向きと
して、本発明の方法を実施することも可能である。さら
にまた、本発明の方法を応用し得る薄板はシリコン基板
に限定されるものではなく、金属やサファイア、リチウ
ムタンタレート、石英、ガラス等々のセラミックスを素
材とする薄板にも利用が可能である。また形状について
も円形以外に角型や円環状のほか、任意の形状を有する
薄板の研磨に適用することができる。
Although the present invention has been described in detail with reference to the examples above, the present invention is not limited to these examples, and is not limited to the above as long as the technical idea of the present invention and the contents described in the claims are followed. It also broadly includes technology. That is, the present technical idea can be applied to polishing devices and polishing conditions other than the embodiment based on the "lens polishing machine system", as well as polishing methods and polishing devices based on other polishing systems. The shape and arrangement of the are determined in relation to the design specifications of the device and the operating conditions of polishing. Further, since the proper shape and arrangement of the non-contact portion are not the only ones under the design specifications of the apparatus and the operating conditions of polishing, there are several solutions, so the solution in the above embodiment is only one example. Absent. Further, as a method of forming the non-contact portion, various methods can be adopted in addition to partially forming a recess on the surface of the polishing plate or performing the partial processing on the polishing cloth as described above. Further, as described in the text, it is also possible to carry out the method of the present invention with the polishing surface facing upward and the plate surface of the thin plate holding plate facing downward, contrary to the manner of polishing with the polishing surface facing downward. is there. Furthermore, the thin plate to which the method of the present invention can be applied is not limited to a silicon substrate, and can be used for a thin plate made of metal, sapphire, lithium tantalate, quartz, glass or other ceramics. Further, with respect to the shape, in addition to the circular shape, it can be applied to polishing a thin plate having an arbitrary shape in addition to a square shape or an annular shape.

【0033】[0033]

【発明の効果】本発明によって、種々の研磨装置を用
い、かつ幅広い研磨条件において、薄板被研磨面内全域
において、相対摺動距離をほぼ等しくして、任意の形状
の薄板を高い平坦度を有する平面に研磨することができ
る。
According to the present invention, by using various polishing apparatuses and under a wide range of polishing conditions, the relative sliding distances are made substantially equal over the entire surface to be polished of the thin plate, and the flatness of the thin plate of any shape can be improved. It can be ground to a flat surface.

【0034】本明細書に使用した用語の説明を以下に行
う。 1. 薄板:薄板状の素材 2. 被研磨面:素材の研磨される外面 3. 研磨盤:被研磨面に対して物理的な研磨作用を及
ぼす装置の構成材料 4. 研磨面:研磨盤、あるいは研磨クロスが被研磨面
に対して研磨作用を及ぼす面 5. 相対摺動距離:被研磨面内における任意の点が有
限の荷重の下で研磨面と接触しつつ移動する距離 6. 薄板被研磨面:薄板の被研磨面 7. 接触面:研磨面と被研磨面が接触するそれぞれの
外面 8. 研磨量:研磨作用によって外面から削り取られる
研磨される素材の厚さ 9. 研磨盤面:研磨クロスを貼り付ける研磨盤の外面 10.非接触部分:研磨盤、あるいは研磨クロスの、部
分的に切除、ないし切除した部分、または研磨面が部分
的に被研磨面に対して研磨作用を及ぼさない個所 11.研磨圧力:接触面において研磨面から被研磨面に
たいして作用する力 12.薄板保持盤:研磨される薄板を保持するための装
置の構成材料
The terms used in this specification are explained below. 1. Thin plate: Thin plate material 2. Surface to be polished: External surface of material to be polished 3. Polishing plate: A constituent material of a device that exerts a physical polishing action on a surface to be polished. Polishing surface: A surface on which a polishing disk or polishing cloth exerts a polishing action on a surface to be polished. Relative sliding distance: The distance that any point within the surface to be polished moves while contacting the surface to be polished under a finite load. Thin plate polishing surface: Thin plate polishing surface 7. Contact surface: each outer surface where the polished surface and the surface to be polished are in contact 8. Polishing amount: Thickness of the material to be polished which is scraped off from the outer surface by the polishing action 9. Polishing surface: outer surface of polishing disk to which polishing cloth is attached 10. Non-contact part: Part of the polishing plate or polishing cloth, which is partially cut or cut, or a part where the polishing surface does not exert a polishing action on the surface to be polished 11. Polishing pressure: A force that acts on the contact surface from the polishing surface to the surface to be polished. Sheet holding plate: Material of equipment for holding a sheet to be polished

【図面の簡単な説明】[Brief description of drawings]

【図1】 レンズ研磨機の一例を示す外観図FIG. 1 is an external view showing an example of a lens polishing machine.

【図2】 レンズ研磨機の概念を示す立面図FIG. 2 is an elevation view showing the concept of a lens polishing machine.

【図3】 図2の研磨装置における研磨盤と被研磨面の
関係を示す平面図
3 is a plan view showing the relationship between the polishing plate and the surface to be polished in the polishing apparatus of FIG.

【図4】 本発明の計算方法を説明するための平面図FIG. 4 is a plan view for explaining the calculation method of the present invention.

【図5】 研磨面に設けた非接触部分の形状、配置の一
例を示す平面図
FIG. 5 is a plan view showing an example of the shape and arrangement of the non-contact portion provided on the polishing surface.

【図6】 従来の方法での研磨量の計算値の分布を示す
FIG. 6 is a diagram showing a distribution of a calculated value of a polishing amount in the conventional method.

【図7】 従来の方法によって研磨した基板の平面度を
示す斜視図
FIG. 7 is a perspective view showing the flatness of a substrate polished by a conventional method.

【図8】 本発明の方法での研磨量の計算値の分布を示
す図
FIG. 8 is a diagram showing a distribution of a calculated value of a polishing amount in the method of the present invention.

【図9】 本発明の方法によって研磨した基板の平面度
を示す斜視図
FIG. 9 is a perspective view showing the flatness of a substrate polished by the method of the present invention.

【図10】 研磨装置の他の例における研磨盤と薄板保
持盤との関係を示す平面図
FIG. 10 is a plan view showing a relationship between a polishing plate and a thin plate holding plate in another example of the polishing apparatus.

【符号の説明】[Explanation of symbols]

15,21 薄板保持盤 12,22 研磨盤、あるいは研磨クロス 13 揺動用ガイドレール 14 揺動駆動機構 W 薄板、あるいはシリコン基板 R 薄板保持盤の半径 R 研磨盤の半径 Ω 薄板保持盤の回転速度 Ω 研磨盤の回転速度 Osx0 研磨盤の中心軸の初期X座標位置 Osy0 研磨盤の中心軸の初期Y座標位置 x 薄板保持盤内の任意の点の初期X座標 y 薄板保持盤内の任意の点の初期Y座標 r 薄板保持盤内の任意の点の初期極座標(径) θ 薄板保持盤内の任意の点の初期極座標(角
度) rs0 研磨盤の中心軸を原点とする薄板保持盤内
の任意の点の初期極座標(径) θs0 研磨盤の中心軸を原点とする薄板保持盤内
の任意の点の初期極座標(角度) F 研磨盤の揺動周期 A 研磨盤の揺動振幅 Cnt 非接触部分の中心 Cpc 研磨盤の中心軸 Cpt 薄板保持盤の中心軸 D 非接触部分が配置される円環状の領域の径方向
における幅 R 非接触部分が配置される円環状の領域の径方
向における幅の中心線の半径
15, 21 Thin plate holding plate 12, 22 Polishing plate or polishing cloth 13 Swing guide rail 14 Swing drive mechanism W Thin plate or silicon substrate R 1 Thin plate holding plate radius R s Polishing plate radius Ω 1 Thin plate holding plate Rotation speed Ω s Rotation speed of polishing machine O sx0 Initial X coordinate position of center axis of polishing machine O sy0 Initial Y coordinate position of center axis of polishing machine x 0 Initial X coordinate y 0 thin plate of any point in the thin plate holder Initial Y coordinate of arbitrary point in holding plate r 0 Initial polar coordinate (diameter) of arbitrary point in thin plate holding plate θ 0 Initial polar coordinate (angle) of arbitrary point in thin plate holding plate r s0 Central axis of polishing plate Initial polar coordinates (diameter) of any point in the thin plate holder with the origin as the origin θ s0 Initial polar coordinates (angle) of any point in the thin plate holder with the central axis of the polishing plate as the origin F s Oscillation of the polishing plate the center of the oscillation amplitude C nt noncontact portion of the cycle a s grinder of pc polishing plate center axis C pt thin plate board of the central axis D noncontact portion in the width in the radial direction of the toric region width R t noncontact portion in the radial direction of the toric region is disposed is arranged Centerline radius

───────────────────────────────────────────────────── フロントページの続き (72)発明者 工藤 誠一 長野県長野市若里1丁目18番1号 (72)発明者 宮嶋 隆司 長野県長野市若里1丁目18番1号 Fターム(参考) 3C058 AA07 AA11 AA16 CB01 DA17   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Seiichi Kudo             1-1-18 Wakasato, Nagano City, Nagano Prefecture (72) Inventor Takashi Miyajima             1-1-18 Wakasato, Nagano City, Nagano Prefecture F term (reference) 3C058 AA07 AA11 AA16 CB01 DA17

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 研磨盤、あるいは研磨クロスと薄板を加
圧下に接触させつつ両者を摺動させて研磨する際に、研
磨盤あるいは研磨クロスの研磨面を、部分的に薄板被研
磨面に対して研磨作用を及ぼさない構造とすることによ
って、薄板被研磨面における任意の点が研磨面と接触し
つつ移動する相対摺動距離を、任意の点の薄板被研磨面
内における位置に係わらずほぼ等しくすることを特徴と
する薄板研磨方法。
1. A polishing plate, or a polishing cloth and a thin plate are brought into contact with each other under pressure to slide the both, and the polishing surface of the polishing plate or the polishing cloth is partially against the thin plate polishing surface. By adopting a structure that does not exert a polishing action by means of the polishing, the relative sliding distance that an arbitrary point on the surface to be polished of the thin plate moves while being in contact with the surface to be polished can be made almost equal regardless of the position of the arbitrary point on the surface to be polished on the thin plate. A method for polishing a thin plate, which is characterized by equalizing.
【請求項2】 部分的に薄板被研磨面に対して研磨作用
を及ぼさない構造が、前記研磨面が部分的に薄板被研磨
面と接触しないようにすることを特徴とする請求項1に
記載する薄板研磨方法。
2. The structure which does not exert a polishing action on the thin plate polishing surface partially prevents the polishing surface from partially contacting the thin plate polishing surface. Method for polishing thin plate.
【請求項3】 研磨面が部分的に薄板被研磨面と接触し
ないようにすることが、研磨クロスを貼り付ける研磨盤
面に部分的に凹みを設けることであることを特徴とする
請求項2に記載する薄板研磨方法。
3. The method according to claim 2, wherein partially preventing the polishing surface from contacting the surface to be polished of the thin plate is to partially form a recess on the surface of the polishing plate to which the polishing cloth is attached. A thin plate polishing method to be described.
【請求項4】 研磨面が部分的に薄板被研磨面と接触し
ないようにすることが、研磨クロスを部分的に切除する
か、あるいは研磨クロスの表層部を部分的に削ぎ落とす
ことであることを特徴とする請求項2に記載する薄板研
磨方法。
4. The partial prevention of the polishing surface from coming into contact with the surface to be polished of the thin plate means that the polishing cloth is partially cut off or the surface layer portion of the polishing cloth is partially cut off. The thin plate polishing method according to claim 2.
【請求項5】 研磨面と薄板被研磨面を加圧下に接触さ
せつつ両者を摺動させて研磨する際に、薄板被研磨面内
における任意の点が有限の荷重の下で研磨面と接触しつ
つ摺動する相対摺動距離が、任意の点の薄板被研磨面内
における位置に係らずほぼ等しくなるように、部分的に
薄板被研磨面に対して研磨作用を及ぼさない非接触部分
の形状、配置を、装置の仕様と運転条件の変数からなる
計算式によって求めることを特徴とする請求項1から4
のいずれかに記載する薄板研磨方法。
5. When polishing is performed by sliding the polishing surface and the polishing surface of the thin plate under pressure while sliding them, any point in the polishing surface of the thin plate contacts the polishing surface under a finite load. So that the relative sliding distance of sliding is substantially equal regardless of the position of the arbitrary point in the surface to be polished of the thin plate. 5. The shape and arrangement are obtained by a calculation formula composed of variables of device specifications and operating conditions.
The method for polishing a thin plate according to any one of 1.
【請求項6】 研磨の方式がレンズ研磨機方式であるこ
とを特徴とする請求項1から5のいずれかに記載する薄
板研磨方法。
6. The thin plate polishing method according to claim 1, wherein the polishing method is a lens polishing machine method.
【請求項7】 前記研磨面の非接触部分を、研磨面の中
心から離れた位置に中心を有する円形の領域内に設ける
ことを特徴とする請求項6に記載する薄板研磨方法。
7. The thin plate polishing method according to claim 6, wherein the non-contact portion of the polishing surface is provided in a circular region having a center at a position away from the center of the polishing surface.
【請求項8】 前記研磨面の非接触部分を、研磨面の中
心から離れた位置に中心を有する環状の領域内に設ける
ことを特徴とする請求項6もしくは7に記載する薄板研
磨方法。
8. The thin plate polishing method according to claim 6, wherein the non-contact portion of the polishing surface is provided in an annular region having a center at a position away from the center of the polishing surface.
【請求項9】 前記環状の領域の中心が研磨面の中心か
ら研磨面の半径の0.3から0.4倍の長さの位置にあ
ることを特徴とする請求項8に記載する薄板研磨方法。
9. The thin plate polishing according to claim 8, wherein the center of the annular region is located at a position 0.3 to 0.4 times the radius of the polishing surface from the center of the polishing surface. Method.
【請求項10】 研磨面の直径が薄板保持盤の直径の
0.7から0.8倍、薄板保持盤の回転速度が研磨盤の
回転速度の0.4から0.6倍、研磨盤の回転中心が薄
板保持盤の回転中心から研磨盤の半径の0.24から
0.32倍の位置にあることを特徴とする請求項6から
9のいずれかに記載する薄板研磨方法。
10. The diameter of the polishing surface is 0.7 to 0.8 times the diameter of the thin plate holding plate, the rotation speed of the thin plate holding plate is 0.4 to 0.6 times the rotation speed of the polishing plate, 10. The thin plate polishing method according to claim 6, wherein the rotation center is located at a position 0.24 to 0.32 times the radius of the polishing plate from the rotation center of the thin plate holding plate.
【請求項11】 前記非接触部分の総面積が非接触部分
を設ける前記円形、あるいは環状の領域の全面積に対し
て0.3から0.7倍の値であることを特徴とする請求
項6から10のいずれかに記載する薄板研磨方法。
11. The total area of the non-contact portion is 0.3 to 0.7 times the total area of the circular or annular region in which the non-contact portion is provided. The thin plate polishing method as described in any one of 6 to 10.
【請求項12】 前記非接触部分が非接触部分を設ける
前記円形、ないしは環状の領域内にほぼ均等に分散して
配置することを特徴とする請求項6から11のいずれか
に記載する薄板研磨方法。
12. The thin plate polishing according to claim 6, wherein the non-contact portions are arranged in the circular or annular region where the non-contact portions are provided so as to be substantially evenly distributed. Method.
【請求項13】 研磨盤、あるいは研磨クロスと薄板を
加圧下に接触させつつ両者を摺動させて研磨する際に、
研磨盤、あるいは研磨クロスの研磨面を、部分的に薄板
被研磨面に対して研磨作用を及ぼさない構造とすること
によって、薄板被研磨面内における任意の点の相対摺動
距離を、任意の点の薄板被研磨面内における位置に係わ
らずほぼ等しくすることを特徴とする薄板研磨装置。
13. A polishing plate, or when a polishing cloth and a thin plate are brought into contact with each other under pressure while sliding them to polish,
By making the polishing surface of the polishing plate or the polishing cloth partially have no polishing effect on the thin plate polishing surface, the relative sliding distance of any point in the thin plate polishing surface can be set to an arbitrary value. A thin plate polishing apparatus, wherein the points are made substantially equal regardless of the position on the surface to be polished of the thin plate.
【請求項14】 部分的に薄板被研磨面に対して研磨作
用を及ぼさない構造が、研磨面が部分的に薄板と接触し
ない構造であることを特徴とする請求項13に記載する
薄板研磨装置。
14. The thin plate polishing apparatus according to claim 13, wherein the structure that partially does not exert a polishing action on the thin plate polishing surface is a structure in which the polishing surface does not partially contact the thin plate. .
【請求項15】 研磨面が部分的に薄板と接触しない構
造が、研磨クロスを貼り付ける研磨盤面に部分的に凹み
を設ける構造であることを特徴とする請求項14に記載
する薄板研磨装置。
15. The thin plate polishing apparatus according to claim 14, wherein the structure in which the polishing surface does not come into partial contact with the thin plate is a structure in which the polishing plate surface to which the polishing cloth is attached is partially recessed.
【請求項16】 研磨面が部分的に薄板と接触しない構
造が、研磨クロスを部分的に切除するか、あるいは研磨
クロスの表層部を部分的に削ぎ落とす構造であることを
特徴とする請求項13に記載する薄板研磨装置。
16. The structure in which the polishing surface does not come into partial contact with the thin plate is a structure in which the polishing cloth is partially cut off or the surface layer portion of the polishing cloth is partially scraped off. 13. The thin plate polishing apparatus described in 13.
【請求項17】 研磨面と薄板被研磨面を加圧下に接触
させつつ両者を摺動させて研磨する際に、薄板被研磨面
内における任意の点が有限の荷重の下で研磨面と接触し
つつ摺動する相対摺動距離が、任意の点の薄板被研磨面
内における位置に係らずほぼ等しくなるように、部分的
に薄板被研磨面に対して研磨作用を及ぼさない非接触部
分の形状、配置を、装置の仕様と運転条件の変数からな
る計算式によって求めることを特徴とする請求項13に
記載する薄板研磨装置。
17. When polishing is performed by sliding the polishing surface and the polishing surface of the thin plate under pressure while sliding them to each other, any point in the polishing surface of the thin plate contacts the polishing surface under a finite load. So that the relative sliding distance of sliding is substantially equal regardless of the position of the arbitrary point in the surface to be polished of the thin plate. 14. The thin plate polishing apparatus according to claim 13, wherein the shape and the arrangement are obtained by a calculation formula composed of a specification of the apparatus and a variable of operating conditions.
【請求項18】 前記研磨がレンズ研磨機方式によって
行われることを特徴とする請求項13から17のいずれ
かに記載する薄板研磨装置。
18. The thin plate polishing apparatus according to claim 13, wherein the polishing is performed by a lens polishing machine method.
JP2001401925A 2001-12-28 2001-12-28 Polishing method and device for thin plate Pending JP2003205454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401925A JP2003205454A (en) 2001-12-28 2001-12-28 Polishing method and device for thin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401925A JP2003205454A (en) 2001-12-28 2001-12-28 Polishing method and device for thin plate

Publications (1)

Publication Number Publication Date
JP2003205454A true JP2003205454A (en) 2003-07-22

Family

ID=27640339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401925A Pending JP2003205454A (en) 2001-12-28 2001-12-28 Polishing method and device for thin plate

Country Status (1)

Country Link
JP (1) JP2003205454A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068851A (en) * 2004-09-01 2006-03-16 Kenichi Ishikawa Grinding plate having pellets pasted thereto, and method of optimizing arrangement of the pellets
JP2007319994A (en) * 2006-06-01 2007-12-13 Disco Abrasive Syst Ltd Polishing pad
JP2009142973A (en) * 2007-12-18 2009-07-02 Nikon Corp Grinding device
JP2009142924A (en) * 2007-12-12 2009-07-02 Nikon Corp Grinding device
JP2012135854A (en) * 2010-12-28 2012-07-19 Disco Corp Method for grinding lithium tantalate
CN108972197A (en) * 2018-07-20 2018-12-11 深圳市太平洋自动化设备有限公司 Mobile phone screen 3D glass clears off machine and control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068851A (en) * 2004-09-01 2006-03-16 Kenichi Ishikawa Grinding plate having pellets pasted thereto, and method of optimizing arrangement of the pellets
JP4564805B2 (en) * 2004-09-01 2010-10-20 憲一 石川 Method for optimizing the pellet arrangement of the pellet affixing and polishing surface plate
JP2007319994A (en) * 2006-06-01 2007-12-13 Disco Abrasive Syst Ltd Polishing pad
JP2009142924A (en) * 2007-12-12 2009-07-02 Nikon Corp Grinding device
JP2009142973A (en) * 2007-12-18 2009-07-02 Nikon Corp Grinding device
JP2012135854A (en) * 2010-12-28 2012-07-19 Disco Corp Method for grinding lithium tantalate
CN108972197A (en) * 2018-07-20 2018-12-11 深圳市太平洋自动化设备有限公司 Mobile phone screen 3D glass clears off machine and control method

Similar Documents

Publication Publication Date Title
JP5166037B2 (en) Grinding wheel
JP5245319B2 (en) Polishing apparatus and polishing method, substrate and electronic device manufacturing method
JP6000643B2 (en) Workpiece processing method, and optical element, mold, and semiconductor substrate processed by the processing method
JP2009039827A (en) Polishing apparatus, substrate manufacturing method, and electronic device manufacturing method
KR101143290B1 (en) Method and device for polishing plate-like body
JP2009039828A (en) Polishing apparatus, substrate manufacturing method, and electronic device manufacturing method
WO2011162163A1 (en) Glass substrate and method for manufacturing glass substrate
JP2006192568A (en) Cmp pad having groove segment arrangement pattern alternately located in radial direction
JPWO2011055627A1 (en) Cutting tool, mold manufacturing method, and array lens mold
JP5003015B2 (en) Substrate grinding method
JP2003205454A (en) Polishing method and device for thin plate
CN111300161B (en) Method and apparatus for repairing surface scratches
TWI747884B (en) Polishing system with local area rate control and oscillation mode
JP2007260783A (en) Polishing surface plate, apparatus and method of surface polishing
CN105856057A (en) Coupling mechanism, substrate polishing apparatus, method of determining position of rotational center of coupling mechanism, program of determining position of rotational center of coupling mechanism, method of determining maximum pressing load of rotating body, and program of determining maximum pressing load of rotating body
TWI333440B (en) Method for simulating slurry flow for a grooved polishing pad
JP2019161090A (en) Semiconductor manufacturing device and method for manufacturing semiconductor device
JP4992306B2 (en) Work carrier, manufacturing method thereof and double-side polishing machine
JP2009039825A (en) Polishing method, substrate manufacturing method, and electronic device manufacturing method
WO2021193970A1 (en) Carrier and method for manufacturing substrate
JP5399167B2 (en) Polishing method
JPH02159722A (en) Device for abrading wafer and positioning jig used for such device
JP2000246629A (en) Polishing device and method
JP7287761B2 (en) Bearing radius determination method for spherical bearings
JP2011230201A (en) Method of manufacturing glass optical element