JP2003187867A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003187867A
JP2003187867A JP2001389791A JP2001389791A JP2003187867A JP 2003187867 A JP2003187867 A JP 2003187867A JP 2001389791 A JP2001389791 A JP 2001389791A JP 2001389791 A JP2001389791 A JP 2001389791A JP 2003187867 A JP2003187867 A JP 2003187867A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
negative electrode
electrolyte secondary
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001389791A
Other languages
Japanese (ja)
Inventor
Keiji Saisho
圭司 最相
Ikuro Nakane
育朗 中根
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001389791A priority Critical patent/JP2003187867A/en
Publication of JP2003187867A publication Critical patent/JP2003187867A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery where a decomposition reaction in high temperature environment is suppressed by preventing a PF<SB>5</SB><SP>-</SP>radical from playing the role of a catalyst in the decomposition reaction by transesterification, and thus deterioration of battery characteristics in the high temperature environment can be prevented. <P>SOLUTION: The nonaqueous electrolyte secondary battery, which comprises an electrode body where a positive electrode 5 capable of storing and releasing lithium ions and a negative electrode 6 capable of storing and releasing lithium ions are disposed via a separator impregnated with an electrolyte solution consisting of a solvent and an electrolyte, is characterized in that polyethylene terephthatale is used as the separator, the electrolyte contains LiPF<SB>6</SB>, and vinylene carbonate is added in the solvent. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンを
吸蔵放出できる正極と、リチウムイオンを吸蔵放出でき
る負極とが、溶媒及び電解質から成る電解液が含浸され
たセパレータを介して配置された電極体を有する非水電
解質二次電池に関する。
TECHNICAL FIELD The present invention relates to an electrode body in which a positive electrode capable of occluding and releasing lithium ions and a negative electrode capable of occluding and releasing lithium ions are arranged via a separator impregnated with an electrolytic solution containing a solvent and an electrolyte. And a non-aqueous electrolyte secondary battery having

【0002】[0002]

【従来の技術】近年、携帯用情報端末の発達は目覚し
く、電源として使用される二次電池も大きく需要を伸ば
してきた。特に、リチウムイオン電池に代表される非水
電解質二次電池は、高いエネルギー密度を有し、高容量
化が可能であるということから、広く使用されるように
なってきた。
2. Description of the Related Art In recent years, the development of portable information terminals has been remarkable, and the demand for secondary batteries used as a power source has greatly increased. In particular, non-aqueous electrolyte secondary batteries typified by lithium-ion batteries have been widely used because they have high energy density and can have high capacity.

【0003】ここで、この種の非水系二次電池に用いら
れるセパレータ材料としては、強度が大きく、且つ製造
コストの低減が可能なものであることが要求されるが、
このような要求に答えうるものの一つとして、ポリエチ
レンテレフタレート(以下、PETと略す)が提案され
ている。特に、近年では、セパレータの薄膜化を図りつ
つ保液性を向上させるべく、セパレ−タとして不織布を
用いられることが多くなっている。この場合、セパレー
タの薄膜化を実施するにはセパレータの強度を保持しつ
つ繊維自体をより細くする必要があるが、この点におい
て、上記の如く機械的強度の大きなPETが最適であ
る。一方、電解質としては、LiBF4 、LiPF6
多数のものが提案されているが、電導度が高いというこ
とからLiPF6が一般的に用いられている。
Here, the separator material used in this type of non-aqueous secondary battery is required to have high strength and to be capable of reducing the manufacturing cost.
Polyethylene terephthalate (hereinafter abbreviated as PET) has been proposed as one that can meet such requirements. In particular, in recent years, a non-woven fabric is often used as a separator in order to improve the liquid retaining property while making the separator thin. In this case, in order to reduce the thickness of the separator, it is necessary to make the fiber itself thinner while maintaining the strength of the separator. From this point, PET having a large mechanical strength is optimal. On the other hand, a large number of electrolytes such as LiBF 4 and LiPF 6 have been proposed, but LiPF 6 is generally used because of its high conductivity.

【0004】しかしながら、セパレータにPETを用
い、電解質に負極表面上で還元反応を起こしラジカルを
生成する化合物を含む電池では、PETが著しく劣化す
る。これは、以下に示す理由によるものと考えられる。
即ち、通常のリチウムイオン二次電池の場合、負極中に
リチウムイオンが挿入されることにより、負極電位は対
金属リチウムで0.1V程度の値を示す。この際、電解
液中の上記化合物の一部は負極表面で還元反応を起こ
し、ラジカルを形成する。このラジカルが存在する系で
は、PETと溶媒との間でエステル交換による分解反応
が進行するため、PETが劣化してPETの分子が切断
されたり、反応副生成物が発生して、電池特性が大きく
低下する。この場合、上記ラジカルは、上記分解反応に
おいて触媒的な役割を担うため、微量のラジカルが発生
しただけで、上記分解反応は連続的に継続する。
However, in a battery in which PET is used as the separator and the electrolyte contains a compound that causes a reduction reaction on the surface of the negative electrode to generate radicals, the PET is significantly deteriorated. This is considered to be due to the following reasons.
That is, in the case of an ordinary lithium ion secondary battery, the lithium ion is inserted into the negative electrode, so that the negative electrode potential shows a value of about 0.1 V against lithium metal. At this time, a part of the compound in the electrolytic solution causes a reduction reaction on the surface of the negative electrode to form a radical. In a system in which this radical is present, a decomposition reaction due to transesterification proceeds between PET and a solvent, so that PET is deteriorated and the PET molecule is cleaved, or a reaction by-product is generated to improve the battery characteristics. Greatly reduced. In this case, since the radical plays a catalytic role in the decomposition reaction, only a small amount of the radical is generated and the decomposition reaction continues continuously.

【0005】また、上記分解反応は高温環境下で加速さ
れるため、高温環境下では活発な分解反応により不純物
が多量に生成され、この不純物の影響により電池特性が
大きく低下する。即ち、上記構成の電池では、高温保存
特性に劣ることになる。
Further, since the above decomposition reaction is accelerated in a high temperature environment, a large amount of impurities are generated by the active decomposition reaction in a high temperature environment, and the battery characteristics are greatly deteriorated due to the influence of the impurities. That is, the battery having the above structure is inferior in high temperature storage characteristics.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、 ラジカルがエステル交
換によるPETの分解反応において触媒的な役割を担う
のを抑制することにより、高温環境下等における上記分
解反応を抑え、これによって、高温環境下等における電
池特性の低下を防止することができる非水電解質二次電
池を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and suppresses the radicals from playing a catalytic role in the decomposition reaction of PET by transesterification, thereby suppressing the high temperature environment. An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of suppressing the above decomposition reaction in the lower part or the like and thereby preventing the deterioration of the battery characteristics in the high temperature environment or the like.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、リチウムイ
オンを吸蔵放出できる正極と、リチウムイオンを吸蔵放
出できる負極とが、溶媒及び電解質とから成る電解液が
含浸されたセパレータを介して配置された電極体を有す
る非水電解質二次電池において、上記セパレータとして
PETを用い、上記電解質には負極表面上で還元反応を
起こしラジカルを生成する化合物を含み、且つ、上記溶
媒には上記ラジカルによる上記PETの分解反応を抑制
する化合物が添加されていることを特徴とする。
In order to achieve the above object, the invention according to claim 1 of the present invention is characterized in that a positive electrode capable of occluding and releasing lithium ions and a negative electrode capable of occluding and releasing lithium ions are solvents. And a non-aqueous electrolyte secondary battery having an electrode body disposed via a separator impregnated with an electrolytic solution consisting of an electrolyte, PET is used as the separator, and a radical that causes a reduction reaction on the surface of the negative electrode is used as the electrolyte. And a compound that suppresses the decomposition reaction of PET by the radicals is added to the solvent.

【0008】前述の如く、通常の非水電解質二次電池の
場合、負極中にリチウムイオンが挿入されると、電解液
中の電解質の一部は負極表面で還元反応を起こし、ラジ
カルを形成する。この場合、上記構成の如く、分解反応
を抑制する化合物が溶媒に添加されていれば、 ラジカ
ルとこの化合物との間で容易に反応が進行するため、ラ
ジカルがPETの分解反応における触媒的な役割を果た
すのを阻止できる。したがって、PETと溶媒との間で
エステル交換による分解反応が生じるのを抑制すること
ができるので、PETが劣化してPETの分子が切断さ
れたり、反応副生成物が発生して、電池特性が大きく低
下するのを抑制することができる。また、高温環境下で
あっても分解反応が抑制されるので、不純物が多量に生
成されるのを防止でき、不純物の影響による電池特性の
劣化を抑えることができる。これらのことから、高温保
存特性が向上する。
As described above, in the case of a normal non-aqueous electrolyte secondary battery, when lithium ions are inserted into the negative electrode, a part of the electrolyte in the electrolytic solution causes a reduction reaction on the negative electrode surface to form a radical. . In this case, if a compound that suppresses the decomposition reaction is added to the solvent as in the above-described configuration, the reaction easily proceeds between the radical and this compound, so that the radical plays a catalytic role in the decomposition reaction of PET. Can be fulfilled. Therefore, it is possible to suppress the decomposition reaction due to transesterification between PET and the solvent, so that the PET is deteriorated and the PET molecule is cleaved or a reaction by-product is generated to improve the battery characteristics. It is possible to suppress a large decrease. Further, since the decomposition reaction is suppressed even in a high temperature environment, it is possible to prevent a large amount of impurities from being generated, and it is possible to suppress deterioration of battery characteristics due to the influence of impurities. From these, the high temperature storage characteristics are improved.

【0009】また、請求項2記載の発明は請求項1記載
の発明において、上記電解質にはLiPF6が含まれる
ことを特徴とする。このように負極表面上で還元反応を
起こして、ラジカルを生成する化合物としては、LiP
6が例示される。
The invention according to claim 2 is the invention according to claim 1, characterized in that the electrolyte contains LiPF 6 . As a compound that causes a reduction reaction on the surface of the negative electrode to generate a radical, LiP
F 6 is exemplified.

【0010】また、請求項3記載の発明は請求項1又は
2の発明において、上記分解反応を抑制する化合物がビ
ニレンカーボネート(以下、VCと略す)であることを
特徴とする。このようにラジカルによるPETの分解反
応を抑制する化合物としてVCが好ましい。
The invention of claim 3 is characterized in that, in the invention of claim 1 or 2, the compound that suppresses the decomposition reaction is vinylene carbonate (hereinafter abbreviated as VC). VC is preferable as the compound that suppresses the decomposition reaction of PET by radicals.

【0011】尚、本来VCは負極表面の官能基と反応し
て被膜を形成する働きを有するが、当該被膜は電池に悪
影響を及ぼすことはなく、逆に、当該被膜は負極活物質
と電解液の間の反応を抑制するなど、電池特性に対して
有用な働きを有する。このため、 ラジカルとVCとの
反応により生成した副生成物も、電池特性に対して悪影
響を及ぼすことはない。
Although VC originally has a function of reacting with a functional group on the surface of the negative electrode to form a film, the film does not adversely affect the battery, and conversely, the film is a negative electrode active material and an electrolytic solution. It has a useful function for the battery characteristics such as suppressing the reaction between the two. Therefore, the by-product generated by the reaction between the radical and VC does not adversely affect the battery characteristics.

【0012】また、請求項4記載の発明は請求項2又は
3記載の発明において、上記溶媒に対する上記LiPF
6 の割合が、0.05モル/リットル以上に規制される
ことを特徴とする。このように規制するのは、溶媒に対
するLiPF6 の割合が、0.05モル/リットル未満
であれば、ラジカル生成量が微量であるために、PET
の分解反応の抑制に大きさ効果が得られないからであ
る。
Further, the invention according to claim 4 is the same as the invention according to claim 2 or 3, wherein the LiPF is added to the solvent.
The ratio of 6 is regulated to 0.05 mol / liter or more. The reason for regulating in this way is that if the ratio of LiPF 6 to the solvent is less than 0.05 mol / liter, the amount of radicals produced is very small, so that PET
This is because the size effect cannot be obtained in suppressing the decomposition reaction of.

【0013】また、請求項5記載の発明は請求項3又は
4記載の発明において、上記溶媒の総量に対する上記V
Cの割合が、0.1質量%以上10質量%以下に規制さ
れることを特徴とする。このように規制するのは、VC
の割合が0.1質量%未満の場合には、電解液中で発生
するラジカル全てと反応するのに十分な量のVC添加さ
れていないため、 ラジカルの発生を完全には抑制する
ことができず、サイクル特性等の電池特性を飛躍的に向
上させることができない一方、VCの割合が10質量%
を越えると、 ラジカルによるPETの劣化は発生しな
いが、ラジカルとの反応や負極表面での被膜形成に消費
されなかったVCが電解液特性に影響を与え、電池特性
が劣化するからである。
The invention according to claim 5 is the same as the invention according to claim 3 or 4, in which the above V with respect to the total amount of the above solvent is used.
It is characterized in that the proportion of C is regulated to 0.1% by mass or more and 10% by mass or less. It is VC to regulate in this way
When the ratio is less than 0.1% by mass, VC is not added in an amount sufficient to react with all the radicals generated in the electrolytic solution, so that the generation of radicals can be completely suppressed. Therefore, while battery characteristics such as cycle characteristics cannot be dramatically improved, the proportion of VC is 10% by mass.
If it exceeds, the deterioration of PET due to radicals does not occur, but VC not consumed for reaction with radicals and film formation on the surface of the negative electrode affects the electrolytic solution characteristics and deteriorates the battery characteristics.

【0014】また、請求項6記載の発明は請求項1〜5
記載の発明において、上記PETから成るセパレータの
表面には、ポリフッ化ビニリデン(以下PVdFと略
す)が付着されていることを特徴とする。上記構成の如
くセパレータ表面にPVdFが存在する場合には、PV
dFは電解液を保持してゲル化するため、電解液の移動
やラジカルの運動性が非常に制限されて、分解反応の進
行は最小レベルに抑制される。したがって、高温保存特
性を、一層向上させることができる。
The invention according to claim 6 is defined by claims 1 to 5.
In the invention described above, polyvinylidene fluoride (hereinafter abbreviated as PVdF) is attached to the surface of the PET separator. When PVdF is present on the surface of the separator as in the above configuration, PVdF
Since dF retains the electrolytic solution and gels, the movement of the electrolytic solution and the mobility of radicals are extremely limited, and the progress of the decomposition reaction is suppressed to a minimum level. Therefore, the high temperature storage characteristics can be further improved.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を、図1〜図
4に基づいて、以下に説明する。図1は本発明に係る非
水電解質二次電池の正面図、図2は図1のA−A線矢視
断面図、図3は本発明に係る非水電解質二次電池に用い
るラミネート外装体の断面図、図4は本発明に係る非水
電解質二次電池に用いる電極体の斜視図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. 1 is a front view of a non-aqueous electrolyte secondary battery according to the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 3 is a laminated exterior body used for the non-aqueous electrolyte secondary battery according to the present invention. And FIG. 4 is a perspective view of an electrode body used in the non-aqueous electrolyte secondary battery according to the present invention.

【0016】図2に示すように、本発明の非水電解質二
次電池は電極体1を有しており、この電極体1は収納空
間2内に配置されている。この収納空間2は、図1に示
すように、ラミネート外装体3の上下端と中央部とをそ
れぞれ封止部4a・4b・4cで封口することにより形
成される。また、上記収納空間内には、エチレンカーボ
ネート(EC)とジエチルカーボネート(DEC)とが
体積比で50:50の割合で混合された混合溶媒にVC
が2質量%添加され、更にLiPF6 から成るリチウム
塩が1.0モル/リットルの割合で溶解された電解液が
含浸されている。上記電極体1は、LiCoO2 を主体
とする正極5(厚み:0.17mm)と、天然黒鉛(d
値=3.36オングストローム)を主体とする負極6
(厚み:0.14mm)と、これら両電極を離間するセ
パレータ(図4においては図示せず)とを偏平渦巻き状
に巻回することにより作製される。上記セパレータは、
ポリエチレンテレフタレート(PET)から成る微多孔
膜(厚み:25μm)から構成されている。
As shown in FIG. 2, the non-aqueous electrolyte secondary battery of the present invention has an electrode body 1, and the electrode body 1 is arranged in a storage space 2. As shown in FIG. 1, the storage space 2 is formed by sealing the upper and lower ends and the central portion of the laminated outer casing 3 with sealing portions 4a, 4b and 4c, respectively. Further, in the storage space, VC was added to a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 50:50.
2% by mass, and further impregnated with an electrolytic solution in which a lithium salt composed of LiPF 6 is dissolved at a ratio of 1.0 mol / liter. The electrode body 1 includes a positive electrode 5 (thickness: 0.17 mm) mainly composed of LiCoO 2 and natural graphite (d).
Negative electrode 6 whose main value is (3.36 angstrom)
(Thickness: 0.14 mm) and a separator (not shown in FIG. 4) that separates these electrodes from each other are wound in a flat spiral shape. The separator is
It is composed of a microporous film (thickness: 25 μm) made of polyethylene terephthalate (PET).

【0017】ここで、上記正極5は、アルミニウム箔等
の金属箔から成る正極芯体(厚み:20μm)と、この
正極芯体に活物質が塗布された正極活物質層と、上記正
極芯体に活物質が塗布されていない正極芯体露出部とを
有し、この正極芯体露出部にはアルミニウムから成る正
極集電タブ7が接続されている。また、上記負極6は、
銅箔等の金属箔から成る負極芯体(厚み:20μm)
と、この負極芯体に活物質が塗布された負極活物質層
と、上記負極芯体に活物質が塗布されていない負極芯体
露出部とを有し、この負極芯体露出部には銅から成る負
極集電タブ8が接続されている。そして、上記両集電タ
ブ7・8により、電池内部で生じた化学エネルギーを電
気エネルギーとして外部へ取り出し得るようになってい
る。
Here, the positive electrode 5 is a positive electrode core body (thickness: 20 μm) made of metal foil such as aluminum foil, a positive electrode active material layer in which an active material is applied to the positive electrode core body, and the positive electrode core body. To the positive electrode core exposed portion to which the active material is not applied, and the positive electrode current collector tab 7 made of aluminum is connected to the positive electrode core exposed portion. The negative electrode 6 is
Negative electrode core made of metal foil such as copper foil (thickness: 20 μm)
And a negative electrode active material layer in which an active material is applied to the negative electrode core body, and a negative electrode core body exposed portion in which the active material is not applied to the negative electrode core body. And a negative electrode current collecting tab 8 made of Then, both of the current collecting tabs 7 and 8 allow the chemical energy generated inside the battery to be taken out as electric energy.

【0018】尚、図3に示すように、上記ラミネート外
装体3の具体的な構造は、アルミニウム層11の一方の
面に、変性ポリプロピレンから成る接着剤層12を介し
てポリプロピレンから成る樹脂層13が接着される一
方、アルミニウム層11の他方の面に、変性ポリプロピ
レンから成る接着剤層12を介してポリエチレンテレフ
タレートから成る樹脂層14が接着される構造である。
As shown in FIG. 3, the specific structure of the laminated outer package 3 is as follows. A resin layer 13 made of polypropylene is formed on one surface of the aluminum layer 11 via an adhesive layer 12 made of modified polypropylene. While the resin layer 14 made of polyethylene terephthalate is bonded to the other surface of the aluminum layer 11 via the adhesive layer 12 made of modified polypropylene.

【0019】ここで、上記構造の電池を、以下のように
して作製した。 (正極の作製)先ず、炭酸リチウム(Li2 CO3 )と
酸化コバルト(Co34 )とを700〜900℃の温
度で焼成して得られたコバルト酸リチウム(LiCoO
2 )から成る正極活物質と、導電剤としての黒鉛及びケ
ッチェンブラックと、結着剤としてのフッ素樹脂とを、
質量比で90:3:2:5の割合で混合し、これをN−
メチル−2−ピロリドン(NMP)から成る有機溶剤に
溶解してペーストを作製した。次に、このペーストをド
クターブレード法等によりアルミニウム箔(厚み20μ
m)から成る正極芯体の両面に均一に塗布した。次い
で、加熱された乾燥炉中を通過させ、100〜150℃
の温度で真空熱処理し、ペースト作製時に必要であった
有機溶剤を除去した後、厚さ0.17mmになるように
ロールプレス機で圧延して正極を作製した。この際、上
記正極集電タブの近傍における上記正極芯体の両面に
は、正極活物質層を形成しない正極芯体露出部を形成し
た。
Here, the battery having the above structure was manufactured as follows. (Production of Positive Electrode) First, lithium cobalt oxide (LiCoO 2 ) obtained by firing lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3 O 4 ) at a temperature of 700 to 900 ° C.
2 ) a positive electrode active material, graphite and Ketjen black as a conductive agent, and a fluororesin as a binder,
They were mixed in a mass ratio of 90: 3: 2: 5, and this was mixed with N-
A paste was prepared by dissolving in an organic solvent composed of methyl-2-pyrrolidone (NMP). Next, this paste is applied to an aluminum foil (thickness: 20 μm) by a doctor blade method or the like.
m) was uniformly applied to both surfaces of the positive electrode core. Then, it is passed through a heated drying oven to 100 to 150 ° C.
After vacuum heat treatment at a temperature of 1 to remove the organic solvent necessary for producing the paste, the positive electrode was produced by rolling with a roll press to a thickness of 0.17 mm. At this time, a positive electrode core exposed portion where the positive electrode active material layer was not formed was formed on both surfaces of the positive electrode core near the positive electrode current collector tab.

【0020】(負極の作製)先ず、天然黒鉛(d値=
3.36オングストローム)よりなる負極活物質と、結
着剤としてのフッ素樹脂とを、質量比で95:5で混合
し、これをN−メチル−2−ピロリドンから成る有機溶
剤等に溶解してペーストを作製した。次に、このペース
トをドクターブレード法等により銅箔(厚み:20μ
m) から成る負極芯体の両面に均一に塗布した。次い
で、加熱された乾燥炉中を通過させ、100〜150℃
の温度で真空熱処理し、ペースト作製時に必要であった
有機溶剤を除去した後、厚さ0.14mmになるように
ロールプレス機で圧延して負極を作製した。この際、上
記負極集電タブの近傍における上記負極芯体の両面に
は、負極活物質層を形成しない負極芯体露出部を形成し
た。
(Production of Negative Electrode) First, natural graphite (d value =
A negative electrode active material composed of 3.36 angstrom) and a fluororesin serving as a binder are mixed at a mass ratio of 95: 5, and the mixture is dissolved in an organic solvent composed of N-methyl-2-pyrrolidone or the like. A paste was made. Next, a copper foil (thickness: 20μ
m) was uniformly applied to both surfaces of the negative electrode core body. Then, it is passed through a heated drying oven to 100 to 150 ° C.
After vacuum heat treatment at a temperature of 1 to remove the organic solvent required at the time of producing the paste, the negative electrode was produced by rolling with a roll press machine to a thickness of 0.14 mm. At this time, negative electrode core exposed portions where the negative electrode active material layer was not formed were formed on both surfaces of the negative electrode core near the negative electrode current collector tab.

【0021】(電極体の作製)上記正極の正極芯体露出
部に正極集電タブを取り付ける一方、上記負極の負極芯
体露出部に負極集電タブを取り付けた後、これら正負極
間にPET製の微多孔膜(厚み:25μm)から成るセ
パレータを配置して重ね合わせた。この後、巻き取り機
を用いて巻回し、最外周をテープ止めして渦巻状の電極
体を作製した後、この渦巻状電極体を扁平に押しつぶし
て扁平渦巻状電極体を作製した。
(Preparation of Electrode Body) While the positive electrode current collector tab was attached to the exposed portion of the positive electrode core body of the positive electrode, the negative electrode current collector tab was attached to the exposed portion of the negative electrode core body of the negative electrode, and PET was provided between the positive and negative electrodes. A separator made of a microporous film (thickness: 25 μm) manufactured by the company was placed and superposed. Then, after winding with a winder and tapering the outermost periphery to produce a spiral electrode body, the spiral electrode body was crushed flat to produce a flat spiral electrode body.

【0022】(電解液の調製)エチレンカーボネート
(EC)とジエチルカーボネート(DEC)とを体積比
が50:50となるように混合した混合溶媒に、電解質
塩としてLiPF6 を1.0モル/リットルとなるよう
溶解させた。ここに、上記混合溶媒の総量に対する割合
が2質量%となるようにビニレンカーボネート(VC)
を溶解させて電解液を調製した。
(Preparation of Electrolyte Solution) LiPF 6 as an electrolyte salt was added at 1.0 mol / liter in a mixed solvent prepared by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 50:50. It was dissolved so that Here, vinylene carbonate (VC) was added so that the ratio of the mixed solvent to the total amount was 2% by mass.
Was dissolved to prepare an electrolytic solution.

【0023】(電池の作製)図3に示す5層構造のラミ
ネート材を用意した後、このラミネート材における端部
近傍同士を重ね合わせ、更に、重ね合わせ部を溶着し
て、封止部4cを形成した。次に、この筒状のラミネー
ト材の収納空間2内に扁平渦巻状の電極体1を挿入し
た。この際、筒状のラミネート材の一方の開口部から両
集電タブ7・8が突出するように電極体1を配置した。
次に、この状態で、両集電タブ7・8が突出している開
口部のラミネート材を溶着して封止し、封止部4aを形
成した。この際、溶着は高周波誘導溶着装置を用いて行
った。
(Preparation of Battery) After preparing a laminated material having a five-layer structure shown in FIG. 3, the end portions of the laminated material are overlapped with each other, and the overlapped portion is welded to form the sealing portion 4c. Formed. Next, the flat spiral-shaped electrode body 1 was inserted into the accommodating space 2 for the cylindrical laminated material. At this time, the electrode body 1 was arranged such that both current collecting tabs 7 and 8 were projected from one opening of the tubular laminate material.
Next, in this state, the laminate material of the opening from which both the current collecting tabs 7 and 8 project was welded and sealed to form the sealing portion 4a. At this time, the welding was performed using a high frequency induction welding apparatus.

【0024】次いで、この状態で、真空加熱乾燥(温
度:105℃)を2時間行い、ラミネート材及び電極体
1の水分を除去した。この後、上記のようにして調製し
た電解液を収納空間2内に5ml注液した後、上記封止
部4aとは反対側のラミネート材の端部を超音波溶着装
置を用いて溶着し、封止部4bを形成することにより、
非水電解質二次電池を作製した。このようにして作製し
た電池の容量は500mAhであった。尚、正極材料と
しては上記コバルト酸リチウムに限定するものではな
く、リチウムマンガン酸化物、リチウムニッケル酸化
物、リチウム鉄酸化物、又は酸化マンガン等或いはこれ
らの複合体が好適に用いられ、また負極材料としては上
記黒鉛の他、カーボンブラック、コークス、ガラス状炭
素、炭素繊維或いはこれらの焼成体等が好適に用いられ
る。
Then, in this state, vacuum heating and drying (temperature: 105 ° C.) were carried out for 2 hours to remove the water content of the laminate material and the electrode body 1. After that, 5 ml of the electrolytic solution prepared as described above was poured into the storage space 2, and then the end of the laminate material on the side opposite to the sealing portion 4a was welded using an ultrasonic welding device, By forming the sealing portion 4b,
A non-aqueous electrolyte secondary battery was produced. The capacity of the battery thus manufactured was 500 mAh. The positive electrode material is not limited to the above lithium cobalt oxide, and lithium manganese oxide, lithium nickel oxide, lithium iron oxide, manganese oxide, or the like or a composite thereof is preferably used, and the negative electrode material is also used. In addition to the above graphite, carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof is preferably used.

【0025】また、用いられる溶媒としては上記のもの
に限らず、プロピレンカーボネネート、γ−ブチロラク
トンなどの比較的比誘電率が高い溶液と、ジメチルカー
ボネート、メチルエチルカーボネート、テトラヒドロフ
ラン、1,2−ジメトキシエタン、1,3−ジオキソラ
ン、2−メトキシテトラヒドロフラン、ジエチルエーテ
ル等の低粘度低沸点溶媒とを適度な比率で混合した溶媒
を用いることができる。但し、ガス発生抑制の点から、
酸化電位が、4.8V(vs Li/Li+ )以上のも
のを用いるのが望ましい。更に、外装体としては、アル
ミラミネート外装体に限定されるものではなく、鉄、ア
ルミニウム等の金属から成る外装体を有するものであっ
ても、本発明を適用しうることは勿論である。
The solvent used is not limited to the above-mentioned ones, but a solution having a relatively high relative dielectric constant such as propylene carbonate or γ-butyrolactone, dimethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2- A solvent obtained by mixing a low-viscosity low-boiling point solvent such as dimethoxyethane, 1,3-dioxolane, 2-methoxytetrahydrofuran, or diethyl ether in an appropriate ratio can be used. However, from the viewpoint of suppressing gas generation,
It is desirable to use one having an oxidation potential of 4.8 V (vs Li / Li + ) or more. Further, the exterior body is not limited to the aluminum laminate exterior body, and it goes without saying that the present invention can be applied even if the exterior body is made of a metal such as iron or aluminum.

【0026】[0026]

【実施例】(第1実施例) 〔実施例〕実施例としては、上記発明の実施の形態で示
した電池を用いた。このようにして作製した電池を、以
下、本発明電池Aと称する。 〔比較例〕電解液にVCを添加しない他は、上記実施例
と同様にして電池を作製した。このようにして作製した
電池を、以下、比較電池Xと称する。
EXAMPLES (First Example) [Example] As an example, the battery shown in the embodiment of the present invention was used. The battery thus manufactured is hereinafter referred to as Battery A of the invention. [Comparative Example] A battery was produced in the same manner as in the above-described example except that VC was not added to the electrolytic solution. The battery thus manufactured is hereinafter referred to as comparative battery X.

【0027】〔実験〕上記本発明電池Aと比較電池Xと
を、下記の実験条件で満充電状態とし高温で保存したと
きの、電池電圧の変化と電池厚みの変化とを調べたの
で、その結果を表1に示す。 ・実験条件 各電池を500mA(1.0It)の充電電流で4.2
Vになるまで定電流充電し、その後4.2Vの定電圧で
2時間充電して満充電状態とした。次に、各電池の電圧
と厚みとを測定した後、80℃の恒温槽中で4日間保存
し、保存前後での電池電圧の変化及び電池厚みの変化を
観測した。
[Experiment] The battery A of the present invention and the comparative battery X were examined for the change in battery voltage and the change in battery thickness when the battery was fully charged under the following experimental conditions and stored at high temperature. The results are shown in Table 1. -Experimental conditions 4.2 with a charging current of 500 mA (1.0 It) for each battery.
The battery was charged with a constant current until it reached V, and then charged with a constant voltage of 4.2 V for 2 hours to be in a fully charged state. Next, after measuring the voltage and thickness of each battery, the battery was stored in an 80 ° C. constant temperature bath for 4 days, and changes in the battery voltage and changes in the battery thickness before and after storage were observed.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、VCを添加して
いない比較電池Xでは、高温保存により電池電圧が大き
く低下し、しかも、電池厚みが増大していた。これに対
して、VCを添加した電解液を用いた本発明電池Aで
は、電池電圧の低下が抑制され、しかも、電池厚みの増
大も抑制されていた。そこで、高温保存試験終了後に両
電池を解体したところ、VCを添加した本発明電池Aで
は内部に大きな変化は観測されなかったのに対して、V
Cを添加していない比較電池Xでは通常白色のセパレー
タが濃赤色に変色している様子が観測された。そして、
変色したセパレータの強度を測定したところ、大きく低
下していることも確認された。
As is clear from Table 1, in the comparative battery X to which VC was not added, the battery voltage was greatly lowered and the battery thickness was increased due to high temperature storage. On the other hand, in the battery A of the present invention using the electrolytic solution containing VC, the decrease in battery voltage was suppressed and the increase in battery thickness was also suppressed. Therefore, when both batteries were disassembled after the high temperature storage test was completed, no large internal change was observed in the battery A of the present invention to which VC was added.
In the comparative battery X to which C was not added, it was observed that the normally white separator turned dark red. And
When the strength of the discolored separator was measured, it was also confirmed that it was greatly reduced.

【0030】ここで、通常のリチウムイオン二次電池の
場合、負極中にリチウムイオンが挿入されることによ
り、負極電位は対金属リチウムで0.1V程度の値を示
す。この際、電解液中のLiPF6 の一部は負極表面で
還元反応を起こし、PF5 - ラジカルを形成する。この
PF5 - ラジカルが存在する系では、PETと溶媒の間
でエステル交換による分解反応が進行するため、PET
が劣化して、PETの分子が切断されたり、反応副生成
物が発生して、電池特性が大きく低下する。この場合、
上記PF5 - ラジカルは上記分解反応において触媒的な
役割を担うため、微量のPF5 - ラジカルが発生しただ
けで、分解反応は連続的に継続する。また、上記分解反
応は高温環境下で加速されるため、高温環境下では分解
反応により不純物が多量に生成され、この不純物の影響
により電池特性が著しく劣化する。この結果、比較電池
Xでは電池電圧の大幅な低下を生じたものと考えられ
る。
Here, in the case of a normal lithium ion secondary battery, the lithium ion is inserted into the negative electrode, so that the negative electrode potential shows a value of about 0.1 V against lithium metal. At this time, part of LiPF 6 in the electrolytic solution causes a reduction reaction at the negative electrode surface, PF 5 - to form a radical. The PF 5 - In a system where the radical is present, the decomposition reaction by transesterification between PET and the solvent proceeds, PET
Deteriorates, the molecules of PET are cleaved, reaction by-products are generated, and the battery characteristics are greatly deteriorated. in this case,
Since the PF 5 radical plays a catalytic role in the decomposition reaction, the decomposition reaction continues continuously even if only a small amount of PF 5 radical is generated. Further, since the decomposition reaction is accelerated in a high temperature environment, a large amount of impurities are generated by the decomposition reaction in a high temperature environment, and the battery characteristics are significantly deteriorated due to the influence of the impurities. As a result, it is considered that in Comparative Battery X, the battery voltage dropped significantly.

【0031】これに対して、VCを添加した本発明電池
Aでは、PF5 - ラジカルとVCとの間で容易に反応が
進行するため、PF5 - ラジカルが分解反応における触
媒的な役割を果たすのを阻止できる。したがって、PE
Tと溶媒との間でエステル交換による分解反応が抑制さ
れるので、PETが劣化してPETの分子が切断された
り、反応副生成物が発生して、電池特性が大きく低下す
るのを抑制することができる。また、高温環境下であっ
ても分解反応が抑制されるので、不純物が多量に生成さ
れるのを防止でき、不純物の影響による電池特性の劣化
を抑えることができる。この結果、上記の如く、本発明
電池Aでは高温保存特性が向上するものと考えられる。
[0031] In contrast, in the present invention battery A was added VC, PF 5 - for easy reaction between the radicals and the VC proceeds, PF 5 - play a catalytic role in the radical decomposition reaction Can be prevented. Therefore, PE
Since the decomposition reaction due to transesterification between T and the solvent is suppressed, it is possible to prevent the deterioration of the PET, the molecules of the PET being cleaved, and the reaction by-products to be generated, thereby significantly reducing the battery characteristics. be able to. Further, since the decomposition reaction is suppressed even in a high temperature environment, it is possible to prevent a large amount of impurities from being generated, and it is possible to suppress deterioration of battery characteristics due to the influence of impurities. As a result, as described above, it is considered that the battery A of the present invention has improved high temperature storage characteristics.

【0032】尚、本来VCは負極表面の官能基と反応し
て被膜を形成する働きを有するが、当該被膜は電池に悪
影響を及ぼすことはなく、逆に、当該被膜は負極活物質
と電解液の間の反応を抑制するなど、電池特性に対して
有用な働きを有する。このため、ラジカルとVCとの反
応により生成した副生成物も、電池特性に対して害を及
ぼすことはない。また、ここでは詳細には示さないが、
セパレータとしてPETから成る微多孔膜の代わりに、
PETから成る不織布を用いた場合にも、上記と同様の
傾向であることを実験により確認している。
Although VC originally has a function of reacting with a functional group on the surface of the negative electrode to form a film, the film does not adversely affect the battery, and conversely, the film is a negative electrode active material and an electrolytic solution. It has a useful function for the battery characteristics such as suppressing the reaction between the two. Therefore, the by-product generated by the reaction between radicals and VC does not harm the battery characteristics. Also, although not shown in detail here,
Instead of a microporous membrane made of PET as a separator,
It has been confirmed by experiments that the same tendency as described above is obtained when a non-woven fabric made of PET is used.

【0033】(第2実施例) 〔実施例1〜4〕電解質として、それぞれ、0.02モ
ル/リットル(以下、Mと略す)のLiPF6 と0.9
8MのLiBF4 との混合物、0.05MのLiPF6
と0.95MのLiBF4 との混合物、0.1MのLi
PF6 と0.9MのLiBF4 との混合物、及び、0.
5MのLiPF6 と0.5MのLiBF4 との混合物を
用いた他は、上記第1実施例の実施例と同様にして電池
を作製した。このようにして作製した電池を、以下、そ
れぞれ本発明電池B1〜B4と称する。
Second Example [Examples 1 to 4] As electrolytes, 0.02 mol / liter (hereinafter abbreviated as M) of LiPF 6 and 0.9, respectively.
Mixture with 8M LiBF 4 , 0.05M LiPF 6
And 0.95M LiBF 4 mixture, 0.1M Li
A mixture of PF 6 and 0.9 M LiBF 4 , and 0.
A battery was made in the same manner as in the example of the first example except that a mixture of 5M LiPF 6 and 0.5M LiBF 4 was used. The batteries thus manufactured are hereinafter referred to as present batteries B1 to B4, respectively.

【0034】〔比較例1〕電解質として、1.0MのL
iBF4 を用いた他は、上記実施例1と同様にして電池
を作製した。このようにして作製した電池を、以下、比
較電池Y1と称する。 〔比較例2〜6〕VCを添加しない他は、それぞれ、上
記実施例1〜4及び比較例Y1と同様にして電池を作製
した。このようにして作製した電池を、以下、それぞれ
比較電池Y2〜Y6と称する。
Comparative Example 1 1.0 M L was used as the electrolyte.
A battery was produced in the same manner as in Example 1 except that iBF 4 was used. The battery thus manufactured is hereinafter referred to as comparative battery Y1. [Comparative Examples 2 to 6] Batteries were produced in the same manner as in Examples 1 to 4 and Comparative Example Y1 except that VC was not added. The batteries thus manufactured are hereinafter referred to as comparative batteries Y2 to Y6, respectively.

【0035】〔実験〕上記本発明電池A及びB1〜B4
と、比較電池X及びY1〜Y6とを、下記の実験条件で
満充電状態とし高温で保存したときの、電池電圧の変化
を調べたので、その結果を表2に示す。 ・実験条件 各電池を500mA(1.0It)の充電電流で4.2
Vになるまで定電流充電し、その後4.2Vの定電圧で
2時間充電して満充電状態とした。次に、各電池の電圧
を測定した後、80℃の恒温槽中で4日間保存し、保存
前後での電池電圧の変化を観測した。
[Experiment] Batteries A and B1 to B4 of the present invention
And the comparative batteries X and Y1 to Y6 were examined for changes in battery voltage when the batteries were fully charged under the following experimental conditions and stored at high temperature. The results are shown in Table 2. -Experimental conditions 4.2 with a charging current of 500 mA (1.0 It) for each battery.
The battery was charged with a constant current until it reached V, and then charged with a constant voltage of 4.2 V for 2 hours to be in a fully charged state. Next, after measuring the voltage of each battery, the battery was stored in an 80 ° C. constant temperature bath for 4 days, and changes in the battery voltage before and after storage were observed.

【0036】[0036]

【表2】 [Table 2]

【0037】表2から明らかなように、電解液中のLi
PF6 濃度が0の場合には、VCの添加の有無に係わら
ず殆ど差異は認められず(比較電池Y1と比較電池Y6
との対比)、また電解液中のLiPF6 濃度が0.05
M未満の場合には、VCを添加すると、若干電池電圧の
降下が小さくなっていることが認められる(本発明電池
B1と比較電池Y2との対比)。一方、電解液中にLi
PF6 が0.05M以上の存在する場合には、VCを添
加していない電池(比較電池X、比較電池Y3〜Y5)
では大きな電池電圧の降下が発生していたのに対して、
電解液中にVCを添加した電池(本発明電池A、本発明
電池B2〜B4)では、電池電圧の降下は大きく抑制さ
れていることが認められる。
As is clear from Table 2, Li in the electrolytic solution
When the PF 6 concentration is 0, almost no difference is observed regardless of whether or not VC is added (comparative battery Y1 and comparative battery Y6).
In contrast, the LiPF 6 concentration in the electrolyte is 0.05
When it is less than M, it is observed that the addition of VC causes a slight decrease in the battery voltage (comparison between the present battery B1 and the comparative battery Y2). On the other hand, Li in the electrolytic solution
When PF 6 is present in an amount of 0.05 M or more, batteries containing no VC (Comparative battery X, Comparative batteries Y3 to Y5)
Then, while a large drop in battery voltage occurred,
It is recognized that in the batteries in which VC is added to the electrolytic solution (the present invention battery A, the present invention batteries B2 to B4), the battery voltage drop is greatly suppressed.

【0038】これは、負極上でのPF5 - ラジカル形成
はLiPF6 に特有の反応であり、他の電解質(例え
ば、上記LiBF4 )では発生しない。また、詳細には
判明していないが、ごく少量添加されたLiPF6 は電
池作製初期において正極表面での固体電解質膜形成など
により消費されるために、PETの劣化を発生させるP
5 - ラジカルを生じないものと推測される。したがっ
て、電解液中のLiPF 6 - 濃度が0の場合や、0.0
5M未満の場合には、VCの添加による高温保存特性の
向上は余り認められないと考えられる。これに対して、
電解液中にLiPF6 が0.05M以上の存在する場合
にはPF5 - ラジカルが発生するため、VCが添加され
ていない電池では、PET分子が切断し、それに起因し
た電池特性の低下が生じるものと考えられる。
This is the PF on the negative electrode.Five - Radical formation
Is LiPF6 It is a reaction peculiar to
For example, the above LiBFFour) Does not occur. Also, in detail
Not known, but a very small amount of LiPF6 Is electric
Formation of solid electrolyte membrane on the surface of positive electrode in the early stage of pond preparation
Is consumed by P, which causes deterioration of PET.
FFive - It is presumed that it does not generate radicals. According to
And LiPF in the electrolyte 6 -When the concentration is 0 or 0.0
If it is less than 5M, the addition of VC may result in high temperature storage characteristics.
It seems that the improvement is not so much recognized. On the contrary,
LiPF in the electrolyte6Is above 0.05M
PFFive - Since radicals are generated, VC is added
Not in the battery, the PET molecules are cleaved and
It is considered that the battery characteristics deteriorate.

【0039】(第3実施例) (実施例1〜8)溶媒の総量に対するVCの割合を、そ
れぞれ、0.05質量%、0.1質量%、0.5質量
%、1.0質量%、3.0質量%、5.0質量%、10
質量%、及び20質量%とする他は、上記第1実施例の
実施例と同様にして電池を作製した。このようにして作
製した電池を、以下、それぞれ本発明電池C1〜C8と
称する。
(Third Example) (Examples 1 to 8) The proportions of VC with respect to the total amount of the solvent are 0.05% by mass, 0.1% by mass, 0.5% by mass and 1.0% by mass, respectively. , 3.0% by mass, 5.0% by mass, 10
A battery was made in the same manner as in the above-described first example except that the amounts were set to 20% by mass and 20% by mass. The batteries thus manufactured are hereinafter referred to as the present batteries C1 to C8, respectively.

【0040】(実験)上記本発明電池C1〜C8、及び
前記第1実施例で示した本発明電池A及び比較電池Xを
下記の条件で充放電し、各電池のサイクル特性を調べた
ので、その結果を表3に示す。 ・充放電条件 500mA(1.0It)の充電電流で4.2Vになる
まで定電流充電し、その後4.2Vの定電圧で2時間充
電して満充電状態とし、5分間放置後、500mA
(1.0It)の放電電流で2.75Vになるまで放電
するという条件。尚、放電容量維持率とは、1サイクル
目の放電容量に対する500サイクル終了後放電容量の
比率である。
(Experiment) The batteries C1 to C8 of the present invention, and the battery A of the present invention and the comparative battery X shown in the first embodiment were charged and discharged under the following conditions, and the cycle characteristics of each battery were examined. The results are shown in Table 3. -Charging / discharging condition: Constant current charging was performed at a charging current of 500 mA (1.0 It) until the voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V for 2 hours to reach a fully charged state and left for 5 minutes, then 500 mA.
A condition of discharging to 2.75 V with a discharge current of (1.0 It). The discharge capacity retention rate is the ratio of the discharge capacity after the end of 500 cycles to the discharge capacity of the first cycle.

【0041】[0041]

【表3】 [Table 3]

【0042】上記表3から明らかなように、電解液中に
VCが添加されていない比較電池Xでは、充放電サイク
ルを繰り返すと放電容量が大きく低下していることが認
められたのに対して、電解液中にVCが添加された本発
明電池A及び本発明電池C1〜C8では、充放電サイク
ルを繰り返しても放電容量の低下が抑制されていること
が認められた。特に、0.1質量%以上10質量%以下
のVCを添加した本発明電池A及び本発明電池C2〜C
7では、充放電サイクルを繰り返しても放電容量の低下
が極めて抑制されていることが認められた。
As is apparent from Table 3 above, in Comparative Battery X in which VC was not added to the electrolytic solution, it was found that the discharge capacity was significantly reduced when the charge / discharge cycle was repeated. It was confirmed that in the battery A of the present invention and the batteries C1 to C8 of the present invention in which VC was added to the electrolytic solution, the decrease in discharge capacity was suppressed even after repeating the charge / discharge cycle. In particular, the battery A of the present invention and the batteries C2 to C of the present invention to which 0.1% by mass or more and 10% by mass or less of VC are added.
In No. 7, it was confirmed that the decrease in discharge capacity was extremely suppressed even when the charge / discharge cycle was repeated.

【0043】上記結果となったのは、以下に示す理由に
よるものと考えられる。即ち、VCは負極活物質表面に
皮膜を形成し、電解液と負極活物質との間の反応を抑制
することから、一般にVCを添加するとサイクル特性は
向上する。しかし、上記実験におけるVCの添加の有無
による差は、従来のVCを添加したことによるサイクル
特性の改善に比べ著しく大きくなることがわかった。こ
れは、VCを添加することにより、 PF5 - ラジカル
によるPETの分解反応の発生が抑制されたためである
ものと考えられる。但し、VCの添加量が少ない場合
(VCの添加量が0.05質量%の本発明電池C1の場
合)、電解液中で発生するPF5 - ラジカル全てと反応
するのに十分な量のVC添加されていないため、 PF5
- ラジカルの発生を完全には抑制することができず、
サイクル特性を飛躍的に向上させることができない。一
方、VCの割合が10質量%を越えた場合(VCの添加
量が20質量%の本発明電池C8の場合)、 PF5 -
ラジカルによるPETの劣化は発生しないが、PF5 -
ラジカルとの反応や負極表面での被膜形成に消費されな
かったVCが電解液特性に影響を与え、サイクル特性の
劣化が発生しているものと推測される。
The above results are considered to be due to the following reasons. That is, since VC forms a film on the surface of the negative electrode active material and suppresses the reaction between the electrolytic solution and the negative electrode active material, the addition of VC generally improves the cycle characteristics. However, it was found that the difference between the presence and absence of the addition of VC in the above experiment was significantly larger than the improvement of the cycle characteristics due to the addition of the conventional VC. This is because the addition of VC, PF 5 - occurrence of decomposition reaction of PET by radicals believed because that is inhibited. However, (when the additive amount of VC is 0.05% by weight of the present battery C1) When the amount of VC is low, generated in the electrolytic solution PF 5 - in an amount sufficient to react with all radicals VC Since it is not added, PF 5
- it can not be suppressed completely the generation of radicals,
Cycle characteristics cannot be dramatically improved. On the other hand, (When the amount of VC is 20 weight% of the present battery C8) If the percentage of VC exceeds 10 wt%, PF 5 -
Although deterioration of PET does not occur by a radical, PF 5 -
It is presumed that VC that was not consumed in the reaction with the radicals and the film formation on the surface of the negative electrode affected the electrolytic solution characteristics, and the cycle characteristics were deteriorated.

【0044】(第4実施例) 〔実施例〕セパレータとして、PET製の微多孔膜の表
面にPVdF層(厚み:10μm)を形成したものを用
いた他は、上記第1実施例の実施例と同様にして電池を
作製した。このようにして作製した電池を、以下、本発
明電池Dと称する。
(Fourth Embodiment) [Embodiment] The embodiment of the above-mentioned first embodiment except that a PVdF layer (thickness: 10 μm) formed on the surface of a PET microporous film is used as the separator. A battery was prepared in the same manner as in. The battery thus manufactured is hereinafter referred to as Battery D of the invention.

【0045】〔実験〕上記本発明電池D及び上記第1実
施例の実施例に示した本発明電池Aとを、下記の実験条
件で満充電状態とし高温で保存したときの、残存容量比
を調べたので、その結果を表4に示す。 ・実験条件 各電池を500mA(1.0It)の充電電流で4.2
Vになるまで定電流充電し、その後4.2Vの定電圧で
2時間充電して満充電状態とした。次に、各電池の電池
容量を測定し、再度上記と同様の条件で満充電状態とし
た後、80℃の恒温槽中で4日間保存し、保存後の電池
容量を測定した。尚、残存容量比は、保存前の電池容量
に対する保存後の電池容量の比率を算出することにより
求めた。
[Experiment] The remaining capacity ratio when the battery D of the present invention and the battery A of the present invention shown in the examples of the first embodiment were stored at high temperature in a fully charged state under the following experimental conditions. The results are shown in Table 4. -Experimental conditions 4.2 with a charging current of 500 mA (1.0 It) for each battery.
The battery was charged with a constant current until it reached V, and then charged with a constant voltage of 4.2 V for 2 hours to be in a fully charged state. Next, the battery capacity of each battery was measured, and after fully charged again under the same conditions as above, the battery was stored in an 80 ° C. thermostat for 4 days, and the battery capacity after storage was measured. The remaining capacity ratio was determined by calculating the ratio of the battery capacity after storage to the battery capacity before storage.

【0046】[0046]

【表4】 [Table 4]

【0047】表4から明らかなように、本発明電池Dは
本発明電池Aと比べて高温保存後における残存容量比が
高くなっていることが認められる。これは、以下に示す
理由によるものと考えられる。即ち、VCを添加するこ
とによってLiPF6 に起因するPF5 - ラジカルによ
るPETの分解反応は大きく抑制されるが、特に充電状
態で長時間保存した場合、電解液はより長時間低い電位
にされた状態となるため、僅かずつではあるがPF5 -
ラジカルの発生が進行する。この場合、本発明電池Aの
如く、セパレータの表面にPVdF層が存在しない場合
には、電解液が自由に移動でき、 PF5 - ラジカルの運
動性が高いため、分解反応がある程度進行する。これに
対して、本発明電池Dの如くセパレータ表面にPVdF
層が存在する場合には、PVdFは電解液を保持してゲ
ル化する。このように、PVdFによりゲル化した電解
質中では、電解液の移動やPF5 - ラジカルの運動性が
非常に制限されて、分解反応の進行は最小レベルに抑制
されるという理由によるものと考えられる。
As is apparent from Table 4, the battery D of the present invention
Compared to the battery A of the present invention, the residual capacity ratio after high temperature storage is
It is recognized that it has become higher. This is shown below
This is probably due to the reason. That is, VC should be added.
And by LiPF6 PF caused byFive - By radicals
The decomposition reaction of PET is greatly suppressed.
If stored for a long period of time, the electrolyte will have a lower potential for a longer period of time.
However, the PFFive - 
Radical generation proceeds. In this case, the battery A of the present invention
If the PVdF layer does not exist on the separator surface,
The electrolyte can move freely in theFive - Radical luck
Due to its high mobility, the decomposition reaction proceeds to some extent. to this
On the other hand, as in Battery D of the present invention, PVdF is formed on the separator surface.
If a layer is present, PVdF will retain the electrolyte and
To convert Thus, PVdF gelled electrolysis
In quality, movement of electrolyte and PFFive - Radical motility
Very limited, the progress of the decomposition reaction is suppressed to the minimum level
It is thought to be due to the fact that it is done.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
PF5 - ラジカルがエステル交換による分解反応にお
いて触媒的な役割を担うのを抑制することができるの
で、高温環境下における分解反応を抑え、これによっ
て、高温環境下における電池特性の劣化を防止でき、且
つサイクル特性を向上させることができるといった優れ
た効果を奏する。
As described above, according to the present invention,
PF 5 - since radicals can be inhibited from play a catalytic role in the decomposition reaction by transesterification, suppressing a decomposition reaction in a high temperature environment, thereby, possible to prevent the deterioration of the battery characteristics under high temperature conditions, Further, it has an excellent effect that the cycle characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非水電解質二次電池の正面図。FIG. 1 is a front view of a non-aqueous electrolyte secondary battery according to the present invention.

【図2】図1のA−A線矢視断面図。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】本発明に係る非水電解質二次電池に用いるアル
ミラミネート外装体の断面図。
FIG. 3 is a cross-sectional view of an aluminum laminate exterior body used for the non-aqueous electrolyte secondary battery according to the present invention.

【図4】本発明に係る非水電解質二次電池に用いる発電
要素の斜視図。
FIG. 4 is a perspective view of a power generation element used in the non-aqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1:発電要素 2:収納空間 3:アルミラミネート外装体 5:正極 6:負極 1: Power generation element 2: Storage space 3: Aluminum laminated exterior body 5: Positive electrode 6: Negative electrode

フロントページの続き (72)発明者 生川 訓 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H021 CC04 EE08 EE10 EE23 HH01 HH07 5H029 AJ01 AJ05 AK03 AL07 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ04 DJ09 EJ04 EJ12 HJ01 HJ10 Continued front page    (72) Inventor, Kun Ikukawa             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 5H021 CC04 EE08 EE10 EE23 HH01                       HH07                 5H029 AJ01 AJ05 AK03 AL07 AM02                       AM03 AM04 AM05 AM07 BJ02                       BJ14 DJ04 DJ09 EJ04 EJ12                       HJ01 HJ10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵放出できる正極
と、リチウムイオンを吸蔵放出できる負極とが、溶媒及
び電解質から成る電解液が含浸されたセパレータを介し
て配置された電極体を有する非水電解質二次電池におい
て、 上記セパレータとしてポリエチレンテレフタレートを用
い、上記電解質には負極表面上で還元反応を起こしラジ
カルを生成する化合物を含み、且つ、上記溶媒には上記
ラジカルによる上記ポリエチレンテレフタレートの分解
反応を抑制する化合物が添加されていることを特徴とす
る非水電解質二次電池。
1. A non-aqueous electrolyte having an electrode body in which a positive electrode capable of occluding and releasing lithium ions and a negative electrode capable of occluding and releasing lithium ions are arranged with a separator impregnated with an electrolytic solution composed of a solvent and an electrolyte. In the secondary battery, polyethylene terephthalate is used as the separator, the electrolyte contains a compound that causes a reduction reaction on the surface of the negative electrode to generate a radical, and the solvent suppresses the decomposition reaction of the polyethylene terephthalate by the radical. A non-aqueous electrolyte secondary battery containing a compound.
【請求項2】 上記電解質にはLiPF6が含まれるこ
とを特徴とする請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte contains LiPF 6 .
【請求項3】 上記分解反応を抑制する化合物がビニレ
ンカーボネートであることを特徴とする請求項1又は2
記載の非水電解質二次電池。
3. The compound according to claim 1, wherein the compound suppressing the decomposition reaction is vinylene carbonate.
The non-aqueous electrolyte secondary battery described.
【請求項4】 上記溶媒に対する上記LiPF6の割合
が、0.05モル/リットル以上に規制されることを特
徴とする請求項2又は3記載の非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 2, wherein the ratio of the LiPF 6 to the solvent is regulated to 0.05 mol / liter or more.
【請求項5】 上記溶媒の総量に対する上記ビニレンカ
ーボネートの割合が、0.1質量%以上10質量%以下
に規制されることを特徴とする請求項3又は4記載の非
水電解質二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 3, wherein the ratio of the vinylene carbonate to the total amount of the solvent is regulated to 0.1% by mass or more and 10% by mass or less.
【請求項6】上記ポリエチレンテレフタレートから成る
セパレータの表面には、ポリフッ化ビニリデンが付着さ
れている、請求項1〜5記載の非水電解質二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein polyvinylidene fluoride is attached to the surface of the separator made of polyethylene terephthalate.
JP2001389791A 2001-12-21 2001-12-21 Nonaqueous electrolyte secondary battery Pending JP2003187867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001389791A JP2003187867A (en) 2001-12-21 2001-12-21 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001389791A JP2003187867A (en) 2001-12-21 2001-12-21 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003187867A true JP2003187867A (en) 2003-07-04

Family

ID=27597906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001389791A Pending JP2003187867A (en) 2001-12-21 2001-12-21 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003187867A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319325A (en) * 2003-04-17 2004-11-11 Samsung Sdi Co Ltd Lithium secondary battery and method for manufacturing lithium secondary battery
WO2006123811A1 (en) * 2005-05-17 2006-11-23 Teijin Limited Separator for lithium ion secondary battery and lithium ion secondary battery
JP2008047398A (en) * 2006-08-14 2008-02-28 Sony Corp Nonaqueous electrolyte secondary battery
WO2014046094A1 (en) 2012-09-19 2014-03-27 旭化成株式会社 Separator, manufacturing method thereof, and lithium ion secondary cell
WO2016140311A1 (en) * 2015-03-05 2016-09-09 日本電気株式会社 Separator, manufacturing method for said separator, and lithium ion secondary battery using said separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319325A (en) * 2003-04-17 2004-11-11 Samsung Sdi Co Ltd Lithium secondary battery and method for manufacturing lithium secondary battery
WO2006123811A1 (en) * 2005-05-17 2006-11-23 Teijin Limited Separator for lithium ion secondary battery and lithium ion secondary battery
JPWO2006123811A1 (en) * 2005-05-17 2008-12-25 帝人株式会社 Lithium ion secondary battery separator and lithium ion secondary battery
JP4832430B2 (en) * 2005-05-17 2011-12-07 帝人株式会社 Lithium ion secondary battery separator and lithium ion secondary battery
KR101340357B1 (en) * 2005-05-17 2013-12-13 데이진 가부시키가이샤 Separator for lithium ion secondary battery and lithium ion secondary battery
JP2008047398A (en) * 2006-08-14 2008-02-28 Sony Corp Nonaqueous electrolyte secondary battery
WO2014046094A1 (en) 2012-09-19 2014-03-27 旭化成株式会社 Separator, manufacturing method thereof, and lithium ion secondary cell
US10811658B2 (en) 2012-09-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Separator and method of preparing the same, and lithium ion secondary battery
WO2016140311A1 (en) * 2015-03-05 2016-09-09 日本電気株式会社 Separator, manufacturing method for said separator, and lithium ion secondary battery using said separator

Similar Documents

Publication Publication Date Title
JP5002927B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
JP4453049B2 (en) Manufacturing method of secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
JP2008097879A (en) Lithium ion secondary battery
JP2012190731A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2005209411A (en) Nonaqueous electrolyte secondary battery
CN109119629B (en) Non-aqueous electrolyte secondary battery
JP2013062164A (en) Nonaqueous electrolyte for electrochemical element, and electrochemical element
JP2006318839A (en) Nonaqueous secondary battery
JP2003187867A (en) Nonaqueous electrolyte secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP6081357B2 (en) Nonaqueous electrolyte secondary battery
JP5448175B2 (en) Non-aqueous electrolyte for electrochemical element and electrochemical element
JP6117553B2 (en) Non-aqueous electrolyte secondary battery positive electrode, method for producing the positive electrode, and non-aqueous electrolyte secondary battery using the positive electrode
JP2004158362A (en) Organic electrolyte liquid battery
JPH08162155A (en) Nonaqueous electrolytic battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
CN117293269A (en) negative electrode
JP2003242981A (en) Non-aqueous electrolyte battery and its manufacturing method
JP4270835B2 (en) Non-aqueous electrolyte battery
JP7015450B2 (en) How to recover the capacity of a non-aqueous electrolyte secondary battery
JPH11250932A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417