JP2003185286A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003185286A
JP2003185286A JP2001385764A JP2001385764A JP2003185286A JP 2003185286 A JP2003185286 A JP 2003185286A JP 2001385764 A JP2001385764 A JP 2001385764A JP 2001385764 A JP2001385764 A JP 2001385764A JP 2003185286 A JP2003185286 A JP 2003185286A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
receiver
side heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001385764A
Other languages
Japanese (ja)
Inventor
Tomomi Umeda
知巳 梅田
Susumu Nakayama
進 中山
Kenji Matsumura
賢治 松村
Hiroaki Matsushima
弘章 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001385764A priority Critical patent/JP2003185286A/en
Publication of JP2003185286A publication Critical patent/JP2003185286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve operation efficiency of an air conditioner. <P>SOLUTION: This air conditioner comprises a compressor 1, a heat source side heat exchanger 3, a receiver 4, a main decompression device 5, a use side heat exchanger 6, and an injection circuit guiding refrigerant of the receiver 4 to an intermediate pressure chamber or the suction side of the compressor. This system is so set that in cooling, the refrigerant flows in the order of the heat source side heat exchanger 3, the receiver 4, and the main decompression device 5, while in heating, the refrigerant flows in the order of the main decompression device 5, and receiver 4, and the heat source side heat exchanger 3. The receiver 4 is provided with a flow direction control circuit 11 connected thereto via a refrigerant inflow pipe and refrigerant outflow pipe. The flow direction control circuit 11 is so constituted that the refrigerant flowing from the heat source side heat exchanger 3 to the receiver 4 and the refrigerant flowing from the main decompression device to the receiver 4 are made to flow to the receiver via the refrigerant inflow pipe, while the refrigerant flowing from the receiver to the heat source side heat exchanger 3 and the refrigerant flowing from the receiver to the main decompression device 5 are made to flow from the receiver via the refrigerant outflow pipe. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気圧縮機式のヒ
ートポンプサイクルを有する空気調和機の運転効率向上
に係わり、特に室外機と室内機が分離した空気調和機に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the operating efficiency of an air conditioner having a steam compressor type heat pump cycle, and more particularly to an air conditioner in which an outdoor unit and an indoor unit are separated.

【0002】[0002]

【従来の技術】従来、冷媒としてR410Aを用い、冷
媒回路にインジェクション回路を設け、インジェクショ
ン回路は、凝縮圧力と蒸発圧力との中間圧力にある中間
圧ガス冷媒を圧縮機にインジェクションする方法が知ら
れており、例えば特開平10―132393号公報で
は、室外熱交換器と室内熱交換器の間に減圧装置、レシ
ーバ、減圧装置とを順に設け、さらにレシーバと圧縮機
を結ぶインジェクション回路を設けた冷媒回路が記載さ
れている。
2. Description of the Related Art Conventionally, a method is known in which R410A is used as a refrigerant, an injection circuit is provided in the refrigerant circuit, and the intermediate pressure gas refrigerant at an intermediate pressure between the condensation pressure and the evaporation pressure is injected into the compressor. For example, in Japanese Unexamined Patent Application Publication No. 10-132393, a refrigerant having a pressure reducing device, a receiver, and a pressure reducing device provided in order between an outdoor heat exchanger and an indoor heat exchanger, and an injection circuit connecting the receiver and the compressor are provided. The circuit is described.

【0003】さらに特開平2001−116376号公
報では、先のインジェクション回路を有する冷媒回路の
構成に加え、高温の冷媒と低温の冷媒との熱交換を行う
内部熱交換器を気液分離器(レシーバ)の下流側に配置
した冷媒回路が記載されている。
Further, in Japanese Patent Laid-Open No. 2001-116376, in addition to the structure of the refrigerant circuit having an injection circuit, an internal heat exchanger for exchanging heat between a high temperature refrigerant and a low temperature refrigerant is used as a gas-liquid separator (receiver). ), The refrigerant circuit arranged downstream thereof is described.

【0004】さらにWO99/26028号公報では、
凝縮器と主膨張機構との間に過冷却熱交換器を有する過
冷却回路と、過冷却熱交換器からガス冷媒を圧縮機の中
間圧部分にインジェクションするインジェクション回路
を備える冷凍装置において、過冷却熱交換器の上流で主
流から分岐して過冷却熱交換器に至る過冷却配管に設け
た電動式膨張弁を備え、また冷房時にも暖房時にも凝縮
器、過冷却熱交換器、主膨張機構の順に流す整流回路を
備えた冷凍装置が記載されている。
Further, in WO99 / 26028,
In a refrigeration system equipped with a subcooling circuit having a subcooling heat exchanger between the condenser and the main expansion mechanism, and an injection circuit for injecting gas refrigerant from the subcooling heat exchanger into the intermediate pressure portion of the compressor Equipped with an electric expansion valve installed in the supercooling pipe branching from the mainstream upstream of the heat exchanger to the supercooling heat exchanger, and also for condensers, subcooling heat exchangers, main expansion mechanism both during cooling and during heating. The refrigerating apparatus provided with the rectification circuit which flows in order is described.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術において
は、室内機に減圧装置を有する形態の空気調和機におい
ては、特開平10―132393号公報や特開平200
1−116376号公報に示されているサイクル構成で
は、レシーバ(気液分離器)と室内熱交換器側の減圧装
置との間の接続配管長が長い場合(例えば25m以上)
や、室外機と室内機との間に高低差(特に室外機が下で
室内機が上に取り付けされている場合の冷房運転時)が
ある場合において、接続配管での圧力損失が大きくなる
ので、冷媒を流すために減圧装置出入口の圧力差を必要
量確保するため、インジェクションする冷媒の圧力を最
もサイクル効率の良くなる圧力条件にすることができな
いことが考えられる。
In the above-mentioned prior art, an air conditioner having a depressurizing device in an indoor unit is disclosed in JP-A-10-132393 and JP-A-200392.
In the cycle configuration shown in Japanese Patent Laid-Open No. 1-116376, when the length of the connecting pipe between the receiver (gas-liquid separator) and the decompression device on the indoor heat exchanger side is long (for example, 25 m or more).
Or there is a height difference between the outdoor unit and the indoor unit (especially during cooling operation when the outdoor unit is on the bottom and the indoor unit is on the top), the pressure loss in the connecting pipe increases. It is conceivable that the pressure of the refrigerant to be injected cannot be set to the pressure condition that maximizes the cycle efficiency in order to secure the required amount of pressure difference between the inlet and outlet of the decompression device for flowing the refrigerant.

【0006】またWO99/26028号公報に示す冷
凍装置のインジェクション回路では、過冷却配管に設け
た電動式膨張弁の開度により、液インジェクションとな
る運転状態が発生することが考えられる。液インジェク
ションをすると液圧縮による圧縮機入力の増大や、蒸発
器の出入口でのエンタルピ差が増えないことのため、空
気調和機の効率をあげる点ではガスインジェクションを
した場合に比べ劣る。また多量の液インジェクションが
起こると、圧縮室内では液圧縮が起こり、圧縮負荷が急
激に大きくなり、圧縮機の信頼性を損ねることがある。
Further, in the injection circuit of the refrigeration system disclosed in WO99 / 26028, it is conceivable that an operating state of liquid injection may occur due to the opening degree of the electric expansion valve provided in the supercooling pipe. Since liquid injection does not increase the compressor input due to liquid compression and the enthalpy difference at the inlet and outlet of the evaporator, liquid injection is inferior to gas injection in terms of increasing the efficiency of the air conditioner. Further, when a large amount of liquid injection occurs, liquid compression occurs in the compression chamber, the compression load rapidly increases, and the reliability of the compressor may be impaired.

【0007】またヒートポンプサイクルにおいては、冷
房運転時と暖房運転時との必要冷媒量差、また定格能力
運転時(高負荷運転時)と中間能力運転時(低負荷運転
時)との必要冷媒量差を調整するためにレシーバが必要
である。
Further, in the heat pump cycle, the required refrigerant amount difference between the cooling operation and the heating operation, and the required refrigerant amount between the rated capacity operation (high load operation) and the intermediate capacity operation (low load operation) A receiver is needed to adjust the difference.

【0008】本発明の目的は、空調機の効率向上を図る
にある。
An object of the present invention is to improve the efficiency of an air conditioner.

【0009】[0009]

【課題を解決するための手段】本発明は、液インジェク
ションを回避し、インジェクションを行う場合、常にガ
スインジェクションを行えるようにして上記目的を達成
する。
The present invention achieves the above object by avoiding liquid injection and allowing gas injection at all times when injection is performed.

【0010】すなわち、上記目的を達成する本発明は、
冷媒を圧縮する圧縮機、この圧縮機に接続され外気と冷
媒が熱交換する熱源側熱交換器、この熱源側熱交換器に
流れ方向制御回路を介して冷媒配管で接続され冷媒を一
時貯留するレシーバ、このレシーバに前記流れ方向制御
回路を介して接続され冷媒を減圧する主減圧装置、この
主減圧装置に接続され室内空気と冷媒が熱交換する利用
側熱交換器、及びレシーバの冷媒を圧縮機の中間圧室も
しくは吸入側に導くインジェクション回路を含んでな
り、冷房時は熱源側熱交換器、レシーバ、主減圧装置、
利用側熱交換器の順に冷媒が流れ、暖房時は利用側熱交
換器、主減圧装置、レシーバ、熱源側熱交換器の順に冷
媒が流れるように構成された空気調和機において、前記
流れ方向制御回路は、レシーバに冷媒流入管路と冷媒流
出管路を介して接続され、かつ、前記熱源側熱交換器か
らレシーバに流入する冷媒と利用側熱交換器からレシー
バに流入する冷媒はともに前記冷媒流入管路を経てレシ
ーバに流入させ、前記レシーバから熱源側熱交換器に流
入する冷媒とレシーバから利用側熱交換器に流入する冷
媒はともに前記冷媒流出管路を経てレシーバから流出さ
せるように構成されていることを特徴とする。
That is, the present invention for achieving the above object is as follows:
A compressor for compressing the refrigerant, a heat source side heat exchanger connected to this compressor for exchanging heat between the outside air and the refrigerant, and connected to the heat source side heat exchanger by a refrigerant pipe via a flow direction control circuit to temporarily store the refrigerant. A receiver, a main decompression device connected to the receiver via the flow direction control circuit to decompress the refrigerant, a use-side heat exchanger connected to the main decompression device for heat exchange between indoor air and the refrigerant, and a refrigerant in the receiver compressed It includes an injection circuit leading to the intermediate pressure chamber or the suction side of the machine, and at the time of cooling, the heat source side heat exchanger, receiver, main decompression device,
In the air conditioner configured such that the refrigerant flows in the order of the use side heat exchanger and the refrigerant flows in the order of the use side heat exchanger, the main decompression device, the receiver, and the heat source side heat exchanger during heating, the flow direction control The circuit is connected to the receiver via the refrigerant inflow conduit and the refrigerant outflow conduit, and the refrigerant flowing from the heat source side heat exchanger into the receiver and the refrigerant flowing from the utilization side heat exchanger into the receiver are both the refrigerant. It is configured to flow into the receiver via the inflow conduit, and the refrigerant flowing from the receiver into the heat source side heat exchanger and the refrigerant flowing from the receiver into the utilization side heat exchanger are both discharged from the receiver via the refrigerant outflow conduit. It is characterized by being.

【0011】上記構成により、冷媒流出管路をレシーバ
の底部に開口させ、冷媒流入管路をレシーバの上部に開
口させることにより、レシーバ内の液冷媒が、気液2相
の冷媒の流入により気相の冷媒でかき混ぜられることが
なくなる。したがって、インジェクション回路で飽和液
冷媒のみが取り出され、安定的にガスインジェクション
が可能になり、空調機の効率が向上する。
With the above structure, the refrigerant outflow conduit is opened at the bottom of the receiver, and the refrigerant inflow conduit is opened at the upper part of the receiver, whereby the liquid refrigerant in the receiver is vaporized by the inflow of the gas-liquid two-phase refrigerant. The phase refrigerant is no longer agitated. Therefore, only the saturated liquid refrigerant is taken out by the injection circuit, stable gas injection is possible, and the efficiency of the air conditioner is improved.

【0012】前記流れ方向制御回路は、熱源側熱交換器
に流れ方向制御回路を接続する冷媒配管との間に介装さ
れた、流路の通路抵抗が可変である補助減圧装置を含ん
で構成した。
The flow direction control circuit includes an auxiliary decompression device having variable passage resistance of a flow path, which is interposed between a heat source side heat exchanger and a refrigerant pipe connecting the flow direction control circuit. did.

【0013】この補助減圧装置としては、無段階に開度
を調整できるものとしてもよいし、少なくとも2段階の
固定絞りを有する減圧装置としてもよい。この補助減圧
装置により、冷媒の過冷却度が制御される。
The auxiliary decompression device may be one that can adjust its opening steplessly, or may be a decompression device having at least two stages of fixed throttles. The degree of supercooling of the refrigerant is controlled by this auxiliary pressure reducing device.

【0014】さらに、インジェクション回路を、レシー
バの飽和液冷媒を減圧するインジェクション減圧装置
と、このインジェクション減圧装置下流の冷媒と冷媒流
出管路の冷媒を熱交換させるように配置した中間熱交換
器と、を含んで構成した。このインジェクション減圧装
置により絞り量を制御することで、中間熱交換器による
熱交換(加熱)によるインジェクションする冷媒のガス
化制御が容易になる。
Further, an injection decompression device for decompressing the saturated liquid refrigerant of the receiver, an intermediate heat exchanger arranged so as to exchange heat between the refrigerant downstream of the injection decompression device and the refrigerant in the refrigerant outflow line, It was composed including. By controlling the amount of throttling by this injection pressure reducing device, it becomes easy to control the gasification of the injected refrigerant by heat exchange (heating) by the intermediate heat exchanger.

【0015】また、中間熱交換器出口のインジェクショ
ン回路の冷媒温度Aと中間熱交換器出口の冷媒流出管路
の冷媒温度Bを検出する中間熱交換器出口温度検出装置
を設け、検出した冷媒温度Aと冷媒温度Bが等しくなる
ように、前記インジェクション減圧装置の開度を制御す
る制御手段を設けた。
Further, an intermediate heat exchanger outlet temperature detection device for detecting the refrigerant temperature A of the injection circuit at the outlet of the intermediate heat exchanger and the refrigerant temperature B of the refrigerant outflow line of the outlet of the intermediate heat exchanger is provided, and the detected refrigerant temperature A control means for controlling the opening degree of the injection pressure reducing device is provided so that A and the refrigerant temperature B become equal.

【0016】また低負荷運転時にはガスインジェクショ
ン運転を行わないようにする。
Further, the gas injection operation is not performed during the low load operation.

【0017】インジェクション回路を、インジェクショ
ン位置を、圧縮機の中間圧室と圧縮機吸入側のいずれか
に切り替え可能なように構成してもよい。
The injection circuit may be constructed so that the injection position can be switched to either the intermediate pressure chamber of the compressor or the suction side of the compressor.

【0018】また本発明の空気調和機においては、熱源
側熱交換器を含む室外機と、利用側熱交換器を含む室内
機に分割する構成とし、室内機に主減圧装置を備える構
成とする。
The air conditioner of the present invention is divided into an outdoor unit including a heat source side heat exchanger and an indoor unit including a use side heat exchanger, and the indoor unit is provided with a main pressure reducing device. .

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は、本発明の第1の実施の形態に係る
空気調和機のヒートポンプサイクルを示すシステム構成
図である。図に示す空気調和機は、1台の室外機21に
対し2台の室内機22a、22bがつながっているマル
チの構成で、圧縮機1と、圧縮機1の吐出側に配管10
1を介して第1のポートを接続した四方弁2と、四方弁
2の第2のポートに配管102を介して一端を接続され
た熱源側熱交換器3と、熱源側熱交換器3の他端に冷媒
配管(以下、配管という)103を介して第1の接続口
を接続された流れ方向制御回路11と、流れ方向制御回
路11の第2の接続口に冷媒流入管路である配管104
を介して接続されたレシーバ4と、流れ方向制御回路1
1の第3の接続口に冷媒配管(以下、配管という)11
2を介して一端を接続された阻止弁7と、阻止弁7の他
端に配管113aを介して一端を接続された室内機22
aと、室内機22aの他端に配管114aを介して一端
を接続された阻止弁8と、配管113aに配管113b
を介して一端を接続され他端を配管114bで配管11
4aに接続された室内機22bと、前記阻止弁8の他端
と前記四方弁2の第3のポートを接続する配管115
と、前記四方弁2の第4のポートと圧縮機1の吸込み口
を接続する配管116と、前記レシーバ4と圧縮機1を
接続するインジェクション回路と、レシーバ4の液相部
と流れ方向制御回路11の第4の接続口を後述する中間
熱交換器13を介して接続する冷媒流出配管である配管
106、108と、配管106とレシーバ4の気相部を
接続する配管107と、インジェクション運転の制御を
行う制御系と、を含んで構成されている。
FIG. 1 is a system configuration diagram showing a heat pump cycle of an air conditioner according to a first embodiment of the present invention. The air conditioner shown in the figure has a multi-structure in which two indoor units 22a and 22b are connected to one outdoor unit 21, and the compressor 1 and the pipe 10 on the discharge side of the compressor 1 are connected.
Of the heat source side heat exchanger 3 and the heat source side heat exchanger 3 whose one end is connected to the second port of the four way valve 2 via the pipe 102. A flow direction control circuit 11 having a first connection port connected to the other end via a refrigerant pipe (hereinafter referred to as a pipe) 103, and a pipe which is a refrigerant inflow pipe line at a second connection port of the flow direction control circuit 11. 104
A receiver 4 connected via a flow direction control circuit 1
Refrigerant piping (hereinafter referred to as piping) 11 at the third connection port 1
The blocking valve 7 having one end connected to the blocking valve 7 and the indoor unit 22 having one end connected to the blocking valve 7 via the pipe 113a.
a, a blocking valve 8 having one end connected to the other end of the indoor unit 22a through a pipe 114a, and a pipe 113b connected to the pipe 113a.
One end is connected through and the other end is connected to the pipe 114b.
An indoor unit 22b connected to 4a, a pipe 115 for connecting the other end of the blocking valve 8 and the third port of the four-way valve 2
A pipe 116 connecting the fourth port of the four-way valve 2 to the suction port of the compressor 1, an injection circuit connecting the receiver 4 to the compressor 1, a liquid phase portion of the receiver 4 and a flow direction control circuit. Pipes 106 and 108 that are refrigerant outflow pipes that connect the fourth connection port of 11 via an intermediate heat exchanger 13 to be described later, a pipe 107 that connects the pipe 106 and the gas phase portion of the receiver 4, and an injection operation And a control system for performing control.

【0021】室内機22aは、配管113aに接続され
た主減圧装置5aと、この主減圧装置5aに一端を接続
された利用側熱交換器6aとで構成され、利用側熱交換
器6aの他端が前記配管114aに接続されている。ま
た、室内機22bは、配管113bに接続された主減圧
装置5bと、この主減圧装置5bに一端を接続された利
用側熱交換器6bとで構成され、利用側熱交換器6bの
他端が前記配管114bに接続されている。
The indoor unit 22a comprises a main decompression device 5a connected to the pipe 113a and a use side heat exchanger 6a having one end connected to the main decompression device 5a. The end is connected to the pipe 114a. The indoor unit 22b is composed of a main pressure reducing device 5b connected to the pipe 113b and a use side heat exchanger 6b having one end connected to the main pressure reducing device 5b, and the other end of the use side heat exchanger 6b. Is connected to the pipe 114b.

【0022】流れ方向制御回路11は、レシーバ4の冷
媒流入口が冷房運転時、暖房運転時とも一方向になるよ
うに、レシーバ4の入口に設けられているもので、4つ
の逆止弁9a、9b、9c、9dと、可変絞り補助減圧
装置10として可変絞りの電子膨張弁を用い、ブリッジ
回路を構成している。このブリッジ回路は、環状の管路
に、時計回りに順に逆止弁9a、9b、9c及び9dが
介装され、逆止弁9dと逆止弁9aを結ぶ管路に可変絞
り補助減圧装置10を介して第1の接続口が、逆止弁9
aと逆止弁9bを結ぶ管路に第4の接続口が、逆止弁9
bと逆止弁9cを結ぶ管路に第3の接続口が、逆止弁9
cと逆止弁9dを結ぶ管路に第2の接続口が、それぞれ
設けられている。逆止弁9aは第1の接続口から第4の
接続口へ向かう流れを阻止するように、逆止弁9bは第
3の接続口から第4の接続口へ向かう流れを阻止するよ
うに、逆止弁9cは第2の接続口から第3の接続口へ向
かう流れを阻止するように、そして逆止弁9dは第2の
接続口から第1の接続口へ向かう流れを阻止するよう
に、それぞれ配置されている。
The flow direction control circuit 11 is provided at the inlet of the receiver 4 so that the refrigerant inlet of the receiver 4 is unidirectional during both the cooling operation and the heating operation. The four check valves 9a are provided. , 9b, 9c, 9d, and a variable throttle auxiliary expansion pressure reducing device 10 using a variable throttle electronic expansion valve to form a bridge circuit. In this bridge circuit, check valves 9a, 9b, 9c and 9d are sequentially provided clockwise in an annular pipe line, and a variable throttle auxiliary pressure reducing device 10 is provided in a pipe line connecting the check valve 9d and the check valve 9a. The first connection port via the check valve 9
The fourth connecting port is provided in the pipe line connecting the check valve 9a and the check valve 9b.
b to the check valve 9c, a third connecting port is provided in the check valve 9c.
The second connection port is provided in each of the pipelines connecting the c and the check valve 9d. The check valve 9a blocks the flow from the first connection port toward the fourth connection port, and the check valve 9b blocks the flow from the third connection port toward the fourth connection port. The check valve 9c blocks the flow from the second connection port toward the third connection port, and the check valve 9d blocks the flow from the second connection port toward the first connection port. , Respectively.

【0023】インジェクション回路は、加熱流体流路と
被加熱流体流路を備えた中間熱交換器13と、中間熱交
換器13の被加熱流体流路出側に配管110で入り側を
接続された開閉弁14と、開閉弁14の出側と圧縮機1
の中間圧室を接続する配管111と、中間熱交換器13
の被加熱流体流路入り側に配管109で出側を接続さ
れ、開度が遠隔制御可能なインジェクション減圧装置1
2と、インジェクション減圧装置12の入り側とレシー
バ4の液相部を接続する配管105と、を含んで構成さ
れている。中間熱交換器13は、インジェクション減圧
装置12の下流側の冷媒と、レシーバ4の下流側の冷媒
とを熱交換するためのものである。
The injection circuit has an intermediate heat exchanger 13 having a heating fluid channel and a heated fluid channel, and an inlet side connected to the heating fluid channel outlet side of the intermediate heat exchanger 13 by a pipe 110. On-off valve 14, outlet side of on-off valve 14 and compressor 1
111 for connecting the intermediate pressure chamber of the intermediate heat exchanger 13 and the intermediate heat exchanger 13
Injection decompression device 1 in which the outlet side is connected to the heated fluid flow channel inlet side by a pipe 109 and the opening degree can be remotely controlled
2 and a pipe 105 that connects the inlet side of the injection pressure reducing device 12 and the liquid phase portion of the receiver 4. The intermediate heat exchanger 13 is for exchanging heat between the refrigerant on the downstream side of the injection pressure reducing device 12 and the refrigerant on the downstream side of the receiver 4.

【0024】前記制御系は、圧縮機1に取り付けられ圧
縮機チャンバ上温度を検出し信号線71に出力する圧縮
機チャンバ上温度検出装置61、主減圧装置5aと利用
側熱交換器6aの間の流体温度を検出し信号線73aに
出力する主減圧装置出入口温度検出装置62a、主減圧
装置5bと利用側熱交換器6bの間の流体温度を検出し
信号線73bに出力する主減圧装置出入口温度検出装置
62b、主減圧装置5aの配管113aとの接続部近傍
の流体温度を検出し信号線72aに出力する主減圧装置
出入口温度検出装置63a、主減圧装置5bの配管11
3bとの接続部の流体温度を検出し信号線72bに出力
する主減圧装置出入口温度検出装置63b、配管108
の中間熱交換器13との接続部近傍における流体温度を
検出し信号線74に出力する中間熱交換器出口温度検出
装置64、配管110の中間熱交換器13との接続部に
おける流体温度を検出し信号線75に出力する中間熱交
換器出口温度検出装置65、熱源側熱交換器3近傍に配
置されて外気温度を検出し信号線76に出力する室外温
度検出装置66、利用側熱交換器6a近傍に取付けられ
て室内空気温度を検出し信号線77aに出力する室内温
度検出装置67a、利用側熱交換器6b近傍に取付けら
れて室内空気温度を検出し信号線77bに出力する室内
温度検出装置67b、及び前記各信号線に接続され、前
記各温度検出装置の出力を入力として、前記主減圧装置
5a、5b、可変絞り補助減圧装置10、インジェクシ
ョン減圧装置12、開閉弁14を制御する制御装置60
を含んで構成されている。なお、先の温度検出装置62
a,62b,63a,63b,64,65では、管路内
部の冷媒の温度を検出することが最も望ましいが、代用
として管路壁面温度を検出してもよい。
The control system is installed between the compressor 1 and detects the temperature above the compressor chamber and outputs it to the signal line 71 between the compressor chamber above temperature detector 61, the main decompression device 5a and the heat exchanger 6a on the use side. Main decompression device inlet / outlet for detecting the fluid temperature of and outputting to the signal line 73a Temperature detecting device 62a, Main decompression device inlet / outlet for detecting the fluid temperature between the main decompression device 5b and the use side heat exchanger 6b and outputting to the signal line 73b Main decompression device inlet / outlet temperature detection device 63a for detecting the fluid temperature in the vicinity of the connection between the temperature detection device 62b and the main decompression device 5a pipe 113a and outputting it to the signal line 72a
Main decompression device inlet / outlet temperature detection device 63b, which detects the fluid temperature at the connection with 3b and outputs it to the signal line 72b, and pipe 108
Intermediate heat exchanger outlet temperature detection device 64 for detecting the fluid temperature in the vicinity of the connection portion of the intermediate heat exchanger 13 and outputting it to the signal line 74, and detecting the fluid temperature at the connection portion of the pipe 110 with the intermediate heat exchanger 13. Intermediate heat exchanger outlet temperature detecting device 65 for outputting to the signal line 75, outdoor temperature detecting device 66 arranged near the heat source side heat exchanger 3 for detecting the outside air temperature and outputting to the signal line 76, use side heat exchanger Indoor temperature detection device 67a mounted near 6a to detect the indoor air temperature and output to signal line 77a, indoor temperature detection installed near the use side heat exchanger 6b to detect the indoor air temperature and output to signal line 77b The devices 67b and the main pressure reducing devices 5a, 5b, the variable throttle auxiliary pressure reducing device 10, and the injection pressure reducing device 12, which are connected to the device 67b and each of the signal lines and have the outputs of the respective temperature detecting devices as inputs. Controller 60 for controlling the opening and closing valve 14
It is configured to include. The temperature detection device 62
In a, 62b, 63a, 63b, 64, 65, it is most desirable to detect the temperature of the refrigerant inside the pipeline, but the pipeline wall surface temperature may be detected as a substitute.

【0025】インジェクション回路では、レシーバ4か
ら配管105を経て飽和液冷媒が取り出され、インジェ
クション減圧装置12でインジェクション圧力まで減圧
されてレシーバ4内の冷媒温度よりも低い温度の気液二
相の冷媒となる。この減圧された冷媒は中間熱交換器1
3の被加熱流体流路に導かれ、ここで、レシーバ4から
配管106、107を経て中間熱交換器13の加熱流体
流路に取り込まれた主流の冷媒から吸熱し、気液二相の
冷媒が完全ガス化されて配管110、開閉弁14、配管
111を経て圧縮機1の中間圧室にインジェクションさ
れる。一方、主流の冷媒流れは、レシーバ4につながる
配管106から飽和液冷媒を、配管107から飽和ガス
冷媒をそれぞれ取り出し、気液二相の冷媒状態である
が、中間熱交換器13において放熱して凝縮し、さらに
冷却され、過冷却状態の液冷媒となり、利用側熱交換器
6a、6bへと流れていく。
In the injection circuit, the saturated liquid refrigerant is taken out from the receiver 4 through the pipe 105, depressurized to the injection pressure by the injection decompression device 12, and the two-phase gas-liquid refrigerant having a temperature lower than the refrigerant temperature in the receiver 4 is discharged. Become. This depressurized refrigerant is the intermediate heat exchanger 1
3 is introduced into the heated fluid flow path of the heat exchanger 3, where heat is absorbed from the mainstream refrigerant taken from the receiver 4 into the heating fluid flow path of the intermediate heat exchanger 13 via the pipes 106 and 107 to form a gas-liquid two-phase refrigerant. Is completely gasified and is injected into the intermediate pressure chamber of the compressor 1 through the pipe 110, the on-off valve 14, and the pipe 111. On the other hand, the mainstream refrigerant flow takes out saturated liquid refrigerant from the pipe 106 connected to the receiver 4 and saturated gas refrigerant from the pipe 107, respectively, and is in a gas-liquid two-phase refrigerant state, but radiates heat in the intermediate heat exchanger 13. It is condensed, further cooled, becomes a supercooled liquid refrigerant, and flows to the use side heat exchangers 6a and 6b.

【0026】ヒートポンプサイクルにおいては、冷房運
転時と暖房運転時との必要冷媒量差、また定格能力運転
時(高負荷運転時)と中間能力運転時(低負荷運転時)
との必要冷媒量差を調整するためにレシーバが必要であ
る。本実施の形態では、レシーバを利用してインジェク
ションに使用する飽和液冷媒を取り出し、必要インジェ
クション流量を確保する。
In the heat pump cycle, the required refrigerant amount difference between the cooling operation and the heating operation, the rated capacity operation (high load operation) and the intermediate capacity operation (low load operation)
A receiver is required to adjust the required refrigerant amount difference between the receiver and the receiver. In the present embodiment, the receiver is used to take out the saturated liquid refrigerant to be used for injection to secure the required injection flow rate.

【0027】以下、説明を簡単にするために、室外機2
1に室内機22aが結合されているとして記述する。
In order to simplify the explanation, the outdoor unit 2 will be described below.
It is assumed that the indoor unit 22a is connected to unit 1.

【0028】図1は、冷房運転時の冷媒の流れを示して
いる。冷房運転時、前記四方弁2は、第1のポートと第
2のポートが連通し、第3のポートと第4のポートが連
通する位置に操作される。冷房運転時、圧縮機1で高温
高圧のガスとなった冷媒は、四方弁2により流れ方向を
制御され、熱源側熱交換器3に向かう。熱源側熱交換器
3では、送風される空気(外気)に放熱し(送風系は図
示省略)、冷媒は凝縮し気液二相、飽和液もしくは過冷
却液冷媒のいづれかの状態となる。状態の決定は、流れ
方向制御回路11中の可変絞り補助減圧装置10の絞り
量により制御される。
FIG. 1 shows the flow of the refrigerant during the cooling operation. During the cooling operation, the four-way valve 2 is operated to a position where the first port and the second port communicate with each other and the third port and the fourth port communicate with each other. During the cooling operation, the refrigerant that has become a high-temperature and high-pressure gas in the compressor 1 is controlled in its flow direction by the four-way valve 2 and goes to the heat source side heat exchanger 3. In the heat-source-side heat exchanger 3, the heat is radiated to the air (outside air) to be blown (the blower system is not shown), and the refrigerant is condensed to be in a gas-liquid two-phase, saturated liquid, or supercooled liquid refrigerant state. The determination of the state is controlled by the throttle amount of the variable throttle auxiliary pressure reducing device 10 in the flow direction control circuit 11.

【0029】熱源側熱交換器3を通過した冷媒は流れ方
向制御回路11の第1の接続口を経て可変絞り補助減圧
装置10に流入し、減圧されて気液二相の状態となって
逆止弁9dを経てレシーバ4に流入する。ここで先に説
明したように、配管106と配管107により飽和液冷
媒と飽和ガス冷媒が取り出され、両者が合流したのち中
間熱交換器13の加熱流体流路に流入する。中間熱交換
器13の加熱流体流路を通過した冷媒はその後、配管1
08を経て流れ方向制御回路11の第4の接続口に流入
し、逆止弁9b、阻止弁7を経て主減圧装置5aに流入
する。主減圧装置5aで減圧されて室内空気よりも低い
温度の気液二相冷媒となり、利用側熱交換器6aに流入
する。
The refrigerant passing through the heat source side heat exchanger 3 flows into the variable throttle auxiliary pressure reducing device 10 through the first connection port of the flow direction control circuit 11 and is reduced in pressure to be in a gas-liquid two-phase state. It flows into the receiver 4 through the stop valve 9d. Here, as described above, the saturated liquid refrigerant and the saturated gas refrigerant are taken out through the pipes 106 and 107, merged together, and then flow into the heating fluid passage of the intermediate heat exchanger 13. The refrigerant that has passed through the heating fluid flow path of the intermediate heat exchanger 13 is then pipe 1
Then, the gas flows into the fourth connection port of the flow direction control circuit 11 via 08, and flows into the main pressure reducing device 5a via the check valve 9b and the blocking valve 7. It is decompressed by the main decompression device 5a to become a gas-liquid two-phase refrigerant having a temperature lower than that of room air, and flows into the utilization side heat exchanger 6a.

【0030】利用側熱交換器6aに流入した気液二相冷
媒は、ここで送風される室内空気から吸熱し(送風系は
図示省略)てガス冷媒となり、配管114a、阻止弁
8、配管115、四方弁2、配管116を経て圧縮機1
に戻る。
The gas-liquid two-phase refrigerant flowing into the utilization side heat exchanger 6a absorbs heat from the indoor air blown here (a ventilation system is not shown) to become a gas refrigerant, and the pipe 114a, the stop valve 8 and the pipe 115 are provided. , The four-way valve 2, the pipe 116, and the compressor 1
Return to.

【0031】暖房運転時は、四方弁2を切り替えること
で冷媒を逆に流す。詳細は図2を参照して後述する。
During heating operation, the four-way valve 2 is switched to allow the refrigerant to flow in reverse. Details will be described later with reference to FIG.

【0032】インジェクション流は先に述べたような方
向で流れ、これは冷房運転時、暖房運転時とも同じであ
る。本実施の形態では、可変絞り補助減圧装置10とし
て絞りが可変である電子膨張弁を用いた。また中間熱交
換器13には、プレート式熱交換器を使用して省スペー
スを図った。
The injection flow flows in the direction as described above, which is the same during the cooling operation and the heating operation. In the present embodiment, the variable expansion auxiliary pressure reducing device 10 uses an electronic expansion valve having a variable restriction. A plate heat exchanger is used as the intermediate heat exchanger 13 to save space.

【0033】インジェクションの有無は、開閉弁14の
開閉で切り替えるが、インジェクション減圧装置12が
全密閉できるものならば、開閉弁14を省略できる。イ
ンジェクションしない場合の圧縮機の圧縮損失を低減す
るために、開閉弁14は圧縮室に近いところに設けるこ
とがよい。従って、開閉弁14を設ける場合の方が、イ
ンジェクション減圧装置12で代用する場合よりも損失
は少ない。本実施の形態では、開閉弁14に電磁弁を使
用した。開閉弁14には、この他に、圧縮機の圧縮室か
らの冷媒の逆流を防ぐ目的もある。
The presence or absence of injection is switched by opening and closing the on-off valve 14, but the on-off valve 14 can be omitted if the injection decompression device 12 can be completely sealed. In order to reduce the compression loss of the compressor when injection is not performed, the opening / closing valve 14 may be provided near the compression chamber. Therefore, the loss when the on-off valve 14 is provided is smaller than when the injection pressure reducing device 12 is substituted. In this embodiment, a solenoid valve is used as the opening / closing valve 14. The on-off valve 14 also has a purpose of preventing backflow of the refrigerant from the compression chamber of the compressor.

【0034】また主としてインジェクションを使用しな
い場合においても、開閉弁14の代わりに、インジェク
ション減圧装置12を若干開くことで微量ながら常に冷
媒による圧力をかけ、圧縮時の逆流を防止する方法もあ
る。
Also, in the case where the injection is not mainly used, there is also a method in which the injection decompression device 12 is slightly opened instead of the on-off valve 14 so that a small amount of pressure is constantly applied by the refrigerant to prevent a backflow at the time of compression.

【0035】ここでガスインジェクション時のサイクル
運転状態を図4に示すモリエル線図を用いて説明する。
図中のP1は圧縮機1の吸入である。冷媒質量流量G3
で圧縮機1に吸入された冷媒は、P1からP2まで圧縮
される。ここでP10の状態のガス冷媒が冷媒質量流量
G2で圧縮過程にインジェクションされることで、P2
のガス冷媒と混合され冷媒質量流量G1(=G2+G
3)で圧縮室内ではP3の状態となる。その後も冷媒は
圧縮され、P3からP4の状態になって、圧縮機1から
吐出される。圧縮機1から吐出された冷媒は熱源側熱交
換器3で放熱し、P4からP5の状態になる。熱源側熱
交換器3で放熱しP5の状態になった冷媒は、流れ方向
制御回路11中の可変絞り補助減圧装置10によりさら
に減圧され、P5からP6の状態に至る。レシーバ4内
に存在する冷媒はP6の状態である。
Here, the cycle operation state at the time of gas injection will be described with reference to the Mollier diagram shown in FIG.
P1 in the figure is the suction of the compressor 1. Refrigerant mass flow rate G3
The refrigerant sucked into the compressor 1 is compressed from P1 to P2. Here, since the gas refrigerant in the state of P10 is injected into the compression process at the refrigerant mass flow rate G2, P2
Mass flow rate G1 (= G2 + G)
In 3), the state becomes P3 in the compression chamber. After that, the refrigerant is compressed, enters the state of P3 to P4, and is discharged from the compressor 1. The refrigerant discharged from the compressor 1 dissipates heat in the heat source side heat exchanger 3, and enters a state of P4 to P5. The refrigerant that has radiated heat in the heat source side heat exchanger 3 and is in the P5 state is further depressurized by the variable throttle auxiliary depressurizing device 10 in the flow direction control circuit 11, and reaches the P5 to P6 state. The refrigerant present in the receiver 4 is in the P6 state.

【0036】インジェクション回路では、レシーバ4か
ら飽和液冷媒が取り出され、インジェクション減圧装置
12でP6からP9の状態に減圧され、中間熱交換器1
3で主流の冷媒(室内機に向かう冷媒の流れ)と熱交換
する。インジェクション回路の冷媒は中間熱交換器13
で主流の冷媒に加熱されてP9(気液二相)からP10
の状態(飽和ガス)となり、この状態で中間圧室にイン
ジェクションされる。一方主流の冷媒は中間熱交換器1
3での放熱によりP6からP7の状態となり、主減圧装
置5aにより減圧されてP7からP8の状態へ変化す
る。減圧されてP8の状態へ変化した冷媒は、次いで利
用側熱交換器6aで吸熱し、P8からP1の状態になっ
て再度圧縮機1に吸入される。
In the injection circuit, the saturated liquid refrigerant is taken out from the receiver 4 and is depressurized by the injection depressurizing device 12 from P6 to P9.
In 3, heat exchange is performed with the mainstream refrigerant (flow of refrigerant toward the indoor unit). The refrigerant in the injection circuit is the intermediate heat exchanger 13
Is heated by the mainstream refrigerant at P9 (gas-liquid two-phase) to P10
State (saturated gas), and in this state the fuel is injected into the intermediate pressure chamber. On the other hand, the mainstream refrigerant is the intermediate heat exchanger 1.
Due to heat radiation at 3, the state changes from P6 to P7, and the pressure is reduced by the main pressure reducing device 5a to change from P7 to P8. The refrigerant that has been decompressed and changed to the state of P8 then absorbs heat in the use side heat exchanger 6a, becomes the state of P8 to P1, and is sucked into the compressor 1 again.

【0037】図1に示す実施の形態では、インジェクシ
ョン運転の制御および負荷に応じた運転制御を行うため
に、次に示す7箇所の温度検出装置を設けている。圧縮
機1のチャンバ上温度を検出する温度検出装置61、中
間熱交換器13の主流側の出口の冷媒の温度(配管管壁
温度)を検出する温度検出装置64、中間熱交換器13
のインジェクション回路側の出口の冷媒の温度(配管管
壁温度)を検出する温度検出装置65、主減圧装置の出
入口の冷媒温度(配管管壁温度)を検出する温度検出装
置62a(冷房運転時に使用)、63a(暖房運転時に
使用)、外気温度を検出する温度検出装置66、室内空
気温度を検出する温度検出装置67aである。温度検出
装置としてはサーミスタを用いることができる。圧縮機
チャンバ上温度は凝縮圧力に対応させ、また主減圧装置
出口温度は蒸発圧力に対応できる。
In the embodiment shown in FIG. 1, the following seven temperature detecting devices are provided in order to control the injection operation and the operation control according to the load. Temperature detection device 61 for detecting the temperature above the chamber of the compressor 1, temperature detection device 64 for detecting the temperature of the refrigerant (pipe pipe wall temperature) at the outlet on the mainstream side of the intermediate heat exchanger 13, intermediate heat exchanger 13
Detection device 65 for detecting the temperature of the refrigerant at the outlet of the injection circuit side (pipe pipe wall temperature), and a temperature detection device 62a for detecting the refrigerant temperature at the inlet / outlet of the main decompression device (pipe pipe wall temperature) (used during cooling operation) ), 63a (used during heating operation), a temperature detection device 66 that detects the outside air temperature, and a temperature detection device 67a that detects the indoor air temperature. A thermistor can be used as the temperature detecting device. The temperature above the compressor chamber can correspond to the condensing pressure, and the main decompressor outlet temperature can correspond to the evaporating pressure.

【0038】この凝縮圧力Aと蒸発圧力Bとの圧力比A
/Bが大きいとき、例えばA/B>3〜4のときはガス
インジェクション運転をし、圧力比が小さい時、例えば
A/B<3〜4のときはガスインジェクション運転をし
ない。また、この凝縮圧力、蒸発圧力に応じ、必要な過
冷却度を可変絞り補助減圧装置10で制御する。圧力比
が小さい、即ち負荷の小さい場合は、過冷却度が大きく
なるように、可変絞り補助減圧装置10の絞りを制御す
る(図5に示すモリエル線図において、P14〜P17
の区間)。
The pressure ratio A between the condensation pressure A and the evaporation pressure B
When / B is large, for example, A / B> 3 to 4, gas injection operation is performed, and when the pressure ratio is small, for example, A / B <3 to 4, gas injection operation is not performed. Further, the necessary degree of supercooling is controlled by the variable throttle auxiliary depressurizing device 10 according to the condensing pressure and the evaporating pressure. When the pressure ratio is small, that is, the load is small, the throttle of the variable throttle auxiliary pressure reducing device 10 is controlled so that the degree of supercooling becomes large (in the Mollier diagram shown in FIG. 5, P14 to P17).
Section).

【0039】なお、図5のP11は圧縮機入口(利用側
熱交換器出口)の冷媒状態、P12は圧縮機出口(熱源
側熱交換器入口)の冷媒状態、P14は熱源側熱交換器
出口(可変絞り補助減圧装置入口)の冷媒状態、P15
は利用側熱交換器入口(主減圧装置出口)の冷媒状態、
をそれぞれ示している。インジェクションを行わない場
合、中間熱交換器13での主流冷媒の放熱がないので、
可変絞り補助減圧装置10による減圧と主減圧装置5a
による減圧が、P14からP15への変化で示されてい
る。
In FIG. 5, P11 is the refrigerant state at the compressor inlet (use side heat exchanger outlet), P12 is the refrigerant state at the compressor outlet (heat source side heat exchanger inlet), and P14 is the heat source side heat exchanger outlet. Refrigerant condition of (variable throttle auxiliary decompressor inlet), P15
Is the refrigerant state at the inlet of the heat exchanger on the use side (outlet of the main pressure reducing device),
Are shown respectively. When injection is not performed, there is no heat dissipation of the mainstream refrigerant in the intermediate heat exchanger 13, so
Decompression by the variable throttle auxiliary decompression device 10 and main decompression device 5a
The depressurization by P14 is shown by the change from P14 to P15.

【0040】これらの運転制御には、各々検出される温
度と各減圧装置の絞り量との対応テーブルを制御装置6
0内に用意しておくことで、制御を簡易にできる。また
ガスインジェクション量の制御には、中間熱交換器13
出口の検出温度を用いる。先に図4で示したように、中
間熱交換器13での熱交換は、P9からP10(インジ
ェクション回路すなわち被加熱流体側)とP6からP7
(主流すなわち加熱流体側)で示される。従って、熱交
換の限界は、P10とP7での温度が一致する場合であ
る。そこで、P10、P7での温度である中間熱交換器
13の配管110側出口温度と配管108側出口温度が
一致するようにインジェクション減圧装置12の絞り量
を制御する。このように制御することで、液インジェク
ション運転を回避でき、最適なガスインジェクションが
可能になる。
For these operation controls, the control device 6 is provided with a correspondence table of the detected temperatures and the throttle amounts of the pressure reducing devices.
By preparing within 0, control can be simplified. In addition, the intermediate heat exchanger 13 is used to control the gas injection amount.
The detected temperature at the outlet is used. As shown in FIG. 4, the heat exchange in the intermediate heat exchanger 13 is performed in P9 to P10 (injection circuit, that is, the heated fluid side) and P6 to P7.
(Mainstream or heated fluid side). Therefore, the limit of heat exchange is when the temperatures at P10 and P7 match. Therefore, the throttle amount of the injection pressure reducing device 12 is controlled so that the outlet temperature on the pipe 110 side of the intermediate heat exchanger 13, which is the temperature at P10 and P7, matches the outlet temperature on the pipe 108 side. By controlling in this way, the liquid injection operation can be avoided and optimal gas injection becomes possible.

【0041】なお、ガスインジェクションは、インジェ
クション減圧装置12の出口圧力と圧縮機1の中間圧室
の圧力との圧力差で行われるため、図4に示すモリエル
線図上のように、瞬時にインジェクションは行えず、時
間経過を伴って徐々にインジェクションされていく。
Since the gas injection is performed by the pressure difference between the outlet pressure of the injection pressure reducing device 12 and the pressure of the intermediate pressure chamber of the compressor 1, the injection is instantaneously performed as shown in the Mollier diagram shown in FIG. Cannot be performed and is gradually injected over time.

【0042】ガスインジェクション運転をすることで、
冷房運転時では、利用側熱交換器6aの出入口のエンタ
ルピ差が大きくなるので、必要な冷房能力を得るための
冷媒質量流量を少なくでき、その分、例えばインバータ
駆動の圧縮機では圧縮機の運転周波数を下げることがで
き、圧縮機の電気入力を下げることができる。さらに、
蒸発器となる利用側熱交換器6aを流れる冷媒質量流量
が少なくなるので、配管、伝熱管内の圧力損失が低減さ
れる効果もある。
By performing the gas injection operation,
During the cooling operation, the enthalpy difference between the inlet and outlet of the utilization side heat exchanger 6a becomes large, so that the refrigerant mass flow rate for obtaining the required cooling capacity can be reduced. The frequency can be reduced and the compressor electrical input can be reduced. further,
Since the mass flow rate of the refrigerant flowing through the use side heat exchanger 6a serving as the evaporator is reduced, there is also an effect of reducing the pressure loss in the pipe and the heat transfer pipe.

【0043】一方、暖房運転では、利用側熱交換器6a
を流れる冷媒質量流量が増すため、ガスインジェクショ
ンをしない場合よりも暖房能力が増す。そのため、同一
暖房能力とするには、冷媒質量流量を少なくするために
圧縮機の運転周波数を下げることができ、圧縮機の電気
入力を低減することができる。また冷暖房運転時とも、
圧縮室で低い温度の冷媒と高い温度の冷媒が混合するこ
とにより圧縮過程途中で冷媒温度が下がるため、圧縮機
1での吸入から吐出までの圧縮過程のエンタルピ差が小
さくなり、圧縮機の仕事が減り、電気入力が低減する。
On the other hand, in the heating operation, the use side heat exchanger 6a
Since the mass flow rate of the refrigerant flowing through is increased, the heating capacity is increased as compared with the case without gas injection. Therefore, in order to achieve the same heating capacity, the operating frequency of the compressor can be lowered to reduce the refrigerant mass flow rate, and the electric input of the compressor can be reduced. Also, during air-conditioning operation,
Since the refrigerant temperature is lowered during the compression process due to the mixture of the low temperature refrigerant and the high temperature refrigerant in the compression chamber, the enthalpy difference in the compression process from suction to discharge in the compressor 1 is reduced, and the work of the compressor is reduced. And electrical input is reduced.

【0044】JISに規定された中間能力運転(低負荷
運転)時では、定格能力の約半分の能力しか必要とせ
ず、そのため例えばインバータ駆動の圧縮機では圧縮機
運転周波数を定格運転時の半分以下にする必要があり、
この上、ガスインジェクション運転をすると圧縮機の運
転周波数をさらに下げることになり、モータとのバラン
スで圧縮機のトルクが不足したり、差圧給油の場合、軸
受けに給油されないといった状態も考えられる。そこ
で、運転状態に応じ、ガスインジェクションをOFFに
し、その代り過冷却度をとる方法で圧縮機の信頼性を確
保する運転方法へ切り替える事も必要である。
In the intermediate capacity operation (low load operation) specified in JIS, only about half of the rated capacity is required. Therefore, for example, in an inverter driven compressor, the compressor operating frequency is less than half of the rated operation. Should be
In addition, if the gas injection operation is performed, the operating frequency of the compressor will be further lowered, and the torque of the compressor will be insufficient due to the balance with the motor, and in the case of differential pressure oil supply, the bearing may not be supplied with oil. Therefore, it is also necessary to switch off the gas injection according to the operating state, and instead switch to the operating method that ensures the reliability of the compressor by the method of supercooling.

【0045】図2に本発明の第2の実施の形態を示す。
ここでは図1で示した第1の実施の形態との相違点のみ
述べる。本実施の形態が前記第1の実施の形態と相違す
る点は、流れ方向制御回路11内の可変絞り補助減圧装
置10に代えて、2種類の固定絞りを有する電磁弁15
を固定絞り補助減圧装置として使用した点である。
FIG. 2 shows a second embodiment of the present invention.
Only differences from the first embodiment shown in FIG. 1 will be described here. This embodiment is different from the first embodiment in that the variable throttle auxiliary pressure reducing device 10 in the flow direction control circuit 11 is replaced by a solenoid valve 15 having two types of fixed throttles.
Is used as a fixed aperture auxiliary decompression device.

【0046】電磁弁15の固定絞り量は、定格能力運転
時(高負荷運転時)と中間能力運転時(低負荷運転時)
に各々応じた固定絞りとしている。固定の絞りの切り換
えには、電磁弁15内に設けた2つの絞りを電磁弁のO
N/OFFで制御する。2つの固定絞りを有する電磁弁
15の例を図3に示す。
The fixed throttle amount of the solenoid valve 15 is set to the rated capacity operation (high load operation) and the intermediate capacity operation (low load operation).
It has a fixed aperture corresponding to each. In order to switch the fixed throttle, the two throttles provided in the solenoid valve 15 are
Control with N / OFF. An example of the solenoid valve 15 having two fixed throttles is shown in FIG.

【0047】図3は図2における補助減圧装置である電
磁弁15を示す縦断面図である。便宜上、図の上方を電
磁弁15の上方として説明する。電磁弁15は、弁室5
3を備えた弁箱48と、弁箱48の下部に軸線方向に形
成された開口である絞り54と、絞り54の上端部に形
成された弁座50と、弁座50に形成された切り込み溝
49と、弁箱48の上部に形成された円筒部48Aと、
円筒部48Aの下部に内径を縮小して形成された段差の
上に前記弁座50と同心に装着されたストッパ47と、
円筒部48Aの上部に内装された電磁ガイド42と、電
磁ガイド42の下部に上部を上下動可能に嵌合させ、下
面に弁棒45を結合した底付円筒状のプランジャ43
と、電磁ガイド42の可面の前記プランジャ43の上端
部が当接する位置に装着された環状の緩衝材44と、前
記円筒部48Aの外周に装着された電磁コイル41と、
ストッパ47とプランジャ43の下面の間に介装され、
プランジャ43を上方に付勢するバネ46と、を含んで
構成されている。
FIG. 3 is a longitudinal sectional view showing the solenoid valve 15 which is the auxiliary pressure reducing device in FIG. For convenience, the upper side of the drawing will be described as the upper side of the solenoid valve 15. The solenoid valve 15 has a valve chamber 5
3, a valve box 48 provided with 3, a throttle 54 that is an opening formed in the lower portion of the valve box 48 in the axial direction, a valve seat 50 formed at the upper end of the throttle 54, and a notch formed in the valve seat 50. A groove 49 and a cylindrical portion 48A formed on the valve box 48,
A stopper 47 mounted concentrically with the valve seat 50 on a step formed by reducing the inner diameter at the lower part of the cylindrical portion 48A,
An electromagnetic guide 42 installed in the upper portion of the cylindrical portion 48A, and a bottomed cylindrical plunger 43 in which the upper portion is vertically movably fitted to the lower portion of the electromagnetic guide 42 and the valve rod 45 is coupled to the lower surface.
An annular cushioning member 44 mounted at a position where the upper surface of the plunger 43 on the surface of the electromagnetic guide 42 abuts, and an electromagnetic coil 41 mounted on the outer periphery of the cylindrical portion 48A,
Is interposed between the stopper 47 and the lower surface of the plunger 43,
And a spring 46 for urging the plunger 43 upward.

【0048】電磁弁15、すなわち弁室53へ冷媒を送
り込む冷媒配管55が横方向に接続され、電磁弁15か
ら冷媒を送り出す冷媒配管56が電磁弁の下部に接続さ
れている。
The solenoid valve 15, that is, the refrigerant pipe 55 for sending the refrigerant to the valve chamber 53 is laterally connected, and the refrigerant pipe 56 for sending the refrigerant from the solenoid valve 15 is connected to the lower part of the solenoid valve.

【0049】ストッパ47は中央を上下方向に貫通する
開口を備え、前記弁棒45はこの開口に挿通されてい
る。弁棒45の下端には前記弁座50に当接する弁体が
形成されている。
The stopper 47 has an opening vertically passing through the center thereof, and the valve rod 45 is inserted into this opening. At the lower end of the valve rod 45, a valve body that contacts the valve seat 50 is formed.

【0050】弁室53、絞り54の境界では、弁室53
側に突出した擂鉢状の弁座50(図3中の破線部分)が
形成されており、絞り54は、この弁座50の部分の弁
室53との境界(絞り54の最大径部分)を弁口51と
し、下部の冷媒配管56との接続部を開放口52として
いる。
At the boundary between the valve chamber 53 and the throttle 54, the valve chamber 53
A mortar-shaped valve seat 50 (broken line portion in FIG. 3) protruding to the side is formed, and the throttle 54 defines the boundary of the valve seat 50 portion with the valve chamber 53 (the maximum diameter portion of the throttle 54). The valve port 51 is used, and the connection portion with the lower refrigerant pipe 56 is used as the opening port 52.

【0051】弁棒45の下端部の弁体は、弁座50の弁
口51の径よりも若干大きい外径を有する筒状をなして
おり、また弁座50には、少なくとも1つの半径方向の
切り込み溝49が設けられている。
The valve element at the lower end of the valve rod 45 has a cylindrical shape having an outer diameter slightly larger than the diameter of the valve opening 51 of the valve seat 50, and the valve seat 50 has at least one radial direction. Is provided with a notch groove 49.

【0052】上記構成の電磁弁15においては、弁室5
3が冷媒の高圧側となり、絞り54が冷媒の低圧側とな
る。プランジャ43は、上下方向に移動可能になってい
るが、その上方向移動はプランジャ43の上端部が緩衝
材44に当接する位置が上限となり、下方向移動は弁棒
45の下端に形成された弁体が弁座50に当接する位置
が下限となる。
In the solenoid valve 15 having the above structure, the valve chamber 5
3 is the high pressure side of the refrigerant, and the throttle 54 is the low pressure side of the refrigerant. The plunger 43 is movable in the vertical direction. The upper limit of the upward movement is the position where the upper end of the plunger 43 contacts the cushioning member 44, and the lower movement is the lower end of the valve rod 45. The lower limit is the position where the valve body abuts the valve seat 50.

【0053】電磁コイル41に通電されると、電磁ガイ
ド42とプランジャ43との間に電磁力が発生し、この
電磁力がバネ46の付勢力に打ち克ってプランジャ43
と弁棒45が下方に移動し、弁体が弁座50に当接す
る。この時、弁体と弁座50の切り込み溝49に囲まれ
た領域が冷媒絞り通路57となり、弁室53と絞り54
とが連通される。
When the electromagnetic coil 41 is energized, an electromagnetic force is generated between the electromagnetic guide 42 and the plunger 43. This electromagnetic force overcomes the urging force of the spring 46 and the plunger 43.
Then, the valve rod 45 moves downward, and the valve element abuts the valve seat 50. At this time, the region surrounded by the valve body and the cut groove 49 of the valve seat 50 serves as the refrigerant throttle passage 57, and the valve chamber 53 and the throttle 54.
And are communicated.

【0054】電磁コイル41への通電を停止すると、プ
ランジャ43と弁棒45に加わる電磁力がなくなるた
め、弁棒45はバネ46の付勢力によって持ち上げら
れ、弁棒45が弁座50と離れるとともに、プランジャ
43の上端が前記緩衝材44に当接する位置で停止す
る。これにより、弁口51が開き、弁室53、絞り54
が弁口51によって連通され、冷媒の通路は、冷媒絞り
通路57よりも大きくなり、絞り54の径D1で決まる
大きさとなる。
When the energization of the electromagnetic coil 41 is stopped, the electromagnetic force applied to the plunger 43 and the valve rod 45 disappears. Therefore, the valve rod 45 is lifted by the urging force of the spring 46, and the valve rod 45 separates from the valve seat 50. , The upper end of the plunger 43 stops at the position where it abuts on the cushioning member 44. As a result, the valve opening 51 is opened, and the valve chamber 53 and the throttle 54 are
Are communicated with each other by the valve port 51, the refrigerant passage is larger than the refrigerant throttle passage 57, and has a size determined by the diameter D1 of the throttle 54.

【0055】このように、補助減圧装置としての電磁弁
15は、少なくとも絞り54の内径D1が冷媒配管56
の内径D2よりも小さく、また絞り54の内径D1が冷
媒配管55の内径D3よりも小さければ、弁棒45の全
開時では、絞り54を補助絞りとして、弁棒45の全閉
時では、冷媒絞り通路57を補助絞りとして使用するこ
とで、2種類の固定絞りを有することが可能となる。主
として、絞り54を冷媒質量流量の大きな定格運転時
(高負荷運転時)用に絞り量を設定し、冷媒絞り通路5
7を冷媒質量流量の小さな定格運転時(低負荷運転時)
用に絞り量を設定することが妥当である。
As described above, in the solenoid valve 15 as the auxiliary pressure reducing device, at least the inner diameter D1 of the throttle 54 is the refrigerant pipe 56.
If the inner diameter D1 of the throttle 54 is smaller than the inner diameter D3 of the refrigerant pipe 55, the throttle 54 serves as an auxiliary throttle when the valve rod 45 is fully opened, and the refrigerant is closed when the valve rod 45 is fully closed. By using the throttle passage 57 as an auxiliary throttle, it is possible to have two types of fixed throttles. Mainly, the throttle 54 is set to have a throttle amount for a rated operation (high-load operation) in which the refrigerant mass flow rate is large.
7 during rated operation with low refrigerant mass flow rate (during low load operation)
It is appropriate to set the aperture amount for

【0056】図2に第2の実施の形態における暖房運転
時の冷媒の流れを示す。暖房運転時には、前記四方弁2
は、第1のポートと第3のポートが連通し、第2のポー
トと第4のポートが連通する位置に操作される。暖房運
転時の冷媒は、まず、圧縮機1で高温高圧のガスとな
り、四方弁2、配管115、阻止弁8を経て利用側熱交
換器6aに向かう。利用側熱交換器6aに流入した冷媒
は、送風される室内空気に放熱し(送風系は図示省
略)、凝縮して気液二相、飽和液もしくは過冷却液冷媒
のいづれかの状態となり、主減圧装置5aで減圧され
る。
FIG. 2 shows the flow of the refrigerant during the heating operation in the second embodiment. During heating operation, the four-way valve 2
Is operated to a position where the first port and the third port communicate with each other and the second port and the fourth port communicate with each other. The refrigerant during the heating operation first becomes high-temperature and high-pressure gas in the compressor 1, and goes to the utilization side heat exchanger 6a through the four-way valve 2, the pipe 115, and the blocking valve 8. The refrigerant flowing into the use-side heat exchanger 6a radiates heat to the indoor air that is blown (the blowing system is not shown) and condenses into either the gas-liquid two-phase, saturated liquid, or supercooled liquid refrigerant. The pressure is reduced by the pressure reducing device 5a.

【0057】利用側熱交換器6aで凝縮された冷媒が前
記三つの状態のいずれの状態になるかは、主減圧装置5
aにより制御される。主減圧装置5aを通過した冷媒
は、減圧されて気液二相の状態となり、配管113a,
阻止弁7を経て流れ方向制御回路11の第3の接続口に
流入する。流れ方向制御回路11の第3の接続口に流入
した冷媒は逆止弁9cを通り、レシーバ4に流入する。
ここで先に説明したように、配管106と配管107か
ら各々飽和液冷媒と飽和ガス冷媒とが取り出された後合
流し、中間熱交換器13の加熱流体流路に流入する。こ
こで放熱した冷媒は、配管108を経て再度流れ方向制
御回路11の第4の接続口に流入し、逆止弁9aを通過
する。すでに主減圧装置5aで減圧されて室外空気より
も低い温度の気液二相となっている冷媒は、逆止弁9a
を通過したのち、可変絞り補助減圧装置10でさらに減
圧されたのち、熱源側熱交換器3に流入する。熱源側熱
交換器3において、送風される室外空気から吸熱し(送
風系は図示省略)、ガス冷媒となって圧縮機1に戻る。
各減圧装置の制御は冷房運転時と同じである。
The main decompression device 5 determines which of the above three states the refrigerant condensed in the use side heat exchanger 6a is in.
controlled by a. The refrigerant that has passed through the main decompression device 5a is decompressed into a gas-liquid two-phase state, and the pipe 113a,
It flows into the third connection port of the flow direction control circuit 11 via the blocking valve 7. The refrigerant flowing into the third connection port of the flow direction control circuit 11 passes through the check valve 9c and flows into the receiver 4.
As described above, the saturated liquid refrigerant and the saturated gas refrigerant are extracted from the pipe 106 and the pipe 107, respectively, and then merge and flow into the heating fluid passage of the intermediate heat exchanger 13. The heat-releasing refrigerant again flows into the fourth connection port of the flow direction control circuit 11 via the pipe 108 and passes through the check valve 9a. The refrigerant that has already been decompressed by the main decompression device 5a and has become a gas-liquid two-phase having a temperature lower than that of the outdoor air is used as the check valve 9a.
After passing through, the pressure is further reduced by the variable throttle auxiliary pressure reducing device 10, and then flows into the heat source side heat exchanger 3. In the heat-source-side heat exchanger 3, heat is absorbed from the outdoor air that is blown (the blowing system is not shown), and the gas refrigerant returns to the compressor 1.
The control of each pressure reducing device is the same as that during the cooling operation.

【0058】また冷房運転時、暖房運転時とも室外温度
検出装置66で検出した室外温度、および室内空気温度
検出装置67aで検出した室内空気温度をガスインジェ
クション運転の有無の切り換えに、前述の制御のパラメ
ータと組み合わせた対応テーブルとして、制御装置60
内に用意しておくと、なお制御がきめ細かくなる。例え
ば凝縮圧力Aと蒸発圧力Bとの圧力比A/Bが大きいと
き、即ち、冷房時は、室外温度が予め定めた温度より高
いとき、暖房時は室内温度が予め定めた温度より高いと
き、ガスインジェクション運転を行うようにすればよ
い。
During the cooling operation and the heating operation, the outdoor temperature detected by the outdoor temperature detecting device 66 and the indoor air temperature detected by the indoor air temperature detecting device 67a are switched to the presence / absence of the gas injection operation. As a correspondence table combined with parameters, the control device 60
If it is prepared inside, the control will be finer. For example, when the pressure ratio A / B between the condensation pressure A and the evaporation pressure B is large, that is, when the outdoor temperature is higher than a predetermined temperature during cooling, when the indoor temperature is higher than the predetermined temperature during heating, Gas injection operation may be performed.

【0059】図6、図7はガスインジェクションをする
場所を圧縮機の中間室ではなく圧縮機の吸入側にした本
発明の第3、第4の実施の形態を示す。各々図1に示す
第1の実施の形態との相違点についてのみ説明する。
FIGS. 6 and 7 show the third and fourth embodiments of the present invention in which the location of gas injection is not the intermediate chamber of the compressor but the suction side of the compressor. Only differences from the first embodiment shown in FIG. 1 will be described.

【0060】図6に示す第3の実施の形態は、開閉弁1
4の下流の配管119が圧縮機1の吸入側配管116に
接続されている点が第1の実施の形態と異なる。
The third embodiment shown in FIG. 6 is an opening / closing valve 1
4 is connected to the suction side pipe 116 of the compressor 1, which is different from the first embodiment.

【0061】図7に示す第4の実施の形態は、開閉弁1
4の下流の配管111に三方弁16の入り側が接続さ
れ、三方弁16の第1の出側が配管117で圧縮機中間
室に、三方弁16の第2の出側が配管118で圧縮機吸
入配管116に、それぞれ接続されている点が第1の実
施の形態と異なる。この三方弁16を切り替えること
で、インジェクションする箇所を変更できる。
The fourth embodiment shown in FIG. 7 is an opening / closing valve 1
4, the inlet side of the three-way valve 16 is connected to the pipe 111, the first outlet side of the three-way valve 16 is a pipe 117 to the compressor middle chamber, and the second outlet side of the three-way valve 16 is a pipe 118 to the compressor suction pipe. Different from the first embodiment in that they are respectively connected to 116. By switching the three-way valve 16, the injection location can be changed.

【0062】図6、図7に示した実施の形態では、イン
ジェクション位置が圧縮機吸入側のため、第1の実施の
形態でガスインジェクションしていた圧縮機中間室の温
度よりも低い状態の温度まで、インジェクション減圧装
置12で減圧が可能である。従って、特に中間能力運転
時(低負荷運転時)などはガスインジェクション運転と
比較し中間熱交換器13での過冷却度を大きくとること
が可能となる。そのため利用側熱交換器6a出入口での
エンタルピ差が大きくなり、その分だけ必要な冷暖房能
力を得るための冷媒質量流量が少なくなり、インバータ
駆動の圧縮機では圧縮機の運転周波数を下げることがで
き、圧縮機の電気入力を減らすことが可能となる。
In the embodiment shown in FIGS. 6 and 7, since the injection position is on the compressor suction side, the temperature in a state lower than the temperature of the compressor intermediate chamber where gas injection was performed in the first embodiment is performed. Up to the injection decompression device 12, decompression is possible. Therefore, it is possible to obtain a large degree of supercooling in the intermediate heat exchanger 13 as compared with the gas injection operation, particularly during the intermediate capacity operation (during low load operation). Therefore, the enthalpy difference at the inlet and outlet of the use side heat exchanger 6a becomes large, and the refrigerant mass flow rate for obtaining the required cooling and heating capacity is reduced accordingly, and the operating frequency of the compressor can be lowered in the inverter driven compressor. It becomes possible to reduce the electric input of the compressor.

【0063】以上述べたように、上記各実施の形態で
は、ガスインジェクションを制御するインジェクション
減圧装置12が主流から分離されて制御でき、また冷暖
房運転のどちらにおいても、インジェクション回路では
一定方向の流れとなるように流れ方向制御回路を組み合
わせ、またその中に熱源側熱交換器3とレシーバ4との
間に可変絞り補助減圧装置あるいは絞りを2段階に切り
替え可能な固定絞り補助減圧装置を設けることで、室外
機、室内機の設置状況(冷房運転時で室外機が下、室内
機が上の設置状況)や、室外機と室内機との接続配管が
長い場合(例えば25m以上の接続配管)などに係わら
ずガスインジェクション運転が可能となる。
As described above, in each of the above-described embodiments, the injection pressure reducing device 12 for controlling the gas injection can be controlled separately from the main flow, and in both the cooling and heating operations, the injection circuit can maintain a constant flow. By combining the flow direction control circuit so that the variable throttle auxiliary pressure reducing device or the fixed throttle auxiliary pressure reducing device capable of switching the throttle in two stages is provided between the heat source side heat exchanger 3 and the receiver 4. , The installation status of the outdoor unit and the indoor unit (the installation status of the outdoor unit is down and the indoor unit is up during cooling operation), or when the connection pipe between the outdoor unit and the indoor unit is long (for example, connection pipe of 25 m or more) Regardless of this, gas injection operation becomes possible.

【0064】なお、本実施の形態では、補助減圧装置を
流れ方向制御回路内に内含しているが、補助減圧装置を
流れ方向制御回路外に設置してもよく、得られる効果は
変わらない。
In the present embodiment, the auxiliary pressure reducing device is included in the flow direction control circuit, but the auxiliary pressure reducing device may be installed outside the flow direction control circuit, and the obtained effect does not change. .

【0065】また定格能力運転(高負荷運転)や、中間
能力運転(低負荷運転)などの運転状況に応じてガスイ
ンジェクションのオン/オフを切り替えるられるととも
に、ガスインジェクションオフの場合でも過冷却運転が
可能となる。その結果、如何なる運転状況においても適
切な空気調和機の運転を行うことができ、圧縮機の電気
入力を大幅に低減することが可能となる。圧縮機の電気
入力は空気調和機の総電気入力の約9割を占めているた
め、空気調和機の省エネルギ化への効果が大きい。その
ため同一能力とすると、冷暖房平均COP(冷暖房平均
成績係数:=(冷房COP+暖房COP)/2;COP
=能力/総電気入力)が大幅に向上できる。特にビルや
オフィス等に使用されているような、室内機と室外機を
結ぶ接続配管が長く、かつ1台の室外機に複数台の室内
機を接続させた構成のシステムにおいて、効果がある。
Further, gas injection can be switched on / off according to operating conditions such as rated capacity operation (high load operation) and intermediate capacity operation (low load operation), and supercooling operation can be performed even when gas injection is off. It will be possible. As a result, it is possible to appropriately operate the air conditioner in any operating condition, and it is possible to significantly reduce the electric input of the compressor. Since the electric input of the compressor accounts for about 90% of the total electric input of the air conditioner, it has a great effect on energy saving of the air conditioner. Therefore, assuming the same capacity, the cooling / heating average COP (cooling / heating average coefficient of performance: = (cooling COP + heating COP) / 2; COP
= Capacity / total electric input) can be significantly improved. Particularly, it is effective in a system having a long connecting pipe connecting the indoor unit and the outdoor unit and connecting a plurality of indoor units to one outdoor unit, such as used in a building or an office.

【0066】また上記実施の形態では、圧縮機をインバ
ータ駆動とし圧縮機の運転周波数を変化できるものとし
て効果を説明した。一定速度(回転数)で運転される圧
縮機では、圧縮機の行程容積(理論吐出容積)を小さく
することができ、またそれに応じ圧縮機の負荷が小さく
なるので電気入力が小さくなり、また必要トルクが小さ
くなるのでモータ容量を下げることができる。また圧縮
機のケーシング等が小さくできるなどの効果も得られ
る。
Further, in the above embodiment, the effect has been described by assuming that the compressor is driven by an inverter and the operating frequency of the compressor can be changed. In a compressor operated at a constant speed (rotation speed), the stroke volume (theoretical discharge volume) of the compressor can be reduced, and the load on the compressor is correspondingly reduced, so the electrical input is also reduced and necessary. Since the torque becomes smaller, the motor capacity can be reduced. Further, it is possible to obtain an effect that the casing of the compressor can be made smaller.

【0067】本発明はまた、圧縮機の種類は問わず、ス
クロール圧縮機でも、ロータリー圧縮機でも適用でき
る。冷媒もR22はもとより、R410A、R32、R
407C等の如何なる冷媒でも対応可能であり、前述の
効果が得られる。
The present invention can be applied to both scroll compressors and rotary compressors regardless of the type of compressor. Not only R22 but also R410A, R32, R
Any refrigerant such as 407C can be used, and the above-mentioned effects can be obtained.

【0068】[0068]

【発明の効果】以上述べたように本発明によれば、室外
機と室内機とが分離した形態の空気調和機において、室
外機と室内機の設置位置の上下相対関係に係わらず、ま
た室外機と室内機とを接続する接続配管長が長い場合に
おいても、ガスインジェクションが可能であり、ガスイ
ンジェクション運転をすることで、圧縮機の電気入力を
低減することができる。また負荷に応じガスインジェク
ション運転とサブクール制御運転の切り換えが可能なサ
イクルにより、空気調和機の運転効率を向上させ、省エ
ネルギな空気調和機を提供できる。
As described above, according to the present invention, in the air conditioner in which the outdoor unit and the indoor unit are separated from each other, the outdoor unit and the indoor unit can be installed regardless of the vertical relation between the installation positions of the outdoor unit and the indoor unit. Even if the length of the connecting pipe connecting the compressor and the indoor unit is long, gas injection is possible, and by performing gas injection operation, the electric input of the compressor can be reduced. Further, the cycle in which the gas injection operation and the subcool control operation can be switched according to the load can improve the operation efficiency of the air conditioner and provide an energy-saving air conditioner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係る空気調和機を
示すシステム構成図である。
FIG. 1 is a system configuration diagram showing an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態に係る空気調和機を
示すシステム構成図である。
FIG. 2 is a system configuration diagram showing an air conditioner according to a second embodiment of the present invention.

【図3】図2の示す実施の形態での補助減圧装置として
の電磁弁を示す断面図である。
3 is a sectional view showing a solenoid valve as an auxiliary pressure reducing device in the embodiment shown in FIG.

【図4】図1および図2の空気調和機におけるガスイン
ジェクション時のモリエル線図である。
FIG. 4 is a Mollier diagram during gas injection in the air conditioner of FIGS. 1 and 2.

【図5】図1および図2の空気調和機におけるガスイン
ジェクションしない時のモリエル線図である。
FIG. 5 is a Mollier diagram when gas injection is not performed in the air conditioner of FIGS. 1 and 2.

【図6】本発明の第2の実施の形態に係る空気調和機を
示すシステム構成図である。
FIG. 6 is a system configuration diagram showing an air conditioner according to a second embodiment of the present invention.

【図7】本発明の第2の実施の形態に係る空気調和機を
示すシステム構成図である。
FIG. 7 is a system configuration diagram showing an air conditioner according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 熱源側熱交換器(室外熱交換器) 4 気液分離レシーバ 5a、5b 主減圧装置 6a、6b 利用側熱交換器 7、8 阻止弁 9a、9b、9c、9d 逆止弁 10 可変絞り補助減圧装置 11 流れ方向制御回路 12 インジェクション減圧装置 13 中間熱交換器 14 開閉弁 15 電磁弁 16 三方弁 21 室外機 22a、22b 室内機 60 制御装置 61 圧縮機チャンバ上温度検出装置 62a、62b、63a、63b 主減圧装置出入口温
度検出装置 64 中間熱交換器出口温度検出装置 66 室外温度検出装置 67a、67b 室内温度検出装置 71、72a、73a、74、75、76、77a 信
号線 81 飽和液線 82 飽和ガス線 101〜119 配管
1 Compressor 2 Four-way valve 3 Heat source side heat exchanger (outdoor heat exchanger) 4 Gas-liquid separation receivers 5a, 5b Main decompression devices 6a, 6b Use side heat exchanger 7, 8 Stop valves 9a, 9b, 9c, 9d Reverse Stop valve 10 Variable throttle auxiliary decompressor 11 Flow direction control circuit 12 Injection decompressor 13 Intermediate heat exchanger 14 Open / close valve 15 Solenoid valve 16 Three-way valve 21 Outdoor unit 22a, 22b Indoor unit 60 Controller 61 Compressor chamber temperature detector 62a, 62b, 63a, 63b Main decompression device inlet / outlet temperature detector 64 Intermediate heat exchanger outlet temperature detector 66 Outdoor temperature detector 67a, 67b Indoor temperature detector 71, 72a, 73a, 74, 75, 76, 77a Signal line 81 Saturated liquid line 82 Saturated gas line 101-119 Piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松村 賢治 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 松嶋 弘章 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 3L060 AA03 CC04 DD02 EE09 3L092 AA02 BA02 BA26    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenji Matsumura             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters (72) Inventor Hiroaki Matsushima             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center F-term (reference) 3L060 AA03 CC04 DD02 EE09                 3L092 AA02 BA02 BA26

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮する圧縮機、この圧縮機に接
続され外気と冷媒が熱交換する熱源側熱交換器、この熱
源側熱交換器に流れ方向制御回路を介して冷媒配管で接
続され冷媒を一時貯留するレシーバ、このレシーバに前
記流れ方向制御回路を介して接続され冷媒を減圧する主
減圧装置、この主減圧装置に接続され室内空気と冷媒が
熱交換する利用側熱交換器、及びレシーバの冷媒を圧縮
機の中間圧室もしくは吸入側に導くインジェクション回
路を含んでなり、冷房時は熱源側熱交換器、レシーバ、
主減圧装置、利用側熱交換器の順に冷媒が流れ、暖房時
は利用側熱交換器、主減圧装置、レシーバ、熱源側熱交
換器の順に冷媒が流れるように構成された空気調和機に
おいて、前記流れ方向制御回路は、レシーバに冷媒流入
管路と冷媒流出管路を介して接続され、かつ、前記熱源
側熱交換器からレシーバに流入する冷媒と利用側熱交換
器からレシーバに流入する冷媒はともに前記冷媒流入管
路を経てレシーバに流入させ、前記レシーバから熱源側
熱交換器に流入する冷媒とレシーバから利用側熱交換器
に流入する冷媒はともに前記冷媒流出管路を経てレシー
バから流出させるように構成されていることを特徴とす
る空気調和機。
1. A compressor for compressing a refrigerant, a heat source side heat exchanger connected to the compressor for exchanging heat between the outside air and the refrigerant, and connected to the heat source side heat exchanger by a refrigerant pipe through a flow direction control circuit. A receiver for temporarily storing the refrigerant, a main decompressor connected to the receiver via the flow direction control circuit for decompressing the refrigerant, a use side heat exchanger connected to the main decompressor for heat exchange between indoor air and the refrigerant, and It includes an injection circuit that guides the refrigerant of the receiver to the intermediate pressure chamber or the suction side of the compressor, and at the time of cooling, the heat source side heat exchanger, the receiver,
Refrigerant flows in the order of the main decompressor and the use side heat exchanger, and the air conditioner configured such that the refrigerant flows in the order of the use side heat exchanger, the main decompressor, the receiver, and the heat source side heat exchanger during heating. The flow direction control circuit is connected to the receiver via a refrigerant inflow conduit and a refrigerant outflow conduit, and a refrigerant flowing into the receiver from the heat source side heat exchanger and a refrigerant flowing into the receiver from the use side heat exchanger. Both flow into the receiver via the refrigerant inflow conduit, and the refrigerant flowing from the receiver into the heat source side heat exchanger and the refrigerant flowing from the receiver into the utilization side heat exchanger both flow out from the receiver via the refrigerant outflow conduit. An air conditioner characterized by being configured to allow
【請求項2】 請求項1記載の空気調和機において、前
記流れ方向制御回路は、熱源側熱交換器に流れ方向制御
回路を接続する冷媒配管との間に介装された、流路の通
路抵抗が可変である減圧手段を含んで構成されているこ
とを特徴とする空気調和機。
2. The air conditioner according to claim 1, wherein the flow direction control circuit is provided between the heat source side heat exchanger and a refrigerant pipe that connects the flow direction control circuit to a passage of a flow path. An air conditioner comprising a pressure reducing means having variable resistance.
【請求項3】 請求項2記載の空気調和機において、前
記減圧手段は、少なくとも2段階の固定絞りを備えたも
のであることを特徴とする空気調和機。
3. The air conditioner according to claim 2, wherein the depressurizing means is provided with at least two stages of fixed throttles.
【請求項4】 請求項1〜3のうちのいずれか1項に記
載の空気調和機において、 前記インジェクション回路は、圧縮機の中間圧室もしく
は吸入側に導かれる冷媒を減圧する開度が遠隔制御可能
なインジェクション減圧装置と、インジェクション減圧
装置下流の冷媒と前記冷媒流出管路の冷媒とを熱交換さ
せるように配置した中間熱交換器と、を有してなること
を特徴とする空気調和機。
4. The air conditioner according to claim 1, wherein the injection circuit has a remote opening degree for depressurizing the refrigerant introduced to the intermediate pressure chamber or the suction side of the compressor. An air conditioner comprising a controllable injection decompression device, and an intermediate heat exchanger arranged to exchange heat between a refrigerant downstream of the injection decompression device and a refrigerant in the refrigerant outflow line. .
【請求項5】 請求項4に記載の空気調和機において、 中間熱交換器出口のインジェクション回路の冷媒温度と
中間熱交換器出口の冷媒流出管路の冷媒温度を検出する
中間熱交換器出口温度検出手段と、中間熱交換器出口の
インジェクション回路の冷媒温度が中間熱交換器出口の
冷媒流出管路の冷媒温度に等しくなるように、前記中間
熱交換器出口温度検出手段の出力を入力として前記イン
ジェクション減圧装置の開度を制御する制御手段と、を
設けたことを特徴とした空気調和機。
5. The air conditioner according to claim 4, wherein an intermediate heat exchanger outlet temperature for detecting the refrigerant temperature of the injection circuit at the outlet of the intermediate heat exchanger and the refrigerant temperature of the refrigerant outflow line of the outlet of the intermediate heat exchanger. Detection means, so that the refrigerant temperature of the injection circuit of the intermediate heat exchanger outlet is equal to the refrigerant temperature of the refrigerant outflow line of the intermediate heat exchanger outlet, the output of the intermediate heat exchanger outlet temperature detection means as an input An air conditioner comprising: a control unit that controls the opening degree of the injection decompression device.
JP2001385764A 2001-12-19 2001-12-19 Air conditioner Pending JP2003185286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001385764A JP2003185286A (en) 2001-12-19 2001-12-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001385764A JP2003185286A (en) 2001-12-19 2001-12-19 Air conditioner

Publications (1)

Publication Number Publication Date
JP2003185286A true JP2003185286A (en) 2003-07-03

Family

ID=27595088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385764A Pending JP2003185286A (en) 2001-12-19 2001-12-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP2003185286A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039332A (en) * 2006-08-09 2008-02-21 Mitsubishi Heavy Ind Ltd Multiple heat pump air conditioner
JP2008128498A (en) * 2006-11-16 2008-06-05 Hitachi Appliances Inc Multi-type air conditioner
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
JP2013164250A (en) * 2012-02-13 2013-08-22 Panasonic Corp Refrigerating apparatus
JP5496182B2 (en) * 2009-03-26 2014-05-21 三菱電機株式会社 refrigerator
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
JP2015098973A (en) * 2013-11-19 2015-05-28 株式会社Nttファシリティーズ Refrigerator
JP2017534039A (en) * 2015-10-10 2017-11-16 クワントン メイヂー コンプレッサー カンパニー リミテッド Air conditioning system and air conditioner equipped with the same
EP3306238A1 (en) 2016-10-05 2018-04-11 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device, refrigerant circuit system and control method
US9958191B2 (en) 2012-05-23 2018-05-01 Daikin Industries, Ltd. Refrigeration apparatus
EP3351869A1 (en) 2017-01-24 2018-07-25 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerant circuit system and control method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
USRE43998E1 (en) 2004-10-18 2013-02-19 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
US8899058B2 (en) 2006-03-27 2014-12-02 Mitsubishi Electric Corporation Air conditioner heat pump with injection circuit and automatic control thereof
JP2008039332A (en) * 2006-08-09 2008-02-21 Mitsubishi Heavy Ind Ltd Multiple heat pump air conditioner
JP2008128498A (en) * 2006-11-16 2008-06-05 Hitachi Appliances Inc Multi-type air conditioner
JP5496182B2 (en) * 2009-03-26 2014-05-21 三菱電機株式会社 refrigerator
EP2413065A4 (en) * 2009-03-26 2016-04-27 Mitsubishi Electric Corp Refrigerator
JP2013164250A (en) * 2012-02-13 2013-08-22 Panasonic Corp Refrigerating apparatus
US9958191B2 (en) 2012-05-23 2018-05-01 Daikin Industries, Ltd. Refrigeration apparatus
US10197321B2 (en) 2012-05-23 2019-02-05 Daikin Industries, Ltd. Refrigeration apparatus
JP2015098973A (en) * 2013-11-19 2015-05-28 株式会社Nttファシリティーズ Refrigerator
JP2017534039A (en) * 2015-10-10 2017-11-16 クワントン メイヂー コンプレッサー カンパニー リミテッド Air conditioning system and air conditioner equipped with the same
EP3306238A1 (en) 2016-10-05 2018-04-11 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device, refrigerant circuit system and control method
EP3351869A1 (en) 2017-01-24 2018-07-25 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerant circuit system and control method
JP2018119707A (en) * 2017-01-24 2018-08-02 三菱重工サーマルシステムズ株式会社 Refrigerant circuit system and control method

Similar Documents

Publication Publication Date Title
JP5309424B2 (en) Refrigeration equipment
JP4725387B2 (en) Air conditioner
EP2083230B1 (en) Air conditioning system
JP3925545B2 (en) Refrigeration equipment
EP2728278B1 (en) Refrigeration cycle device and air conditioner
JP4895883B2 (en) Air conditioner
CN115234993B (en) Air conditioner
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
US20060123834A1 (en) Air conditioner
JP2002081767A (en) Air conditioner
JP2007155230A (en) Air conditioner
KR100569554B1 (en) Heat source unit of air conditioner and air conditioner
US6826924B2 (en) Heat pump apparatus
US7908878B2 (en) Refrigerating apparatus
JP2003185286A (en) Air conditioner
JP4407012B2 (en) Refrigeration equipment
JP4179595B2 (en) Air conditioner
CN114080529B (en) Refrigerating device
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
JP2001235245A (en) Freezer
CN114270111A (en) Heat source unit and refrigeration device
JP5223873B2 (en) Air conditioner
KR100575223B1 (en) Variable capacity refrigeration cycle
WO2020008590A1 (en) Refrigeration cycle equipment
JP4407013B2 (en) Heat pump equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030