JP2003183709A - Low-thermal-expansion high-thermal-conductivity copper composite material and its production method - Google Patents

Low-thermal-expansion high-thermal-conductivity copper composite material and its production method

Info

Publication number
JP2003183709A
JP2003183709A JP2001381528A JP2001381528A JP2003183709A JP 2003183709 A JP2003183709 A JP 2003183709A JP 2001381528 A JP2001381528 A JP 2001381528A JP 2001381528 A JP2001381528 A JP 2001381528A JP 2003183709 A JP2003183709 A JP 2003183709A
Authority
JP
Japan
Prior art keywords
composite material
powder
thermal conductivity
copper
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001381528A
Other languages
Japanese (ja)
Inventor
Hideko Fukushima
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001381528A priority Critical patent/JP2003183709A/en
Publication of JP2003183709A publication Critical patent/JP2003183709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper composite material which has a low thermal expansion coefficient and a high thermal conductivity and is suitable for a heat radiation panel of a semiconductor device. <P>SOLUTION: A mixed powder comprising 80-20 vol.% copper powder having a purity of 99% or higher and 20-80 vol.% silicon carbide powder having an average particle diameter of 1 μm or more and a purity of 99% or higher is filled into the gap between upper and lower electrodes and subjected to electric- current conducting and press sintering at 600-1,050°C under a pressure of 30 MPa or higher, giving the objective low-thermal-expansion high-thermal- conductivity copper composite material. Thus obtained copper composite material may further be press sintered by HIP after the current-carrying press sintering. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は低い熱膨張係数と高
い熱伝導率を併せ持つ銅複合材料及びその製造方法に関
し、詳しくは半導体装置の放熱板材に好適な材料及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper composite material having a low coefficient of thermal expansion and a high thermal conductivity and a method for manufacturing the same, and more particularly to a material suitable for a heat dissipation plate of a semiconductor device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年半導体技術の分野では、トランジス
タの大容量化、LSIの高集積、高速及び高性能化等、
半導体素子の性能向上が著しい。このため、半導体素子
から発生した熱エネルギーを、放熱板によりいかに効率
よく放散させるかが重要な課題となっている。従来の半
導体装置用放熱板材料としては、基板に銅(Cu)、大
型の基板にモリブデン(Mo)、パッケージにプラスチ
ック又はアルミナ(Al 2 3 )、また大容量化したパ
ッケージに窒化アルミニウム(AlN)等が用いられて
いる。
2. Description of the Related Art In recent years, in the field of semiconductor technology, transistor
Large capacity, high integration of LSI, high speed and high performance, etc.
The performance of semiconductor devices is remarkably improved. Therefore, the semiconductor device
How efficiently the heat energy generated from
How to disperse well is an important issue. Conventional half
As a heat sink material for conductor devices, copper (Cu)
Molybdenum (Mo) for mold substrate and plastic for package
Or alumina (Al 2O3).
Aluminum nitride (AlN) etc. is used for the package
There is.

【0003】[0003]

【発明が解決しようとする課題】従来の半導体装置用放
熱板材において、熱伝導率が常温付近にて390W/(m
・K)と高い銅は放熱性に優れているが、トランジス
タ、LSIチップ等の半導体材料に使用されるシリコン(S
i)の熱膨張係数が4.2×10-6/Kであるのに対して、銅
の熱膨張係数が17.0×10 -6 /Kと差が大きいため、回
路の作動中に繰り返し与えられる熱応力により放熱板材
と半導体材料との間にあるPb−Sn等のハンダ接合面
が剥離する恐れがあるという問題がある。逆に、熱膨張
係数が5.l×l0-6/KのMoは、半導体材料の熱膨張係
数に近似しているためハンダ接合面での信頼性に優れて
いるが、熱伝導率が150W/(m・K)と低いため放熱
性が十分でないという問題がある。また170W/(m・
K)の熱伝導率及び4.5×l0-6/Kの熱膨張係数とバラ
ンスが優れたセラミックスであるAlNは、コストが高
く経済的に不利であるという問題がある。さらに、これ
らの従来材は単一材料で構成されているため熱膨張係数
と熱伝導率の両特性を任意にコントロールすることが困
難であるという問題がある。
In the conventional heat dissipation plate material for semiconductor devices, the thermal conductivity is 390 W / (m at room temperature).
・ K) and high copper have excellent heat dissipation, but silicon (S) used in semiconductor materials such as transistors and LSI chips
The coefficient of thermal expansion of i) is 4.2 × 10 -6 / K, while the coefficient of thermal expansion of copper is large, 17.0 × 10 -6 / K, so the thermal stress repeatedly applied during the operation of the circuit. Therefore, there is a problem that a solder joint surface such as Pb-Sn between the heat dissipation plate material and the semiconductor material may be peeled off. On the other hand, Mo with a thermal expansion coefficient of 5.1 × 10-6 / K is excellent in reliability at the solder joint surface because it is close to the thermal expansion coefficient of semiconductor materials, but its thermal conductivity is 150 W. Since it is as low as / (m · K), there is a problem that heat dissipation is not sufficient. 170W / (m ・
AlN, which is a ceramic excellent in balance with the thermal conductivity of K) and the thermal expansion coefficient of 4.5 × 10 −6 / K, has a problem of high cost and economical disadvantage. Further, since these conventional materials are composed of a single material, there is a problem that it is difficult to arbitrarily control both characteristics of the thermal expansion coefficient and the thermal conductivity.

【0004】従って、本発明の目的は安価な製造方法に
より、より緻密で低熱膨張性と高熱伝導性を有する銅複
合材料を提供することである。
Accordingly, it is an object of the present invention to provide a more dense copper composite material having a low thermal expansion property and a high thermal conductivity by an inexpensive manufacturing method.

【0005】[0005]

【課題を解決するための手段】以上の問題に鑑み鋭意研
究の結果、本発明者らは銅と炭化珪素を適度な割合で配
合した複合材料が高い熱伝導性と低い熱膨張性を有する
こと、そしてこれらの混合粉末を通電燒結することによ
り、従来より短時間で高密度、高熱伝導の高品質の銅炭
化珪素複合材料が得られることを見出し本発明を完成し
た。
As a result of intensive research in view of the above problems, the present inventors have found that a composite material containing copper and silicon carbide in an appropriate ratio has high thermal conductivity and low thermal expansion. The inventors have found that a high-quality copper silicon carbide composite material having high density and high thermal conductivity can be obtained in a shorter time than ever before by electrically sintering these mixed powders.

【0006】すなわち、本発明の低熱膨張・高熱伝導性
銅複合材料は、80〜20体積%の銅粉末に20〜80体積%の
炭化珪素粉末を添加した混合粉末を上電極と下電極の間
隙方向に充填し、該上電極と下電極の間で通電すること
により充填した混合粉末を焼結して得られたものである
ことを特徴とする。
That is, in the low thermal expansion / high thermal conductivity copper composite material of the present invention, a mixed powder obtained by adding 20 to 80% by volume of silicon carbide powder to 80 to 20% by volume of copper powder is used as a gap between the upper electrode and the lower electrode. It is characterized in that it is obtained by sintering the mixed powder which is filled in a direction and is energized between the upper electrode and the lower electrode.

【0007】また、本発明の低熱膨張・高熱伝導性銅複
合材料の製造方法は、80〜20体積%の銅粉末に20〜80体
積%の炭化珪素粉末を添加して混合し、前記混合粉末を
上電極と下電極の間隙に充填し、該上電極と下電極の間
で通電し、600 〜1050℃の温度及び30MPa 以上の圧力で
通電加圧焼結することを特徴とする。
Further, the method for producing a low thermal expansion / high thermal conductivity copper composite material of the present invention comprises adding 20 to 80% by volume of silicon carbide powder to 80 to 20% by volume of copper powder, and mixing the mixture to obtain the mixed powder. Is filled in the gap between the upper and lower electrodes, electricity is applied between the upper and lower electrodes, and the temperature is 600 to 1050 ° C and 30 MPa. It is characterized in that the current pressure sintering is performed at the above pressure.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。 (1) 銅粉末として純度が99%以上のものが好ましい。銅
粉末の純度が99%未満であると、得られる複合材料の熱
伝導率が小さくなるので好ましくない。銅粉末の平均粒
径は1〜300μmであるのが好ましく、1〜100μmであ
るのがより好ましく、特に2〜50μmが好ましい。原料
粉末の全体積に対して、銅粉末の含有率は80〜20体積%
である。銅粉末の含有率が80体積%を越えると熱膨張係
数が大きくなり、また含有率が20体積%未満であると熱
伝導率が小さくなるので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. (1) Copper powder having a purity of 99% or more is preferable. If the purity of the copper powder is less than 99%, the thermal conductivity of the obtained composite material becomes small, which is not preferable. The average particle size of the copper powder is preferably 1 to 300 μm, more preferably 1 to 100 μm, and particularly preferably 2 to 50 μm. Copper powder content is 80 to 20% by volume based on the total volume of the raw material powder
Is. When the content of the copper powder exceeds 80% by volume, the coefficient of thermal expansion increases, and when the content is less than 20% by volume, the thermal conductivity decreases, which is not preferable.

【0009】(2) 炭化珪素粉末として純度が99%以上の
ものが好ましい。炭化珪素粉末の純度が99%未満である
と、熱伝導率が低いので好ましくない。原料粉末の全体
積に対して、炭化珪素粉末の含有率は20〜80体積%であ
る。炭化珪素粉末の含有率が80体積%を越えると熱伝導
率が低くなり、また含有率が20体積%未満であると熱膨
張係数が大きくなるので好ましくない。
(2) It is preferable that the silicon carbide powder has a purity of 99% or more. If the purity of the silicon carbide powder is less than 99%, the thermal conductivity is low, which is not preferable. The content of the silicon carbide powder is 20 to 80% by volume based on the total volume of the raw material powder. When the content of the silicon carbide powder exceeds 80% by volume, the thermal conductivity becomes low, and when the content is less than 20% by volume, the thermal expansion coefficient becomes large, which is not preferable.

【0010】炭化珪素粉末の平均粒径は1μm以上であ
るのが好ましい。平均粒径が1μm未満であると、セラ
ミックス粒子が凝集して金属基地に均一に分散し難く、
また粒子凝集部に気孔を生じるために熱伝導率が低下す
る。炭化珪素の平均粒径は1〜300μmであるのがより好
ましく、特に20〜100μmが好ましい。通電焼結によれ
ば界面での接触面積が小さいほど緻密化が促進されるこ
とから上記した平均粒径が望ましいことが分かった。
The average particle size of the silicon carbide powder is preferably 1 μm or more. If the average particle size is less than 1 μm, the ceramic particles agglomerate and are difficult to uniformly disperse in the metal matrix,
Moreover, since the pores are generated in the particle agglomeration portion, the thermal conductivity is lowered. The average particle diameter of silicon carbide is more preferably 1 to 300 μm, and particularly preferably 20 to 100 μm. It has been found that the above-mentioned average particle size is desirable because the smaller the contact area at the interface is, the more the densification is promoted by the electric current sintering.

【0011】(3) 製造方法:銅粉末と炭化珪素粉末を上
記割合で混合する。混合は各種公知の方法で行うことが
でき、例えばボールミルやVコン等を用いて行うことが
できる。混合時間は混合粉末が均一になる時間、例えば
3時間以上であるのが好ましい。次いで上記混合粉末を
所望形状に予備成形しても良い。成形方法として金型プ
レス法等が挙げられる。
(3) Manufacturing method: Copper powder and silicon carbide powder are mixed in the above ratio. Mixing can be carried out by various known methods, for example, using a ball mill or V-con. The mixing time is preferably such that the mixed powder becomes uniform, for example, 3 hours or more. Then, the mixed powder may be preformed into a desired shape. Examples of the molding method include a die pressing method.

【0012】次に得られた混合粉末を上電極と下電極の
間隙に均一に分散した混合粉末を充填し通電して焼結す
る。通電方法はパルス通電や連続通電方法等の何れでも
良い。焼結温度は600〜1050℃であり、圧力は30MPa
上であるのが好ましい。焼結温度が600℃未満であると
得られる複合材料の気孔率が大きくなり、1050℃を超え
ると銅と炭化珪素が反応し熱伝導率が低下するので好ま
しくない。また圧力が30MPa 未満であると、得られる複
合材料の気孔率が大きくなるので好ましくない。より好
ましい焼結温度は800〜1000℃であり、より好ましい圧
力は50〜100MPa である。この通電焼結法によれば、混合
粉末による圧粉体粒子の間隙に直接パルス状の電気エネ
ルギーが投入されるため、通常、ほとんど濡れることの
ないCuとSiCの界面で導体抵抗によりジュール熱が
発生し、それにより直接界面が加熱され緻密化が促進さ
れる。これは特にSiCの割合が高くなったときの緻密
化に効果がある。
Next, the obtained mixed powder is used for the upper electrode and the lower electrode.
Fill the gap with the uniformly dispersed powder and sinter by energizing
It The energization method can be pulse energization or continuous energization.
good. Sintering temperature is 600 ~ 1050 ℃, pressure is 30MPa Since
Above is preferred. If the sintering temperature is below 600 ° C
The porosity of the obtained composite material becomes large and exceeds 1050 ℃
If so, copper reacts with silicon carbide and the thermal conductivity decreases, so it is preferable.
Not good. The pressure is 30MPa Is less than
It is not preferable because the porosity of the composite material increases. Better
The preferable sintering temperature is 800-1000 ℃,
Power is 50-100MPa Is. According to this electric current sintering method, mixing
Directly pulsed electrical energy in the gap between green compacts
Usually, it gets almost wet as the lugie is thrown in.
There is no Joule heat due to conductor resistance at the interface between Cu and SiC.
Occurs, which directly heats the interface and promotes densification.
Be done. This is especially dense when the proportion of SiC is high
Is effective in

【0013】(4) 銅複合材料:このようにして得られる
複合材料の気孔率は5%以下であり、熱膨張係数は6.5
〜14×10-6/Kであり、熱伝導率は150 〜380 W/(m
・K)である。複合材料の気孔率が5%を超えると熱伝
導率が低い。好ましい気孔率は3%以下である。
(4) Copper composite material: The composite material thus obtained has a porosity of 5% or less and a thermal expansion coefficient of 6.5.
〜14 × 10 -6 / K, the thermal conductivity is 150〜380 W / (m
・ K). When the porosity of the composite material exceeds 5%, the thermal conductivity is low. The preferred porosity is 3% or less.

【0014】本発明の銅複合材料は以下の特徴を有す
る。 (a) 基地となる銅粒子及び炭化珪素粒子の含有量(体積
%)を適宜選択することにより、熱膨張係数及び熱伝導
率を所望の特性にコントロールできる。
The copper composite material of the present invention has the following features. (a) The thermal expansion coefficient and the thermal conductivity can be controlled to desired characteristics by appropriately selecting the content (volume%) of the copper particles and silicon carbide particles serving as the base.

【0015】(b) 通電焼結によりCuとSiCの界面の
緻密化が促進され、CuとSiCの界面での熱抵抗が低
下し、従来の焼結方法より高い密度でかつ高い熱伝導率
を持つ銅複合材料が得られる。
(B) The energization sintering promotes the densification of the interface between Cu and SiC, lowers the thermal resistance at the interface between Cu and SiC, and provides higher density and higher thermal conductivity than the conventional sintering method. A copper composite material having is obtained.

【0016】(c) 放熱板材の上に搭載される半導体材料
に近似する熱膨張係数を得ることができるので、放熱板
と半導体材料とのハンダ接合面が熱応力等により剥離せ
ず、ハンダ接合面の信頼性が向上する。
(C) Since it is possible to obtain a thermal expansion coefficient close to that of the semiconductor material mounted on the heat dissipation plate material, the solder joint surface between the heat dissipation plate and the semiconductor material is not peeled off due to thermal stress or the like, and the solder joint is performed. The reliability of the surface is improved.

【0017】(d) 基地が銅であるため高い熱伝導率が得
られ、半導体材料から発生した熱エネルギーを効率よく
放散させることができ、トランジスタチップ、LSIチ
ップ等の誤動作及び熱破損を防止できる。
(D) Since the base is copper, high thermal conductivity can be obtained, heat energy generated from the semiconductor material can be efficiently dissipated, and malfunctions and thermal damage of transistor chips, LSI chips, etc. can be prevented. .

【0018】[0018]

【実施例】本発明を以下の具体的な実施例により更に詳
細に説明する。 実施例1 (1) 原料粉末:炭化珪素粉末の粒径は100μm以下(平
均粒径30μm)であり、純度は99.3%以上である。銅粉
末の粒径は50μm以下(平均粒径3μm)であり、純度
は99.9%以上であった。
The present invention will be described in more detail with reference to the following specific examples. Example 1 (1) Raw material powder: The particle size of silicon carbide powder is 100 μm or less (average particle size 30 μm), and the purity is 99.3% or more. The particle size of the copper powder was 50 μm or less (average particle size 3 μm), and the purity was 99.9% or more.

【0019】(2) 成形:上記炭化珪素及び銅粉末を表1
に示す割合で配合し、ボールミルで24時間乾式混合し
た。混合粉末を製造した。
(2) Molding: The above silicon carbide and copper powders are shown in Table 1.
The ingredients were blended in the proportions shown in Table 1 and dry-mixed in a ball mill for 24 hours. A mixed powder was produced.

【0020】(3) 通電焼結:図1に示す通電焼結装置
は、カーボン製の上パンチ1と下パンチ2及び焼結ダイ
3を金型として用い、上パンチ1の上部には上電極4
を、下パンチ2の下部には下電極5がそれぞれ設けら
れ、加圧機構7と制御装置8により加圧調整ができるよ
うに構成されている。この上パンチ1と下パンチ2の間
隙に上記混合粉末を充填する。ここで、充填された混合
粉末の層厚みを3mm とする。ついで、上パンチ1と下パ
ンチ2間に50MPaの圧力を加え、この状態で電源から3
00Vの電圧を印加して上電極4と下電極5の間の上パ
ンチ1、下パンチ2を通して通電させ、通電に続けて直
流電源から電流を300A流すと、混合粉末はジュール
熱によって焼結される。混合粉末の周囲に設けたカーボ
ン製のダイにも直流電流が流れジュール熱によって発熱
するため混合粉末は側面からも加熱されることになる。
このときの焼結温度は800℃であり、保持時間15分に
て焼結した。また、焼結した後の混合粉末の厚みは3mm
から2.5mm にまで圧縮された。
(3) Current Sintering: The current sintering apparatus shown in FIG. 1 uses an upper punch 1 and a lower punch 2 made of carbon and a sintering die 3 as a die, and an upper electrode is provided on the upper punch 1. Four
The lower electrode 5 is provided below the lower punch 2, and the pressure is adjusted by the pressure mechanism 7 and the controller 8. The gap between the upper punch 1 and the lower punch 2 is filled with the mixed powder. Here, the layer thickness of the filled mixed powder is 3 mm. Then, apply a pressure of 50 MPa between the upper punch 1 and the lower punch 2, and in this state, remove 3 from the power supply.
When a voltage of 00 V is applied to energize through the upper punch 1 and the lower punch 2 between the upper electrode 4 and the lower electrode 5, and a current of 300 A is applied from the DC power source following energization, the mixed powder is sintered by Joule heat. It A direct current also flows through a carbon die provided around the mixed powder to generate heat due to Joule heat, so that the mixed powder is also heated from the side surface.
The sintering temperature at this time was 800 ° C., and the sintering was carried out for a holding time of 15 minutes. The thickness of the mixed powder after sintering is 3 mm.
Compressed to 2.5 mm.

【0021】(4) 測定:得られた5種類の焼結体につい
て以下の特性をそれぞれ測定した。 熱伝導率:各焼結体から直径10mm×高さ2mmのテス
トピースを切り出した後、熱定数測定装置(LF/TCM-FA8
510B、理学電機社製)を用いて、レーザーフラッシュ法
(JIS1606 準拠)に従って熱伝導率を測定した。結果を
表1に示す。
(4) Measurement: The following characteristics were measured for each of the obtained five kinds of sintered bodies. Thermal conductivity: After cutting out a test piece with a diameter of 10 mm and a height of 2 mm from each sintered body, a thermal constant measuring device (LF / TCM-FA8
510B, manufactured by Rigaku Denki Co., Ltd., was used to measure the thermal conductivity according to the laser flash method (JIS1606 compliant). The results are shown in Table 1.

【0022】 熱膨張係数:各焼結体から角3mm×長
さ17mmのテストピースを切り出した後、常温から300℃
の温度範囲でTMA(サーモメカニカルアナライザー、
セイコー(株)製)を用いて熱膨張係数を測定した。結
果を合わせて表1に示す。
Thermal expansion coefficient: After cutting out a test piece of 3 mm square and 17 mm length from each sintered body, 300 ° C. from room temperature
TMA (thermo-mechanical analyzer,
The coefficient of thermal expansion was measured using Seiko Co., Ltd. The results are shown together in Table 1.

【0023】 気孔率:各焼結体から角10mm×高さ2m
mのテストピースを切り出した後、アルキメデス法にに
より密度を測定し、銅と炭化珪素の混合則から計算され
た密度を理論密度とし、得られた焼結体の相対密度から
気孔率を算出した結果を表1に示す。
Porosity: 10 mm square and 2 m high from each sintered body
After cutting out the m test piece, the density was measured by the Archimedes method, the density calculated from the mixing rule of copper and silicon carbide was taken as the theoretical density, and the porosity was calculated from the relative density of the obtained sintered body. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から分かるように、上記混合比で得ら
れた複合材料のいずれも150W/(m・K)以上と高
い熱伝導率を示した。熱膨張係数も6.5×10-6〜14
×10 -6/Kの範囲に収めることが出来ている。また、気
孔率は3.0%以下の緻密な焼結体を得ることができ
た。
As can be seen from Table 1, the above mixing ratios were obtained.
All of the composite materials have a high value of 150 W / (mK) or more.
It showed high thermal conductivity. Coefficient of thermal expansion is 6.5 × 10-6~ 14
× 10 -6It can be kept within the range of / K. Also damn
It is possible to obtain a dense sintered body with a porosity of 3.0% or less.
It was

【0026】実施例2 実施例1と同じ方法で50体積%の銅粉末と50体積%の炭
化珪素粉末を混合して通電焼結した後、表2に示す各焼
結条件でそれぞれHIPを行い、得られた焼結体につい
て実施例1と同様に熱伝導率と気孔率を測定した。結果
を表2に合わせて示す。
Example 2 After mixing 50% by volume of copper powder and 50% by volume of silicon carbide powder by the same method as in Example 1 and conducting current sintering, HIP was carried out under the respective sintering conditions shown in Table 2. The thermal conductivity and the porosity of the obtained sintered body were measured in the same manner as in Example 1. The results are also shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】表2から分かるように、HIP焼結により、
得られた焼結体の気孔率が1以下になり、熱伝導率が著
しく向上した。
As can be seen from Table 2, by HIP sintering,
The porosity of the obtained sintered body was 1 or less, and the thermal conductivity was remarkably improved.

【0029】比較例1 実施例1と同じ方法で50体積%の銅粉末と50体積%の炭
化珪素粉末を混合し、通電加圧焼結以外の真空焼結、常
圧焼結及び加圧焼結の方法で焼結した。尚、真空焼結は
1000℃で1時間、常圧焼結は空気中1000℃で1時間、加
圧焼結は800Mpaにて900℃で1時間のそれぞれ処理を行っ
た。得られた焼結体について実施例1と同様に熱伝導率
と気孔率を測定した。結果を表3に合わせて示す。
Comparative Example 1 In the same manner as in Example 1, 50% by volume of copper powder and 50% by volume of silicon carbide powder were mixed and subjected to vacuum sintering other than electric current pressure sintering, atmospheric pressure sintering and pressure firing. It was sintered by the binding method. In addition, vacuum sintering
The treatment was performed at 1000 ° C. for 1 hour, atmospheric pressure in air at 1000 ° C. for 1 hour, and pressure sintering at 800 MPa at 900 ° C. for 1 hour. The thermal conductivity and the porosity of the obtained sintered body were measured in the same manner as in Example 1. The results are also shown in Table 3.

【0030】[0030]

【表3】 [Table 3]

【0031】表3から分かるように、真空焼結と常圧焼
結は気孔率が高く、熱伝導率は非常に悪いものであっ
た。加圧焼結は前者ほどではないが本発明の実施例より
は劣っていることが確認された。
As can be seen from Table 3, the vacuum sintering and the atmospheric pressure sintering had a high porosity and a very poor thermal conductivity. It was confirmed that the pressure sintering was inferior to the examples of the present invention, though not so much as the former.

【0032】[0032]

【発明の効果】本発明の銅複合材料は、制御された気孔
率及び通電焼結によりCuとSiCの界面の緻密化が促
進され、CuとSiCの界面での熱抵抗が低下し、従来
の焼結方法より高い密度を持つ銅複合材料が得られる。
また本発明の銅複合材料は、銅粒子及び炭化珪素粒子の
含有量(体積%)を適宜調整すること及び通電焼結を行
うことにより、熱膨張係数及び熱伝導率及び焼結体密度
を所望のレベルにコントロールできるので、低熱膨張で
且つ高熱伝導性を有した半導体材料の放熱板材として幅
広く用いることができる。
EFFECTS OF THE INVENTION The copper composite material of the present invention promotes the densification of the interface between Cu and SiC by controlled porosity and electric current sintering, and lowers the thermal resistance at the interface between Cu and SiC. A copper composite material having a higher density than the sintering method is obtained.
In addition, the copper composite material of the present invention has desired thermal expansion coefficient, thermal conductivity, and sintered body density by appropriately adjusting the content (volume%) of copper particles and silicon carbide particles and performing electric current sintering. Since it can be controlled to the above level, it can be widely used as a heat dissipation plate material of a semiconductor material having low thermal expansion and high thermal conductivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による銅複合材料を製造するための通電
焼結装置の概略を示す図である。
FIG. 1 is a diagram showing an outline of an electric current sintering apparatus for producing a copper composite material according to the present invention.

【符号の説明】[Explanation of symbols]

1:上パンチ 2:下パンチ 3:焼結ダイ 4:上電極 5:下電極 6:焼結電源 7:加圧機構 8:制御装置 1: Upper punch 2: Lower punch 3: Sintering die 4: Upper electrode 5: Lower electrode 6: Sinter power supply 7: Pressurizing mechanism 8: Control device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 80〜20体積%の銅粉末に20〜80体積%の
炭化珪素粉末を添加した混合粉末を上電極と下電極の間
隙方向に充填し、該上電極と下電極の間で通電すること
により充填した混合粉末を焼結して得られることを特徴
とする低熱膨張・高熱伝導性銅複合材料。
1. A mixed powder prepared by adding 20 to 80% by volume of silicon carbide powder to 80 to 20% by volume of copper powder is filled in the gap direction between the upper electrode and the lower electrode, and between the upper electrode and the lower electrode. A low-thermal-expansion / high-thermal-conductivity copper composite material, which is obtained by sintering a mixed powder filled by energizing.
【請求項2】 前記炭化珪素粉末の平均粒径が1μm以
上であることを特徴とする請求項1に記載の低熱膨張・
高熱伝導性銅複合材料。
2. The low thermal expansion coefficient according to claim 1, wherein the silicon carbide powder has an average particle size of 1 μm or more.
High thermal conductivity copper composite material.
【請求項3】 前記炭化珪素粉末の純度が99%以上であ
り、前記銅粉末の純度が99%以上であることを特徴とす
る請求項1又は2記載の低熱膨張・高熱伝導性銅複合材
料。
3. The low thermal expansion / high thermal conductivity copper composite material according to claim 1 or 2, wherein the purity of the silicon carbide powder is 99% or more and the purity of the copper powder is 99% or more. .
【請求項4】 前記複合材料の熱膨張係数が6.5 ×10-6
〜14×10-6/Kであり、かつ熱伝導率が150 〜380 W/
(m・K)であることを特徴とする請求項1〜3の何れ
かに記載の低熱膨張・高熱伝導性銅複合材料。
4. The coefficient of thermal expansion of the composite material is 6.5 × 10 −6
〜14 × 10 -6 / K and thermal conductivity of 150〜380 W /
It is (m * K), The low thermal expansion and high thermal conductivity copper composite material in any one of Claims 1-3.
【請求項5】 前記複合材料の気孔率が5%以下である
ことを特徴とする請求項1〜4の何れかに記載の低熱膨
張・高熱伝導性銅複合材料。
5. The copper composite material with low thermal expansion and high thermal conductivity according to claim 1, wherein the composite material has a porosity of 5% or less.
【請求項6】 80〜20体積%の銅粉末に20〜80体積%の
炭化珪素粉末を添加して混合し、前記混合粉末を上電極
と下電極の間隙に充填し、該上電極と下電極の間で通電
し、600 〜1050℃の温度及び30MPa 以上の圧力で通電加
圧焼結してなることを特徴とする低熱膨張・高熱伝導性
銅複合材料の製造方法。
6. 80 to 20% by volume of copper powder and 20 to 80% by volume of silicon carbide powder are added and mixed, and the mixed powder is filled in a gap between the upper electrode and the lower electrode, and the upper electrode and the lower electrode. Power is applied between the electrodes, and the temperature is 600-1050 ℃ and 30MPa. A method for producing a copper composite material having a low thermal expansion and a high thermal conductivity, which is characterized in that it is obtained by conducting current pressure sintering at the above pressure.
【請求項7】 請求項1〜5の何れかに記載の低熱膨張
・高熱伝導性銅複合材料を請求項6による通電加圧焼結
をした後、さらにHIPにより加圧焼結することを特徴
とする低熱膨張かつ高熱伝導性銅複合材料の製造方法。
7. The low thermal expansion and high thermal conductivity copper composite material according to claim 1 is subjected to electric current pressure sintering according to claim 6, and further pressure-sintered with HIP. A method for producing a copper composite material having low thermal expansion and high thermal conductivity.
JP2001381528A 2001-12-14 2001-12-14 Low-thermal-expansion high-thermal-conductivity copper composite material and its production method Pending JP2003183709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381528A JP2003183709A (en) 2001-12-14 2001-12-14 Low-thermal-expansion high-thermal-conductivity copper composite material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381528A JP2003183709A (en) 2001-12-14 2001-12-14 Low-thermal-expansion high-thermal-conductivity copper composite material and its production method

Publications (1)

Publication Number Publication Date
JP2003183709A true JP2003183709A (en) 2003-07-03

Family

ID=27592173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381528A Pending JP2003183709A (en) 2001-12-14 2001-12-14 Low-thermal-expansion high-thermal-conductivity copper composite material and its production method

Country Status (1)

Country Link
JP (1) JP2003183709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397980B1 (en) * 2012-10-08 2014-05-27 한국지질자원연구원 Remove the copper ions and process for preparing copper powder from mixed solution containing copper ions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397980B1 (en) * 2012-10-08 2014-05-27 한국지질자원연구원 Remove the copper ions and process for preparing copper powder from mixed solution containing copper ions

Similar Documents

Publication Publication Date Title
JP5666749B1 (en) Cooling plate, manufacturing method thereof, and member for semiconductor manufacturing apparatus
CN104704618B (en) The manufacture method of semiconductor device, ceramic circuit board and semiconductor device
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
JP2004535665A (en) Dissipative ceramic bonding tooltip
TW201504192A (en) Cooling plate, method for manufacturing same, and semiconductor manufacturing device member
JP2002201075A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
KR20130137029A (en) Ceramic circuit board
WO2011087055A1 (en) Silicon nitride substrate, circuit substrate and electronic device using same
JP2013041884A (en) Semiconductor device
US7381673B2 (en) Composite material, wafer holding member and method for manufacturing the same
JP2005255462A (en) Silicon nitride sintered compact, method for manufacturing the same and circuit board using the same
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
JP2003183709A (en) Low-thermal-expansion high-thermal-conductivity copper composite material and its production method
JPH1067560A (en) High thermal conductivity ceramic and its production
JP5941006B2 (en) Bonding material, bonding structure, manufacturing method thereof, and semiconductor module
JP4591738B2 (en) Silicon nitride sintered body
JP3683067B2 (en) Aluminum nitride sintered body
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
CN111302806A (en) Electrostatic chuck AlN ceramic for IC equipment and preparation method thereof
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP4636329B2 (en) Manufacturing method of heat dissipation buffer plate
JP3999989B2 (en) Copper-tungsten carbide composite material
JP4265247B2 (en) High heat dissipation alloy, heat dissipation plate, package for semiconductor element, and manufacturing method thereof
JPH0995745A (en) Low thermal expansion-high thermal conductivity copper composite material and its production