JP2003175329A - Method for manufacturing spherical inorganic powder - Google Patents

Method for manufacturing spherical inorganic powder

Info

Publication number
JP2003175329A
JP2003175329A JP2001324639A JP2001324639A JP2003175329A JP 2003175329 A JP2003175329 A JP 2003175329A JP 2001324639 A JP2001324639 A JP 2001324639A JP 2001324639 A JP2001324639 A JP 2001324639A JP 2003175329 A JP2003175329 A JP 2003175329A
Authority
JP
Japan
Prior art keywords
gas
inorganic powder
powder
spherical
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001324639A
Other languages
Japanese (ja)
Other versions
JP4330298B2 (en
Inventor
Kiyonari Zenba
研也 善場
Mitsuyoshi Iwasa
光芳 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001324639A priority Critical patent/JP4330298B2/en
Publication of JP2003175329A publication Critical patent/JP2003175329A/en
Application granted granted Critical
Publication of JP4330298B2 publication Critical patent/JP4330298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a spherical inorganic powder having high sphericity with enhanced productivity. <P>SOLUTION: An inorganic powder is ejected in a furnace from the arbitrary one of the inner pipes of two or three nozzles having a composite pipe structure while carried by a fuel additive gas and fuel gas or a mixed gas of the fuel gas and the fuel additive gas is ejected from the outer pipe adjacent to the inner pipe or an outer pipe not adjacent thereto and made spherical while forming a high temperature flame and the spherical inorganic powder is guided to a collection system to be collected. In this manufacturing method, the gas ejected from the outer pipe is revolved. In this case, it is preferable to eject the gas from the outer pipe under a condition of 1.0≤S/V≤4.0 [wherein, V is the gas jet speed (m/s) of the inner pipe and S is the gas jet speed (m/s) of the outer pipe]. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体樹脂封止用
充填材に好適な球状無機質粉末の製造方法に関する。本
発明に適用される無機質粉末としては、アルミナ、シリ
カ、マグネシア、それらを成分とする複化合物等である
が、以下、シリカを例にとって説明する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spherical inorganic powder suitable as a filler for semiconductor resin encapsulation. Examples of the inorganic powder applicable to the present invention include alumina, silica, magnesia, and compound compounds containing them, and the following description will be given taking silica as an example.

【0002】[0002]

【従来の技術】高純度シリカを高温で溶融し、冷却した
ものは非晶質網目構造を持ち、低膨脹性、耐熱衝撃性、
低熱伝導性であるので耐熱材料として古くから賞用され
ている。また、化学的にも安定で高絶縁性であり、高周
波誘電体損失も少ないことから、粉末は半導体封止樹脂
用フィラーとして用いられ、特に球状のものは流動性や
充填性の向上に役立っている。中でも、真球に近いもの
ほど充填性、流動性、耐金型摩耗性に優れているので、
高球形度のフィラーが追求されている。
2. Description of the Related Art High-purity silica melted at high temperature and cooled has an amorphous network structure, low expansion, thermal shock resistance,
Because of its low thermal conductivity, it has long been used as a heat resistant material. Further, powder is used as a filler for semiconductor encapsulating resin because it is chemically stable and has a high insulating property, and high frequency dielectric loss is small. Particularly, spherical particles are useful for improving fluidity and filling property. There is. Above all, the closer to a sphere, the better the filling property, the fluidity, and the mold abrasion resistance.
High sphericity fillers are being pursued.

【0003】通常、球状シリカ質粉末は、可燃ガスと助
燃ガスとの燃焼反応によって形成される高温火炎中に、
シリカ質原料粉末を乾燥状態で助燃ガスで搬送させて供
給し、その融点以上で溶融球状化して製造される。この
場合における大きな課題は、原料中の微粉粒子は単独の
球状粒子として得にくく、微粉粒子同士あるいは微粉粒
子と粗粉粒子が合着結合することが多いので、得られた
球状シリカ質粉末の球形度は悪くなり、また微粉粒子同
士が凝集したまま火炎中を通過した粒子は溶融率も低く
なることである。
Usually, the spherical siliceous powder is contained in a high temperature flame formed by a combustion reaction of a combustible gas and a supporting gas.
The siliceous raw material powder is carried by a supporting gas in a dry state and supplied, and melted and spheroidized at a temperature equal to or higher than its melting point. A major problem in this case is that the fine powder particles in the raw material are difficult to obtain as a single spherical particle, and since the fine powder particles are often cohesively bonded to each other or the fine powder particles and the coarse powder particles, the spherical shape of the spherical silica powder obtained is obtained. The degree is poor, and the particles that have passed through the flame while the fine powder particles are agglomerated also have a low melting rate.

【0004】この現象は、シリカ質粉末の平均粒径が小
さくなればなるほど顕著となり、特開2001−485
21公報でも1μm以下の粒子が15重量%を超える
と、原料粉が分散不良のままダマの状態で火炎中に噴射
されるようになり、未溶融の微細粉が混入し、溶融率も
低くなると記載されている。
This phenomenon becomes more noticeable as the average particle size of the siliceous powder becomes smaller.
Also in Japanese Patent Laid-Open No. 21-52, when the content of particles of 1 μm or less exceeds 15% by weight, the raw material powder comes to be injected into the flame in a lump state with poor dispersion, unmelted fine powder is mixed, and the melting rate becomes low. Have been described.

【0005】この問題を解決するため、原料・装置・操
業条件等のあらゆる角度からの検討が従来より行われて
いるが、そのうちの1つに原料を高速で噴射させること
の提案(特開平13−089130号公報)がある。こ
の方法によれば、粒子同士の凝集や合着結合が抑制でき
るが、その反面、多量の原料搬送用ガスの使用や高圧の
ガスの使用が余儀なくされ、またテーブルフィーダーを
使用した場合には背圧上昇を招くのでフィーダー自体の
耐圧性も考慮しなければならないという設備上の不具合
がある。また、原料供給量を下げてこの課題を解決する
ことは、製造能力が低下するので好ましくない。
In order to solve this problem, studies have been conventionally conducted from all angles such as raw materials, equipment, operating conditions, etc., but it is proposed to inject one of the raw materials at a high speed (Japanese Patent Laid-Open No. H13 (1999) -135242). No. 089130). According to this method, agglomeration and coalescence of particles can be suppressed, but on the other hand, it is inevitable to use a large amount of raw material-transporting gas or high-pressure gas, and if a table feeder is used, There is a facility problem in that the pressure resistance of the feeder itself must be taken into consideration because it causes pressure rise. Further, it is not preferable to reduce the supply amount of the raw material to solve this problem because the production capacity is reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明者は、上記問題
を解決すべく、無機質粉末原料を乾燥状態で供給する乾
式噴射法において、いかにして原料を高温火炎中に高分
散させるかについて鋭意検討した結果、複合管ノズルの
内管から無機質粉末を助燃ガスにて噴射し、その外管か
ら燃料ガスを旋回させて噴射すれば良いことを見い出
し、本発明を完成させたものである。すなわち、本発明
の目的は、高球形度の球状無機質粉末の生産性向上法を
提供することである。
In order to solve the above-mentioned problems, the present inventor has earnestly studied how to highly disperse a raw material in a high temperature flame in a dry injection method of supplying a raw material of an inorganic powder in a dry state. As a result of the study, they found that it is sufficient to inject the inorganic powder with an auxiliary gas from the inner tube of the composite tube nozzle and swirl the fuel gas from the outer tube to complete the present invention. That is, an object of the present invention is to provide a method for improving productivity of spherical inorganic powder having high sphericity.

【0007】[0007]

【課題を解決するための手段】本発明は、2又は3以上
の複合管構造ノズルの任意内管から、無機質粉末原料を
乾燥状態で助燃ガスに搬送させて炉内に噴射すると共
に、その内管に隣接した又は隣接していない外管から
は、燃料ガス又は燃料ガスと助燃ガスの混合ガスを噴射
し、高温火炎を形成させながら無機質粉末を球状化さ
せ、それを捕集系に導いて球状無機質粉末を捕集する方
法であって、上記外管から噴射させるガスを旋回させる
ことを特徴とする球状無機質粉末の製造方法である。こ
の場合において、外管からのガスを、1.0≦S/V≦
4.0(但し、V:内管のガス噴射速度(m/s)、
S:外管のガス噴射速度(m/s))、の条件で噴射す
ることが好ましい。
According to the present invention, an inorganic powder raw material is conveyed to a combustion supporting gas in a dried state from an arbitrary inner tube of a composite tube structure nozzle of two or more and is injected into a furnace. From the outer pipe adjacent to or not adjacent to the pipe, fuel gas or a mixed gas of fuel gas and auxiliary gas is injected to make a high temperature flame and spherical inorganic powder, and to guide it to a collection system. A method for collecting spherical inorganic powder, comprising swirling a gas injected from the outer tube, which is a method for producing spherical inorganic powder. In this case, the gas from the outer tube is 1.0 ≦ S / V ≦
4.0 (however, V: gas injection speed (m / s) of the inner tube,
It is preferable to inject under the condition of S: gas injection speed (m / s) of the outer tube.

【0008】[0008]

【発明の実施の形態】以下、更に詳しく本発明について
説明する。
The present invention will be described in more detail below.

【0009】本発明で用いられる無機質粉末原料は、比
較的良質の珪石、水晶、珪砂等を振動ミル等で粉砕して
得られたシリカが例示される。また、アルミナ、マグネ
シア、更にはシリカ、アルミナ、マグネシアのいずれか
を少なくとも一成分とする複化合物である。その平均粒
径は1〜80μmの微粉ないしは粗粉である。本発明に
おいては、凝集し易い1μm以下の含有量の多い微粉原
料であっても効果的に処理することができる。無機質粉
末原料は、後述のように、乾燥状態のままガスに搬送さ
れて炉内に形成された高温火炎に噴射される。
Examples of the inorganic powder raw material used in the present invention include silica obtained by pulverizing relatively high quality silica stone, crystal, silica sand and the like with a vibration mill or the like. Further, it is a compound compound containing at least one of alumina, magnesia, silica, alumina and magnesia. The average particle size is a fine or coarse powder having a particle size of 1 to 80 μm. In the present invention, even a fine powder material having a large content of 1 μm or less, which easily aggregates, can be effectively treated. As will be described later, the inorganic powder raw material is conveyed to the gas in a dry state and injected into the high temperature flame formed in the furnace.

【0010】高温火炎は、無機質粉末原料を搬送する助
燃ガスと旋回させた燃料ガスの燃焼によって形成され、
火炎温度は1800℃以上であることが好ましい。その
際の燃料ガスとしては、アセチレン、エチレン、プロパ
ン、ブタン等の炭化水素系のガスあるいはこれらの混合
ガスが用いられ、助燃ガスとしては、酸素を含むガスで
あるが、93質量%以上の酸素ガスが高温火炎を形成す
る点から好ましい。
The high temperature flame is formed by the combustion of the auxiliary gas for carrying the inorganic powder raw material and the swirled fuel gas,
The flame temperature is preferably 1800 ° C. or higher. As the fuel gas at that time, a hydrocarbon-based gas such as acetylene, ethylene, propane, butane, or a mixed gas thereof is used, and the combustion-supporting gas is a gas containing oxygen, but 93% by mass or more of oxygen is used. The gas is preferable because it forms a high temperature flame.

【0011】本発明においては、無機質粉末原料、燃料
ガス及び助燃ガスは、2又は3以上の複合管構造ノズル
から噴射される。無機質粉末原料は乾燥状態のまま、助
燃ガスに搬送されて該ノズルの任意の内管から噴射され
る。すなわち、無機質粉末は乾燥状態で、二重管構造ノ
ズルの場合は内管から噴射され、三重管以上の多重管構
造ノズルの場合には、最外管以外の内管から供給され
る。ノズル先端部は無機質粉末を含むガスが流れるの
で、摩耗し易いため、セラミックスのような耐摩耗処置
が施されていると、更なる長時間の安定操業が可能とな
る。
In the present invention, the inorganic powder raw material, the fuel gas and the auxiliary combustion gas are injected from two or three or more composite tube structure nozzles. The inorganic powder raw material in the dry state is carried to the auxiliary combustion gas and injected from any inner tube of the nozzle. That is, the inorganic powder in a dry state is sprayed from the inner pipe in the case of the double pipe structure nozzle, and is supplied from the inner pipe other than the outermost pipe in the case of the triple pipe structure nozzle having three or more pipes. Since the gas containing the inorganic powder flows through the tip of the nozzle, it easily wears. Therefore, if a wear-resistant treatment such as ceramics is applied, stable operation for a longer period of time becomes possible.

【0012】内管に隣接する外管(二重管構造ノズル又
は三重管以上の多重管構造ノズルの場合)、又は内管に
隣接しない外管(三重管以上の多重管構造ノズルの場
合)からは、燃料ガス又は燃料ガスと助燃ガスとの混合
ガスが噴射される。本発明で重要なことはそのガスを旋
回させて噴射させることである。これによって、燃料ガ
スが燃焼する際の体積膨張により、無機質粉末原料の高
温火炎中への分散が促進され、溶融率及び球形度が向上
する。旋回させるガスは、燃料ガス又は燃料ガスと助燃
ガスとの混合ガスであるが、好ましくは燃料ガスであ
る。
From an outer pipe adjacent to the inner pipe (in the case of a double pipe structure nozzle or a multiple pipe structure nozzle of triple pipes or more), or an outer pipe not adjacent to the inner pipe (in the case of a triple pipe structure nozzle of triple pipes or more) Is injected with fuel gas or a mixed gas of fuel gas and auxiliary combustion gas. What is important in the present invention is to swirl and inject the gas. This promotes the dispersion of the inorganic powder raw material in the high temperature flame due to the volume expansion when the fuel gas burns, and improves the melting rate and sphericity. The swirling gas is a fuel gas or a mixed gas of a fuel gas and a supporting gas, but is preferably a fuel gas.

【0013】ガスの旋回は、無機質原料の噴射方向すな
わち高温火炎の長手方向に沿って行わせることが好まし
く、旋回ガスの噴射角度は時計回り又は反時計回りに、
接線及び法線方向のいずれも30〜60°の角度をつけ
ることが好ましい。ガスを旋回させる方法としては、上
記外管の噴射口付近に風車を設ける、外管の内部の一部
又は全部を螺旋構造とする、両者の組み合わせ等があ
る。
The swirling of the gas is preferably carried out in the direction of injection of the inorganic raw material, that is, in the longitudinal direction of the high temperature flame, and the swirling gas is sprayed clockwise or counterclockwise.
It is preferable to make an angle of 30 to 60 in both the tangential line and the normal line direction. As a method of swirling the gas, there are a wind turbine provided near the injection port of the outer tube, a part or the whole of the inner part of the outer tube having a spiral structure, a combination of the two, and the like.

【0014】本発明においては、外管からのガスを、
1.0≦S/V≦4.0(但し、V:内管のガス噴射速
度(m/s)、S:外管のガス噴射速度(m/s))、
の条件で噴射することが好ましい。S/Vが1.0より
も小さいと、原料を搬送するガスの噴射速度が旋回させ
るガス噴射速度を上回るため、原料の高温火炎への分散
効果が弱まり、微粉粒子同士の合着結合の阻止効果が小
さくなる。逆に、S/Vが4.0よりも大きいと、原料
の搬送ガス流量が不安定となって分散効果が向上せず、
また溶融球状化する前に高温火炎から離脱する粒子も多
くなる。
In the present invention, the gas from the outer tube is
1.0 ≦ S / V ≦ 4.0 (V: inner tube gas injection speed (m / s), S: outer tube gas injection speed (m / s)),
It is preferable to inject under the condition of. If S / V is smaller than 1.0, the injection speed of the gas carrying the raw material exceeds the gas injection speed of the swirling, so the dispersion effect of the raw material on the high temperature flame is weakened, and the coalescence of fine powder particles is prevented. The effect becomes smaller. On the other hand, if S / V is larger than 4.0, the flow rate of the carrier gas of the raw material becomes unstable and the dispersion effect is not improved,
Also, many particles are released from the high-temperature flame before being melted into spheres.

【0015】溶融球状化処理された粉末は、例えば図1
に示されるように、重力沈降室、サイクロン、バグフィ
ルター等の捕集系に導かれ捕集される。図1は、球状シ
リカ質粉末の製造設備の一例を示す説明図である。原料
フィーダー1と、複合管構造ノズル2の設置された水冷
ジャケット式の縦型炉体4と、高温火炎3により溶融球
状化処理した球状シリカ質粉末をブロワー8で吸引・分
級するためのサイクロン6と、サイクロン6では捕集で
きなかった超微粉を回収するバグフィルター7とにより
構成されている。高温排ガスは、水冷ジャケット連絡管
5によって冷却される。9は吸引ガス量制御バルブ、1
0はガス排気口、11は捕集粉抜き出し装置である。
The powder which has been subjected to the melt spheroidizing treatment is shown in FIG.
As shown in (3), it is guided to and collected by a collection system such as a gravity settling chamber, a cyclone, a bag filter. FIG. 1 is an explanatory diagram showing an example of a facility for producing spherical siliceous powder. A raw material feeder 1, a vertical furnace body 4 of a water cooling jacket in which a composite tube structure nozzle 2 is installed, and a cyclone 6 for sucking and classifying a spherical siliceous powder melt-spheroidized by a high temperature flame 3 with a blower 8. And a bag filter 7 for collecting ultrafine powder that could not be collected by the cyclone 6. The hot exhaust gas is cooled by the water cooling jacket communication pipe 5. 9 is a suction gas amount control valve, 1
Reference numeral 0 is a gas exhaust port, and 11 is a collected powder extracting device.

【0016】本発明における高温火炎への原料分散の効
果は、粒子の肥大化率を用いて評価することができる。
肥大化率は、肥大化率=(溶融球状化処理され捕集され
た球状シリカ質粉末の平均粒径)/(シリカ質粉末原料
の平均粒径) により算出することができる。
The effect of the raw material dispersion in the high temperature flame in the present invention can be evaluated by using the particle enlargement ratio.
The swelling rate can be calculated by the swelling rate = (average particle diameter of the spherical siliceous powder collected by the melt spheroidizing treatment) / (average particle diameter of the siliceous powder raw material).

【0017】この肥大化率は、シリカ質原料の合着結合
が全くないときが1.0になり、粒子同士の合着結合が
進行するとその進行度合に応じて漸増する。したがっ
て、肥大化率1.0に近いほど良好な分散となるが、本
発明によれば該値が1.3以下となり、条件を厳格にす
れば1.2以下にすることもできる。この効果は、従来
の燃料ガスと助燃ガスとの内部混合ガスをガス孔から噴
射させて形成した高温火炎中に、無機質粉末原料を噴射
する方法(以下、従来乾式噴射法と記載)の場合の該値
が1.8、また複合管構造ノズルを用いるが外管からの
噴射ガスに旋回を与えない場合の該値が1.6であった
ことと比較して、格別顕著である。
The rate of enlargement is 1.0 when there is no cohesive bond between the siliceous raw materials, and when the cohesive bond between the particles progresses, it gradually increases according to the degree of progress. Therefore, the closer the enlargement rate is to 1.0, the better the dispersion. However, according to the present invention, the value is 1.3 or less, and if the condition is strict, it can be 1.2 or less. This effect is obtained in the case of a method of injecting an inorganic powder raw material into a high temperature flame formed by injecting an internal mixed gas of a conventional fuel gas and a supporting gas from a gas hole (hereinafter, referred to as a conventional dry injection method). This value is 1.8, which is particularly remarkable as compared with the value of 1.6 when the nozzle having the composite pipe structure is used but the swirl is not given to the gas injected from the outer pipe.

【0018】無機質粉末の平均粒径は、レーザー回折式
粒度測定器(コールター社「モデルLS−230」型)
によって測定することができる。また、球形度は、走査
型電子顕微鏡(日本電子社製「JSM−T200型」)
と画像解析装置(日本アビオニクス社製)を用い、次の
ようにして測定することができる。
The average particle size of the inorganic powder is measured by a laser diffraction particle sizer (Model "LS-230" manufactured by Coulter Co., Ltd.).
Can be measured by Moreover, the sphericity is a scanning electron microscope ("JSM-T200" manufactured by JEOL Ltd.).
And an image analyzer (manufactured by Nippon Avionics Co., Ltd.) can be used to perform the following measurement.

【0019】すなわち、粉末のSEM写真から粒子の投
影面積(A)と周囲長(PM)を測定する。周囲長(P
M)に対応する真円の面積を(B)とすると、その粒子
の真円度はA/Bとして表示できる。そこで、試料粒子
の周囲長(PM)と同一の周囲長を持つ真円を想定する
と、PM=2πr、B=πr2であるから、B=π×
(PM/2π)2 となり、個々の粒子の真円度は、真円
度=A/B=A×4π/(PM)2として算出すること
ができるので、2000個の平均値として求められる。
That is, the projected area (A) and the perimeter (PM) of the particles are measured from the SEM photograph of the powder. Perimeter (P
When the area of a perfect circle corresponding to M) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same perimeter as the perimeter (PM) of the sample particles, PM = 2πr and B = πr 2 , so B = π ×
(PM / 2π) 2 and the roundness of each particle can be calculated as roundness = A / B = A × 4π / (PM) 2 and is calculated as an average value of 2000 particles.

【0020】球状無機質粉末がシリカであり、その用途
が半導体封止樹脂用フィラーである場合、溶融率が95
%以上、特に98%以上であることが好ましい。
When the spherical inorganic powder is silica and its use is as a filler for semiconductor encapsulating resin, the melting rate is 95.
% Or more, particularly preferably 98% or more.

【0021】溶融率は、粉末X線回折装置(例えば、R
IGAKU社製「Mini Flex」)を用い、Cu
Kα線の2θが26°〜27.5°の範囲において試料
のX線回折分析を行い、特定回折ピークの強度比から測
定することができる。すなわち、結晶シリカは26.7
°に主ピークが存在するが、非晶質シリカではこの位置
には存在しない。非晶質シリカと結晶シリカが混在して
いると、それらの割合に応じた26.7°のピーク高さ
が得られるので、結晶シリカ標準試料のX線強度に対す
る試料のX線強度の比から、結晶シリカ混在率(試料の
X線強度/結晶シリカのX線強度)を算出し、式、溶融
率(%)=(1−結晶シリカ混在率)×100、によっ
て算出することができる。
The melting rate is measured by a powder X-ray diffractometer (for example, R
"Mini Flex" manufactured by IGAKU Co., Ltd.
It can be measured from the intensity ratio of specific diffraction peaks by performing X-ray diffraction analysis of a sample in the range where the 2θ of Kα line is 26 ° to 27.5 °. That is, crystalline silica is 26.7.
The main peak exists at °, but it does not exist at this position in amorphous silica. If amorphous silica and crystalline silica are mixed, a peak height of 26.7 ° can be obtained according to their ratio. Therefore, from the ratio of the X-ray intensity of the sample to the X-ray intensity of the crystalline silica standard sample, The ratio of crystalline silica (X-ray intensity of sample / X-ray intensity of crystalline silica) can be calculated by the formula, melting rate (%) = (1-crystalline silica mixing ratio) × 100.

【0022】[0022]

【実施例】以下、本発明を実施例、比較例をあげて、更
に具体的に説明する。
EXAMPLES The present invention will be described more concretely with reference to Examples and Comparative Examples.

【0023】実施例1〜6 図1に示される装置を用い、二重管構造からなるノズル
の内管から、平均粒径5μmのシリカ質粉末を助燃ガス
(酸素ガス)に搬送させ、外管からはプロパンガスを旋
回させて噴射し、溶融球状化処理を行った。
Examples 1 to 6 Using the apparatus shown in FIG. 1, a siliceous powder having an average particle diameter of 5 μm was transferred to an auxiliary combustion gas (oxygen gas) from an inner tube of a nozzle having a double tube structure, and an outer tube. From the above, propane gas was swirled and injected to perform a melt spheroidizing treatment.

【0024】その際、シリカ質粉末の噴射量はどの実験
例においても30kg/hとし、シリカ質粉末の搬送ガ
スの噴射速度(V)、旋回させるプロパンガスの噴射速
度(S)を表1に示す条件に種々変更した。また、旋回
はどの実験例においても時計回りに30°であり、ノズ
ル先端に風車を取り付けることによって行った。
At that time, the injection amount of the siliceous powder was 30 kg / h in all the experimental examples, and the injection speed (V) of the carrier gas of the siliceous powder and the injection speed (S) of the swirling propane gas are shown in Table 1. Various changes were made to the conditions shown. In addition, the turning was 30 ° in the clockwise direction in all the experimental examples, and it was performed by attaching a wind turbine to the tip of the nozzle.

【0025】比較例1 従来乾式噴射法である、プロパンガスと酸素との内部混
合ガスをガス孔から噴射して形成された高温火炎中に、
平均粒径5μmのシリカ質粉末を酸素にて搬送、噴射
し、溶融球状化処理を行った。プロパンガスの流量は実
施例2と同じとし、火炎形成用の酸素はプロパン流量の
3.3倍とした。
Comparative Example 1 In a high temperature flame formed by injecting an internal mixed gas of propane gas and oxygen from a gas hole, which is a conventional dry injection method,
A siliceous powder having an average particle diameter of 5 μm was conveyed and jetted with oxygen to perform a melt spheroidizing treatment. The flow rate of propane gas was the same as in Example 2, and the oxygen for flame formation was 3.3 times the flow rate of propane.

【0026】比較例2 プロパンガスに旋回を与えず、スリット状に流したこと
以外は、実施例2と同様にして溶融球状化処理を行っ
た。
Comparative Example 2 A melt spheroidizing treatment was carried out in the same manner as in Example 2 except that propane gas was not swirled and was made to flow in a slit shape.

【0027】捕集した球状シリカ質粉末については、平
均粒径、溶融率、球形度を上記に従い測定し、また捕集
された球状シリカ質粉末とシリカ質粉末原料の各々の平
均粒径から肥大化率を算出した。それらの結果を表1に
示す。
With respect to the collected spherical siliceous powder, the average particle size, the melting rate and the sphericity were measured according to the above, and the average particle size of the collected spherical siliceous powder and the raw material of the siliceous powder was enlarged. The rate of conversion was calculated. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から、以下のことが分かる。従来乾式
噴射法の場合の肥大化率が1.78(比較例1)、また
複合管構造ノズルを用いるが外管からの噴射ガスに旋回
を与えない場合のそれが1.62(比較例2)であった
のに対し、本発明の実施例は1.0に近い値であり、す
こぶる分散の良好な状態でシリカ質原料を高温火炎中に
噴射することができた。その結果、溶融率は100%と
完全に非晶質化され、球形度0.95未満の粒子含有率
も15%未満と著しく減少させることができた。とく
に、S/Vを1.0〜4.0とした場合に本発明の効果
が顕著となった。
The following can be seen from Table 1. The enlargement rate in the case of the conventional dry injection method is 1.78 (Comparative example 1), and that when the compound pipe structure nozzle is used but the swirl is not given to the injection gas from the outer pipe is 1.62 (Comparative example 2). ), The value of the example of the present invention was close to 1.0, and the siliceous raw material could be injected into the high temperature flame in a state of extremely good dispersion. As a result, the melting rate was 100%, which was completely amorphized, and the content of particles having a sphericity of less than 0.95 could be significantly reduced to less than 15%. In particular, the effect of the present invention became remarkable when the S / V was set to 1.0 to 4.0.

【0030】[0030]

【発明の効果】本発明によれば、高球形度の球状無機質
粉末を生産性を高めて製造することができる。速度の適
正化により、粒子肥大化を抑制しつつ、球形度の高い球
状シリカ質粉末を容易に製造することが出来る。
According to the present invention, a spherical inorganic powder having a high sphericity can be produced with high productivity. By optimizing the speed, it is possible to easily produce a spherical siliceous powder having a high sphericity while suppressing particle enlargement.

【図面の簡単な説明】[Brief description of drawings]

【図1】球状シリカ質粉末の製造設備の一例を示す概略
FIG. 1 is a schematic view showing an example of a facility for producing spherical siliceous powder.

【符号の説明】[Explanation of symbols]

1 原料フィーダー 2 複合管構造ノズル 3 高温火炎 4 縦型炉体 5 水冷ジャケット連絡管 6 サイクロン 7 バグフィルター 8 ブロワー 9 吸引ガス量制御バルブ 10 ガス排気口 11 捕集粉抜き出し装置 1 Raw material feeder 2 Composite tube structure nozzle 3 high temperature flame 4 Vertical furnace body 5 Water cooling jacket connecting pipe 6 cyclones 7 Bug filter 8 blowers 9 Suction gas amount control valve 10 gas exhaust port 11 Collection powder extraction device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G042 DA01 DB09 DD03 DE03 DE12 4G072 AA25 BB07 GG01 GG03 HH14 QQ01 UU01 UU07 4G075 AA27 BB03 BD01 BD14 CA02 CA45 CA57 DA01 EA06 EB01 EC03 FB04 4M109 AA01 EB12    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G042 DA01 DB09 DD03 DE03 DE12                 4G072 AA25 BB07 GG01 GG03 HH14                       QQ01 UU01 UU07                 4G075 AA27 BB03 BD01 BD14 CA02                       CA45 CA57 DA01 EA06 EB01                       EC03 FB04                 4M109 AA01 EB12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2又は3以上の複合管構造ノズルの任意
内管から、無機質粉末原料を乾燥状態で助燃ガスにて搬
送させて炉内に噴射すると共に、その内管に隣接した又
は隣接していない外管からは、燃料ガス又は燃料ガスと
助燃ガスの混合ガスを噴射し、高温火炎を形成させなが
ら無機質粉末を球状化させ、それを捕集系に導いて球状
無機質粉末を捕集する方法であって、上記外管から噴射
させるガスを旋回させることを特徴とする球状無機質粉
末の製造方法。
1. An inorganic powder raw material is conveyed by a supporting gas in a dry state and injected into a furnace from an arbitrary inner tube of two or more composite tube structure nozzles, and adjacent to or adjacent to the inner tube. Fuel gas or a mixed gas of fuel gas and auxiliary gas is injected from the outer tube to make the inorganic powder spherical while forming a high-temperature flame and guide it to the collection system to collect the spherical inorganic powder. A method for producing a spherical inorganic powder, characterized in that the gas injected from the outer tube is swirled.
【請求項2】 外管からのガスを、1.0≦S/V≦
4.0(但し、V:内管のガス噴射速度(m/s)、
S:外管のガス噴射速度(m/s))、の条件で噴射す
ることを特徴とする請求項1記載の球状無機質粉末の製
造方法。
2. The gas from the outer tube is 1.0 ≦ S / V ≦
4.0 (however, V: gas injection speed (m / s) of the inner tube,
The method for producing a spherical inorganic powder according to claim 1, wherein the injection is performed under the condition of S: gas injection speed (m / s) of the outer tube.
JP2001324639A 2001-10-03 2001-10-23 Method for producing spherical inorganic powder Expired - Fee Related JP4330298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324639A JP4330298B2 (en) 2001-10-03 2001-10-23 Method for producing spherical inorganic powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001307168 2001-10-03
JP2001-307168 2001-10-03
JP2001324639A JP4330298B2 (en) 2001-10-03 2001-10-23 Method for producing spherical inorganic powder

Publications (2)

Publication Number Publication Date
JP2003175329A true JP2003175329A (en) 2003-06-24
JP4330298B2 JP4330298B2 (en) 2009-09-16

Family

ID=26623633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324639A Expired - Fee Related JP4330298B2 (en) 2001-10-03 2001-10-23 Method for producing spherical inorganic powder

Country Status (1)

Country Link
JP (1) JP4330298B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103548A1 (en) * 2003-05-23 2004-12-02 Tdk Corporation Apparatus for producing spherical powder, burner for treating powder, method for producing spherical powder, spherical oxide powder and oxide powder
JP2005008504A (en) * 2003-06-23 2005-01-13 Tdk Corp Method of manufacturing spherical powder, spherical oxide powder and oxide powder
WO2010016215A1 (en) * 2008-08-04 2010-02-11 大陽日酸株式会社 Method for manufacturing inorganic spheroidized particles
KR101106650B1 (en) * 2009-09-18 2012-01-18 주식회사 대한세라믹스 Apparatus for forming a glomeration ceramic powder and glomeration ceramic powder manufactured by the apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1869002A (en) * 2005-05-27 2006-11-29 中国科学院上海药物研究所 Class I non-steroid androgen acceptor regulator, its preparation method and use
FR2915805B1 (en) 2007-05-04 2010-02-12 Commissariat Energie Atomique PROCESS FOR DETECTION OF HALOGENATED GASEOUS COMPOUNDS

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103548A1 (en) * 2003-05-23 2004-12-02 Tdk Corporation Apparatus for producing spherical powder, burner for treating powder, method for producing spherical powder, spherical oxide powder and oxide powder
JP2005008504A (en) * 2003-06-23 2005-01-13 Tdk Corp Method of manufacturing spherical powder, spherical oxide powder and oxide powder
WO2010016215A1 (en) * 2008-08-04 2010-02-11 大陽日酸株式会社 Method for manufacturing inorganic spheroidized particles
JP2010037134A (en) * 2008-08-04 2010-02-18 Taiyo Nippon Sanso Corp Method for manufacturing inorganic spheroidized particle
KR101106650B1 (en) * 2009-09-18 2012-01-18 주식회사 대한세라믹스 Apparatus for forming a glomeration ceramic powder and glomeration ceramic powder manufactured by the apparatus

Also Published As

Publication number Publication date
JP4330298B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
CN109455728B (en) Device and method for producing high-purity superfine spherical silicon micro powder by heating gas
JP2003175329A (en) Method for manufacturing spherical inorganic powder
JP4294191B2 (en) Method and apparatus for producing spherical silica powder
JP2007015884A (en) Method and apparatus for manufacturing spherical fine inorganic powder
US20230219823A1 (en) Method for manufacturing spherical particle material
JP3891740B2 (en) Method for producing fine spherical siliceous powder
JP4313924B2 (en) Spherical silica powder and method for producing the same
JP3957581B2 (en) Method for producing spherical silica powder
JP4230554B2 (en) Method for producing spherical particles
JP4392097B2 (en) Method for producing ultrafine spherical silica
JP4416936B2 (en) Method for producing fine silica powder
TWM608559U (en) Equipment for producing spherical particles
JP4318288B2 (en) Spherical powder production apparatus, powder processing burner, and spherical powder production method
JP2004203664A (en) Spherical siliceous powder and manufacturing method and utilization of the same
JPH04126534A (en) Method and apparatus for producing inorganic sphered particles
JP3868141B2 (en) Method for producing spherical silica powder
JP2005288399A (en) Method of producing spherical inorganic powder
JP3853137B2 (en) Method for producing fine spherical silica
US20060275723A1 (en) Apparatus for producing spherical powder, burner for treaitng powder, method for producing spherical powder, spherical oxide powder, and oxide powder
JP3608968B2 (en) Method for producing spherical inorganic particles
JP4145855B2 (en) Method for producing spherical fused silica powder
TWI744067B (en) Equipment for producing spherical particles
JP2005015303A (en) Method of manufacturing spherical powder, spherical oxide powder and oxide powder
JP4294604B2 (en) Method for producing spherical inorganic powder
JP2006131442A (en) Method for manufacturing spherical fused silica powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061116

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4330298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees