JP2003173812A - Capacity drop detection method of redox flow battery - Google Patents

Capacity drop detection method of redox flow battery

Info

Publication number
JP2003173812A
JP2003173812A JP2001370191A JP2001370191A JP2003173812A JP 2003173812 A JP2003173812 A JP 2003173812A JP 2001370191 A JP2001370191 A JP 2001370191A JP 2001370191 A JP2001370191 A JP 2001370191A JP 2003173812 A JP2003173812 A JP 2003173812A
Authority
JP
Japan
Prior art keywords
cell
capacity
battery
redox flow
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001370191A
Other languages
Japanese (ja)
Inventor
Takefumi Itou
岳文 伊藤
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001370191A priority Critical patent/JP2003173812A/en
Publication of JP2003173812A publication Critical patent/JP2003173812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacity drop detection method of a redox flow battery which can sense lowering of a battery capacity for each cause such as increase of a cell resistance, lowering of open-circuit voltage, and lowering of liquid utilization ratio of electrolyte solution. <P>SOLUTION: A main cell for supplying and draining electrolyte solution of a positive and a negative electrodes and a cell for detection connected so as to commonly use the electrolyte solution with the main cell are provided. At float charging of the main cell 10, a discharge is made at low current for adequate time from the cell for detection, and cell capacity is detected from sensing of a slope of the discharge voltage change. According to this method, capacity lowering due to fall of liquid utilization rate of the electrolyte solution can be detected. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レドックスフロー
電池の容量低下を検出する方法に関するものである。特
に、セル抵抗の増加、充電電圧の低下、および電解液の
液利用率の低下といった原因毎に容量低下を検出するこ
とができる方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for detecting a reduction in capacity of a redox flow battery. In particular, the present invention relates to a method capable of detecting a decrease in capacity for each cause such as an increase in cell resistance, a decrease in charging voltage, and a decrease in liquid utilization rate of an electrolytic solution.

【0002】[0002]

【従来の技術】レドックスフロー電池は、負荷平準化や
瞬停対策用として利用されている。図12はレドックスフ
ロー電池の動作原理を示す説明図である。この電池は、
イオン交換膜からなる隔膜103で正極セル100Aと負極セ
ル100Bとに分離されたセル100を具える。正極セル100A
と負極セル100Bの各々には正極電極104と負極電極105と
を内蔵している。正極セル100Aには正極電解液を供給・
排出するための正極用タンク101が導管106、107を介し
て接続されている。負極セル100Bにも負極電解液を導入
・排出する負極用タンク102が同様に導管109、110を介
して接続されている。各電解液にはバナジウムイオンな
ど原子価が変化するイオンの水溶液を用い、ポンプ10
8、111で循環させ、正負極電極104、105におけるイオン
の価数変化反応に伴って充放電を行う。バナジウムイオ
ンを含む電解液を用いた場合、セル内で充放電時に生じ
る反応は次のとおりである。
2. Description of the Related Art Redox flow batteries are used for load leveling and measures against instantaneous blackouts. FIG. 12 is an explanatory diagram showing the operating principle of the redox flow battery. This battery is
A cell 100 having a positive electrode cell 100A and a negative electrode cell 100B separated by a diaphragm 103 made of an ion exchange membrane is provided. Positive electrode cell 100A
Further, each of the negative electrode cell 100B has a positive electrode 104 and a negative electrode 105 built therein. Supply the positive electrode electrolyte to the positive electrode cell 100A.
A positive electrode tank 101 for discharging is connected via conduits 106 and 107. A negative electrode tank 102 for introducing and discharging a negative electrode electrolyte is also connected to the negative electrode cell 100B via conduits 109 and 110. Use an aqueous solution of vanadium ions and other ions whose valences change for each electrolyte, and pump 10
8 and 111 are circulated, and charging / discharging is performed along with the valence change reaction of the ions in the positive and negative electrodes 104 and 105. When an electrolytic solution containing vanadium ions is used, the reactions that occur during charge and discharge in the cell are as follows.

【0003】 正極:V4+→V5++e-(充電) V4+←V5++e-(放電) 負極:V3++e-→V2+(充電) V3++e-←V2+(放電)[0003] The positive electrode: V 4+ → V 5+ + e - ( charging) V 4+ ← V 5+ + e - ( discharge) negative: V 3+ + e - → V 2+ ( charging) V 3+ + e - ← V 2+ (discharge)

【0004】図13は、上記の電池に用いるセルスタック
の概略構成図である。通常、上記の電池には、複数のセ
ルが積層されたセルスタック200と呼ばれる構成が利用
される。各セルは、隔膜103の両側にカーボンフェルト
製の正極電極104および負極電極105を具える。そして、
正極電極104と負極電極105の各々の外側には、セルフレ
ーム210が配置される。
FIG. 13 is a schematic configuration diagram of a cell stack used in the above battery. Usually, a configuration called a cell stack 200 in which a plurality of cells are stacked is used for the above battery. Each cell has a positive electrode 104 and a negative electrode 105 made of carbon felt on both sides of the diaphragm 103. And
A cell frame 210 is arranged outside each of the positive electrode 104 and the negative electrode 105.

【0005】セルフレーム210は、プラスチックカーボ
ン製の双極板211と、その外周に形成されるフレーム枠2
12とを具える。
The cell frame 210 includes a bipolar plate 211 made of plastic carbon and a frame frame 2 formed on the outer periphery thereof.
12 and.

【0006】フレーム枠212には、マニホールドと呼ば
れる複数の孔が形成されている。1枚のセルフレームに
は、例えば下辺に4つ、上辺に4つの合計8つのマニホ
ールドが設けられ、下辺の2つが正極電解液供給用、残
り2つが負極電解液供給用、上辺の2つが正極電解液排
出用、残り2つが負極電解液排出用となっている。マニ
ホールドは、多数のセルを積層することで電解液の流路
を構成し、図12における導管106、107、109、110へとつ
ながっている。
The frame 212 is formed with a plurality of holes called manifolds. For example, one cell frame is provided with a total of eight manifolds, four on the lower side and four on the upper side. Two of the lower sides are for supplying the positive electrode electrolyte solution, the remaining two are for supplying the negative electrode electrolyte solution, and two of the upper sides are for the positive electrode. The electrolyte is discharged, and the other two are discharged for the negative electrolyte. The manifold constitutes a flow path of the electrolytic solution by stacking a large number of cells and is connected to the conduits 106, 107, 109 and 110 in FIG.

【0007】しかし、このレドックスフロー電池は、充
放電に伴って隔膜を通ってH+イオンが移動したり、正極
電解液を圧送するポンプと負極電解液を圧送するポンプ
の圧力差や正負極電解液間の浸透圧により、隔膜を介し
て電解液が片極側に移動する液移りが生じる。
However, in this redox flow battery, H + ions move through the diaphragm as they are charged and discharged, the pressure difference between the pump for pumping the positive electrode electrolyte solution and the pump for pumping the negative electrode electrolyte solution, and the positive and negative electrode electrolysis. Due to the osmotic pressure between the liquids, liquid transfer occurs in which the electrolytic solution moves to one side through the diaphragm.

【0008】特に、フロート充電の場合、液移りが顕著
に生じる。フロート充電とは、充電装置にレドックスフ
ロー電池と負荷とを並列に接続し、電池に常に一定の電
圧を加えて充電状態にしておき、停電時や負荷変動時に
無瞬断で電池より負荷へ電力を供給する方式である。液
移りが顕著に生じると、両極間の電解液量のバランスが
崩れ、抵抗の増加、容量の低下、電解液の析出が引き起
こされる。この電解液の析出は、5価のバナジウムイオ
ンが水と反応することで起こる。
In particular, in the case of float charging, liquid transfer remarkably occurs. Float charging is a method in which a redox flow battery and a load are connected in parallel to a charging device, and a constant voltage is always applied to the battery to keep it in a charging state, and power is supplied from the battery to the load without interruption during a power failure or load fluctuation. Is the method of supplying. When the liquid transfer occurs remarkably, the balance of the amount of the electrolytic solution between both electrodes is disturbed, which causes an increase in resistance, a decrease in capacity, and precipitation of the electrolytic solution. The deposition of this electrolytic solution occurs when pentavalent vanadium ions react with water.

【0009】このようなフロート充電システムにおい
て、セルスタック内の電池容量に注目した場合、それが
低下する要因は以下の3つが考えられる。
In such a float charging system, when attention is paid to the battery capacity in the cell stack, the following three factors can be considered as the factors causing the decrease.

【0010】(1)セル抵抗が増加した場合。 (2)セルスタックにつながるインバータとの接続個所で
接触不良など何らかの障害が起こり充電電圧が下がり、
電解液の開放電圧が下がった場合。 (3)バナジウムの析出、電解液の価数濃度のバランス崩
れ等により、電解液の液利用率が低下した場合。
(1) When the cell resistance increases. (2) The charging voltage drops due to some trouble such as contact failure at the connection point with the inverter connected to the cell stack,
When the open circuit voltage of the electrolyte drops. (3) When the liquid utilization rate of the electrolytic solution is lowered due to the deposition of vanadium, the imbalance of the valence concentration of the electrolytic solution, or the like.

【0011】[0011]

【発明が解決しようとする課題】しかし、上記のいずれ
の場合も、電池容量の低下とその要因を検知するための
適切な手段がなかった。
However, in any of the above cases, there is no suitable means for detecting the decrease in the battery capacity and the cause thereof.

【0012】特に、フロート充電用のレドックスフロー
電池では常時充電し続けているため、容量の低下を検出
することが難しい。
In particular, the redox flow battery for float charging is constantly charged, so it is difficult to detect the decrease in capacity.

【0013】従って、本発明の主目的は、セル抵抗の増
加、充電電圧の低下、および電解液の液利用率の低下と
いった原因毎に電池容量の低下を検知することができる
レドックスフロー電池の容量低下検出方法を提供するこ
とにある。
Accordingly, the main object of the present invention is to detect the capacity of a redox flow battery capable of detecting a decrease in the battery capacity for each cause such as an increase in cell resistance, a decrease in charging voltage, and a decrease in the electrolyte utilization rate. It is to provide a method for detecting a drop.

【0014】[0014]

【課題を解決するための手段】本発明の第1の特徴は、
レドックスフロー電池にフロート充電を行っている際
に、定格電流密度の1/10〜3/10の電流密度で1000μsec
〜300secの放電に切り替え、その際の電池電圧の低下量
を測定することにある。
The first feature of the present invention is to:
1000 μsec at a current density of 1/10 to 3/10 of the rated current density while float charging the redox flow battery.
Switching to discharge for ~ 300 seconds is to measure the amount of decrease in battery voltage at that time.

【0015】電池の放電開始近傍における電圧降下量を
測定することで、セル抵抗の増加に伴う容量低下を検知
することができる。
By measuring the amount of voltage drop in the vicinity of the start of discharge of the battery, it is possible to detect the decrease in capacity due to the increase in cell resistance.

【0016】フロート充電を行っている際に放電する
と、ほぼ瞬時的に電圧が低下し、その後やや緩やかな低
下が見られる。その後は、電圧の変化がかなり安定して
非常に緩やかな電圧の低下となる。最初の電圧低下は電
極の抵抗や接触抵抗等、物理抵抗増加によるもので、そ
の後の緩やかな変化は電極周辺の化学的な反応の遅れに
よるものである。放電電流密度と放電時間を定めたの
は、電圧の低下が十分に観測しやすい程度の放電を行
い、かつ不必要に放電させないためである。また、放電
時間を1000μsec〜300secとするのは、最初の物理抵抗
による電圧の低下過程を過ぎて1000μsecでほぼ安定し
た状態になるので、そこでの電圧を検出するためであ
る。放電する容量は、電池容量の1/10以下が好ましい。
When discharged during float charging, the voltage drops almost instantaneously, and then a slight drop is observed. After that, the change of the voltage is fairly stable, and the voltage gradually decreases. The first voltage drop is due to an increase in physical resistance such as electrode resistance and contact resistance, and the subsequent gradual change is due to a delay in chemical reaction around the electrodes. The discharge current density and the discharge time are set so that the discharge is performed to such an extent that the voltage drop can be sufficiently observed, and is not unnecessarily discharged. Moreover, the reason why the discharge time is set to 1000 μsec to 300 sec is to detect the voltage there since the voltage is reduced to the stable state at 1000 μsec after the first process of decreasing the voltage due to the physical resistance. The discharging capacity is preferably 1/10 or less of the battery capacity.

【0017】本発明の第2の特徴は、レドックスフロー
電池にフロート充電を行っている際に、1000μsec〜300
sec間フロート充電を停止し、その電池の開放電圧を測
定することにある。
The second feature of the present invention is that the redox flow battery is charged at 1000 μsec to 300 μs during float charging.
It is to stop the float charge for sec and measure the open circuit voltage of the battery.

【0018】これにより、レドックスフロー電池の開放
電圧の低下に伴う容量低下を検知することができる。
As a result, it is possible to detect a decrease in capacity associated with a decrease in open circuit voltage of the redox flow battery.

【0019】開放電圧は、フロート充電を停止すること
により得られる。フロート充電を停止すると、まず瞬時
的な電圧の低下が見られ、次に緩やかな低下になり1000
μsec後は電圧の変化がかなり安定して非常に緩やかな
電圧の低下となる。フロート充電の停止時間を定めたの
は、変化の激しい電圧の低下過程を過ぎてほぼ安定した
状態で開放電圧を検出するためである。
The open circuit voltage is obtained by stopping the float charging. When the float charging is stopped, a momentary drop in voltage is seen, then a gradual drop in 1000
After μsec, the voltage change is fairly stable and the voltage drops very slowly. The stop time of the float charge is determined in order to detect the open circuit voltage in a substantially stable state after passing the drastic voltage decrease process.

【0020】本発明の第3の特徴は、レドックスフロー
電池にフロート充電を行っている際に、定格電流密度の
1/10〜3/10の電流密度で1000μsec〜300secの放電に切
り替え、放電時間に対する電池電圧の低下の傾きを測定
することにある。
The third feature of the present invention is that the rated current density of the redox flow battery is changed during float charging.
It is to switch the discharge to 1000 μsec to 300 sec at a current density of 1/10 to 3/10 and measure the slope of the decrease in battery voltage with respect to the discharge time.

【0021】放電時間に対する電池電圧の低下の傾きを
測定することで、電解液の液利用率の低下に伴う容量低
下を検知することができる。液利用率は、(放電時間×
放電電流値)/{電解液のモル濃度×(電解液量/2)}
で表される。
By measuring the slope of the decrease in the battery voltage with respect to the discharge time, it is possible to detect the decrease in capacity due to the decrease in the liquid utilization rate of the electrolytic solution. The liquid utilization rate is (discharge time ×
Discharge current value) / {Molecular concentration of electrolytic solution × (amount of electrolytic solution / 2)}
It is represented by.

【0022】フロート充電を行っている際に放電する
と、ほぼ瞬時的に電圧が低下し、その後やや緩やかな低
下が見られる。その後は、電圧の変化がかなり安定して
非常に緩やかな電圧の低下となる。放電電流密度と放電
時間を定めたのは、電圧の低下が十分に観測しやすい程
度の放電を行い、かつ不必要に放電させないためであ
る。特に、不必要に放電させると実際の停電等に対応で
きなくなるからである。
When discharged during float charging, the voltage drops almost instantaneously, and then a slight drop is observed. After that, the change of the voltage is fairly stable, and the voltage gradually decreases. The discharge current density and the discharge time are set so that the discharge is performed to such an extent that the voltage drop can be sufficiently observed, and is not unnecessarily discharged. In particular, it is impossible to deal with an actual power failure or the like if the discharge is performed unnecessarily.

【0023】上記第1から第3の特徴におけるレドック
スフロー電池では、電解液は循環、間歇循環、停止のい
ずれであっても構わない。
In the redox flow battery according to the first to third features, the electrolytic solution may be circulated, intermittently circulated or stopped.

【0024】本発明の第4の特徴は、正負極の電解液を
供給・排出させる主セルと、この主セルと電解液を共通
するように接続された検出用セルとを具え、主セルのフ
ロート充電時に検出用セルを用いて適当な充放電運転を
行い、そこから得られる電池効率、または放電時間と出
力の積から定まる電池容量を検出することを特徴とす
る。電池効率は、放電電圧(V)×放電電流(A)×放電時間
(h)/{充電電圧(V)×充電電流(A)×充電時間(h)}で表さ
れる。
The fourth feature of the present invention comprises a main cell for supplying / discharging the positive and negative electrode electrolytic solution and a detecting cell connected in common with the electrolytic solution for the main cell. An appropriate charging / discharging operation is performed using the detection cell at the time of float charging, and the battery capacity obtained from the charging / discharging operation or the battery capacity determined by the product of the discharging time and the output is detected. Battery efficiency is discharge voltage (V) x discharge current (A) x discharge time
(h) / {charging voltage (V) × charging current (A) × charging time (h)}

【0025】この構成により、特に、主セルのフロート
充電を続けたままで、かつ主セル自身を放電させること
なく主セルの容量低下を検知することができる。
With this configuration, it is possible to detect a decrease in the capacity of the main cell, particularly while the float charge of the main cell is continued and without discharging the main cell itself.

【0026】主セルと検出用セルは、同様の構成で良
い。すなわち、図12に示したように、正極と負極との間
を隔膜で隔て、各電極に電解液を供給するセルで主セル
や検出用セルを構成する。主セルおよび検出用セルは、
セルを多数積層したセルスタックとしても良い。
The main cell and the detection cell may have the same structure. That is, as shown in FIG. 12, a positive cell and a negative electrode are separated by a diaphragm, and a cell for supplying an electrolytic solution to each electrode constitutes a main cell or a detection cell. The main cell and detection cell are
A cell stack in which a large number of cells are laminated may be used.

【0027】主セルと検出用セルの接続の仕方は、直列
に接続する場合と、並列に接続する場合がある。直列に
接続する場合、主セルの電解液排出側に検出用セルを接
続することが好ましい。つまり、電解液タンクから主セ
ルに電解液を供給し、続いて検出用セルに電解液を供給
して、その後電解液をタンクに復帰させるように構成す
る。また、並列に接続する場合、電解液タンクから供給
された電解液を主セルと検出用セルの各々に分岐して供
給し、各セルを通過してから電解液を合流させて電解液
タンクに戻すように接続すれば良い。
The main cell and the detection cell may be connected in series or in parallel. When connecting in series, it is preferable to connect the detection cell to the electrolyte discharge side of the main cell. That is, the electrolytic solution is supplied from the electrolytic solution tank to the main cell, then the electrolytic solution is supplied to the detection cell, and then the electrolytic solution is returned to the tank. When connected in parallel, the electrolytic solution supplied from the electrolytic solution tank is branched and supplied to each of the main cell and the detection cell, and the electrolytic solution is merged into the electrolytic solution tank after passing through each cell. Just connect it back.

【0028】この検出用セルを用いる構成においては、
電解液は間歇循環、停止のいずれかとする。検出用セル
では、その内部に残留した電解液だけを充放電させる。
そのため、充放電時、検出用セル内の電解液は循環しな
くても良い。
In the structure using this detecting cell,
The electrolyte is either intermittently circulated or stopped. In the detection cell, only the electrolytic solution remaining inside is charged / discharged.
Therefore, the electrolyte in the detection cell does not have to circulate during charging and discharging.

【0029】上記第1〜第4の特徴のいずれの構成にお
いても、電解液の循環系には、正負極の電解液を混合し
て循環(間歇循環)するタイプと、正負極の電解液を独
立して循環(間歇循環)するタイプのいずれも利用でき
る。通常、前者の場合、正極電解液と負極電解液が混合
して貯留される単一のタンクを用いる。後者の場合は、
正極電解液用と負極電解液用の合計2つのタンクを用い
る。電解液混合タイプ(1タンク型)の循環系では、液
移りによる電解液量のアンバランスは問題とならない。
In any of the configurations of the above-mentioned first to fourth characteristics, the electrolytic solution circulating system includes a type in which the positive and negative electrode electrolytic solutions are mixed and circulated (intermittent circulation) and a positive and negative electrode electrolytic solution. Any of the types that independently circulate (intermittent circulation) can be used. Usually, in the former case, a single tank in which the positive electrode electrolytic solution and the negative electrode electrolytic solution are mixed and stored is used. In the latter case,
A total of two tanks are used, one for the positive electrolyte and one for the negative electrolyte. In the electrolyte mixed type (1 tank type) circulation system, the imbalance in the amount of electrolyte due to liquid transfer does not pose a problem.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)まず、フロート充電から所定電流で所定時
間放電させる本発明容量低下検出方法を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. (Embodiment 1) First, a method for detecting a decrease in capacity of the present invention in which a float charge is discharged at a predetermined current for a predetermined time will be described.

【0031】図12、13に示すレドックスフロー電池シス
テムをフロート充電した状態で、セルから定電流放電し
た際の電圧変化を調べた。この放電は、セルの定格電流
密度(60mA/cm2)の1/10の電流密度で300secとした。こ
こでは、模擬的にセル抵抗の大きいものと小さいものと
を用いて、両者の電圧変化を比較した。
In the state where the redox flow battery system shown in FIGS. 12 and 13 was float-charged, the voltage change when the cell was discharged at a constant current was examined. This discharge was performed at a current density of 1/10 of the rated current density of the cell (60 mA / cm 2 ) for 300 seconds. Here, the voltage changes of both cells were compared by using one having a large cell resistance and one having a small cell resistance.

【0032】その結果、図1に示すように、まず瞬時的
な電圧の低下が見られ(図1のA)、その後やや緩やかな
低下が見られる(図1のB)。その後は電圧の変化がかな
り安定して非常に緩やかな電圧の低下となる(図1の
C)。瞬時的な電圧の低下からその後やや緩やかな電圧
の低下と非常に緩やかな電圧の低下となる変位個所(図
1のZ)を比較すると、セル抵抗の大きい方が電圧の低下
程度(図1のV1)が大きいことがわかった。このことか
ら、フロート充電時に微妙な電流で一定期間放電するこ
とで、セル抵抗の増加に起因する電池容量の低下を検知
することができる。
As a result, as shown in FIG. 1, an instantaneous drop in voltage is first seen (A in FIG. 1), and then a moderate drop is seen (B in FIG. 1). After that, the change in voltage is fairly stable and becomes a very gradual drop in voltage (see Fig. 1).
C). Displacement point where the voltage drops momentarily and then drops slightly gradually (Fig.
Comparing Z) in 1 ), it was found that the larger the cell resistance, the larger the degree of voltage drop (V 1 in FIG. 1 ). From this, it is possible to detect a decrease in battery capacity due to an increase in cell resistance by discharging a delicate current for a certain period during float charging.

【0033】(実施例2)次に、フロート充電を所定時
間停止して、電池の開放電圧を測定する本発明容量低下
検出方法を説明する。
(Embodiment 2) Next, a method for detecting a decrease in capacity of the present invention will be described in which float charging is stopped for a predetermined time and the open circuit voltage of the battery is measured.

【0034】図12、13に示すレドックスフロー電池シス
テムのミニチュア電池システムを用い、セル内に電解液
を停留させて充放電し、充放電の途中で停止して電圧の
変化を測定した。充放電を途中で停止することにより開
放電圧は得られる。この開放電圧がどのように変化する
かを測定した。用いたミニチュアシステムの電極面積は
9cm2である。
Using the miniature battery system of the redox flow battery system shown in FIGS. 12 and 13, the electrolytic solution was retained in the cells for charging / discharging, and the charging was stopped during charging / discharging to measure the voltage change. An open circuit voltage can be obtained by stopping charging / discharging halfway. It was measured how this open circuit voltage changes. The electrode area of the miniature system used is
It is 9 cm 2 .

【0035】充放電は、電池効率の最も良い電流密度で
ある60mA/cm2で行い(定格電流密度は72mA/cm2)、電池
電圧は0.6〜1.6Vとして行った。その際の充放電曲線を
図2に示す。この充放電曲線に示すように、充電初期と
放電終期は電圧の変動が大きいため、これら電圧変動幅
の大きい個所を除いた過程で充放電を停止し、停止に伴
う開放電圧の推移を測定した。ここでは、充放電の途中
で5分間停止を行った。
The charge and discharge was performed at 60 mA / cm 2 is the best current density of the cell efficiency (rated current density of 72 mA / cm 2), the battery voltage were carried out with 0.6~1.6V. The charge / discharge curve at that time is shown in FIG. As shown in this charging / discharging curve, voltage fluctuations are large at the beginning of charging and at the end of discharging. . Here, the charging and discharging were stopped for 5 minutes.

【0036】その結果を図3のグラフに示す。このグラ
フの区間は充電時に停止したときの電圧変化、区間
は充電から放電への切り替え時の電圧変化、区間は放
電時に停止したときの電圧変化を示している。ここで、
充電時に停止した場合、停止後瞬時的に電圧の低下が起
こり(破線部)、その後、電圧変化がないように見える
(細線部)。この区間の過程における電圧変化を拡大
して図4のグラフに示す。このグラフに示すように、充
電を停止すると、急激な電圧の低下が起こり、その後、
比較的緩やかにほぼ一定の割合で電圧が低下している。
このグラフから、電圧変化がほぼ一定になる電圧を測定
すれば、充電電圧の低下に伴う容量低下を検知すること
ができることがわかる。
The results are shown in the graph of FIG. The section of this graph shows the voltage change when the battery is stopped during charging, the section shows the voltage change when switching from charging to discharging, and the section shows the voltage change when the battery is stopped during discharging. here,
When the battery is stopped during charging, the voltage drops instantaneously after the battery is stopped (broken line part), and then it seems that there is no voltage change (thin line part). The voltage change in the process of this section is enlarged and shown in the graph of FIG. As shown in this graph, when charging is stopped, a sharp voltage drop occurs, and then
The voltage is decreasing relatively slowly at an almost constant rate.
From this graph, it can be seen that by measuring the voltage at which the voltage change is almost constant, it is possible to detect the capacity decrease due to the decrease in the charging voltage.

【0037】(実施例3)次に、フロート充電を行った
状態で所定電流にて所定時間放電する本発明容量低下検
出方法を説明する。この方法では、後述する実施例4の
検出用セルを用いず、放電時間に対する電池電圧の低下
の傾きを測定して容量の低下を判断した。
(Embodiment 3) Next, a method for detecting a decrease in capacity according to the present invention will be described in which discharge is carried out at a predetermined current for a predetermined time in the state of being float-charged. In this method, the detection cell of Example 4, which will be described later, was not used, and the slope of the decrease in battery voltage with respect to the discharge time was measured to determine the decrease in capacity.

【0038】図12、13に示すレドックスフロー電池シス
テムでバナジウム濃度の異なる等量の電解液を用い、1.
45Vの定電圧でセルをフロート充電した状態で、セルか
ら定電流放電した際の電圧変化を調べた。電流密度30mA
/cm2(定格電流密度の1/2〜1/3)で放電した場合におけ
る結果を図5に、電流密度10mA/cm2(定格電流密度の1/6
〜1/7)で放電した場合における結果を図6に示す。ま
た、電流密度10mA/cm2の場合における放電開始時の電圧
の変化を図7のグラフに示す。さらに、図7のグラフから
50秒ごとの電圧変化の差分をとって表したものが図8の
グラフである。いずれの場合も、電解液は循環を停止し
た状態で放電を行った。図5、6のグラフにおける各曲線
とX軸およびY軸で囲まれる面積と電流値の積が電池容量
に相当する。これらのグラフから明らかなように、電池
容量が電解液の濃度に応じて変化しており、放電時間に
対する電池電圧の低下の傾きを測定すれば容量低下が検
出できる。なお、ここに言う電池電圧の低下の傾きは、
図1における傾きmに相当する。
In the redox flow battery system shown in FIGS. 12 and 13, using equal amounts of electrolytic solutions having different vanadium concentrations, 1.
With the cell being float-charged at a constant voltage of 45 V, the voltage change was examined when the cell was discharged at a constant current. Current density 30mA
/ cm 2 in FIG. 5 results in the case of discharging under (rated current density of 1 / 2-1 / 3), a current density of 10 mA / cm 2 (of the rated current density 1/6
Fig. 6 shows the results when discharged at ~ 1/7). The graph of FIG. 7 shows the change in voltage at the start of discharge when the current density is 10 mA / cm 2 . Furthermore, from the graph in Figure 7
The graph of FIG. 8 shows the difference in voltage change every 50 seconds. In each case, the electrolyte was discharged while the circulation was stopped. The product of the area surrounded by each curve and the X-axis and the Y-axis in the graphs of FIGS. 5 and 6 and the current value corresponds to the battery capacity. As is clear from these graphs, the battery capacity changes according to the concentration of the electrolytic solution, and the decrease in capacity can be detected by measuring the slope of the decrease in battery voltage with respect to the discharge time. In addition, the slope of the decrease in the battery voltage referred to here is
It corresponds to the slope m in FIG.

【0039】(実施例4)次に、検出用セルを用いた本
発明容量低下検出方法を説明する。図9は検出用セルを
用いた本発明容量低下検出方法の説明図である。
(Embodiment 4) Next, a method for detecting a decrease in capacity of the present invention using a detecting cell will be described. FIG. 9 is an explanatory diagram of a capacity decrease detecting method of the present invention using a detecting cell.

【0040】この測定では、主セル10に検出用セル20を
直列に接続したレドックスフロー電池システムを用い
る。主セル10、検出用セル20のいずれも、図12で示した
セル構造を持っている。本例では、主セル10および検出
用セル20のいずれも多数のセルを積層して、図13と同様
のセルスタックとして構成している。
In this measurement, a redox flow battery system in which a detection cell 20 is connected to the main cell 10 in series is used. Both the main cell 10 and the detection cell 20 have the cell structure shown in FIG. In this example, a large number of cells are stacked in each of the main cell 10 and the detection cell 20 to form a cell stack similar to that shown in FIG.

【0041】図9の具体例では、正極用電解液と負極用
電解液の各々を独立したタンク31、32に貯留した構成で
ある。各タンク31、32と主セル10との間は往路配管41
で、主セル10と検出用セル20の間および検出用セル20と
各タンク31、32との間は復路配管42で接続されている。
各タンク31、32から、まず主セル10に電解液を供給し、
続いて検出用セル20に電解液を供給して、再度各タンク
31、32に電解液を復帰させ、この循環サイクルを繰り返
す。電解液の循環は、例えば各タンク31、32と主セル10
との間に設けたポンプ(図示せず)で行えば良い。ただ
し、検出用セルを充放電させる場合は、電解液の循環は
停止しておく。
The specific example of FIG. 9 has a structure in which the positive electrode electrolytic solution and the negative electrode electrolytic solution are stored in independent tanks 31 and 32, respectively. Outward piping 41 between each tank 31, 32 and the main cell 10
A return pipe 42 is connected between the main cell 10 and the detection cell 20 and between the detection cell 20 and each of the tanks 31 and 32.
From each tank 31, 32, first supply the electrolytic solution to the main cell 10,
Next, supply the electrolyte to the detection cell 20 and
The electrolytic solution is returned to 31, 32, and this circulation cycle is repeated. The circulation of the electrolytic solution is performed by, for example, each tank 31, 32 and the main cell 10
It may be performed by a pump (not shown) provided between and. However, when charging and discharging the detection cell, the circulation of the electrolytic solution is stopped.

【0042】このようなシステムにおいて、主セル10は
フロート充電しておく。一方、検出用セル20は所定時
間、充放電を行う。この充放電は、主セルの定格電流で
打切電圧まで放電した。この検出用セルの充放電を行う
ことにより、電池効率を測定する。また、放電時間と出
力の積から定まる電池容量の変化を測定し、主セルの容
量低下を検知した。
In such a system, the main cell 10 is float charged. On the other hand, the detection cell 20 is charged and discharged for a predetermined time. This charging / discharging was performed to the cutoff voltage at the rated current of the main cell. The battery efficiency is measured by charging and discharging the detection cell. In addition, the change in battery capacity, which is determined by the product of discharge time and output, was measured to detect the decrease in capacity of the main cell.

【0043】(実施例5)実施例4では正極電解液と負
極電解液とを独立した循環系を有するシステムを用いた
が、実施例5では正極電解液と負極電解液とを混合する
循環系を持つシステムを用いる。
(Example 5) In Example 4, a system having an independent circulation system for the positive electrode electrolyte and the negative electrode electrolyte was used, but in Example 5, a circulation system for mixing the positive electrode electrolyte and the negative electrode electrolyte was used. Use a system with.

【0044】図10は本例で用いるシステムを示す概略図
である。電解液タンク30は正極電解液と負極電解液とが
混合して貯留される単一のものである。このタンクから
供給された電解液は、往路配管41の途中で分岐して主セ
ル10の正極と負極に供給される。続いて、検出用セル20
にも電解液が供給され、検出用セル20から排出された電
解液は復路配管42で合流されて電解液タンク30に戻され
る。その他、主セル10、検出用セル20の構成は実施例4
と同様である。
FIG. 10 is a schematic diagram showing a system used in this example. The electrolytic solution tank 30 is a single tank in which the positive electrode electrolytic solution and the negative electrode electrolytic solution are mixed and stored. The electrolytic solution supplied from this tank is branched in the middle of the outward pipe 41 and supplied to the positive electrode and the negative electrode of the main cell 10. Then, the detection cell 20
Also, the electrolytic solution is supplied, and the electrolytic solution discharged from the detection cell 20 is merged in the return pipe 42 and returned to the electrolytic solution tank 30. In addition, the configurations of the main cell 10 and the detection cell 20 are the same as those in the fourth embodiment.
Is the same as.

【0045】この場合も、主セル10をフロート充電し、
その際に検出用セル20を低電流で充放電して、その放電
時間と出力から主セルの容量低下を検知した。
Also in this case, the main cell 10 is float-charged,
At that time, the detection cell 20 was charged and discharged at a low current, and the decrease in the capacity of the main cell was detected from the discharge time and output.

【0046】(実施例6)次に、主セルと検出用セルを
並列に接続した2タンク型のシステムを用いて実施した
場合について、図11に基づいて説明する。
(Embodiment 6) Next, the case of using a two-tank system in which a main cell and a detection cell are connected in parallel will be described with reference to FIG.

【0047】このシステムでも、主セル10、検出用セル
20の構成は実施例4と同様であり、主セル10をフロート
充電している際に検出用セル20を充放電して、そこから
得られる電池効率または放電時間と出力の積から定まる
電池容量の変化から主セル10の容量低下を検知すること
ができる。
Also in this system, the main cell 10 and the detection cell
The configuration of 20 is similar to that of the fourth embodiment, and the detection cell 20 is charged / discharged while the main cell 10 is float-charged, and the battery capacity determined from the battery efficiency or the product of the discharge time and the output is obtained. The decrease in the capacity of the main cell 10 can be detected from the change in

【0048】各電解液タンク31、32から送り出された電
解液は、それぞれ主セル10と検出用セル20とに分岐して
供給され、両セル10、20を通過した後、正極用電解液、
負極用電解液の各々ごとに合流され、各電解液は正極電
解液用タンク31と負極電解液用タンク32に復帰される。
The electrolytic solutions sent from the electrolytic solution tanks 31 and 32 are respectively branched and supplied to the main cell 10 and the detection cell 20, and after passing through both cells 10 and 20, the electrolytic solution for the positive electrode,
The negative electrode electrolyte solutions are joined together, and the respective electrolyte solutions are returned to the positive electrode electrolyte solution tank 31 and the negative electrode electrolyte solution tank 32.

【0049】[0049]

【発明の効果】以上説明したように、本発明の容量低下
検出方法によれば、セル抵抗の増加、充電電圧の低下、
および電解液の液利用率の低下といった原因毎に容量低
下を検出することができる。
As described above, according to the capacity drop detecting method of the present invention, the cell resistance increases, the charging voltage drops,
Also, it is possible to detect a capacity decrease for each cause such as a decrease in the electrolyte utilization rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電した場合における電圧変化を示すグラフで
ある。
FIG. 1 is a graph showing a voltage change when discharged.

【図2】充放電曲線を示すグラフである。FIG. 2 is a graph showing a charge / discharge curve.

【図3】充放電を停止した場合の電池の電圧変化を示す
グラフである。
FIG. 3 is a graph showing a voltage change of a battery when charging / discharging is stopped.

【図4】図3におけるの領域を拡大して示したグラフ
である。
4 is a graph showing an enlarged area of FIG.

【図5】電流密度30mA/cm2で放電した場合における電圧
変化を示すグラフである。
FIG. 5 is a graph showing a voltage change when discharged at a current density of 30 mA / cm 2 .

【図6】電流密度10mA/cm2で放電した場合における電圧
変化を示すグラフである。
FIG. 6 is a graph showing changes in voltage when discharged at a current density of 10 mA / cm 2 .

【図7】電流密度10mA/cm2の場合における放電開始時の
電圧の変化を示すグラフである。
FIG. 7 is a graph showing changes in voltage at the start of discharge when the current density is 10 mA / cm 2 .

【図8】図7のグラフから50秒ごとの電圧変化の差分を
とって表したグラフである。
8 is a graph showing the difference in voltage change every 50 seconds from the graph of FIG.

【図9】本発明方法に用いる2タンク型レドックスフロ
ー電池システムの概略図である。
FIG. 9 is a schematic view of a two-tank type redox flow battery system used in the method of the present invention.

【図10】本発明方法に用いる1タンク型レドックスフ
ロー電池システムの概略図である。
FIG. 10 is a schematic view of a one-tank type redox flow battery system used in the method of the present invention.

【図11】本発明方法に用いる2タンク型レドックスフ
ロー電池システムの概略図である。
FIG. 11 is a schematic view of a two-tank type redox flow battery system used in the method of the present invention.

【図12】レドックスフロー電池の原理説明図である。FIG. 12 is a diagram illustrating the principle of a redox flow battery.

【図13】レドックスフロー電池のセルスタックの構成
図である。
FIG. 13 is a configuration diagram of a cell stack of a redox flow battery.

【符号の説明】[Explanation of symbols]

10 主セル 20 検出用セル 30 電解液タンク 31 正極電解液用タンク 32 負極電解液用タンク 41 往路配管 42 復路配管 100 セル 100A 正極セル 100B 負極セル 101 正極用タンク 102 負極用タンク 103 隔膜 104 正極電極 105 負極電極 106、107、109、110 導管 108、111 ポンプ 200 セルスタック 210 セルフレーム 211 双極板 212 フレーム枠 10 Main cell 20 Detection cell 30 Electrolyte tank 31 Positive Electrolyte Tank 32 Anode electrolyte tank 41 Outward piping 42 Return piping 100 cells 100A positive electrode cell 100B negative cell 101 Positive tank 102 Anode tank 103 diaphragm 104 Positive electrode 105 Negative electrode 106, 107, 109, 110 conduits 108, 111 pumps 200 cell stack 210 cell frame 211 bipolar plate 212 frame frame

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 2G016 CB23 2G035 AB03 AC01 AC11 5H026 AA10 HH06 HH10 RR01 5H027 AA10 KK54    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuyuki Tokuda             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. F-term (reference) 2G016 CB23                 2G035 AB03 AC01 AC11                 5H026 AA10 HH06 HH10 RR01                 5H027 AA10 KK54

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 レドックスフロー電池にフロート充電を
行っている際に、定格電流密度の1/10〜3/10の電流密度
で1000μsec〜300secの放電に切り替え、その際の電池
電圧の低下量を測定することを特徴とするレドックスフ
ロー電池の容量低下検出方法。
1. When performing float charging on a redox flow battery, switching to discharge of 1000 μsec to 300 sec at a current density of 1/10 to 3/10 of the rated current density, and reducing the amount of decrease in battery voltage at that time. A method for detecting a reduction in capacity of a redox flow battery, characterized by measuring.
【請求項2】 レドックスフロー電池にフロート充電を
行っている際に、1000μsec〜300sec間フロート充電を
停止し、その電池の開放電圧を測定することを特徴とす
るレドックスフロー電池の容量低下検出方法。
2. A method for detecting a decrease in capacity of a redox flow battery, which comprises: during float charging of the redox flow battery, stopping the float charging for 1000 μsec to 300 sec and measuring the open circuit voltage of the battery.
【請求項3】 レドックスフロー電池にフロート充電を
行っている際に、定格電流密度の1/10〜3/10の電流密度
で1000μsec〜300secの放電に切り替え、放電時間に対
する電池電圧の低下の傾きを測定することを特徴とする
レドックスフロー電池の容量低下検出方法。
3. When performing float charging on a redox flow battery, switching to discharge of 1000 μsec to 300 sec at a current density of 1/10 to 3/10 of the rated current density, and a slope of decrease in battery voltage with respect to discharge time. A method for detecting a reduction in capacity of a redox flow battery, characterized by:
【請求項4】 正負極の電解液を供給・排出させる主セ
ルと、この主セルと電解液を共通するように接続された
検出用セルとを具え、 主セルのフロート充電時に検出用セルを充放電し、そこ
から得られる電池効率、または放電時間と出力の積から
定まる電池容量の変化を判断することを特徴とするレド
ックスフロー電池の容量低下検出方法。
4. A main cell for supplying / discharging an electrolyte solution for positive and negative electrodes, and a detection cell connected in common with the electrolyte solution for the main cell, wherein the detection cell is provided during float charging of the main cell. A method for detecting a reduction in capacity of a redox flow battery, which comprises charging and discharging, and determining a change in battery capacity determined from the product of the battery efficiency obtained from the charge or discharge or the output.
【請求項5】 正負極電解液が混合される電解液循環系
を具えることを特徴とする請求項1〜4のいずれかに記載
のレドックスフロー電池の容量低下検出方法。
5. The method for detecting a decrease in capacity of a redox flow battery according to claim 1, further comprising an electrolytic solution circulation system in which a positive and negative electrode electrolytic solution is mixed.
JP2001370191A 2001-12-04 2001-12-04 Capacity drop detection method of redox flow battery Pending JP2003173812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370191A JP2003173812A (en) 2001-12-04 2001-12-04 Capacity drop detection method of redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370191A JP2003173812A (en) 2001-12-04 2001-12-04 Capacity drop detection method of redox flow battery

Publications (1)

Publication Number Publication Date
JP2003173812A true JP2003173812A (en) 2003-06-20

Family

ID=19179450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370191A Pending JP2003173812A (en) 2001-12-04 2001-12-04 Capacity drop detection method of redox flow battery

Country Status (1)

Country Link
JP (1) JP2003173812A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
EP2383158A2 (en) 2010-04-28 2011-11-02 Nissin Kogyo Co., Ltd. Connection structure for electrical component assembly, hydraulic pressure control apparatus, and method for producing a pair electrically conductive members
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
JP2013037857A (en) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd Redox flow cell
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
WO2012135473A3 (en) * 2011-03-29 2013-03-14 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
AT512184A4 (en) * 2012-01-23 2013-06-15 Cellstrom Gmbh SYSTEM FOR ENERGY GENERATION BZW. STORAGE OF ELECTROCHEMICAL BASIS
CN103163464A (en) * 2011-12-14 2013-06-19 微宏动力***(湖州)有限公司 Detection method of cell in battery pack
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
WO2014157274A1 (en) * 2013-03-29 2014-10-02 ブラザー工業株式会社 Vanadium redox cell and method for operating same
WO2014162326A1 (en) * 2013-03-30 2014-10-09 Leシステム株式会社 Redox flow battery and method for operating same
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
CN104835975A (en) * 2014-02-12 2015-08-12 Oci有限公司 Method and system for evaluating redox flow battery
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
JP2016540347A (en) * 2013-11-15 2016-12-22 ロッキード・マーティン・アドバンスト・エナジー・ストレージ・エルエルシーLockheed Martin Advanced Energy Storage, LLC Method for determining state of charge of redox flow battery and method for calibration of reference electrode
KR20170120226A (en) * 2016-04-20 2017-10-31 한국에너지기술연구원 Test device of accelerated life time for redox flow battery
US9895991B2 (en) 2015-01-22 2018-02-20 Samsung Electronics Co., Ltd. Method and apparatus estimating state of battery
CN108226789A (en) * 2017-11-21 2018-06-29 东南大学 A kind of performance test methods of intermediate temperature solid oxide fuel cell
CN110010934A (en) * 2019-04-19 2019-07-12 山东科技大学 A kind of method of on-line measurement fluid cell electrolyte resistance
WO2020026655A1 (en) * 2018-07-30 2020-02-06 住友電気工業株式会社 Redox flow cell system
WO2021235588A1 (en) * 2020-05-18 2021-11-25 주식회사 에코스 Vanadium redox flow battery stack evaluation system

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
EP2383158A2 (en) 2010-04-28 2011-11-02 Nissin Kogyo Co., Ltd. Connection structure for electrical component assembly, hydraulic pressure control apparatus, and method for producing a pair electrically conductive members
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
WO2012135473A3 (en) * 2011-03-29 2013-03-14 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
JP2013037857A (en) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd Redox flow cell
CN103163464A (en) * 2011-12-14 2013-06-19 微宏动力***(湖州)有限公司 Detection method of cell in battery pack
AT512184A4 (en) * 2012-01-23 2013-06-15 Cellstrom Gmbh SYSTEM FOR ENERGY GENERATION BZW. STORAGE OF ELECTROCHEMICAL BASIS
AT512184B1 (en) * 2012-01-23 2013-06-15 Cellstrom Gmbh SYSTEM FOR ENERGY GENERATION BZW. STORAGE OF ELECTROCHEMICAL BASIS
WO2014157274A1 (en) * 2013-03-29 2014-10-02 ブラザー工業株式会社 Vanadium redox cell and method for operating same
WO2014162326A1 (en) * 2013-03-30 2014-10-09 Leシステム株式会社 Redox flow battery and method for operating same
JP2019160804A (en) * 2013-11-15 2019-09-19 ロッキード マーティン エナジー, エルエルシーLockheed Martin Energy, Llc Method for determining charging state of redox flow battery and reference electrode calibration method
JP2016540347A (en) * 2013-11-15 2016-12-22 ロッキード・マーティン・アドバンスト・エナジー・ストレージ・エルエルシーLockheed Martin Advanced Energy Storage, LLC Method for determining state of charge of redox flow battery and method for calibration of reference electrode
CN104835975A (en) * 2014-02-12 2015-08-12 Oci有限公司 Method and system for evaluating redox flow battery
EP2908374A1 (en) * 2014-02-12 2015-08-19 OCI Company Ltd. Method and system for evaluating redox flow battery
JP2015153754A (en) * 2014-02-12 2015-08-24 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method and device for evaluating redox flow battery
US9895991B2 (en) 2015-01-22 2018-02-20 Samsung Electronics Co., Ltd. Method and apparatus estimating state of battery
KR20170120226A (en) * 2016-04-20 2017-10-31 한국에너지기술연구원 Test device of accelerated life time for redox flow battery
KR101877968B1 (en) * 2016-04-20 2018-07-13 한국에너지기술연구원 Test device of accelerated life time for redox flow battery
CN108226789A (en) * 2017-11-21 2018-06-29 东南大学 A kind of performance test methods of intermediate temperature solid oxide fuel cell
WO2020026655A1 (en) * 2018-07-30 2020-02-06 住友電気工業株式会社 Redox flow cell system
JPWO2020026655A1 (en) * 2018-07-30 2021-08-02 住友電気工業株式会社 Redox flow battery system
US11251449B2 (en) 2018-07-30 2022-02-15 Sumitomo Electric Industries, Ltd. Redox flow battery system
JP7248029B2 (en) 2018-07-30 2023-03-29 住友電気工業株式会社 Redox flow battery system
CN110010934A (en) * 2019-04-19 2019-07-12 山东科技大学 A kind of method of on-line measurement fluid cell electrolyte resistance
CN110010934B (en) * 2019-04-19 2021-11-19 山东科技大学 Method for measuring resistance of electrolyte of flow battery on line
WO2021235588A1 (en) * 2020-05-18 2021-11-25 주식회사 에코스 Vanadium redox flow battery stack evaluation system

Similar Documents

Publication Publication Date Title
JP2003173812A (en) Capacity drop detection method of redox flow battery
JP4140691B2 (en) Operating method of redox flow battery
US10608274B2 (en) Redox flow battery and method for operating the battery continuously in a long period of time
KR101809332B1 (en) Regenerating module for electrolyte of flow battery and regenerating method for electrolyte of flow battery using the same
CN102354761B (en) Flow cell system and shutdown protection method as well as device thereof
KR20180092896A (en) Method and device for rebalancing electrolyte of flow battery
WO2014162326A1 (en) Redox flow battery and method for operating same
US20140099520A1 (en) Liquid Flow Battery System and Repairing Device Thereof
JP2006114360A (en) Method for operating redox flow battery system
JP2018503099A (en) Flow battery system charge state monitoring and measurement method, flow battery based on redundant design of SOC detection device, flow battery actual capacity determination method and device, flow battery AC side input / output characteristics estimation method and method system
JP2020196906A (en) Abnormality diagnosis program of water electrolysis apparatus, and water electrolysis system
CN106795638A (en) Multiple pileup electrochemical compressor system and operating method
CN110620250A (en) Flow battery energy storage device and flow battery energy storage system
CN109585883B (en) Real-time monitoring method and system for charge state of all-vanadium redox flow battery
CN105144455A (en) Method of maintaining health of a flow battery
CN107959038B (en) Flow battery pulse type charging and discharging system and method for improving electrolyte utilization rate
JPH10284104A (en) Starting method for fuel cell
CN105702980B (en) A kind of online control method and its system for restoring flow battery system performance
JP2007311210A (en) Deterioration state detection method of redox flow battery
JP3507818B2 (en) Operating Redox Flow Battery
KR102441603B1 (en) Redox flow battery system and method for balancing state of charge thereof
JP2003208916A (en) Operating method of vanadium redox flow battery
CN110326144A (en) Polymer dielectric film and preparation method thereof, electrochemical cell and flow battery, the composition for polymer dielectric film
CN117239186B (en) SOH (solid-state oxygen) online evaluation device and method for all-vanadium redox flow battery system
Tsuda et al. Development of intermittent redox flow battery for PV system