JP2003156297A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2003156297A
JP2003156297A JP2001351720A JP2001351720A JP2003156297A JP 2003156297 A JP2003156297 A JP 2003156297A JP 2001351720 A JP2001351720 A JP 2001351720A JP 2001351720 A JP2001351720 A JP 2001351720A JP 2003156297 A JP2003156297 A JP 2003156297A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
transfer plate
heat exchanger
transfer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001351720A
Other languages
Japanese (ja)
Inventor
Jinsai Cho
仁才 儲
Kanichi Kadotani
▲皖▼一 門谷
Toshinobu Tanimura
利伸 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2001351720A priority Critical patent/JP2003156297A/en
Priority to US10/294,555 priority patent/US20030094265A1/en
Publication of JP2003156297A publication Critical patent/JP2003156297A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of further improving heat exchanging efficiency. SOLUTION: A thermoelectric generating module 7 as the heat exchanger is constituted by arranging and forming a large number of projections 5a, 5a at least surfaces of which are made of a low wettable material on a heat transfer surface 5s of a heat transfer plate (heat transfer member) 5 smaller than 0.01 mm in height and width and smaller than 0.01 mm in pitch.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、伝熱部材を介して
熱交換を行なう熱交換器に関し、詳しくは上記熱交換器
の伝熱部材における伝熱面の構成に関するものである。 【0002】 【従来の技術】例えば、図13に示すサーモサイフォン
型の熱電発電装置Aは、ダクトBaを流れる高温流体で
伝熱管Bb、Bb…を炙り、貯留部Bcに貯留された熱
媒体Wを加熱して蒸気を生成する蒸発部Bと、この蒸発
部Bと連通するチャンバCaに、熱電モジュールEと伝
熱板(伝熱部材)Fおよび水冷板Gとを備えた熱電発電モ
ジュールDを収容した熱電変換部Cとを具備している。 【0003】ここで、上記熱電発電モジュールDは広義
の熱交換器であって、熱電モジュールEの高温側に伝熱
板F、熱電モジュールEの低温側に水冷板Gが設けられ
ており、蒸発部Bで生成された熱媒体Wの蒸気が伝熱板
Fの表面(伝熱面)に触れて凝縮する際、熱を放出して熱
電モジュールEの高温側が加熱されることにより、水冷
板Fで冷却されている熱電モジュールEの低温側との温
度差に基づいて、熱電モジュールEを構成するP型/N
型半導体の動作により発電が為される。 【0004】また、凝縮熱伝達においては膜状凝縮より
滴状凝縮の方が熱交換効率の大きいことが良く知られて
おり、このため熱交換器としての上記熱電発電モジュー
ルDにおいては、図14に示す如く伝熱板Fの表面(伝
熱面)にポリフッ化エチレン系樹脂(登録商標:テフロ
ン)等の低濡れ性、すなわち凝縮液と親和性を持たない
ために濡れ性の極めて低い材料から成る被膜Fcを形成
することにより、伝熱板Fに触れた凝縮液Wが滴状を形
成するよう構成している。 【0005】一方、図示していない冷凍装置等を構成す
る熱交換器のように、伝熱板における表面(伝熱面)の温
度が0℃以下となる熱交換器においては、空気中水分子
の凝縮・凝固に起因する着霜による熱変換効率の低下を
可及的に防止することを目的として、上述した熱電発電
モジュールDと同じく、伝熱板の表面(伝熱面)に低濡れ
性の材料から成る被膜を形成し、最初に伝熱板に触れて
凝縮した水を滴状とさせ、霜層の根元を弱体化させるこ
とによって、伝熱板の表面から着霜が剥離し易くなるよ
う工夫されている。 【0006】 【発明が解決しようとする課題】ところで、上述した熱
電発電モジュール(熱交換器)Dの如く、伝熱板Fにおけ
る平坦な表面(伝熱面)に濡れ性の低い被膜Fcを形成し
た構成では、図14に示す如く滴状となった熱媒体(凝
縮液)Wにおける伝熱板F(被膜Fc)との接触角度θ
は、110°前後に止まっていた。 【0007】このため、伝熱板Fの表面(伝熱面)は理想
的な滴状凝縮面から遠く、熱交換効率について必ずしも
十分とは言えず、もって更なる熱交換効率の向上が望ま
れていた。 【0008】また、冷却装置を構成する熱交換器におい
て、伝熱板の平坦な表面(伝熱面)に濡れ性の低い被膜を
形成した構成でも、凝縮した水滴と伝熱板(被膜)との接
触角度は110°前後に留まっていた。 【0009】このため、伝熱板の表面(伝熱面)における
濡れ性が十分に小さいとは言えず、着霜の剥離が滞って
伝熱板の表面(伝熱面)に滞積してしまうことで、熱交換
効率の大幅な低下を招来する不都合があった。 【0010】本発明は上記実状に鑑みて、さらなる熱交
換効率の向上を達成し得る熱交換器の提供を目的とする
ものである。 【0011】 【課題を解決するための手段および効果】本発明に関わ
る熱交換器は、伝熱部材を介して熱交換を行なう熱交換
器であって、前記伝熱部材の伝熱面に、少なくとも表面
が低濡れ性の材料から成る多数の突起を、高さおよび幅
が 0.01mm より小さく、かつ 0.01mm より小さいピッチ
で配列形成して成ることを特徴としている。 【0012】上記構成によれば、伝熱部材における伝熱
面が、濡れ性の極めて小さい超低表面エネルギー表面を
構成することとなる。 【0013】このため、伝熱部材における伝熱面が凝縮
伝熱面の場合、上記伝熱面は理想的な滴状凝縮面に近い
ものとなり、良好な熱交換効率を得ることが可能とな
る。 【0014】また、伝熱部材における伝熱面が低温伝熱
面の場合、濡れ性が極めて小さいために着霜が剥離し易
い球状となり、着霜が伝熱板の表面に滞積してしまうこ
とが抑えられ、もって良好な熱交換効率を得ることが可
能となる。 【0015】このように、本発明に関わる熱交換器によ
れば、熱交換効率のさらなる向上を達成することが可能
となる。 【0016】 【発明の実施の形態】以下、本発明の実施例を、図面を
参照しながら詳細に説明する。図1は、熱電発電装置に
本発明を適用した実施例を示しており、この熱電発電装
置1は、ダクト2aを流れる高温流体で伝熱管2bを炙
り、貯留部2cに貯留された熱媒体Wを加熱して蒸気を
生成する蒸発部1Aと、この蒸発部1Aと連通するチャ
ンバ3cに、熱電モジュール4と伝熱板(伝熱部材)5お
よび水冷板6とを備えた熱電発電モジュール7を収容し
た熱電変換部1Bとを備えている。 【0017】ここで、上記熱電発電モジュール7は広義
の熱交換器であって、熱電モジュール4の高温側に伝熱
板(伝熱部材)5、低温側に水冷板6が設けられており、
蒸発部1Aで生成された熱媒体Wの蒸気が、伝熱板5の
伝熱面5sに触れて凝縮する際、熱を放出して熱電モジ
ュール4の高温側が加熱されることにより、水冷板6で
冷却されている熱電モジュール4の低温側との温度差に
基づいて、熱電モジュール4を構成するP型/N型半導
体の動作により発電が為される。 【0018】図1および図2に示す如く、上記伝熱板5
における伝熱面(凝縮伝熱面)5sには、極めて微細な多
数のピン(突起)5a、5a…が設けられている。 【0019】個々のピン5aは、高さ寸法hおよび径
(幅)寸法dが 0.01 mmより小さい極めて微小なオーダー
で形成された円柱形状を呈しており、多数のピン5a、
5a…は、隣合うピン5a同士のピッチpが 0.01 mmよ
り小さい極めて微小な間隔を設けて格子状に配列形成さ
れている。 【0020】また、伝熱板5における各ピン5aは、そ
の全体がポリフッ化エチレン系樹脂(登録商標:テフロ
ン)等の低濡れ性、すなわち凝縮液と親和性を持たない
ために濡れ性の極めて低い材料から形成され、少なくと
も表面が低濡れ性の材料から形成されるように構成され
ている。 【0021】上述した如く、表面が低濡れ性の材料から
成る多数のピン5aを設けたことによって、伝熱部材5
における伝熱面5sには、微小な凹凸を備えた濡れ性の
極めて小さい超低表面エネルギー表面が構成されること
となる。 【0022】図3は、上述した伝熱部材5の作成手順を
示しており、上記伝熱部材5を作成するには、先ず図3
(a)に示す如く、ステンレス材等から成る伝熱板ベース
5Aの表面に、ポリフッ化エチレン系樹脂等の低濡れ性
材料から成る表面層5Bを、形成しようとするピン5a
の高さ寸法h(図2参照)よりも厚く形成し、次いで図3
(b)に示す如く微細加工技術を用い、上記表面層5Bを
加工して所定数のピン5a、5a…を形成する。 【0023】なお、上記伝熱板ベース5Aの材料として
は、熱伝導性やコストを考慮した上で、ステンレス材以
外の種々の材料(例えばアルミニウム材等)をも採用する
ことが可能である。また、上記表面層5B、すなわち各
々のピン5aを構成する材料としては、低濡れ性の条件
を満たすものであれば、ポリフッ化エチレン系樹脂以外
の種々の材料(例えばシリコーン樹脂等)をも採用し得る
ことは勿論である。 【0024】図4に示す如く、上述した伝熱板5の伝熱
面5sに熱媒体Wの蒸気が触れて凝縮すると、その熱媒
体(凝縮液)Wは複数のピン5a、5a…によって支えら
れて球体に近似した滴状となる。 【0025】また、図4から明らかなように、滴状とな
った熱媒体(凝縮液)Wの伝熱板5に対する接触角θf
は、図14に示した従来の伝熱板Fに対する熱媒体(凝
縮液)Wの接触角θに比べて格段に大きなものとなる。 【0026】ここで、上記接触角θfは下記の 式に
示す如く、超低表面エネルギー表面においてAg、すな
わち凹凸表面における気体部分の占める面積の割合に依
存することが知られている。 cosθf=(1−Ag ) cosθ−Ag … 式 なお、熱媒体Wとしては水、フロン、フロリナート(登
録商標)等が採用されるものの、種々の熱媒体Wにも上
述した関係が成立することは勿論である。 【0027】図5は、接触角θfのAgに対する依存性
を示しており、この図(グラフ)から明らかなように、平
面に対する接触角θが110°の熱媒体でも、Agが
0.5の場合には、接触角θfが130°前後にまで増大
し、さらにAgが 0.9の場合には、接触角θfが160
°前後にまで増大することとなる。 【0028】ここで、実施例に示した伝熱板5において
は、そのAgが 0.5以上、望ましくは 0.7〜 0.9となる
よう、伝熱面5sに多数のピン5a、5a…を形成して
いるものである。 【0029】このため、伝熱板5に触れて滴状となった
熱媒体(凝縮液)Wの接触角θfは、平滑な伝熱板に対す
る接触角θ(図14参照)に比べて格段に増大し、もって
伝熱板5の伝熱面5aは理想的な滴状凝縮面に近いもの
となり、良好な熱交換効率を得ることが可能となる。 【0030】また、冷凍装置等を構成する熱交換器に本
発明を適用した場合、すなわち図1〜図5に示した伝熱
部材5における伝熱面5aが低温伝熱面であると見倣し
た場合、上述した如く伝熱部材5における伝熱面5aの
濡れ性が極めて小さいため、伝熱面5aに対する着霜は
剥離し易い球状となり、もって伝熱板5に対する着霜の
滞積が可及的に防止され、良好な熱交換効率を得ること
が可能となる。 【0031】なお、上述した実施例におけるピン5a
は、図2に示す如く円柱形状を呈しているが、上記ピン
5aの形態は円柱形状に限定されるものではなく、図6
に示す如き楕円柱形状、図7に示す如き四角柱形状、さ
らには図8に示す如き円錐形状等、様々な形態を採用す
ることが可能である。 【0032】ところで、図1〜図8に示した伝熱板5
は、ピン5aの全体をポリフッ化エチレン系樹脂等の低
濡れ性材料で形成しているが、上記ポリフッ化エチレン
系樹脂等は金属材料と比べて熱伝導性が低いため、伝熱
板5における熱伝達効率の低下は否めない。 【0033】図9は、熱伝達効率の向上を目的とした伝
熱板の他の実施例を示しており、この伝熱板10は、伝
熱面10sに極めて微細な多数のピン(突起)10a、1
0a…が設けられ、これらピン10a、10a…は、高
さ寸法hおよび径(幅)寸法dが 0.01 mmより小さい極め
て微小なオーダーで形成された円柱形状を呈し、隣合う
ピン10a同士のピッチpが 0.01 mmより小さい極めて
微小な間隔を設けて格子状に配列形成されている。 【0034】また、伝熱板10における各ピン10a、
10a…の表面には、ポリフッ化エチレン系樹脂(登録
商標:テフロン)等の低濡れ性、すなわち凝縮液と親和
性を持たないために濡れ性の極めて低い材料から成る被
膜10cが形成されている。 【0035】図10は、上述した伝熱部材10の作成手
順を示しており、上記伝熱部材10を作成するには、先
ず図10(a)に示す如く、銅材等から成る伝熱板ベース
10Aの表面に、エッチング等の微細加工技術を用いて
所定数のピン10a、10a…を形成する。 【0036】次いで図10(b)に示す如く、伝熱板ベー
ス10Aの表面、言い換えれば各々のピン10aの表面
に、ポリフッ化エチレン系樹脂等の低濡れ性材料から成
る被膜10cを、塗装や蒸着等の適宜なコーティング手
段を用いて形成する。 【0037】なお、上記伝熱板ベース5Aの材料として
は、熱伝導性やコストを考慮した上で、銅材以外の種々
の材料を採用することが可能である。また、上記被膜1
0cとしては、低濡れ性の条件を満たすものであれば、
ポリフッ化エチレン系樹脂以外の種々の材料(例えばシ
リコーン樹脂等)をも採用し得ることは言うまでもな
い。 【0038】上記構成の伝熱板10によれば、ピン10
aの主体は銅材等の金属材料から構成されているため、
ピンの全体を低濡れ性材料で形成している図1〜図8に
示す伝熱板に比較して、大幅な熱伝達効率の向上を達成
することが可能となる。 【0039】図11に示した伝熱板20は、多数のロー
フィン20F、20F…を備えており、これらローフィ
ン20Fの外面を含む伝熱板20の表面20sには、極
めて微細な多数のピン(突起)20a、20a…が設けら
れている。 【0040】なお、これらピン20a、20a…に関わ
る構成、すなわち具体的な形状、レイアウト、製造手順
に関しては、図1〜図8に示した伝熱板5、あるいは図
9および図10に示した伝熱板10と基本的に変わると
ころはない。 【0041】上記構成の伝熱板20によれば、ローフィ
ン20Fによる拡大伝熱面効果および熱媒体の表面張力
効果と、多数のピン20a、20a…を設けたことによ
る凝縮伝熱効果とにより、極めて効率の良い熱交換を実
施することが可能となる。 【0042】図12に示した伝熱板30は、板状を呈す
る多数のフィン30F、30F…を備えており、これら
フィン30Fの外面を含む伝熱板30の表面30sに
は、極めて微細な多数のピン(突起)30a、30a…が
設けられている。 【0043】なお、これらピン30a、30a…に関わ
る構成、すなわち具体的な形状、レイアウト、製造手順
に関しては、図1〜図8に示した伝熱板5、あるいは図
9および図10に示した伝熱板10と基本的に変わると
ころはない。 【0044】上記構成の伝熱板30によれば、フィン3
0Fによる拡大伝熱面効果と、多数のピン30a、30
a…を設けたことによる凝縮伝熱効果とにより、極めて
効率の良い熱交換を実施することが可能となる。 【0045】さらに、上記構成の伝熱板30を冷凍装置
等の熱交換器に用いた場合、多数のピン30a、30a
…を設けたことで着霜の滞積が可及的に防止され、着霜
に起因する通風抵抗の増加が未然に防止されることによ
って、高性能な低温熱交換器が実現されることとなる。 【0046】なお、上述した実施例においては、本発明
を熱電発電装置や冷凍装置における熱交換器に適用した
例を示したが、伝熱部材を介して熱交換を行なう熱交換
器であれば、種々の産業分野における様々な装置を構成
する熱交換器に対しても、本発明を有効に適用し得るこ
とは言うまでもない。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for exchanging heat via a heat transfer member, and more particularly, to a heat transfer surface of the heat transfer member of the heat exchanger. It is related to the configuration of 2. Description of the Related Art For example, a thermosiphon type thermoelectric generator A shown in FIG. 13 burns heat transfer tubes Bb, Bb... With a high-temperature fluid flowing through a duct Ba, and stores heat medium W stored in a storage portion Bc. And a thermoelectric power generation module D having a thermoelectric module E, a heat transfer plate (heat transfer member) F, and a water cooling plate G in a chamber Ca communicating with the evaporator B. And a thermoelectric conversion unit C housed therein. [0003] The thermoelectric generation module D is a heat exchanger in a broad sense. A heat transfer plate F is provided on the high temperature side of the thermoelectric module E, and a water cooling plate G is provided on the low temperature side of the thermoelectric module E. When the vapor of the heat medium W generated in the part B is condensed by touching the surface (heat transfer surface) of the heat transfer plate F, the heat is released and the high temperature side of the thermoelectric module E is heated, so that the water cooling plate F Based on the temperature difference between the thermoelectric module E and the low-temperature side of the thermoelectric module E,
Electric power is generated by the operation of the mold semiconductor. Further, it is well known that in the heat transfer of condensation, the heat exchange efficiency of droplet condensation is higher than that of film condensation. Therefore, in the thermoelectric power generation module D as a heat exchanger, FIG. As shown in the figure, the surface (heat transfer surface) of the heat transfer plate F is made of a material having low wettability such as polyfluoroethylene resin (registered trademark: Teflon), that is, a material having extremely low wettability because it has no affinity with the condensate. The condensed liquid W that has touched the heat transfer plate F forms a droplet by forming the coating Fc. On the other hand, in a heat exchanger in which the surface (heat transfer surface) of the heat transfer plate has a temperature of 0 ° C. or less, such as a heat exchanger included in a refrigeration apparatus (not shown), water molecules in the air are used. For the purpose of preventing as much as possible a decrease in heat conversion efficiency due to frost caused by condensation and solidification of the heat transfer, the surface (heat transfer surface) of the heat transfer plate has low wettability similarly to the above-described thermoelectric power generation module D. Frost is easily separated from the surface of the heat transfer plate by forming a coating made of the above material, making the water condensed by first touching the heat transfer plate to form droplets, and weakening the root of the frost layer It is devised as follows. [0006] Incidentally, as in the above-described thermoelectric power generation module (heat exchanger) D, a film Fc having low wettability is formed on a flat surface (heat transfer surface) of the heat transfer plate F. In this configuration, the contact angle θ between the heat medium (condensate) W in the form of drops and the heat transfer plate F (coating Fc) as shown in FIG.
Stopped around 110 °. For this reason, the surface (heat transfer surface) of the heat transfer plate F is far from the ideal droplet-shaped condensation surface, and the heat exchange efficiency is not always sufficient. Therefore, it is desired to further improve the heat exchange efficiency. I was Further, in the heat exchanger constituting the cooling device, even if the flat surface (heat transfer surface) of the heat transfer plate is formed with a low wettability coating, the condensed water droplets and the heat transfer plate (coating) are not removed. Had a contact angle of about 110 °. For this reason, it cannot be said that the wettability on the surface (heat transfer surface) of the heat transfer plate is sufficiently small, and the delamination of frost is stagnated and the surface of the heat transfer plate (heat transfer surface) is accumulated. This has the disadvantage that the heat exchange efficiency is greatly reduced. The present invention has been made in view of the above circumstances, and has as its object to provide a heat exchanger capable of further improving heat exchange efficiency. [0011] A heat exchanger according to the present invention is a heat exchanger for performing heat exchange via a heat transfer member, wherein a heat transfer surface of the heat transfer member includes: It is characterized in that a number of protrusions at least made of a material having low wettability are arrayed at a height and width smaller than 0.01 mm and smaller than 0.01 mm. According to the above configuration, the heat transfer surface of the heat transfer member forms an ultra-low surface energy surface with extremely low wettability. For this reason, when the heat transfer surface of the heat transfer member is a condensation heat transfer surface, the heat transfer surface is close to an ideal drop-like condensation surface, and good heat exchange efficiency can be obtained. . When the heat transfer surface of the heat transfer member is a low-temperature heat transfer surface, the wetness is extremely small, so that the frost forms a spherical shape that easily separates, and the frost accumulates on the surface of the heat transfer plate. Is suppressed, so that good heat exchange efficiency can be obtained. As described above, according to the heat exchanger of the present invention, it is possible to further improve the heat exchange efficiency. Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an embodiment in which the present invention is applied to a thermoelectric generator. This thermoelectric generator 1 burns a heat transfer tube 2b with a high-temperature fluid flowing through a duct 2a, and stores a heat medium W stored in a storage unit 2c. And a thermoelectric power generation module 7 having a thermoelectric module 4, a heat transfer plate (heat transfer member) 5, and a water cooling plate 6 in a chamber 3c communicating with the evaporator 1A. And a thermoelectric conversion unit 1B housed therein. The thermoelectric generation module 7 is a heat exchanger in a broad sense. The thermoelectric module 4 is provided with a heat transfer plate (heat transfer member) 5 on the high temperature side and a water cooling plate 6 on the low temperature side.
When the vapor of the heat medium W generated in the evaporator 1A touches the heat transfer surface 5s of the heat transfer plate 5 and condenses, the heat is released and the high temperature side of the thermoelectric module 4 is heated, so that the water cooling plate 6 is heated. Based on the temperature difference between the thermoelectric module 4 and the low-temperature side of the thermoelectric module 4, power is generated by the operation of the P-type / N-type semiconductor constituting the thermoelectric module 4. As shown in FIGS. 1 and 2, the heat transfer plate 5
Are provided with a large number of extremely fine pins (projections) 5a, 5a,... On the heat transfer surface (condensation heat transfer surface) 5s. Each pin 5a has a height h and a diameter h.
(Width) It has a columnar shape formed in an extremely small order with a dimension d smaller than 0.01 mm, and has a large number of pins 5a,
5a are arranged in a grid pattern at extremely small intervals where the pitch p between adjacent pins 5a is smaller than 0.01 mm. Each pin 5a of the heat transfer plate 5 has a low wettability such as a polyfluoroethylene resin (registered trademark: Teflon) as a whole, that is, has no affinity for a condensed liquid, and therefore has extremely high wettability. It is formed from a low material and is configured such that at least the surface is formed from a low wettability material. As described above, by providing a large number of pins 5a made of a material having a low wettability, the heat transfer member 5 is provided.
In the heat transfer surface 5s, an ultra-low surface energy surface having minute unevenness and extremely low wettability is formed. FIG. 3 shows a procedure for preparing the above-described heat transfer member 5. To prepare the above-described heat transfer member 5, first, FIG.
As shown in (a), a pin 5a for forming a surface layer 5B made of a low wettability material such as a polyfluoroethylene resin on the surface of a heat transfer plate base 5A made of a stainless material or the like.
3 is formed thicker than the height dimension h (see FIG. 2) of FIG.
As shown in (b), the surface layer 5B is processed to form a predetermined number of pins 5a, 5a,. As the material of the heat transfer plate base 5A, various materials other than stainless steel (for example, aluminum) can be adopted in consideration of thermal conductivity and cost. As the material constituting the surface layer 5B, that is, each pin 5a, various materials (for example, silicone resin, etc.) other than the polyfluoroethylene-based resin are also used as long as they satisfy the condition of low wettability. Of course, you can. As shown in FIG. 4, when the vapor of the heat medium W comes into contact with the heat transfer surface 5s of the heat transfer plate 5 and condenses, the heat medium (condensate) W is supported by the plurality of pins 5a, 5a. It becomes a droplet shape approximating a sphere. Further, as is apparent from FIG. 4, the contact angle θf of the heat medium (condensate) W in the form of
Is much larger than the contact angle θ of the heat medium (condensate) W with the conventional heat transfer plate F shown in FIG. Here, it is known that the contact angle θf depends on the ratio of the area occupied by Ag on the ultra-low surface energy surface, that is, the gas portion on the uneven surface, as shown in the following equation. cosθf = (1−Ag) cosθ−Ag Equations Although water, chlorofluorocarbon, Fluorinert (registered trademark) or the like is used as the heat medium W, the above-described relationship holds for various heat medium W. Of course. FIG. 5 shows the dependence of the contact angle θf on Ag. As is apparent from this figure (graph), even when the heating medium has a contact angle θ of 110 ° with respect to a plane, Ag is not affected.
When the contact angle θf is 0.5, the contact angle θf increases to about 130 °, and when the Ag is 0.9, the contact angle θf becomes 160 °.
° to around. Here, in the heat transfer plate 5 shown in the embodiment, a large number of pins 5a, 5a,... Are formed on the heat transfer surface 5s so that Ag is 0.5 or more, preferably 0.7 to 0.9. Things. For this reason, the contact angle θf of the heat medium (condensate) W which is in a droplet form by touching the heat transfer plate 5 is much smaller than the contact angle θ with the smooth heat transfer plate (see FIG. 14). As a result, the heat transfer surface 5a of the heat transfer plate 5 becomes closer to an ideal droplet condensing surface, and good heat exchange efficiency can be obtained. When the present invention is applied to a heat exchanger constituting a refrigerating apparatus or the like, that is, it is assumed that the heat transfer surface 5a of the heat transfer member 5 shown in FIGS. 1 to 5 is a low-temperature heat transfer surface. In this case, as described above, since the wettability of the heat transfer surface 5a of the heat transfer member 5 is extremely small, the frost on the heat transfer surface 5a becomes a spherical shape that is easily peeled off, so that the accumulation of frost on the heat transfer plate 5 is possible. As a result, it is possible to obtain good heat exchange efficiency. The pin 5a in the embodiment described above
Has a cylindrical shape as shown in FIG. 2, but the shape of the pin 5a is not limited to the cylindrical shape.
, A quadrangular prism shape as shown in FIG. 7, and a conical shape as shown in FIG. 8, for example. The heat transfer plate 5 shown in FIGS.
The pin 5a is formed entirely of a low wettability material such as a polyfluoroethylene resin. However, since the polyfluoroethylene resin or the like has a lower thermal conductivity than a metal material, It is undeniable that the heat transfer efficiency decreases. FIG. 9 shows another embodiment of the heat transfer plate for improving the heat transfer efficiency. This heat transfer plate 10 has a large number of extremely fine pins (projections) on the heat transfer surface 10s. 10a, 1
0a... Are provided, the pins 10a, 10a... Have a columnar shape formed in a very small order with a height dimension h and a diameter (width) dimension d smaller than 0.01 mm, and a pitch between adjacent pins 10a. They are arranged in a grid at very small intervals where p is smaller than 0.01 mm. Each pin 10a of the heat transfer plate 10
On the surface of 10a is formed a film 10c made of a material having low wettability, such as a polyfluoroethylene resin (registered trademark: Teflon), that is, a material having extremely low wettability because it has no affinity for condensate. . FIG. 10 shows a procedure for making the above-described heat transfer member 10. In order to make the above-described heat transfer member 10, first, as shown in FIG. A predetermined number of pins 10a, 10a,... Are formed on the surface of the base 10A by using a fine processing technique such as etching. Next, as shown in FIG. 10B, a coating 10c made of a low wettability material such as a polyfluoroethylene resin is applied to the surface of the heat transfer plate base 10A, in other words, the surface of each pin 10a. It is formed by using an appropriate coating means such as vapor deposition. As the material of the heat transfer plate base 5A, various materials other than the copper material can be adopted in consideration of heat conductivity and cost. The above coating 1
As 0c, if it satisfies the condition of low wettability,
It goes without saying that various materials (for example, silicone resin and the like) other than the polyfluoroethylene-based resin can also be adopted. According to the heat transfer plate 10 having the above configuration, the pins 10
Since the main component of a is made of a metal material such as a copper material,
Compared to the heat transfer plate shown in FIGS. 1 to 8 in which the entire pin is formed of a low wettability material, it is possible to achieve a significant improvement in heat transfer efficiency. The heat transfer plate 20 shown in FIG. 11 is provided with a large number of low fins 20F, 20F... The surface 20s of the heat transfer plate 20 including the outer surfaces of the low fins 20F is provided with a large number of extremely fine pins ( .. Are provided. The configuration relating to the pins 20a, that is, the specific shape, layout, and manufacturing procedure are shown in the heat transfer plate 5 shown in FIGS. 1 to 8, or in FIGS. 9 and 10. There is basically no difference from the heat transfer plate 10. According to the heat transfer plate 20 having the above-described structure, the expanded heat transfer surface effect and the surface tension effect of the heat medium by the low fins 20F and the condensation heat transfer effect by providing a large number of pins 20a, 20a. Extremely efficient heat exchange can be performed. The heat transfer plate 30 shown in FIG. 12 is provided with a large number of plate-like fins 30F, 30F... The surface 30s of the heat transfer plate 30 including the outer surfaces of the fins 30F has extremely fine surfaces. A number of pins (projections) 30a are provided. The configuration relating to the pins 30a, that is, the specific shape, layout, and manufacturing procedure are shown in the heat transfer plate 5 shown in FIGS. 1 to 8, or in FIGS. 9 and 10. There is basically no difference from the heat transfer plate 10. According to the heat transfer plate 30 having the above structure, the fins 3
OF and the large number of pins 30a, 30
Due to the condensation heat transfer effect provided by a, the extremely efficient heat exchange can be performed. Further, when the heat transfer plate 30 having the above structure is used for a heat exchanger such as a refrigeration system, a large number of pins 30a, 30a
By providing ..., accumulation of frost is prevented as much as possible, and an increase in ventilation resistance due to frost is prevented, thereby realizing a high-performance low-temperature heat exchanger. Become. In the above-described embodiment, an example in which the present invention is applied to a heat exchanger in a thermoelectric generator or a refrigeration apparatus has been described. However, any heat exchanger that performs heat exchange via a heat transfer member may be used. Needless to say, the present invention can be effectively applied to heat exchangers constituting various devices in various industrial fields.

【図面の簡単な説明】 【図1】本発明に関わる熱交換器の一実施例を示す概念
図。 【図2】(a)および(b)は、図1の熱交換器における伝
熱部材を示す要部平面図および要部断面側面図。 【図3】(a)および(b)は、図1の熱交換器における伝
熱部材の製造手順を示す概念図。 【図4】図1の熱交換器における伝熱部材に液体が接触
した状態を示す概念図。 【図5】見掛け接触角の微細凹凸表面における空気部分
の占める面積割合に対する依存性を示す図。 【図6】(a)および(b)は、図1の熱交換器における伝
熱部材の変形例を示す要部平面図および要部断面図。 【図7】(a)および(b)は、図1の熱交換器における伝
熱部材の変形例を示す要部平面図および要部断面図。 【図8】(a)および(b)は、図1の熱交換器における伝
熱部材の変形例を示す要部平面図および要部断面図。 【図9】(a)および(b)は、伝熱部材の他の実施例を示
す要部平面図および要部断面側面図。 【図10】(a)および(b)は、図9に示した伝熱部材の
製造手順を示す概念図。 【図11】(a)および(b)は、伝熱部材の他の実施例を
示す要部平面図および要部断面図。 【図12】(a)および(b)は、伝熱部材の他の実施例を
示す要部平面図および要部断面図。 【図13】従来の熱交換器の一例を示す概念図。 【図14】従来の熱交換器における伝熱部材を示す要部
断面図。 【符号の説明】 1…熱電発電装置、 5、10、20、30…伝熱板(伝熱部材)、 5s、10s、20s、30s…伝熱面、 5a、10a、20a、30a…ピン(突起)、 7…熱電発電モジュール(熱交換器)。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing one embodiment of a heat exchanger according to the present invention. FIGS. 2A and 2B are a plan view and a cross-sectional side view of a main part of a heat transfer member in the heat exchanger of FIG. 3 (a) and 3 (b) are conceptual diagrams showing a procedure for manufacturing a heat transfer member in the heat exchanger of FIG. 1. FIG. 4 is a conceptual diagram showing a state in which a liquid contacts a heat transfer member in the heat exchanger of FIG. 1; FIG. 5 is a diagram showing the dependence of the apparent contact angle on the area ratio occupied by an air portion on the fine uneven surface. FIGS. 6A and 6B are a main part plan view and a main part sectional view showing a modification of the heat transfer member in the heat exchanger of FIG. 1; FIGS. 7A and 7B are a main part plan view and a main part sectional view showing a modification of the heat transfer member in the heat exchanger of FIG. 1; FIGS. 8A and 8B are a plan view and a cross-sectional view of a main part showing a modification of the heat transfer member in the heat exchanger of FIG. FIGS. 9A and 9B are a main part plan view and a main part sectional side view showing another embodiment of the heat transfer member. FIGS. 10A and 10B are conceptual diagrams showing a manufacturing procedure of the heat transfer member shown in FIG. FIGS. 11A and 11B are a main part plan view and a main part sectional view showing another embodiment of the heat transfer member. 12A and 12B are a plan view and a cross-sectional view of a main part showing another embodiment of the heat transfer member. FIG. 13 is a conceptual diagram showing an example of a conventional heat exchanger. FIG. 14 is a sectional view of a main part showing a heat transfer member in a conventional heat exchanger. [Description of Signs] 1 ... Thermoelectric generator, 5, 10, 20, 30 ... Heat transfer plate (heat transfer member), 5s, 10s, 20s, 30s ... Heat transfer surface, 5a, 10a, 20a, 30a ... Pin ( Projection), 7 ... Thermoelectric generation module (heat exchanger).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷村 利伸 神奈川県平塚市万田1200 株式会社小松製 作所研究所内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Toshinobu Tanimura             1200 Manda, Hiratsuka-shi, Kanagawa             Inside the laboratory

Claims (1)

【特許請求の範囲】 【請求項1】 伝熱部材を介して熱交換を行なう熱交
換器であって、 前記伝熱部材の伝熱面に、少なくとも表面が低濡れ性の
材料から成る多数の突起を、高さおよび幅が 0.01mm よ
り小さく、かつ 0.01mm より小さいピッチで配列形成し
て成ることを特徴とする熱交換器。
Claims 1. A heat exchanger for performing heat exchange via a heat transfer member, wherein a plurality of heat transfer surfaces of the heat transfer member are made of a material having at least low wettability. A heat exchanger characterized in that the protrusions are arranged and formed at a height and width smaller than 0.01 mm and at a pitch smaller than 0.01 mm.
JP2001351720A 2001-11-16 2001-11-16 Heat exchanger Withdrawn JP2003156297A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001351720A JP2003156297A (en) 2001-11-16 2001-11-16 Heat exchanger
US10/294,555 US20030094265A1 (en) 2001-11-16 2002-11-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351720A JP2003156297A (en) 2001-11-16 2001-11-16 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2003156297A true JP2003156297A (en) 2003-05-30

Family

ID=19163994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351720A Withdrawn JP2003156297A (en) 2001-11-16 2001-11-16 Heat exchanger

Country Status (2)

Country Link
US (1) US20030094265A1 (en)
JP (1) JP2003156297A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310506A (en) * 2005-04-28 2006-11-09 Denso Corp Thermoelectric conversion device
KR100805931B1 (en) 2006-11-22 2008-02-21 한국표준과학연구원 Semiconductor chip having monolithic heat-sink structure
JP2009503432A (en) * 2005-08-03 2009-01-29 ゼネラル・エレクトリック・カンパニイ Heat transfer device and system including the device
JP2011004500A (en) * 2009-06-18 2011-01-06 Actree Corp Thermoelectric generation system using water vapor condensation latent heat
JP2011122769A (en) * 2009-12-10 2011-06-23 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface
JP2012088051A (en) * 2012-01-26 2012-05-10 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface
JP2013042063A (en) * 2011-08-19 2013-02-28 Fujitsu Ltd Thermoelectric element and manufacturing method therefor

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942010B2 (en) 2001-02-09 2011-05-17 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
US7231772B2 (en) 2001-02-09 2007-06-19 Bsst Llc. Compact, high-efficiency thermoelectric systems
US6672076B2 (en) * 2001-02-09 2004-01-06 Bsst Llc Efficiency thermoelectrics utilizing convective heat flow
US6959555B2 (en) * 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
US7273981B2 (en) * 2001-02-09 2007-09-25 Bsst, Llc. Thermoelectric power generation systems
US7946120B2 (en) 2001-02-09 2011-05-24 Bsst, Llc High capacity thermoelectric temperature control system
US6539725B2 (en) * 2001-02-09 2003-04-01 Bsst Llc Efficiency thermoelectrics utilizing thermal isolation
US7426835B2 (en) 2001-08-07 2008-09-23 Bsst, Llc Thermoelectric personal environment appliance
US8490412B2 (en) * 2001-08-07 2013-07-23 Bsst, Llc Thermoelectric personal environment appliance
US6812395B2 (en) * 2001-10-24 2004-11-02 Bsst Llc Thermoelectric heterostructure assemblies element
US20060065387A1 (en) * 2004-09-28 2006-03-30 General Electric Company Electronic assemblies and methods of making the same
US7204298B2 (en) * 2004-11-24 2007-04-17 Lucent Technologies Inc. Techniques for microchannel cooling
US7847179B2 (en) * 2005-06-06 2010-12-07 Board Of Trustees Of Michigan State University Thermoelectric compositions and process
JP4891318B2 (en) * 2005-06-28 2012-03-07 ビーエスエスティー エルエルシー Thermoelectric generator with intermediate loop
US20070031639A1 (en) * 2005-08-03 2007-02-08 General Electric Company Articles having low wettability and methods for making
US7870745B2 (en) 2006-03-16 2011-01-18 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
US7952015B2 (en) 2006-03-30 2011-05-31 Board Of Trustees Of Michigan State University Pb-Te-compounds doped with tin-antimony-tellurides for thermoelectric generators or peltier arrangements
US20080289677A1 (en) * 2007-05-25 2008-11-27 Bsst Llc Composite thermoelectric materials and method of manufacture
CN110254159A (en) 2007-05-25 2019-09-20 詹思姆公司 Distribution formula thermoelectricity heating and cooling system and method
CN101965312A (en) * 2008-01-14 2011-02-02 俄亥俄州立大学研究基金会 Improve by the thermoelectric figure of merit that improves density of electronic states
US20090269584A1 (en) * 2008-04-24 2009-10-29 Bsst, Llc Thermoelectric materials combining increased power factor and reduced thermal conductivity
US8701422B2 (en) 2008-06-03 2014-04-22 Bsst Llc Thermoelectric heat pump
US20100024859A1 (en) * 2008-07-29 2010-02-04 Bsst, Llc. Thermoelectric power generator for variable thermal power source
JP2011530403A (en) * 2008-08-07 2011-12-22 ユニ−ピクセル・ディスプレイズ・インコーポレーテッド Microstructure to reduce the appearance of fingerprints on the surface
US8613200B2 (en) 2008-10-23 2013-12-24 Bsst Llc Heater-cooler with bithermal thermoelectric device
US8552283B2 (en) * 2010-01-11 2013-10-08 Toyota Motor Engineering & Manufacturing North America, Inc. Thermoelectric application for waste heat recovery from semiconductor devices in power electronics systems
JP5745036B2 (en) * 2010-04-28 2015-07-08 スリーエム イノベイティブ プロパティズ カンパニー Silicone material
WO2012135734A2 (en) 2011-04-01 2012-10-04 Zt Plus Thermoelectric materials having porosity
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
WO2012170443A2 (en) 2011-06-06 2012-12-13 Amerigon Incorporated Cartridge-based thermoelectric systems
JP2015524894A (en) 2012-08-01 2015-08-27 ゲンサーム インコーポレイテッド High efficiency thermoelectric power generation
DE102012216042A1 (en) * 2012-09-11 2014-03-13 Friedrich Boysen Gmbh & Co. Kg Device for converting thermal energy into electrical energy
CN108400410A (en) 2013-01-30 2018-08-14 詹思姆公司 Heat management system based on thermoelectricity
US9660168B2 (en) 2013-10-18 2017-05-23 Board Of Regents, The University Of Texas System Heat exchanger for thermoelectric power generation with the thermoelectric modules in direct contact with the heat source
US9693487B2 (en) 2015-02-06 2017-06-27 Caterpillar Inc. Heat management and removal assemblies for semiconductor devices
CN105588465A (en) * 2016-02-29 2016-05-18 华南理工大学 Double-layered superfine channel grouped heat exchanger with low surface energy heat exchange characteristic
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US10907480B2 (en) * 2018-09-28 2021-02-02 Raytheon Technologies Corporation Ribbed pin fins
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529807A (en) * 1993-11-12 1996-06-25 Lynn Burkhart, Jr. Composition and method for treating heat exchange surfaces
DE10015855A1 (en) * 2000-03-30 2001-10-11 Basf Ag Application of the lotus effect in process engineering
US6644388B1 (en) * 2000-10-27 2003-11-11 Alcoa Inc. Micro-textured heat transfer surfaces

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310506A (en) * 2005-04-28 2006-11-09 Denso Corp Thermoelectric conversion device
JP2009503432A (en) * 2005-08-03 2009-01-29 ゼネラル・エレクトリック・カンパニイ Heat transfer device and system including the device
KR100805931B1 (en) 2006-11-22 2008-02-21 한국표준과학연구원 Semiconductor chip having monolithic heat-sink structure
JP2011004500A (en) * 2009-06-18 2011-01-06 Actree Corp Thermoelectric generation system using water vapor condensation latent heat
JP2011122769A (en) * 2009-12-10 2011-06-23 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface
JP2013042063A (en) * 2011-08-19 2013-02-28 Fujitsu Ltd Thermoelectric element and manufacturing method therefor
JP2012088051A (en) * 2012-01-26 2012-05-10 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface

Also Published As

Publication number Publication date
US20030094265A1 (en) 2003-05-22

Similar Documents

Publication Publication Date Title
JP2003156297A (en) Heat exchanger
US6609560B2 (en) Flat evaporator
CN108362148B (en) Combined cold plate
US20140311176A1 (en) Phase transfer heat dissipating device and phase transfer heat dissipating system
KR20020042421A (en) Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
CN102506600A (en) Condensation end extension type integrated flat heat pipe
JP2010522996A (en) Thin thermal diffusion liquid chamber using boiling
TWI701991B (en) Circuit board structure
JP6462771B2 (en) Flat type heat pipe
JP2004518269A (en) Cooling device and its manufacturing process
JP6070036B2 (en) Loop thermosyphon and electronic equipment
JP2003158230A (en) Micro cooling device
TWM596329U (en) Enhanced boiling device
US20050135061A1 (en) Heat sink, assembly, and method of making
WO2017110677A1 (en) Heat exchanger and cooling tower
WO2016051569A1 (en) Evaporator, cooling device, and electronic device
CN113446883B (en) Double-fluid loop staggered wave type micro-channel radiator based on elastic turbulence
CN111750713B (en) Vapor-liquid phase separation type loop heat pipe heat dissipation device with inserted porous membrane and working method thereof
KR20060109119A (en) Flat type heat transfer device
Luo et al. A novel flat micro heat pipe with a patterned glass cover
JP6197651B2 (en) Cooling system
KR101510304B1 (en) Hybrid heat conductable pin with hydrophilic and hydrophobic characteristics and method thereof
CN208398696U (en) A kind of ultra-thin heat pipe increasing area of heat transfer structure
Semenic et al. Biporous sintered copper for closed loop heat pipe evaporator
JPH0653376A (en) Unit for cooling semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060809