JP2003151551A - Manufacturing method of negative-electrode material for high efficient secondary lithium-ion battery - Google Patents

Manufacturing method of negative-electrode material for high efficient secondary lithium-ion battery

Info

Publication number
JP2003151551A
JP2003151551A JP2001349591A JP2001349591A JP2003151551A JP 2003151551 A JP2003151551 A JP 2003151551A JP 2001349591 A JP2001349591 A JP 2001349591A JP 2001349591 A JP2001349591 A JP 2001349591A JP 2003151551 A JP2003151551 A JP 2003151551A
Authority
JP
Japan
Prior art keywords
electrode material
negative electrode
pitch
secondary battery
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001349591A
Other languages
Japanese (ja)
Inventor
Keiichi Hirata
平田恵一
Kenichi Motokawa
本川健一
Minoru Wakayama
実 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2001349591A priority Critical patent/JP2003151551A/en
Publication of JP2003151551A publication Critical patent/JP2003151551A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient negative-electrode material for secondary lithium-ion batteries, which has a large capacity, has a small electric discharging loss, also can fill up a lot of negative-electrode material in the battery in large volume density, and further can carry out quick charging. SOLUTION: It is the manufacturing method of the negative-electrode material for the secondary lithium-ion batteries, in which what is obtained by heat- treating coal system pitch that has free carbon of 1.0% of less, so that the amount of mesophase may become 95% or more, and a volatilized part may become 5% or less, into fine powder by grinding, classifying and adjusting a particle size is graphitized by baking after covering with the optically isotropic coal system pitch.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、リチウムイオン二次電池用負極
材の製造方法に関し、より詳しくは石炭系ピッチを熱処
理し、粉砕・分級、不融化、焼成、黒鉛化して得られる
高容量で容量ロスが少ない負極材の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a negative electrode material for a lithium ion secondary battery, and more particularly, to a high capacity and a capacity loss obtained by heat-treating coal-based pitch, pulverizing / classifying, infusibilizing, and graphitizing. The present invention relates to a method for producing a negative electrode material having a small amount.

【0002】[0002]

【従来の技術】近年、リチウムイオン二次電池はハイパ
ワ−、高容量の二次電池として携帯電話、パソコン等の
可搬型機器類に多く使用され、今後も需要がさらに高ま
ると予想されている。
2. Description of the Related Art In recent years, lithium-ion secondary batteries have been widely used as high-power, high-capacity secondary batteries in portable devices such as mobile phones and personal computers, and it is expected that demand will further increase in the future.

【0003】このような可搬型機器類の小型化への流れ
を受けて、リチウム二次電池も小型化、軽量化への要請
が強まっている。
In response to the trend toward miniaturization of such portable devices, there is an increasing demand for miniaturization and weight reduction of lithium secondary batteries.

【0004】そのため、リチウム二次電池を構成するパ
−ツや材料も高性能化の動きが活発になっており、中で
も負極材は電池の性能を左右するものとしてその重要性
が高まっている。
For this reason, the performance and the performance of the parts and materials constituting the lithium secondary battery are becoming active, and in particular, the negative electrode material is becoming more important because it affects the performance of the battery.

【0005】この負極材としてカ−ボン系材料が注目さ
れている。カ−ボン系負極材にはまず放電容量が高容量
であることが要求されるが、それに加えて容量ロスの低
減も重要で、また電池内に多量の負極材を充填できるよ
うにするため高かさ密度であること、急速充電が可能で
あることも望まれている。
Carbon-based materials are attracting attention as the negative electrode material. Carbon-based negative electrode materials are required to have a high discharge capacity, but in addition to this, it is important to reduce capacity loss, and in order to be able to fill a large amount of negative electrode material into a battery, Bulk density and rapid charging are also desired.

【0006】このようなカ−ボン系負極材の原料として
は石炭系ピッチを用いることが多い。
Coal-based pitch is often used as a raw material for such a carbon-based negative electrode material.

【0007】本発明者は高容量の負極材を得るために、
石炭系ピッチの中に含まれるフリ−カ−ボンを除去する
必要があることを見出した。即ち、フリ−カ−ボンは熱
処理により生成するメソ−フェ−ズの生長を阻害し、放
電容量の低下をもたらすため、除去することが必要であ
る。また熱処理によりメソフェ−ズを生成し、多量のメ
ソフェ−ズ分を含むピッチを用いると、最終的に得られ
る負極材は結晶性が非常に高くなり、高容量のものが得
られる。
In order to obtain a high capacity negative electrode material, the present inventor has
It has been found that it is necessary to remove the free carbon contained in the coal-based pitch. That is, free carbon inhibits the growth of mesophases generated by heat treatment and causes a decrease in discharge capacity, so it must be removed. When a pitch containing a large amount of mesophases is generated by heat treatment and a mesophase is used, the finally obtained negative electrode material has a very high crystallinity and a high capacity.

【0008】しかし、かかる高結晶性の負極材は、負極
材表面にカ−ボン結晶化の分子配向に伴う筋(すじ)が
明確に出現し、容量ロスの大きな原因となる。
However, in such a highly crystalline negative electrode material, streaks (lines) associated with the molecular orientation of carbon crystallization clearly appear on the surface of the negative electrode material, which is a major cause of capacity loss.

【0009】従って、上記のようなメソフェ−ズが多量
に生成し、高結晶化した負極材は高容量ではあるが、容
量ロスも大きく、そのまま電池に使用するには問題があ
る。そこで高容量であると同時に、容量ロスを効果的に
低減させた負極材の開発が望まれている。
Therefore, although the above-mentioned mesophases are produced in a large amount and the highly crystallized negative electrode material has a high capacity, the capacity loss is large and there is a problem in using it as it is in a battery. Therefore, it is desired to develop a negative electrode material having a high capacity and effectively reducing the capacity loss.

【0010】[0010]

【発明の課題】上記のようなリチウム二次電池負極材の
高性能化への要求に応えるために、本発明者は高容量で
あるとともに、容量ロスが少なく、さらに、高かさ密度
で電池内に多量に負極材を充填でき、急速充放電も可能
な高性能のリチウム二次電池負極材を提供する。
DISCLOSURE OF THE INVENTION In order to meet the above demand for higher performance of a lithium secondary battery negative electrode material, the present inventor has a high capacity, a small capacity loss, and a high bulk density in a battery. Provided is a high performance lithium secondary battery negative electrode material capable of being filled with a large amount of negative electrode material and capable of rapid charge and discharge.

【0011】[0011]

【課題解決の手段】上記のような課題を解決するため
に、本発明者が提案するのは、フリ−カ−ボン量を1.
0%以下とした石炭系ピッチをメソフェ−ズ量が95%
以上、揮発分が5%以下となるように熱処理して得られ
た熱処理物を粉砕・分級し、粒度を調整して微粉末とし
た後、光学的に等方性の石炭系ピッチを被覆して、焼成
し黒鉛化することを特徴とするリチウムイオン二次電池
用負極材の製造方法である。
In order to solve the above problems, the present inventor proposes that the amount of free carbon is 1.
Coal pitch with 0% or less has a mesophase content of 95%
As described above, the heat-treated product obtained by heat-treating so that the volatile content is 5% or less is crushed and classified, and the particle size is adjusted to form fine powder, which is then coated with an optically isotropic coal-based pitch. Then, the negative electrode material for a lithium-ion secondary battery is manufactured by firing and graphitizing.

【0012】本発明者は、原料の石炭系ピッチを粉砕・
分級、不融化、焼成、黒鉛化しカ−ボン系負極材を得る
プロセスを鋭意検討した結果、次の〜に着眼するこ
とにより、高容量であると同時に容量ロスを低減させた
負極材が得られることを見出し本発明を完成した。 石炭系ピッチ中のフリ−カ−ボンを除去すること。 石炭系ピッチを熱処理して、メソフェ−ズ量を95%
以上、且つ、揮発分を5%以下に調整すること。 石炭系ピッチの熱処理物に対してピッチを5〜30%
の割合で被覆すること。 ピッチ被覆した後の焼成工程の昇温速度を低く設定す
ること。
The inventor of the present invention crushed the raw material coal-based pitch
As a result of diligently studying the process of obtaining a carbon-based negative electrode material by classification, infusibilization, firing, graphitization, by focusing on the following items, a negative electrode material having high capacity and reduced capacity loss can be obtained. It was found that the present invention has been completed. Removing free carbon in coal pitch. Coal pitch is heat treated and the amount of mesophase is 95%
Above, and adjust the volatile content to 5% or less. Pitch is 5 to 30% for heat-treated coal-based pitch
Coating at the ratio of. Set a low heating rate in the firing process after pitch coating.

【0013】、は負極材の放電容量を高容量とする
ために、または容量ロスの低減のために行うもので、
いずれも優れた効果がある。または、焼成工程におけ
る微粉末間の融着を抑制する。これら〜が相俟って
優れた負極材が得られる。
Is to increase the discharge capacity of the negative electrode material or to reduce capacity loss.
Both have excellent effects. Alternatively, the fusion between the fine powders in the firing step is suppressed. Together with these, an excellent negative electrode material can be obtained.

【0014】以下に本発明の構成要件について、さらに
詳細に説明する。まず原料ピッチは石炭系ピッチを使用
することが好ましい。石油系ピッチを使用すると、負極
材の形状が針状になり易く好ましくない。
The constituent features of the present invention will be described in more detail below. First, as the raw material pitch, it is preferable to use coal pitch. The use of petroleum-based pitch is not preferable because the shape of the negative electrode material tends to be needle-shaped.

【0015】このピッチはフリ−カ−ボンを除去するこ
とが必要である。フリ−カ−ボンはピッチの熱処理によ
るメソフェ−ズの生成、生長を阻害する作用をもたらす
ので、最終的に得られる負極材の高結晶化を妨げ、容量
を低下させる。そこで本発明においては、ピッチのフリ
−カ−ボン量を1.0%以下とする。1.0%を超える
と放電容量が低下し、好ましくない。フリ−カ−ボンの
除去方法は限定されないが、溶剤抽出や、ピッチの原料
であるタ−ルの遠心分離等の方法が適当である。
This pitch requires the removal of free carbon. Free carbon has the effect of inhibiting the formation and growth of mesophases by the heat treatment of pitch, and thus hinders the high crystallization of the finally obtained negative electrode material and reduces the capacity. Therefore, in the present invention, the amount of pitch-free carbon is set to 1.0% or less. If it exceeds 1.0%, the discharge capacity decreases, which is not preferable. The method for removing free carbon is not limited, but methods such as solvent extraction and centrifugal separation of tar, which is a raw material for pitch, are suitable.

【0016】次に上記のフリ−カ−ボンを除去したピッ
チを、不活性雰囲気中、400〜600℃で熱処理をす
る。
Next, the pitch from which the free carbon has been removed is heat-treated at 400 to 600 ° C. in an inert atmosphere.

【0017】この熱処理により得られる熱処理物は、メ
ソフェ−ズ量が95%以上、且つ揮発分が5%以下にな
るように、処理時間を調整する。メソフェ−ズ量が95
%未満では負極材の電池容量が低下し、揮発分が5%を
超えると、後の焼成工程における微粒子間の融着の原因
となり、いずれも好ましくない。
In the heat-treated product obtained by this heat treatment, the treatment time is adjusted so that the mesophase amount is 95% or more and the volatile content is 5% or less. The amount of mesophase is 95
If it is less than 5%, the battery capacity of the negative electrode material decreases, and if the volatile content exceeds 5%, it causes fusion between the fine particles in the subsequent firing step, both of which are not preferable.

【0018】上記の熱処理物を粉砕・分級し、粒度を調
整して微粉末とする。粒度は、通常50μm以下とす
る。
The above heat-treated product is pulverized and classified to adjust the particle size to obtain fine powder. The particle size is usually 50 μm or less.

【0019】粒度調整した後、光学的に等方性の石炭系
ピッチを被覆する。このピッチの被覆は、負極材の高結
晶化に伴い表面に生じる筋(すじ)に起因する容量ロス
を抑制するために行うもので、これにより容量ロスを効
果的に低減できる。
After adjusting the particle size, an optically isotropic coal-based pitch is coated. This pitch coating is performed in order to suppress the capacity loss due to the stripes (streaks) generated on the surface as the negative electrode material is highly crystallized, and thus the capacity loss can be effectively reduced.

【0020】石炭系ピッチの被覆の割合は5〜30%と
する。5%未満であると効果が低く、最終製品の容量ロ
スが増加し、効率が悪くなり、また30%を超えると最
終製品の放電容量が増加し、いずれも好ましくない。
The coating ratio of the coal pitch is 5 to 30%. If it is less than 5%, the effect is low, the capacity loss of the final product increases and the efficiency deteriorates, and if it exceeds 30%, the discharge capacity of the final product increases, both of which are not preferable.

【0021】被覆する光学的に等方性のピッチの種類は
特に限定されるものでなく、通常の軟化点80〜120
℃の石炭系ピッチが使用できる。ピッチの被覆方法も特
に限定されず、通常は加熱ニ−ダ等を使用できる。
The kind of the optically isotropic pitch to be coated is not particularly limited, and the usual softening point of 80 to 120 is used.
℃ coal pitch can be used. The method of coating the pitch is not particularly limited, and a heating kneader or the like can be usually used.

【0022】ピッチ被覆の後は、不活性ガス雰囲気中ま
たは、還元性ガス雰囲気中で焼成し、揮発分を除去す
る。焼成の温度は特に限定されず、通常600℃以上で
十分であるが、500℃以下における昇温速度は、緩や
かに設定し、10℃/hr以下とすることが好ましい。
10℃/hrを超えると、焼成時に微粉末間の融着が発
生し易く、良好な負極材を得ることができなくなる。
After pitch coating, firing is performed in an inert gas atmosphere or a reducing gas atmosphere to remove volatile components. The firing temperature is not particularly limited, and usually 600 ° C. or higher is sufficient, but the temperature rising rate at 500 ° C. or lower is preferably set gently and 10 ° C./hr or lower.
If it exceeds 10 ° C./hr, fusion between the fine powders is likely to occur during firing, making it impossible to obtain a good negative electrode material.

【0023】最終的に不活性ガスまたは還元性ガス雰囲
気中で黒鉛化することにより本発明のリチウム二次電池
負極材を得る。黒鉛化の温度は、2800℃以上とす
る。2800℃未満では、放電容量が低下し好ましくな
い。以上のようにして本発明の製造方法によるリチウム
イオン二次電池用負極材が得られる。
Finally, the negative electrode material of the lithium secondary battery of the present invention is obtained by graphitizing in an inert gas or reducing gas atmosphere. The graphitization temperature is 2800 ° C. or higher. If it is less than 2800 ° C, the discharge capacity is lowered, which is not preferable. As described above, the negative electrode material for a lithium ion secondary battery is obtained by the manufacturing method of the present invention.

【0024】[0024]

【発明の効果】上記のように本発明の製造方法により得
られたリチウムイオン二次電池用負極材は、高容量であ
るとともに、容量ロスが少ない。また、かさ密度が高
く、電池内に多量の負極材を充填することができる。さ
らに急速充電性があり、ハンドリング性も良好である。
本発明の製造方法により得られたリチウムイオン二次電
池用負極材は、優れた高性能の材料で、今後も需要が高
まると予想される、可搬型機器類のパ−ツ、材料として
有用なものである。
As described above, the negative electrode material for a lithium ion secondary battery obtained by the production method of the present invention has a high capacity and a small capacity loss. Further, the bulk density is high, and a large amount of negative electrode material can be filled in the battery. Further, it has a quick charge property and a good handling property.
The negative electrode material for a lithium ion secondary battery obtained by the production method of the present invention is an excellent high-performance material, and it is expected that demand will continue to increase in the future. It is a thing.

【0025】[0025]

【実施例および比較例】[Examples and Comparative Examples]

【実施例1】市販の石炭系ピッチ(商品名:MPM−1
00 フリ−カ−ボン量:5.5%)に5倍量のキノリ
ンを加え、80℃で加熱し、濾過した後、減圧蒸留でキ
ノリンを除去し、フリ−カ−ボンを除去したピッチを得
た。このピッチのフリ−カ−ボン量は0.3%であっ
た。上記のように調整したフリ−カ−ボン除去ピッチを
窒素ガス雰囲気中、500℃で30時間熱処理し、メソ
フェ−ズ量100%、揮発分4.0%の熱処理物を得
た。これを平均粒径25μmに微粉砕して、微粉末とし
た。次にこの微粉末10重量部に対して石炭系ピッチ
(MPM−100)を1重量部加え、これらを200℃
に予熱した加熱ニ−ダ−に投入して、30分間混合し
て、微粉末にピッチを被覆した。
Example 1 Commercially available coal-based pitch (trade name: MPM-1
(00 amount of free carbon: 5.5%), 5 times amount of quinoline was added, heated at 80 ° C., filtered, and then quinoline was removed by vacuum distillation to remove the pitch from which free carbon was removed. Obtained. The amount of free carbon in this pitch was 0.3%. The free carbon removal pitch adjusted as described above was heat-treated in a nitrogen gas atmosphere at 500 ° C. for 30 hours to obtain a heat-treated product having a mesophase amount of 100% and a volatile content of 4.0%. This was pulverized to an average particle size of 25 μm to obtain a fine powder. Next, 1 part by weight of coal-based pitch (MPM-100) was added to 10 parts by weight of this fine powder, and these were heated to 200 ° C.
The mixture was put into a heating kneader preheated to 30 minutes and mixed for 30 minutes to coat fine powder with pitch.

【0026】次に窒素ガス雰囲気中、1000℃で焼成
した。この時、焼成における昇温速度は500℃以下を
5℃/時間、500℃超では50℃/時間とした。
Next, firing was performed at 1000 ° C. in a nitrogen gas atmosphere. At this time, the rate of temperature increase in firing was 5 ° C./hour below 500 ° C. and 50 ° C./hour above 500 ° C.

【0027】最終的にアチソン式黒鉛化炉を使用して黒
鉛化して本発明のリチウム2次電池用黒鉛粉末を得た。
Finally, it was graphitized using an Acheson type graphitization furnace to obtain a graphite powder for a lithium secondary battery of the present invention.

【0028】次に得られた黒鉛粉末を用いて以下のよう
に電池を作成し、電池特性を評価した。本来、黒鉛粉末
は負極として用いるが、本発明では対極にリチウム金属
を使用したため、正極で電池の特性を評価した。電極の
製造は黒鉛粉末100重量部とスチレンブタジェンラバ
−2重量部、カルボキシメチルセルロ−ス1重量部に水
を添加してペ−スト化した後、ドクタ−ブレ−ドを用い
て銅箔上に塗布し、乾燥させた。乾燥後、これを1cm
2の面積になるように円形に打ち抜き、更に1ton/
cm2の圧力でプレスし、電極を調整した。対極及び参
照極としてリチウム金属を使用し、電解液として1MLi
ClO4/EC:DEC(体積比1:1)を用いて三極式ビ
−カ−セルを組み立てた。
Next, using the obtained graphite powder, a battery was prepared as follows and the battery characteristics were evaluated. Originally, graphite powder was used as the negative electrode, but since lithium metal was used as the counter electrode in the present invention, the characteristics of the battery were evaluated with the positive electrode. The electrode was manufactured by adding water to 100 parts by weight of graphite powder, -2 parts by weight of styrene butadiene rubber, and 1 part by weight of carboxymethyl cellulose to form a paste, and then using a doctor blade to form a copper foil. Coated on top and dried. 1cm after drying
Punch in a circle to give an area of 2 , then 1 ton /
The electrode was adjusted by pressing with a pressure of cm 2 . Lithium metal is used as the counter electrode and the reference electrode, and 1M Li is used as the electrolyte.
A triode beaker cell was assembled using ClO4 / EC: DEC (volume ratio 1: 1).

【0029】充電は0.5mA/cm2の電流密度で定
電流充電後、10mVで定電圧充電に切り替え、0.0
1mAで終止した。また、放電は、0.5mA/cm2
の電流密度で定電流放電1.5Vまで行った。測定温度
は30℃である。測定結果は放電容量が355mAh/
g、容量ロスは23mAh/gであった。
Charging was performed at a constant current with a current density of 0.5 mA / cm 2 and then switched to a constant voltage at 10 mV to 0.0.
It ended at 1mA. The discharge is 0.5 mA / cm 2
The constant current discharge was performed up to 1.5 V at the current density of. The measurement temperature is 30 ° C. The measurement result shows that the discharge capacity is 355 mAh /
g, the capacity loss was 23 mAh / g.

【0030】[0030]

【比較例1】実施例1におけるフリ−カ−ボン除去を行
わないこと以外はすべて実施例1と同様にしてリチウム
二次電池用黒鉛粉末を得た。尚、熱処理物のメソフェ−
ズ量は98%、揮発分は3.5%であった。実施例1と
同様にして電池特性を測定した結果、放電容量は315
mAh/g、容量ロスは24mAh/gであった。
Comparative Example 1 A graphite powder for a lithium secondary battery was obtained in the same manner as in Example 1, except that the removal of free carbon in Example 1 was not performed. In addition, the mesophase of the heat-treated product
The amount of dust was 98% and the volatile content was 3.5%. As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 315.
mAh / g, capacity loss was 24 mAh / g.

【0031】[0031]

【比較例2】実施例1における熱処理条件を500℃で
20時間とする以外はすべて実施例1と同様に処理して
リチウム二次電池用黒鉛粉末を得た。この時、熱処理物
のメソフェ−ズ量は90%、揮発分は4.8%であっ
た。実施例1と同様にして電池特性を測定した結果、放
電容量は340mAh/g、容量ロスは22mAh/g
であった。
Comparative Example 2 A graphite powder for a lithium secondary battery was obtained in the same manner as in Example 1, except that the heat treatment condition in Example 1 was 500 ° C. for 20 hours. At this time, the heat-treated product had a mesophase content of 90% and a volatile content of 4.8%. As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 340 mAh / g and the capacity loss was 22 mAh / g.
Met.

【0032】[0032]

【比較例3】実施例1における熱処理条件を500℃で
15時間とする以外は実施例1と同様にして熱処理物を
得た。これを実施例1と同様に粉砕し、微粉末とした
後、ピッチを被覆し、焼成した。しかし得られた焼成品
は融着しており、負極材用の粉末を得ることができなか
った。
Comparative Example 3 A heat-treated product was obtained in the same manner as in Example 1 except that the heat treatment condition in Example 1 was 500 ° C. for 15 hours. This was crushed in the same manner as in Example 1 to obtain a fine powder, which was then coated with pitch and fired. However, the obtained fired product was fused and the powder for the negative electrode material could not be obtained.

【0033】[0033]

【比較例4】実施例1における石炭系ピッチMPM−1
00の被覆量を2重量部とする以外は実施例1と同様な
方法でリチウム二次電池負極用黒鉛粉末を得た。実施例
と同様の方法で電池特性を測定した結果、放電容量は3
50mAh/g、容量ロスは49mAh/gであった。
[Comparative Example 4] Coal pitch MPM-1 in Example 1
Graphite powder for a negative electrode of a lithium secondary battery was obtained in the same manner as in Example 1 except that the coating amount of 00 was 2 parts by weight. As a result of measuring the battery characteristics in the same manner as in the example, the discharge capacity was 3
It was 50 mAh / g and the capacity loss was 49 mAh / g.

【0034】[0034]

【比較例5】実施例1における石炭系ピッチMPM−1
00の被覆量を40重量部とする以外は実施例1と同様
にしてリチウム二次電池負極用黒鉛粉末を得た。実施例
1と同様の方法で電池特性を測定した結果、放電容量は
338mAh/g、容量ロスは21mAh/gであっ
た。
[Comparative Example 5] Coal pitch MPM-1 in Example 1
Graphite powder for a lithium secondary battery negative electrode was obtained in the same manner as in Example 1 except that the coating amount of 00 was 40 parts by weight. As a result of measuring the battery characteristics by the same method as in Example 1, the discharge capacity was 338 mAh / g and the capacity loss was 21 mAh / g.

【0035】[0035]

【比較例6】実施例1における500℃までの昇温速度
を20℃/時間とする以外は実施例1と同様にして焼成
まで行った。しかし焼成品は融着しており、負極材を得
ることができなかった。
Comparative Example 6 Firing was performed in the same manner as in Example 1 except that the temperature rising rate up to 500 ° C. in Example 1 was 20 ° C./hour. However, the fired product was fused and the negative electrode material could not be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 EA02 EB02 EB06 EC06 5H029 AJ01 AL07 AM03 DJ16 HJ01 HJ14 5H050 AA02 AA07 BA17 CB08 DA09 EA10 FA17 FA18 GA02 GA05 GA22 HA01 HA14    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G046 EA02 EB02 EB06 EC06                 5H029 AJ01 AL07 AM03 DJ16 HJ01                       HJ14                 5H050 AA02 AA07 BA17 CB08 DA09                       EA10 FA17 FA18 GA02 GA05                       GA22 HA01 HA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フリ−カ−ボン量が1.0%以下の石炭
系ピッチをメソフェ−ズ量が95%以上、揮発分が5%
以下になるよう熱処理して得た熱処理物を粉砕.分級し
粒度を調節して微粉末とした後、光学的に等方性の石炭
系ピッチを被覆して、焼成し、黒鉛化することを特徴と
するリチウムイオン二次電池用負極材の製造方法。
1. A coal-based pitch having a free carbon content of 1.0% or less, a mesophase content of 95% or more, and a volatile content of 5%.
Crush the heat-treated product obtained by heat-treating as follows. A method for producing a negative electrode material for a lithium ion secondary battery, which comprises classifying and adjusting the particle size to obtain fine powder, coating an optically isotropic coal-based pitch, firing and graphitizing .
【請求項2】 請求項1において微粉末に対する、光
学的に等方性の石炭系ピッチの被覆の割合が5〜30%
であるリチウムイオン二次電池用負極材の製造方法。
2. The ratio of the coating of optically isotropic coal pitch to the fine powder according to claim 1, which is 5 to 30%.
Which is a method for producing a negative electrode material for a lithium ion secondary battery.
【請求項3】 請求項1において焼成における500
℃以下の昇温速度を10℃/hr以下としたリチウムイ
オン二次電池用負極材の製造方法。
3. The method according to claim 1, wherein the firing is 500.
A method for producing a negative electrode material for a lithium ion secondary battery, wherein a temperature rising rate at a temperature of ℃ or less is 10 ° C / hr or less.
【請求項4】 請求項1において、微粉末に対する、
光学的に等方性の石炭系ピッチの被覆の割合が5〜30
%であり、焼成における500℃以下の昇温速度を10
℃/hr以下としたリチウムイオン二次電池用負極材の
製造方法。
4. The fine powder according to claim 1,
The coating ratio of optically isotropic coal pitch is 5 to 30.
%, And the heating rate of 500 ° C. or less in firing is 10
A method for producing a negative electrode material for a lithium-ion secondary battery at a temperature of not more than ° C / hr.
【請求項5】 請求項1〜4記載のいずれかの製造方
法により得られたリチウムイオン二次電池用負極材を用
いたリチウムイオン二次電池。
5. A lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery obtained by the manufacturing method according to claim 1.
JP2001349591A 2001-11-15 2001-11-15 Manufacturing method of negative-electrode material for high efficient secondary lithium-ion battery Pending JP2003151551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349591A JP2003151551A (en) 2001-11-15 2001-11-15 Manufacturing method of negative-electrode material for high efficient secondary lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349591A JP2003151551A (en) 2001-11-15 2001-11-15 Manufacturing method of negative-electrode material for high efficient secondary lithium-ion battery

Publications (1)

Publication Number Publication Date
JP2003151551A true JP2003151551A (en) 2003-05-23

Family

ID=19162237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349591A Pending JP2003151551A (en) 2001-11-15 2001-11-15 Manufacturing method of negative-electrode material for high efficient secondary lithium-ion battery

Country Status (1)

Country Link
JP (1) JP2003151551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
WO2022265040A1 (en) 2021-06-18 2022-12-22 Eneos株式会社 Method for producing artificial graphite material for lithium ion secondary battery negative electrodes, artificial graphite material for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
WO2022265040A1 (en) 2021-06-18 2022-12-22 Eneos株式会社 Method for producing artificial graphite material for lithium ion secondary battery negative electrodes, artificial graphite material for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR101496309B1 (en) Silicon slurry for anode active material and carbon-silicon complex
EP3670475A1 (en) Method for producing negative electrode active material for lithium secondary battery, and lithium secondary battery including same
JP4915687B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
CN113226986B (en) Preparation method of lithium secondary battery negative electrode active material
KR101615439B1 (en) Manufacturing mehtod of carbon-silicon composite
KR101612603B1 (en) Carbon-silicon complex, negative active material for secondary battery including the same and method for preparing the same
KR102240777B1 (en) Method for manufacturing negative electrode material for rechargeable lithium battery
KR102176343B1 (en) Method for manufacturing negative electrode material for rechargeable lithium battery
KR20190054045A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP3054379B2 (en) Graphite powder coated with graphite for negative electrode material of lithium secondary battery and its manufacturing method
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JPH0831420A (en) Carbon material for electrode of lithium battery and manufacture thereof
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
JP2003151551A (en) Manufacturing method of negative-electrode material for high efficient secondary lithium-ion battery
KR101612602B1 (en) Carbon-silicon complex, negative active material for secondary battery including the same and method for preparing the same
JP2004296269A (en) Negative electrode material for lithium ion secondary battery, its manufacturing method, and battery using the same
JP2010257982A (en) Anode active material for lithium secondary battery, and lithium secondary battery including the same
JP2000223124A (en) Carbonaceous negative electrode material for nonaqueous secondary battery, its manufacture, and nonaqueous secondary battery
JP2001006670A (en) Bulk mesophase and manufacture thereof
JP3588354B2 (en) Method for producing negative electrode material for high performance lithium secondary battery
JP4770094B2 (en) Carbon material manufacturing method
JP2003142092A (en) High-performance lithium secondary battery negative electrode material
JP2002373656A (en) Negative electrode material for lithium ion secondary battery and the lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104