JP2003145310A - Cutting tool of surface-coated cemented carbide with cutting edge part achieving excellent heat-resistant plastic deformation performance in high speed cutting - Google Patents

Cutting tool of surface-coated cemented carbide with cutting edge part achieving excellent heat-resistant plastic deformation performance in high speed cutting

Info

Publication number
JP2003145310A
JP2003145310A JP2001345465A JP2001345465A JP2003145310A JP 2003145310 A JP2003145310 A JP 2003145310A JP 2001345465 A JP2001345465 A JP 2001345465A JP 2001345465 A JP2001345465 A JP 2001345465A JP 2003145310 A JP2003145310 A JP 2003145310A
Authority
JP
Japan
Prior art keywords
layer
cutting
cemented carbide
constituent
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001345465A
Other languages
Japanese (ja)
Inventor
Takatoshi Oshika
高歳 大鹿
Toshiaki Ueda
稔晃 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001345465A priority Critical patent/JP2003145310A/en
Priority to US10/101,972 priority patent/US6805944B2/en
Priority to AT02006607T priority patent/ATE340879T1/en
Priority to DE60214922T priority patent/DE60214922T2/en
Priority to EP02006607A priority patent/EP1245698B1/en
Priority to CNB021419035A priority patent/CN1293972C/en
Publication of JP2003145310A publication Critical patent/JP2003145310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool of surface-coated cemented carbide with a cutting edge part achieving excellent heat-resistant plastic deformation performance in high speed cutting. SOLUTION: This cutting tool of surface-coated cemented carbide comprises a hard coat layer by chemical vapor deposition on the surface of tungsten carbide cemented carbide base material. It comprises multiple alternating layers of first component layers and second component layers with 0.25-0.75 μm average layer thickness. The first component layer comprises a titanium nitride layer and/or a titanium carbon nitride layer, and the second component layer comprises a hafnium oxide layer. The total layer number of the first component layers and the second component layers is set at 4-9, and the average layer thickness as a whole body is set at 1-6 μm.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、高熱発生を伴な
う鋼などの高速切削に用いた場合に、切刃部がすぐれた
耐熱塑性変形性を発揮する表面被覆超硬合金製切削工具
(以下、被覆超硬工具という)に関するものである。 【0002】 【従来の技術】従来、一般に、炭化タングステン(以
下、WCで示す)基超硬合金で構成された基体(以下、
超硬基体という)の表面に、(a)化学蒸着形成および
/または物理蒸着形成(以下、単に蒸着形成という)さ
れたTiの炭化物(以下、TiCで示す)層、窒化物
(以下、同じくTiNで示す)層、炭窒化物(以下、T
iCNで示す)層、炭酸化物(以下、TiCOで示す)
層、および炭窒酸化物(以下、TiCNOで示す)層の
うちの1層または2層以上の積層からなり、かつ0.5
〜10μmの平均層厚を有するるTi化合物層からなる
下部層、(b)0.5〜10μmの平均層厚を有し、か
つ結晶構造がα型やκ型、さらにθ型などの蒸着形成さ
れた酸化アルミニウム(以下、Al23で示す)層から
なる上部層、以上(a)の下部層と(b)の上部層で構
成された硬質被覆層を蒸着形成してなる被覆超硬工具が
知られており、この被覆超硬工具が、例えば各種の鋼や
鋳鉄などの連続切削や断続切削に用いられていることも
知られている。 【0003】 【発明が解決しようとする課題】一方、近年の切削加工
に対する省力化および省エネ化、さらに低コスト化の要
求は強く、これに伴い、切削加工は切削機械の高性能化
とも相俟って高速化の傾向にあるが、上記の従来被覆超
硬工具の場合、これを鋼や鋳鉄などの通常の条件での切
削加工に用いた場合には問題はないが、これを高速切削
条件で用いると、特に硬質被覆層を構成する上記上部層
および下部層とも熱伝導性の相対的に良好なもの、ちな
みに上部層を構成するAl23の熱伝導率は6W/mK
であり、同じく下部層を構成する、例えばTiNのそれ
は14W/mKであるために、切削時に被削材と硬質被
覆層との間に発生する高熱が超硬基体に影響を及ぼし、
切刃部が熱塑性変形するのが避けられず、この熱塑性変
形によって摩耗は偏摩耗形態をとるようになり、この結
果切刃部の摩耗進行が著しく促進され、比較的短時間で
使用寿命に至るのが現状である。 【0004】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、高熱発生を伴う高速切削でも切
刃部に熱塑性変形の発生のない被覆超硬工具を開発すべ
く研究を行った結果、被覆超硬工具の硬質被覆層を、T
iN層および/またはTiCN層(以下、第1構成層と
いう)と、酸化ハフニウム(以下、HfO2で示す)層
(以下、第2構成層という)に特定した上で、これら両
構成層の交互多重積層とすると共に、これらの個々の層
厚を平均層厚で0.25〜0.75μmとし、かつ前記
第1構成層と第2構成層の合計層数を4〜9層として、
全体平均層厚を1〜6μmとした条件で硬質被覆層を構
成すると、この結果の硬質被覆層は交互多重積層構造に
よって、切削時に前記TiN層および/またはTiCN
層の第1構成層と、HfO2層の第2構成層が同時に被
削材の切削に直接的に関与し、それぞれのもつ特性、す
なわち前記第1構成層のもつすぐれた強度と靭性、およ
び前記第2構成層のもつすぐれた断熱性(HfO2の熱
伝導率は1.2W/mK)が、同時に、かつ均等に、さ
らに経時的変化なく発揮され、したがって、この結果の
被覆超硬工具は、これを特に鋼や鋳鉄などの高熱発生を
伴なう高速切削加工に用いても、前記硬質被覆層が強靭
性を保持した状態で、前記高熱を遮断して、超硬基体が
熱影響を受けるのを十分に防止することから、切刃部に
偏摩耗の原因となる熱塑性変形が発生するのが抑制さ
れ、すぐれた耐摩耗性を長期に亘って発揮するようにな
る、という研究結果を得たのである。 【0005】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、個々の平均層
厚が0.25〜0.75μmの第1構成層と第2構成層
の交互多重積層からなると共に、前記第1構成層がTi
N層および/またはTiCN層、前記第2構成層がHf
2層からなり、かつ前記第1構成層と第2構成層の合
計層数を4〜9層、全体平均層厚1〜6μmとした硬質
被覆層を化学蒸着してなる、高速切削で切刃部がすぐれ
た耐熱塑性変形性を発揮する被覆超硬工具に特徴を有す
るものである。 【0006】つぎに、この発明の被覆超硬工具におい
て、これを構成する硬質被覆層に関し、上記の通りに数
値限定した理由を説明する。 (1)第1構成層と第2構成層の個々の平均層厚 個々の平均層厚が0.25μm未満になると、第1構成
層および第2構成層のもつそれぞれの特性、すなわち第
1構成層のもつすぐれた強度と靭性、そして第2構成層
のもつすぐれた断熱性を切削時に十分に発揮することが
できず、この結果所望の耐熱塑性変形性を確保すること
ができなくなり、一方、その平均層厚が0.75μmを
越えると、前記第1構成層および第2構成層のもつそれ
ぞれの特性を切削時に同時に、かつ均等に、経時的変化
なく発揮させることが困難になり、この結果特に前記第
2構成層の影響が強く現われるようになって硬質被覆層
にチッピングが発生し易くなることから、個々の平均層
厚を0.25〜0.75μmと定めた。 【0007】(2)第1構成層と第2構成層の合計層数 その合計層数が4層未満では前記第1構成層および第2
構成層のいずれかの特性が切削時に強く現われ、特に第
2構成層の特性が強く現われ、硬質被覆層にチッピング
が発生し易くなり、一方9層を越えても、硬質被覆層の
切削性能により一段の向上効果が現われず、コスト高の
原因ともなることから、その合計層数を4〜9層と定め
た。 【0008】(3)硬質被覆層の全体平均層厚 その全体平均層厚が1μmでは所望のすぐれた耐摩耗性
を確保することができず、一方その全体平均層厚が6μ
mを越えると、硬質被覆層に欠けやチッピングが発生し
易くなることから、その全体平均層厚を1〜6μmと定
めた。 【0009】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、い
ずれも1〜3μmの平均粒径を有するWC粉末、TiC
粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉
末、Cr3 2 粉末、TiN粉末、TaN粉末、および
Co粉末を用意し、これら原料粉末を、表1に示される
配合組成に配合し、さらにワックスを加えてアセトン中
で24時間ボールミル混合し、減圧乾燥した後、98M
Paの圧力で所定形状の圧粉体にプレス成形し、この圧
粉体を5Paの真空中、1370〜1470℃の範囲内
の所定の温度に1時間保持の条件で真空焼結し、焼結
後、切刃部にR:0.07mmのホーニング加工を施す
ことによりISO・CNMG120408に規定するス
ローアウエイチップ形状をもった超硬基体A〜Jをそれ
ぞれ製造した。 【0010】ついで、これらの超硬基体A〜Jのそれぞ
れを、アセトン中で超音波洗浄し、乾燥した状態で、通
常の化学蒸着装置に装入し、いずれも通常の形成条件と
して知られている、第1構成層のTiN層の形成条件
を、 反応ガス組成−容量%で、TiCl4:4.2%、N2
35%、H2:残り、 反応雰囲気温度:960℃、 反応雰囲気圧力:25kPa、 とし、また、同じくTiCN層の形成条件を、 反応ガス組成−容量%で、TiCl4:4.2%、N2
20%、CH4:4%、H2:残り、 反応雰囲気温度:960℃、 反応雰囲気圧力:7kPa、 とし、さらに、第2構成層のHfO2層の形成条件を、 反応ガス組成−容量%で、HfCl4:3.5%、C
2:6%、HCl:1.5%、H2:残り、 反応雰囲気温度:960℃、 反応雰囲気圧力:7kPa、 とし、それぞれ表2に示される目標層厚の第1構成層と
第2構成層を交互に、かつ第1構成層と第2構成層の形
成の間には30秒間のH2ガス導入による反応雰囲気の
入れ替えを行ないながら、同じく表2に示される合計層
数および全体目標層厚の硬質被覆層を上記超硬基体A〜
Jのそれぞれの表面に蒸着形成することにより本発明被
覆超硬工具1〜10をそれぞれ製造した。 【0011】また、比較の目的で、同じ化学蒸着装置に
て、表3に示される条件で、表4に示される組成および
目標層厚の硬質被覆層を上記超硬基体A〜Jの表面に蒸
着形成することにより従来被覆超硬工具1〜10をそれ
ぞれ製造した。 【0012】この結果得られた各種の被覆超硬工具につ
いて、これを構成する各種硬質被覆層の組成および層厚
を、オージェ分光分析装置、さらに走査型電子顕微鏡お
よび透過型電子顕微鏡を用いて測定したところ、表2、
4の目標組成および目標層厚と実質的に同じ組成および
平均層厚(任意5ヶ所測定の平均値との比較)を示し
た。 【0013】つぎに、上記本発明被覆超硬工具1〜10
および従来被覆超硬工具1〜10について、いずれも工
具鋼製バイトの先端部に固定治具にてネジ止めした状態
で、 被削材:JIS・SCM440の丸棒、 切削速度:420m/min、 切り込み:1.5mm、 送り:0.25mm/rev、 切削時間:5分、 の条件での合金鋼の乾式高速連続切削試験、および、 被削材:JIS・SUS304の長さ方向等間隔4本縦
溝入り丸棒、 切削速度:230m/min、 切り込み:1.5mm、 送り:0.2mm/rev、 切削時間:3分、 の条件でのステンレス鋼の乾式高速断続切削試験を行
い、いずれの切削試験でも切刃部の逃げ面摩耗幅を測定
した。これらの試験結果を表5に示した。 【0014】 【表1】【0015】 【表2】【0016】 【表3】【0017】 【表4】 【0018】 【表5】【0019】 【発明の効果】表2〜5に示される結果から、硬質被覆
層が上記の第1構成層と第2構成層の4〜9層の交互積
層からなる本発明被覆超硬工具1〜10は、いずれも鋼
の切削加工を高い発熱を伴う高速で行っても、前記第2
薄層がもたらすすぐれた断熱効果によって切削時に発生
する高熱が超硬基体に伝達するのが著しく抑制されるこ
とから、切刃部の熱塑性変形が防止され、同じく交互積
層する第1薄層による硬質被覆層の靭性および強度向上
と相俟って、切刃部に偏摩耗の発生がなく、すぐれた耐
摩耗性を発揮するのに対して、従来被覆超硬工具1〜1
0においては、いずれも高速切削時に発生する高熱によ
って偏摩耗の原因となる熱塑性変形を起し、このため摩
耗進行が著しく促進し、比較的短時間で使用寿命に至る
ことが明らかである。上述のように、この発明の被覆超
硬工具は、各種の鋼や鋳鉄などの通常の条件での切削加
工は勿論のこと、特にこれの高速切削加工においてもす
ぐれた耐摩耗性を発揮するものであるから、切削加工の
省力化および省エネ化、さらに低コスト化に十分満足に
対応できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an excellent heat-resistant plastic deformability of a cutting edge when used for high-speed cutting of steel or the like accompanied by high heat generation. The present invention relates to a cutting tool made of a surface-coated cemented carbide (hereinafter referred to as a coated cemented carbide tool). 2. Description of the Related Art Conventionally, a substrate (hereinafter, referred to as WC) based on tungsten carbide (hereinafter, referred to as WC) is generally used.
A carbide layer (hereinafter referred to as TiC) layer of nitride (hereinafter also referred to as TiC) formed by chemical vapor deposition and / or physical vapor deposition (hereinafter simply referred to as vapor deposition), ) Layer, carbonitride (hereinafter, T
layer, represented by iCN), carbonate (hereinafter represented by TiCO)
And one or more of carbon oxynitride (hereinafter referred to as TiCNO) layers, and 0.5
A lower layer made of a Ti compound layer having an average layer thickness of 10 to 10 μm, and (b) a vapor-deposited layer having an average layer thickness of 0.5 to 10 μm and having an α-type, κ-type, or θ-type crystal structure. Coated hard layer formed by vapor-depositing a hard coating layer composed of an aluminum oxide (hereinafter, referred to as Al 2 O 3 ) layer, and a lower coating layer (a) and an upper layer (b). Tools are known, and it is also known that this coated carbide tool is used for continuous cutting or intermittent cutting of, for example, various kinds of steel or cast iron. On the other hand, in recent years, there has been a strong demand for labor saving, energy saving, and further cost reduction in cutting work, and with this, cutting work has been accompanied by higher performance of cutting machines. In the case of the conventional coated carbide tools described above, there is no problem if this is used for cutting under ordinary conditions such as steel or cast iron. In particular, both the upper layer and the lower layer constituting the hard coating layer have relatively good thermal conductivity, and the thermal conductivity of Al 2 O 3 constituting the upper layer is 6 W / mK.
Since the lower layer is also composed of, for example, 14 W / mK of TiN, high heat generated between the work material and the hard coating layer at the time of cutting affects the super-hard substrate,
It is unavoidable that the cutting edge part undergoes thermoplastic deformation, and this thermoplastic deformation causes the wear to take an uneven wear form. As a result, the wear progress of the cutting edge part is remarkably accelerated, and the service life is shortened in a relatively short time. is the current situation. [0004] Accordingly, the present inventors have proposed:
From the above-mentioned viewpoints, as a result of researching to develop a coated cemented carbide tool that does not generate thermoplastic deformation in the cutting edge portion even at high speed cutting with high heat generation, the hard coating layer of the coated cemented carbide tool was changed to T
After specifying an iN layer and / or a TiCN layer (hereinafter, referred to as a first constituent layer) and a hafnium oxide (hereinafter, referred to as HfO 2 ) layer (hereinafter, referred to as a second constituent layer), these two constituent layers are alternated. With multiple layers, these individual layer thicknesses are 0.25 to 0.75 μm in average layer thickness, and the total number of the first constituent layer and the second constituent layer is 4 to 9 layers,
When the hard coating layer is formed under the condition that the total average layer thickness is 1 to 6 μm, the resulting hard coating layer has an alternate multi-layer structure, and thus the TiN layer and / or TiCN at the time of cutting.
The first constituent layer of the layer and the second constituent layer of the HfO 2 layer are simultaneously directly involved in the cutting of the work material, and have the respective properties, that is, the excellent strength and toughness of the first constituent layer, and The excellent thermal insulation properties of the second component layer (HfO 2 having a thermal conductivity of 1.2 W / mK) are exerted simultaneously, evenly and without change over time, so that the resulting coated carbide tool Even when this is used for high-speed cutting of steel, cast iron, etc., which involves high heat generation, the high heat is cut off while the hard coating layer retains toughness, and the cemented carbide substrate is affected by heat. Research results show that by sufficiently preventing the surface from receiving heat, it is possible to suppress the occurrence of thermoplastic deformation that causes uneven wear on the cutting edge, and to exhibit excellent wear resistance over a long period of time. I got it. The present invention has been made on the basis of the above-mentioned research results. The first and second constituent layers each having an average layer thickness of 0.25 to 0.75 μm are formed on the surface of the superhard substrate. And the first constituent layer is made of Ti
An N layer and / or a TiCN layer, wherein the second constituent layer is Hf
Cutting by high-speed cutting, a hard coating layer composed of an O 2 layer and having a total number of the first and second constituent layers of 4 to 9 and a total average layer thickness of 1 to 6 μm is formed by chemical vapor deposition. The feature is that the coated carbide tool has an excellent heat-resistant plastic deformability with a blade portion. Next, the reason why the numerical values of the hard coating layer constituting the coated carbide tool of the present invention are limited as described above will be described. (1) Individual average layer thickness of the first and second constituent layers When the individual average layer thickness is less than 0.25 μm, the respective properties of the first and second constituent layers, that is, the first structure The excellent strength and toughness of the layer and the excellent heat insulating property of the second constituent layer cannot be sufficiently exhibited at the time of cutting, and as a result, the desired heat-resistant plastic deformation cannot be ensured. If the average layer thickness exceeds 0.75 μm, it becomes difficult to exhibit the respective properties of the first constituent layer and the second constituent layer simultaneously, uniformly and without a change over time during cutting. In particular, since the influence of the second constituent layer appears strongly and chipping easily occurs in the hard coating layer, the average thickness of each layer is set to 0.25 to 0.75 μm. (2) The total number of first and second constituent layers If the total number of layers is less than four, the first constituent layer and the second constituent layer
Either property of the constituent layer appears strongly at the time of cutting, particularly the property of the second constituent layer appears strongly, and chipping easily occurs in the hard coating layer. Since a further improvement effect does not appear and causes higher cost, the total number of layers is set to 4 to 9 layers. (3) Overall average layer thickness of the hard coating layer If the overall average layer thickness is 1 μm, it is not possible to secure desired excellent wear resistance, while the overall average layer thickness is 6 μm.
When the thickness exceeds m, chipping and chipping easily occur in the hard coating layer. Therefore, the overall average layer thickness is set to 1 to 6 μm. Next, the coated carbide tool of the present invention will be specifically described with reference to examples. WC powder, TiC, each having an average particle size of 1 to 3 μm, as raw material powders
Powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder were prepared, and these raw powders were blended into the blending composition shown in Table 1, The wax was added, the mixture was mixed in a ball mill in acetone for 24 hours, and dried under reduced pressure.
It is press-molded into a green compact of a predetermined shape at a pressure of Pa, and the green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature in a range of 1370 to 1470 ° C. for 1 hour, and sintered. Thereafter, the cutting edge portion was subjected to a honing process of R: 0.07 mm to produce each of the superhard bases A to J having a throw-away chip shape specified in ISO • CNMG120408. Next, each of these superhard substrates A to J is ultrasonically cleaned in acetone, and then, in a dry state, charged into a normal chemical vapor deposition apparatus. The conditions for forming the first constituent layer TiN layer were as follows: reaction gas composition-volume%, TiCl 4 : 4.2%, N 2 :
35%, H 2 : remaining, reaction atmosphere temperature: 960 ° C., reaction atmosphere pressure: 25 kPa, and the same conditions for forming the TiCN layer were performed using the reaction gas composition-volume%, TiCl 4 : 4.2%, N 2 :
20%, CH 4 : 4%, H 2 : residual, reaction atmosphere temperature: 960 ° C., reaction atmosphere pressure: 7 kPa, and the conditions for forming the HfO 2 layer of the second constituent layer were as follows: reaction gas composition—volume% And HfCl 4 : 3.5%, C
O 2 : 6%, HCl: 1.5%, H 2 : remaining, reaction atmosphere temperature: 960 ° C., reaction atmosphere pressure: 7 kPa, and the first constituent layer and the second constituent layer having the target layer thickness shown in Table 2, respectively. The total number of layers and the overall target are also shown in Table 2 while alternately changing the constituent layers and replacing the reaction atmosphere by introducing H 2 gas for 30 seconds between the formation of the first constituent layer and the second constituent layer. The hard coating layer having a thickness of
The coated carbide tools 1 to 10 of the present invention were produced by vapor deposition on the respective surfaces of J. For the purpose of comparison, a hard coating layer having a composition and a target layer thickness shown in Table 4 was applied to the surfaces of the superhard substrates A to J under the conditions shown in Table 3 using the same chemical vapor deposition apparatus. Conventionally coated carbide tools 1 to 10 were manufactured by vapor deposition. With respect to the various coated carbide tools obtained as a result, the compositions and thicknesses of the various hard coating layers constituting the tools are measured using an Auger spectrometer, a scanning electron microscope and a transmission electron microscope. Then, Table 2,
The target composition and the target layer thickness of No. 4 were substantially the same as the target composition and the target layer thickness (comparison with the average value of measurements at five arbitrary points). Next, the coated carbide tools 1 to 10 according to the present invention will be described.
And the conventional coated carbide tools 1 to 10 were screwed to the tip of a tool steel tool with a fixing jig. Work material: JIS SCM440 round bar, Cutting speed: 420 m / min, Cutting speed: 1.5 mm, Feeding: 0.25 mm / rev, Cutting time: 5 minutes, Dry high-speed continuous cutting test of alloy steel under the following conditions: Work material: JIS, SUS304, four equally spaced lengthwise A dry high-speed intermittent cutting test of stainless steel was performed under the following conditions: a round bar with a vertical groove, cutting speed: 230 m / min, cutting depth: 1.5 mm, feed: 0.2 mm / rev, cutting time: 3 minutes. The flank wear width of the cutting edge was also measured in the cutting test. Table 5 shows the test results. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] From the results shown in Tables 2 to 5, the coated cemented carbide tool 1 according to the present invention in which the hard coating layer is formed by alternately laminating 4 to 9 layers of the above-mentioned first and second constituent layers. No. 10 to No. 10, even when cutting steel at high speed with high heat generation,
Due to the excellent heat insulating effect provided by the thin layer, the high heat generated at the time of cutting is significantly suppressed from being transmitted to the cemented carbide substrate. In combination with the improvement of the toughness and strength of the coating layer, uneven wear does not occur on the cutting edge and excellent wear resistance is exhibited.
In the case of No. 0, it is clear that the high heat generated during high-speed cutting causes thermoplastic deformation which causes uneven wear, which significantly accelerates the progress of wear and leads to a shorter service life in a relatively short time. As described above, the coated carbide tool of the present invention exhibits excellent wear resistance not only in cutting under various conditions such as various types of steel and cast iron, but also particularly in high-speed cutting. Therefore, it is possible to sufficiently satisfactorily cope with the labor saving and energy saving of the cutting process and the cost reduction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 稔晃 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 Fターム(参考) 3C046 FF03 FF10 FF16 FF25 FF52 4K030 AA03 AA10 AA14 AA17 AA18 AA24 BA01 BA18 BA38 BA41 BA42 BB12 CA03 FA10 JA01 LA22    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Toshiaki Ueda             1002-14 Mukoyama, Naka-machi, Naka-gun, Ibaraki Pref.             Terial Co., Ltd.             Inside F term (reference) 3C046 FF03 FF10 FF16 FF25 FF52                 4K030 AA03 AA10 AA14 AA17 AA18                       AA24 BA01 BA18 BA38 BA41                       BA42 BB12 CA03 FA10 JA01                       LA22

Claims (1)

【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体の表面
に、 個々の平均層厚が0.25〜0.75μmの第1構成層
と第2構成層の交互多重積層からなると共に、前記第1
構成層が窒化チタン層および/または炭窒化チタン層、
前記第2構成層が酸化ハフニウム層からなり、かつ前記
第1構成層と第2構成層の合計層数を4〜9層、全体平
均層厚1〜6μmとした硬質被覆層を化学蒸着してな
る、高速切削で切刃部がすぐれた耐熱塑性変形性を発揮
する表面被覆超硬合金製切削工具。
Claims: 1. An alternate multiple layering of a first constituent layer and a second constituent layer having an average layer thickness of 0.25 to 0.75 μm on a surface of a tungsten carbide-based cemented carbide substrate. And the first
The constituent layer is a titanium nitride layer and / or a titanium carbonitride layer,
The second coating layer is composed of a hafnium oxide layer, and the total number of the first coating layer and the second coating layer is 4 to 9 layers, and a hard coating layer having a total average layer thickness of 1 to 6 μm is formed by chemical vapor deposition. A cutting tool made of surface-coated cemented carbide that exhibits excellent heat-resistant plastic deformability at high-speed cutting.
JP2001345465A 2001-03-26 2001-11-12 Cutting tool of surface-coated cemented carbide with cutting edge part achieving excellent heat-resistant plastic deformation performance in high speed cutting Pending JP2003145310A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001345465A JP2003145310A (en) 2001-11-12 2001-11-12 Cutting tool of surface-coated cemented carbide with cutting edge part achieving excellent heat-resistant plastic deformation performance in high speed cutting
US10/101,972 US6805944B2 (en) 2001-03-26 2002-03-21 Coated cemented carbide cutting tool
AT02006607T ATE340879T1 (en) 2001-03-26 2002-03-22 COATED CUTTING TOOL
DE60214922T DE60214922T2 (en) 2001-03-26 2002-03-22 Coated cutting tool
EP02006607A EP1245698B1 (en) 2001-03-26 2002-03-22 Coated cemented carbide cutting tool
CNB021419035A CN1293972C (en) 2001-03-26 2002-03-26 Cutting tool coated with hard alloy on surface for high-speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345465A JP2003145310A (en) 2001-11-12 2001-11-12 Cutting tool of surface-coated cemented carbide with cutting edge part achieving excellent heat-resistant plastic deformation performance in high speed cutting

Publications (1)

Publication Number Publication Date
JP2003145310A true JP2003145310A (en) 2003-05-20

Family

ID=19158787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345465A Pending JP2003145310A (en) 2001-03-26 2001-11-12 Cutting tool of surface-coated cemented carbide with cutting edge part achieving excellent heat-resistant plastic deformation performance in high speed cutting

Country Status (1)

Country Link
JP (1) JP2003145310A (en)

Similar Documents

Publication Publication Date Title
US7276301B2 (en) Surface-coated cermet cutting tool with a hard coating layer exhibiting excellent chipping resistance
EP1245698A2 (en) Coated cemented carbide cutting tool
JP3087465B2 (en) Manufacturing method of surface-coated titanium carbonitride-based cermet cutting tool with excellent wear and fracture resistance
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JPH10251831A (en) Cutting tool made of surface-coated cemented carbide excellent in wear resistance
JP4114854B2 (en) Slow-away tip made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed interrupted cutting
JP2002239807A (en) Surface-covered thermet made cutting tool hard covered layer of which has excellent thermal shock resistance
JP2003145310A (en) Cutting tool of surface-coated cemented carbide with cutting edge part achieving excellent heat-resistant plastic deformation performance in high speed cutting
JP2002263910A (en) Surface-coated cemented carbide cutter having hard cover layer exhibiting excellent wear resistance in high- speed cutting operation
JP3109272B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent fracture and wear resistance
JP3451878B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP2000158206A (en) Surface-covering cemented carbide alloy cutting tool having its surface covering layer exhibiting excellent chipping resistance and wear resistance
JP2000246507A (en) Cutting tool made of surface coated super hard alloy exhibiting excellent high temperature heat conductivity at its hard coated layer
JP2003136308A (en) Surface coated cemented carbide cutting tool having cutting edge exerting excellent heat resistant plastic deformation in high-speed cutting
JP3397058B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2001062603A (en) Surface coated cutting tool made of tungsten cemented carbide super hard alloy whose hard coated layer displays excellent tipping resistance in interrupted heavy cutting
JP2003136304A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2003145311A (en) Cutting tool of surface-coated cemented carbide with hard coat layer achieving excellent chipping resistance in high speed discontinuous cutting
JP2005288639A (en) Machining tool made of surface-covered thermet with its hard covering layer exerting excellent anti-chipping performance in high-speed intermittent machining of hard-to-machine material
JPH08118108A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JP3397054B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP2002283110A (en) Cutting tool made of surface coated cemented carbide having cutting blade part exhibiting superior chipping resistance in high-speed intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040323

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051122

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060821