JP2003139419A - Hot water supply system - Google Patents

Hot water supply system

Info

Publication number
JP2003139419A
JP2003139419A JP2001339648A JP2001339648A JP2003139419A JP 2003139419 A JP2003139419 A JP 2003139419A JP 2001339648 A JP2001339648 A JP 2001339648A JP 2001339648 A JP2001339648 A JP 2001339648A JP 2003139419 A JP2003139419 A JP 2003139419A
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
water supply
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001339648A
Other languages
Japanese (ja)
Other versions
JP3737414B2 (en
Inventor
Hisasuke Sakakibara
久介 榊原
Tomoaki Kobayakawa
智明 小早川
Kazutoshi Kusakari
和俊 草刈
Michiyuki Saikawa
路之 斉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Denso Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Central Research Institute of Electric Power Industry
Tokyo Electric Power Co Inc
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Tokyo Electric Power Co Inc, Denso Corp filed Critical Central Research Institute of Electric Power Industry
Priority to JP2001339648A priority Critical patent/JP3737414B2/en
Publication of JP2003139419A publication Critical patent/JP2003139419A/en
Application granted granted Critical
Publication of JP3737414B2 publication Critical patent/JP3737414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot water supply system A capable of easily acquiring the targeted heating capacity. SOLUTION: The hot water supply system A has a refrigerant circuit wherein a compressor 11, the refrigerant duct 21 of a refrigerant/water heat exchanger 2, an expansion valve 3, and a refrigerant evaporator 4 are connected in a ring by a refrigerant pipe 12; a hot water supply circuit wherein the hot water duct 22 of the exchanger 2, a hot water tank 61, and a circulating pump 5 are connected in a ring by a hot water pipe 62; and a controller 9 for controlling the compressor 11, the valve 3, and the pump 5. The controller 9 determines the number of revolutions for the compressor 11 based on the outside air temperature detected by an outside air temperature sensor 97 and the targeted heating capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒水熱交換器の
冷媒通路を通過する高温の冷媒と、冷媒水熱交換器の湯
水通路を通過する湯水とを熱交換して湯水を加熱する給
湯装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply for heating hot water by exchanging heat between a high temperature refrigerant passing through a refrigerant passage of a refrigerant water heat exchanger and hot water passing through a hot water passage of a refrigerant water heat exchanger. Regarding the device.

【0002】[0002]

【従来の技術】例えば、電気ヒータで水を加熱して貯湯
タンクに貯湯する電気加熱式の給湯装置が知られてい
る。
2. Description of the Related Art For example, an electric heating type hot water supply device is known in which water is heated by an electric heater and stored in a hot water storage tank.

【0003】また、冷媒を圧縮する冷媒圧縮機、冷媒水
熱交換器の冷媒通路、膨張弁、および冷媒蒸発器を冷媒
配管で環状に接続した冷媒回路と、冷媒水熱交換器の湯
水通路、貯湯側から湯を貯湯していく貯湯タンク、およ
び循環ポンプを湯水配管で環状に接続した給湯回路と、
冷媒圧縮機、膨張弁、循環ポンプを制御する制御器とを
備え、制御器が冷媒圧縮機および循環ポンプを作動させ
て、冷媒通路を通過する高温の冷媒により湯水通路を通
過する湯水を加熱するヒートポンプ式の給湯装置も知ら
れている。
Further, a refrigerant compressor for compressing a refrigerant, a refrigerant passage of a refrigerant water heat exchanger, an expansion valve, and a refrigerant circuit in which a refrigerant evaporator is annularly connected by a refrigerant pipe, a hot water passage of a refrigerant water heat exchanger, A hot water storage tank that stores hot water from the hot water storage side, and a hot water supply circuit in which a circulation pump is annularly connected by hot and cold water piping,
A controller for controlling the refrigerant compressor, the expansion valve, and the circulation pump is provided, and the controller operates the refrigerant compressor and the circulation pump to heat the hot water passing through the hot water passage by the high temperature refrigerant passing through the refrigerant passage. A heat pump type hot water supply device is also known.

【0004】[0004]

【発明が解決しようとする課題】電気加熱式の給湯装置
では、貯湯タンク内の残湯量等から算出した必要加熱量
を電気ヒータの入力電力(加熱出力)で割って通電時間
を求め、深夜時間帯の終了時に沸き上がる様にしてい
る。しかし、ヒートポンプ式の給湯装置では、外気温度
や給水温度等によって加熱能力が変化するので、目標時
間に沸き上げるのは困難であった。本発明の目的は、目
標とする加熱能力を容易に得ることができる給湯装置の
提供にある。
In the electric heating type hot water supply apparatus, the required heating amount calculated from the amount of remaining hot water in the hot water storage tank is divided by the input power (heating output) of the electric heater to obtain the energization time, and the midnight time is calculated. I try to boil at the end of the obi. However, in the heat pump type hot water supply device, it is difficult to boil it up to the target time because the heating capacity changes depending on the outside air temperature, the water supply temperature, and the like. An object of the present invention is to provide a hot water supply device that can easily obtain a target heating capacity.

【0005】[0005]

【課題を解決するための手段】〔請求項1について〕冷
媒回路は、冷媒を圧縮する冷媒圧縮機、冷媒水熱交換器
の冷媒通路、膨張弁、および冷媒蒸発器を冷媒配管で環
状に接続している。給湯回路は、冷媒水熱交換器の湯水
通路、貯湯側から湯を貯湯していく貯湯タンク、および
循環ポンプを湯水配管で環状に接続している。外気温検
出手段が外気温度を検出し、目標加熱能力算出手段が目
標加熱能力を算出する。
[Means for Solving the Problems] [Claim 1] In a refrigerant circuit, a refrigerant compressor for compressing a refrigerant, a refrigerant passage of a refrigerant water heat exchanger, an expansion valve, and a refrigerant evaporator are annularly connected by a refrigerant pipe. is doing. The hot water supply circuit connects a hot water passage of the refrigerant water heat exchanger, a hot water storage tank for storing hot water from the hot water storage side, and a circulation pump in a ring shape by hot and cold water piping. The outside air temperature detecting means detects the outside air temperature, and the target heating capacity calculating means calculates the target heating capacity.

【0006】冷媒圧縮機、膨張弁、循環ポンプを制御す
る制御器は、冷媒圧縮機および循環ポンプを作動させ
て、冷媒通路を通過する高温の冷媒により湯水通路を通
過する湯水を加熱するヒートポンプ運転を行う。この
際、外気温度と目標加熱能力とに基づいて制御器が冷媒
圧縮機の能力を決定する。
The controller for controlling the refrigerant compressor, the expansion valve, and the circulation pump operates the refrigerant compressor and the circulation pump to heat the hot water passing through the hot water passage by the high temperature refrigerant passing through the refrigerant passage. I do. At this time, the controller determines the capacity of the refrigerant compressor based on the outside air temperature and the target heating capacity.

【0007】具体的には、冷媒圧縮機の能力を、外気温
度(外気温度が高いほど下げる)と目標加熱能力(目標
加熱能力が高いほど上げる)とに基づいて決定する(図
3参照)。決定した能力で冷媒圧縮機を制御してヒート
ポンプ運転を行えば、給湯装置は目標とする加熱能力を
容易に出すことができる。
Specifically, the capacity of the refrigerant compressor is determined based on the outside air temperature (lower as the outside air temperature is higher) and the target heating capacity (more as the target heating capacity is higher) (see FIG. 3). By controlling the refrigerant compressor with the determined capacity and performing the heat pump operation, the hot water supply device can easily obtain the target heating capacity.

【0008】〔請求項2について〕冷媒回路は、冷媒を
圧縮する冷媒圧縮機、冷媒水熱交換器の冷媒通路、膨張
弁、および冷媒蒸発器を冷媒配管で環状に接続してい
る。給湯回路は、冷媒水熱交換器の湯水通路、貯湯側か
ら湯を貯湯していく貯湯タンク、および循環ポンプを湯
水配管で環状に接続している。冷媒状態検出手段が冷媒
圧縮機の吸入側の冷媒温度または冷媒圧力を検出し、目
標加熱能力算出手段が目標加熱能力を算出する。
[Claim 2] In the refrigerant circuit, the refrigerant compressor for compressing the refrigerant, the refrigerant passage of the refrigerant water heat exchanger, the expansion valve, and the refrigerant evaporator are annularly connected by a refrigerant pipe. The hot water supply circuit connects a hot water passage of the refrigerant water heat exchanger, a hot water storage tank for storing hot water from the hot water storage side, and a circulation pump in a ring shape by hot and cold water piping. The refrigerant state detecting means detects the refrigerant temperature or the refrigerant pressure on the suction side of the refrigerant compressor, and the target heating capacity calculating means calculates the target heating capacity.

【0009】冷媒圧縮機、膨張弁、循環ポンプを制御す
る制御器は、冷媒圧縮機および循環ポンプを作動させ
て、冷媒通路を通過する高温の冷媒により湯水通路を通
過する湯水を加熱するヒートポンプ運転を行う。この
際、冷媒圧縮機の吸入側の冷媒温度または冷媒圧力と、
目標加熱能力とに基づいて制御器が冷媒圧縮機の能力を
決定する。
The controller for controlling the refrigerant compressor, the expansion valve, and the circulation pump operates the refrigerant compressor and the circulation pump to heat the hot water passing through the hot water passage by the high temperature refrigerant passing through the refrigerant passage. I do. At this time, the refrigerant temperature or refrigerant pressure on the suction side of the refrigerant compressor,
The controller determines the capacity of the refrigerant compressor based on the target heating capacity.

【0010】具体的には、冷媒圧縮機の能力を、冷媒圧
縮機の吸入側の冷媒温度または冷媒圧力(冷媒温度また
は冷媒圧力が高いほど下げる)と目標加熱能力(目標加
熱能力が高いほど上げる)とに基づいて決定する。決定
した能力で冷媒圧縮機を制御してヒートポンプ運転を行
えば、給湯装置は目標とする加熱能力を容易に出すこと
ができる。
Specifically, the capacity of the refrigerant compressor is increased as the refrigerant temperature or refrigerant pressure on the suction side of the refrigerant compressor (lower as the refrigerant temperature or refrigerant pressure is higher) and the target heating capacity (higher target heating capacity is increased. ) And based on. By controlling the refrigerant compressor with the determined capacity and performing the heat pump operation, the hot water supply device can easily obtain the target heating capacity.

【0011】〔請求項3について〕沸き上げ温度検出手
段が沸き上げ温度を検出する。沸き上げ温度により冷媒
がバランスする高圧圧力が変化し、加熱エンタルピが変
化するので、制御器が決定した冷媒圧縮機の能力を沸き
上げ温度が高いほど低くなる様に補正する(図4参
照)。なお、冷媒水熱交換器の湯水通路の出口と給湯タ
ンクの貯湯側とを接続する湯水配管中に沸き上げ温度検
出手段の検出部を配設する。
[Claim 3] The boiling temperature detecting means detects the boiling temperature. Since the high temperature pressure at which the refrigerant balances changes depending on the boiling temperature and the heating enthalpy changes, the capacity of the refrigerant compressor determined by the controller is corrected so that it becomes lower as the boiling temperature becomes higher (see FIG. 4). In addition, the detecting portion of the boiling temperature detecting means is provided in the hot and cold water pipe connecting the outlet of the hot and cold water passage of the refrigerant water heat exchanger and the hot water storage side of the hot water supply tank.

【0012】〔請求項4について〕冷媒圧縮機の吐出側
の高圧冷媒圧力を検出する高圧側冷媒圧力検出手段を設
け、高圧冷媒圧力が高いほど制御器が決定した冷媒圧縮
機の能力が低くなる様に補正する。これにより、湯水と
冷媒との熱交換が安定化する。
[Claim 4] High pressure side refrigerant pressure detecting means for detecting the high pressure refrigerant pressure on the discharge side of the refrigerant compressor is provided, and the higher the high pressure refrigerant pressure, the lower the capacity of the refrigerant compressor determined by the controller. To correct. This stabilizes the heat exchange between the hot water and the refrigerant.

【0013】〔請求項5について〕冷媒水熱交換器の冷
媒通路の出口側の出口側冷媒圧力を検出する出口側冷媒
圧力検出手段を設け、出口側冷媒圧力が高いほど制御器
が決定した冷媒圧縮機の能力が低くなる様に補正する。
これにより、湯水と冷媒との熱交換が安定化する。
[Claim 5] Outlet-side refrigerant pressure detection means for detecting the outlet-side refrigerant pressure on the outlet side of the refrigerant passage of the refrigerant water heat exchanger is provided, and the higher the outlet-side refrigerant pressure, the more the refrigerant determined by the controller. Correct so that the capacity of the compressor becomes low.
This stabilizes the heat exchange between the hot water and the refrigerant.

【0014】〔請求項6について〕冷媒圧縮機の吐出側
の高圧冷媒圧力は冷媒の臨界点を越える圧力である。冷
媒水熱交換器の出口側の冷媒が超臨界状態となるので、
熱交換の状態により冷媒がどの相域にも変化する。この
ため、冷媒圧縮機の能力を制御して熱交換の状態を変え
ることにより給湯装置は目標とする加熱能力を容易に出
すことができる。
[Claim 6] The high pressure refrigerant pressure on the discharge side of the refrigerant compressor is a pressure exceeding the critical point of the refrigerant. Since the refrigerant on the outlet side of the refrigerant water heat exchanger will be in a supercritical state,
The refrigerant changes to any phase region depending on the state of heat exchange. Therefore, by controlling the capacity of the refrigerant compressor to change the state of heat exchange, the hot water supply device can easily obtain the target heating capacity.

【0015】〔請求項7について〕制御器は、冷媒水熱
交換器の冷媒通路の出口側の出口側冷媒温度と、給水温
度との差に基づいて膨張弁の開度や循環ポンプの能力を
制御し、冷媒圧縮機の吐出側の高圧冷媒圧力を制御し、
冷媒圧縮機の吐出側の高圧冷媒圧力を冷媒の臨界点を越
える圧力にする。
[Claim 7] The controller determines the opening degree of the expansion valve and the capacity of the circulation pump based on the difference between the outlet side refrigerant temperature on the outlet side of the refrigerant passage of the refrigerant water heat exchanger and the feed water temperature. Control, control the high pressure refrigerant pressure on the discharge side of the refrigerant compressor,
The high pressure refrigerant pressure on the discharge side of the refrigerant compressor is set to a pressure exceeding the critical point of the refrigerant.

【0016】〔請求項8について〕流量検出手段が検出
する湯水流量と、給水温度と、沸き上げ温度とに基づい
て目標加熱能力が算出される。
[Claim 8] The target heating capacity is calculated based on the hot and cold water flow rate detected by the flow rate detecting means, the feed water temperature, and the boiling temperature.

【0017】[0017]

【発明の実施の形態】本発明の第1実施例(請求項1、
3、6、7に対応)を、図1〜図4に基づいて説明す
る。給湯装置Aは、冷媒を圧縮するコンプレッサ11、
冷媒水熱交換器2の冷媒通路21、膨張弁3、および冷
媒蒸発器4を冷媒配管12で環状に接続してなる冷媒回
路1と、冷媒水熱交換器2の湯水通路22、循環ポンプ
5、および貯湯タンク61を湯水配管62で環状に接続
してなる給湯回路6と、コンプレッサ11、循環ポンプ
5、および膨張弁3を制御する制御器9を備える。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention (claim 1,
(Corresponding to 3, 6, and 7) will be described with reference to FIGS. The water heater A includes a compressor 11 that compresses a refrigerant,
The refrigerant passage 21 of the refrigerant water heat exchanger 2, the expansion valve 3, and the refrigerant evaporator 4 are annularly connected by the refrigerant pipe 12, the refrigerant circuit 1, the hot and cold water passage 22 of the refrigerant water heat exchanger 2, the circulation pump 5 , And a hot water supply circuit 6 in which hot water storage tanks 61 are annularly connected by hot and cold water piping 62, a compressor 11, a circulation pump 5, and a controller 9 for controlling the expansion valve 3.

【0018】そして、制御器9が、コンプレッサ11、
循環ポンプ5、膨張弁3を制御してヒートポンプ運転を
行い、冷媒通路21を通過する高温の冷媒と湯水通路2
2を通過する湯水とを熱交換して湯水を加熱する。
Then, the controller 9 controls the compressor 11,
The circulation pump 5 and the expansion valve 3 are controlled to perform heat pump operation, and the high temperature refrigerant passing through the refrigerant passage 21 and the hot and cold water passage 2
Heat the hot water by exchanging heat with the hot water passing through 2.

【0019】コンプレッサ11は、電気モータによって
駆動され、吸引したガス冷媒(本実施例では臨界圧力が
低いCO2 )を臨界圧力以上に圧縮して吐出する。この
コンプレッサ11は、吐出側の高圧冷媒圧力が冷媒の臨
界点を越える圧力となる様に運転されている。このた
め、冷媒水熱交換器2の出口側の冷媒が超臨界状態とな
るので、熱交換の状態により冷媒がどの相域にも変化す
る。なお、コンプレッサ11の冷媒吐出量は、電気モー
タの回転数に応じて可変可能である。
The compressor 11 is driven by an electric motor and compresses the sucked gas refrigerant (CO 2 having a low critical pressure in this embodiment) to a critical pressure or higher and discharges it. The compressor 11 is operated so that the pressure of the high-pressure refrigerant on the discharge side becomes a pressure exceeding the critical point of the refrigerant. Therefore, the refrigerant on the outlet side of the refrigerant water heat exchanger 2 is in a supercritical state, and the refrigerant changes to any phase region depending on the heat exchange state. The refrigerant discharge amount of the compressor 11 can be changed according to the rotation speed of the electric motor.

【0020】冷媒水熱交換器2は、コンプレッサ11で
圧縮された高温高圧のガス冷媒と湯水とを熱交換するも
のであり、冷媒が通過する冷媒通路21と、湯水が通過
する湯水通路22とが隣接して設けられ、冷媒の流れ方
向と湯水の流れ方向とが対向する様に構成されている。
The refrigerant water heat exchanger 2 exchanges heat between the high temperature and high pressure gas refrigerant compressed by the compressor 11 and hot and cold water, and has a refrigerant passage 21 through which the refrigerant passes and a hot and cold water passage 22 through which the hot and cold water passes. Are provided adjacent to each other, and the flow direction of the refrigerant and the flow direction of the hot water are opposed to each other.

【0021】膨張弁3は、冷媒水熱交換器2の冷媒通路
21と冷媒蒸発器4との間を接続する冷媒配管12中に
設けられている。冷媒通路21を通過して冷却した冷媒
が膨張弁3を通過する際に減圧されて冷媒蒸発器4に送
られる。なお、制御器9により膨張弁3の弁開度が下記
の様に制御される。
The expansion valve 3 is provided in a refrigerant pipe 12 connecting the refrigerant passage 21 of the refrigerant water heat exchanger 2 and the refrigerant evaporator 4. When the refrigerant that has passed through the refrigerant passage 21 and cooled passes through the expansion valve 3, the refrigerant is decompressed and sent to the refrigerant evaporator 4. The valve opening of the expansion valve 3 is controlled by the controller 9 as follows.

【0022】(冷媒温度センサ95が検出する、冷媒水
熱交換器2の冷媒通路21の出口側の冷媒温度)−(給
水温度センサ92が検出する給水温度)<第1目標温度
差;例えば9℃であると膨張弁3を開く方向に制御す
る。
(Refrigerant temperature on the outlet side of the refrigerant passage 21 of the refrigerant water heat exchanger 2 detected by the refrigerant temperature sensor 95)-(Supply water temperature detected by the feed water temperature sensor 92) <First target temperature difference; When the temperature is C, the expansion valve 3 is controlled to open.

【0023】(冷媒温度センサ95が検出する、冷媒水
熱交換器2の冷媒通路21の出口側の冷媒温度)−(給
水温度センサ92が検出する給水温度)>第2目標温度
差;例えば11℃であると膨張弁3を閉じる方向に制御
する。
(Refrigerant temperature on the outlet side of the refrigerant passage 21 of the refrigerant water heat exchanger 2 detected by the refrigerant temperature sensor 95)-(Water supply temperature detected by the water supply temperature sensor 92)> Second target temperature difference; When the temperature is C, the expansion valve 3 is controlled in the closing direction.

【0024】冷媒蒸発器4は、室外ファン(図示せず)
による送風を受けて、膨張弁3で減圧した冷媒と外気と
を熱交換して冷媒を蒸発させる。循環ポンプ5は、貯湯
タンク61内の湯水が、底部出口から冷媒水熱交換器2
の湯水通路22の入口→湯水通路22→湯水通路22の
出口を経て上部入口から貯湯タンク61内へ戻る水流を
発生させる。
The refrigerant evaporator 4 is an outdoor fan (not shown).
When the expansion valve 3 receives the blown air, the refrigerant exchanges heat with the outside air to evaporate the refrigerant. In the circulation pump 5, hot and cold water in the hot water storage tank 61 flows from the bottom outlet to the refrigerant water heat exchanger 2.
The water flow is generated from the inlet of the hot water passage 22 to the hot water passage 22 and the outlet of the hot water passage 22 and returns from the upper inlet into the hot water storage tank 61.

【0025】沸き上げ温度センサ91が検出する沸き上
げ温度が目標給湯温度になる様に、給湯回路6の循環流
量の調整を、制御器9がポンプモータへの通電量(循環
ポンプ5の回転数)を制御することにより行う。
The controller 9 adjusts the circulating flow rate of the hot water supply circuit 6 so that the boiling temperature detected by the boiling temperature sensor 91 becomes the target hot water supply temperature. ) Is controlled.

【0026】貯湯タンク61は、耐蝕性に優れた金属
(例えばステンレス)で形成され、給湯用の温水を長時
間に亘って保温可能な断熱構造を備える。そして、貯湯
タンク61内の温水は、キッチン、風呂、床暖房、室内
暖房、浴室乾燥などに用いられる。
The hot water storage tank 61 is formed of a metal (for example, stainless steel) having excellent corrosion resistance, and has a heat insulating structure capable of keeping hot water for hot water supply for a long time. The hot water in the hot water storage tank 61 is used for kitchen, bath, floor heating, indoor heating, bathroom drying and the like.

【0027】91は沸き上げ温度センサ、92は給水温
度センサ、93はコンプレッサ11の吸入側の冷媒温度
を検出する吸入側冷媒温度センサ、94はコンプレッサ
11の吐出側の冷媒温度を検出する吐出側冷媒温度セン
サ、95は冷媒水熱交換器2の冷媒通路21の出口側の
冷媒温度を検出する冷媒温度センサ、96は冷媒蒸発器
4の入口側の冷媒温度を検出する冷媒温度センサ、97
は外気温を検出する外気温センサである。
Reference numeral 91 is a boiling temperature sensor, 92 is a water supply temperature sensor, 93 is a suction side refrigerant temperature sensor for detecting the refrigerant temperature on the suction side of the compressor 11, and 94 is a discharge side for detecting the refrigerant temperature on the discharge side of the compressor 11. A refrigerant temperature sensor, 95 is a refrigerant temperature sensor that detects the refrigerant temperature at the outlet side of the refrigerant passage 21 of the refrigerant water heat exchanger 2, 96 is a refrigerant temperature sensor that detects the refrigerant temperature at the inlet side of the refrigerant evaporator 4, and 97.
Is an outside air temperature sensor that detects the outside air temperature.

【0028】つぎに、給湯装置Aの作動を図2に示すフ
ローチャートに基づいて述べる。ステップs1で、制御
器9がヒートポンプ運転の運転開始指令を出すか否かを
判別し、運転開始指令を出す場合(YES)にはステッ
プs2に進み、出さない場合(NO)にはステップs1
に戻る。
Next, the operation of the water heater A will be described with reference to the flowchart shown in FIG. In step s1, the controller 9 determines whether or not to issue an operation start command for heat pump operation. If the operation start command is issued (YES), the process proceeds to step s2, and if not issued (NO), step s1.
Return to.

【0029】なお、以下の場合に、給湯装置Aの制御器
9がヒートポンプ運転の開始指令を出す。使用者が操作
スイッチを手動でオンにしてヒートポンプ運転の開始を
指示した時。安い深夜電力が利用できる深夜時間になっ
た時。貯湯タンク61内に貯湯された温水が使用されて
著しく減った時。
In the following cases, the controller 9 of the hot water supply device A issues a heat pump operation start command. When the user manually turns on the operation switch to instruct to start the heat pump operation. When it's midnight when cheap midnight power is available. When the hot water stored in the hot water storage tank 61 is used and significantly reduced.

【0030】ステップs2で、外気温センサ97の出力
に基づいて外気温度を検出する。ステップs3でコンプ
レッサ回転数を決定する。先ず、図3に示す回転数決定
グラフに基づき、その外気温度で目標加熱能力(実線の
Q1〜Q5)が得られるコンプレッサ回転数を仮決定す
る。図4のモリエル線図に示す様に沸き上げ温度によっ
ても、冷媒がバランスする高圧圧力が変化し、加熱エン
タルピが変化するので、沸き上げ温度が高いほど、仮決
定したコンプレッサ回転数が小さくなる様に補正する。
具体的には、沸き上げ温度が高いほど実線のQ1〜Q5
のカーブを上方に補正し、沸き上げ温度が低いほど実線
のQ1〜Q5のカーブを下方に補正する。
In step s2, the outside air temperature is detected based on the output of the outside air temperature sensor 97. In step s3, the compressor rotation speed is determined. First, based on the rotation speed determination graph shown in FIG. 3, the compressor rotation speed at which the target heating capacity (solid line Q1 to Q5) is obtained at the outside air temperature is provisionally determined. As shown in the Mollier diagram in FIG. 4, the high-pressure pressure for balancing the refrigerant changes and the heating enthalpy also changes depending on the boiling temperature. Therefore, the higher the boiling temperature, the smaller the temporarily determined compressor speed. Correct to.
Specifically, the higher the boiling temperature, the solid lines Q1 to Q5
Is corrected upward, and as the boiling temperature is lower, the solid curves Q1 to Q5 are corrected downward.

【0031】ステップs4で、制御器9がヒートポンプ
運転の運転停止指令を出すか否かを判別し、運転停止指
令を出す場合(YES)にはヒートポンプ運転を停止
し、出さない場合(NO)にはステップs5に進む。
In step s4, it is determined whether or not the controller 9 issues an operation stop command for the heat pump operation. If the operation stop command is issued (YES), the heat pump operation is stopped, and if not issued (NO). Proceeds to step s5.

【0032】なお、以下の場合に、給湯装置Aの制御器
9がヒートポンプ運転の停止指令を出す。使用者が操作
スイッチを手動でオフにしてヒートポンプ運転の停止を
指示した時。安い深夜電力が利用できる深夜時間が終了
した時。貯湯タンク61内に充分な量の温水が貯湯され
た状態で、貯湯タンク61内の温水が使用されなくなっ
た時。
In the following cases, the controller 9 of the hot water supply apparatus A issues a heat pump operation stop command. When the user manually turns off the operation switch to instruct to stop the heat pump operation. At the end of midnight when cheap midnight power is available. When the hot water in the hot water storage tank 61 is no longer used while a sufficient amount of hot water is stored in the hot water storage tank 61.

【0033】ステップs5でタイマ設定時間だけ現状の
コンプレッサ回転数を維持し、タイマ設定時間が経過す
るとステップs2に戻ってコンプレッサ回転数の見直し
を行う。
In step s5, the current compressor rotation speed is maintained for the timer setting time, and when the timer setting time elapses, the process returns to step s2 and the compressor rotation speed is reviewed.

【0034】本実施例の給湯装置Aは、以下の利点を有
する。図3に示す回転数決定グラフに基づき、その外気
温度で目標加熱能力(実線のQ1〜Q5)が得られるコ
ンプレッサ回転数を仮決定し、沸き上げ温度が高いほ
ど、仮決定したコンプレッサ回転数が大きくなる様に補
正して本決定する構成である。このため、決定したコン
プレッサ回転数でコンプレッサを制御してヒートポンプ
運転を行えば、給湯装置Aは目標とする加熱能力を容易
に出すことができる。
The hot water supply apparatus A of this embodiment has the following advantages. Based on the rotation speed determination graph shown in FIG. 3, the compressor rotation speed at which the target heating capacity (solid line Q1 to Q5) is obtained at the outside air temperature is provisionally determined. The higher the boiling temperature, the more the provisionally determined compressor rotation speed is The configuration is such that the correction is made so as to be large and the final determination is made. Therefore, by controlling the compressor at the determined compressor speed and performing the heat pump operation, hot water supply apparatus A can easily obtain the target heating capacity.

【0035】つぎに、本発明の第2実施例(請求項1、
6、8に対応)を、図5〜図7に基づいて説明する。図
5に示す給湯装置Bは、下記の点が給湯装置Aと異な
る。給湯回路6内を流れる湯水循環流量を検出する流量
計98を循環ポンプ5の下流側の湯水配管62に介設し
ている。また、91は沸き上げ温度センサ、92は給水
温度センサである。
Next, a second embodiment of the present invention (claim 1,
(Corresponding to 6 and 8) will be described based on FIGS. Hot water supply apparatus B shown in FIG. 5 differs from hot water supply apparatus A in the following points. A flow meter 98 for detecting the circulating flow rate of the hot water flowing in the hot water supply circuit 6 is provided in the hot water pipe 62 on the downstream side of the circulation pump 5. Further, 91 is a boiling temperature sensor, and 92 is a feed water temperature sensor.

【0036】この給湯装置Bの作動を、図6に示すフロ
ーチャートに基づいて述べる。ステップS1で、制御器
9がヒートポンプ運転の運転開始指令を出すか否かを給
湯装置Aと同様に判別し、運転開始指令を出す場合(Y
ES)にはステップS2に進み、出さない場合(NO)
にはステップS1に戻る。
The operation of this hot water supply device B will be described with reference to the flow chart shown in FIG. When it is determined in step S1 whether or not the controller 9 issues an operation start command for heat pump operation as in the case of the hot water supply device A, and the operation start command is issued (Y
If ES), go to step S2 and do not issue (NO)
Returns to step S1.

【0037】ステップS2で、沸き上げ温度センサ91
が検出する沸き上げ温度、給水温度センサ92が検出す
る給水温度、流量計98が検出する湯水循環流量から制
御器9が目標加熱能力(図7のq1〜q5)を算出す
る。
In step S2, the boiling temperature sensor 91
The controller 9 calculates the target heating capacity (q1 to q5 in FIG. 7) from the boiling temperature detected by the water supply temperature, the water supply temperature detected by the water supply temperature sensor 92, and the hot water circulation flow rate detected by the flow meter 98.

【0038】ステップS3において、図7に示す回転数
決定グラフに基づき、その外気温度で目標加熱能力(q
1〜q5)が得られるコンプレッサ回転数を決定する。
In step S3, based on the rotation speed determination graph shown in FIG. 7, the target heating capacity (q
1 to q5) is determined.

【0039】ステップS4で、制御器9がヒートポンプ
運転の運転停止指令を出すか否かを給湯装置Aと同様に
判別し、運転停止指令を出す場合(YES)にはヒート
ポンプ運転を停止し、出さない場合(NO)にはステッ
プS5に進む。ステップS5でタイマ設定時間だけ現状
のコンプレッサ回転数を維持し、タイマ設定時間が経過
するとステップS2に戻ってコンプレッサ回転数の見直
しを行う。
In step S4, it is determined whether or not the controller 9 issues an operation stop command for heat pump operation, as in the case of the hot water supply device A. If an operation stop command is issued (YES), the heat pump operation is stopped and the operation is not issued. If not (NO), the process proceeds to step S5. In step S5, the current compressor rotation speed is maintained for the timer setting time, and when the timer setting time elapses, the process returns to step S2 and the compressor rotation speed is reviewed.

【0040】本実施例の給湯装置Bは、以下の利点を有
する。図7に示す回転数決定グラフに基づき、その外気
温度で目標加熱能力(q1〜q5)が得られるコンプレ
ッサ回転数を決定する構成である。このため、そのコン
プレッサ回転数でコンプレッサを制御してヒートポンプ
運転を行えば、給湯装置Bは目標とする加熱能力を容易
に出すことができる。
The hot water supply apparatus B of this embodiment has the following advantages. Based on the rotation speed determination graph shown in FIG. 7, the compressor rotation speed at which the target heating capacity (q1 to q5) is obtained at the outside air temperature is determined. Therefore, if the heat pump operation is performed by controlling the compressor at the compressor rotation speed, water heating apparatus B can easily obtain the target heating capacity.

【0041】つぎに、本発明の第3実施例(請求項1、
2、6、7に対応)を、図8〜図12に基づいて説明す
る。図8に示す給湯装置Cは、下記の点が給湯装置Aと
異なる。92は給水温度センサ、95は冷媒水熱交換器
2の冷媒通路21の出口側の冷媒温度を検出する冷媒温
度センサである。
Next, a third embodiment of the present invention (claim 1,
(Corresponding to 2, 6, and 7) will be described with reference to FIGS. Hot water supply apparatus C shown in FIG. 8 differs from hot water supply apparatus A in the following points. Reference numeral 92 is a feed water temperature sensor, and 95 is a refrigerant temperature sensor for detecting the refrigerant temperature on the outlet side of the refrigerant passage 21 of the refrigerant water heat exchanger 2.

【0042】この給湯装置Cの作動を、図9に示すフロ
ーチャートに基づいて述べる。ステップst1で、制御
器9がヒートポンプ運転の運転開始指令を出すか否かを
給湯装置Aと同様に判別し、運転開始指令を出す場合
(YES)にはステップst2に進み、出さない場合
(NO)にはステップst1に戻る。
The operation of the water heater C will be described with reference to the flow chart shown in FIG. In step st1, whether or not the controller 9 issues an operation start command for heat pump operation is determined in the same manner as in the hot water supply device A. If the operation start command is issued (YES), the process proceeds to step st2, and if not issued (NO). ) Returns to step st1.

【0043】ステップst2で、外気温センサ97によ
り検出される外気温度と、冷媒温度センサ95が検出す
る冷媒水熱交換器2の冷媒通路21の出口側の冷媒温度
とを制御器9が検出する。
In step st2, the controller 9 detects the outside air temperature detected by the outside air temperature sensor 97 and the refrigerant temperature on the outlet side of the refrigerant passage 21 of the refrigerant water heat exchanger 2 detected by the refrigerant temperature sensor 95. .

【0044】ステップst3において、コンプレッサ1
1の回転数を、先ず、図11に示す回転数仮決定グラフ
に基づき、その外気温度で目標加熱能力(Q10〜Q5
0)が得られるコンプレッサ回転数を仮決定する。そし
て、仮決定したコンプレッサ回転数を、図12に示す給
水温度(又は冷媒温度)- 回転数補正率グラフに基づい
てコンプレッサ回転数を決定する。なお、吐出側の高圧
冷媒圧力は冷媒の臨界点を越える圧力である。
At step st3, the compressor 1
First, the rotation speed of No. 1 is first set to the target heating capacity (Q10 to Q5) at the outside air temperature based on the rotation speed provisional determination graph shown in FIG.
0) The compressor rotation speed at which 0) is obtained is provisionally determined. Then, the compressor rotation speed is determined based on the provisionally determined compressor rotation speed based on the feed water temperature (or refrigerant temperature) -rotation speed correction rate graph shown in FIG. The high pressure refrigerant pressure on the discharge side is a pressure exceeding the critical point of the refrigerant.

【0045】また、制御器9は、冷媒通路21の出口側
の冷媒温度と、給水温度との差(図10の温度差参照)
に基づいて膨張弁3の開度を制御し、高圧圧力の変化に
よって、水と冷媒との熱交換の状態を安定させる。具体
的には、差が大きいほど、膨張弁3の開度が小さくなる
様に制御する。
The controller 9 controls the difference between the coolant temperature at the outlet of the coolant passage 21 and the feed water temperature (see the temperature difference in FIG. 10).
The opening degree of the expansion valve 3 is controlled based on the above, and the state of heat exchange between water and the refrigerant is stabilized by changing the high pressure. Specifically, the larger the difference, the smaller the opening of the expansion valve 3 is controlled.

【0046】ステップst4で、制御器9がヒートポン
プ運転の運転停止指令を出すか否かを給湯装置Aと同様
に判別し、運転停止指令を出す場合(YES)にはヒー
トポンプ運転を停止し、出さない場合(NO)にはステ
ップst5に進む。
In step st4, it is determined whether or not the controller 9 issues an operation stop command for heat pump operation as in the case of the hot water supply device A. If an operation stop command is issued (YES), the heat pump operation is stopped and the operation is not issued. If not (NO), the process proceeds to step st5.

【0047】ステップst5でタイマ設定時間だけ現状
のコンプレッサ回転数を維持し、タイマ設定時間が経過
するとステップst2に戻ってコンプレッサ回転数の見
直しを行う。
In step st5, the current compressor rotation speed is maintained for the timer setting time, and when the timer setting time elapses, the process returns to step st2 and the compressor rotation speed is reviewed.

【0048】本実施例の給湯装置Cは、以下の利点を有
する。図11に示す回転数仮決定グラフに基づき、その
外気温度で目標加熱能力(実線のQ10〜Q50)が得
られるコンプレッサ回転数を仮決定し、仮決定したコン
プレッサ回転数を、図12に示す給水温度(又は冷媒温
度)- 回転数補正率グラフに基づいてコンプレッサ回転
数を決定する構成である。
The hot water supply device C of this embodiment has the following advantages. Based on the rotational speed provisionally determined graph shown in FIG. 11, the compressor rotational speed at which the target heating capacity (solid line Q10 to Q50) is obtained at the outside air temperature is provisionally determined, and the provisionally determined compressor rotational speed is shown in FIG. Temperature (or refrigerant temperature) -The compressor rotation speed is determined based on the rotation speed correction rate graph.

【0049】このため、給湯装置Cは、冷媒圧縮機の能
力を制御して熱交換の状態を変えることにより目標とす
る加熱能力を容易に出すことができる。
Therefore, hot water supply apparatus C can easily obtain the target heating capacity by controlling the capacity of the refrigerant compressor and changing the state of heat exchange.

【0050】本発明は、上記実施例以外につぎの実施態
様を含む。 a.給湯装置Aにおいて、コンプレッサ11の吸入側の
冷媒温度または冷媒圧力を検出する冷媒状態検出手段を
設け、下記の様に制御しても良い(請求項2に相当)。
ステップs2で、冷媒状態検出手段が、コンプレッサ1
1の吸入側の冷媒温度または冷媒圧力を検出する。ステ
ップs3でコンプレッサ回転数を決定する、先ず、回転
数決定グラフに基づき、そのコンプレッサ11の吸入側
の冷媒温度または冷媒圧力で目標加熱能力が得られるコ
ンプレッサ回転数を仮決定する。沸き上げ温度が高いほ
ど、仮決定したコンプレッサ回転数が小さくなる様に補
正する。
The present invention includes the following embodiments in addition to the above embodiments. a. The hot water supply apparatus A may be provided with a refrigerant state detecting means for detecting the refrigerant temperature or the refrigerant pressure on the suction side of the compressor 11 and control as follows (corresponding to claim 2).
In step s2, the refrigerant state detecting means is the compressor 1
The refrigerant temperature or the refrigerant pressure on the suction side of No. 1 is detected. In step s3, the compressor rotation speed is determined. First, based on the rotation speed determination graph, the compressor rotation speed at which the target heating capacity is obtained by the refrigerant temperature or the refrigerant pressure on the suction side of the compressor 11 is provisionally determined. The higher the boiling temperature, the smaller the tentatively determined compressor rotation speed is corrected.

【0051】b.上記aに加え、コンプレッサ11の吐
出側の高圧冷媒圧力を検出する高圧側冷媒圧力検出手段
を設け、高圧冷媒圧力が高いほど制御器9が決定したコ
ンプレッサ11の能力が低くなる様に補正する構成にし
ても良い(請求項4に対応)。
B. In addition to the above a, a high pressure side refrigerant pressure detection means for detecting the high pressure refrigerant pressure on the discharge side of the compressor 11 is provided, and the higher the high pressure refrigerant pressure, the lower the capacity of the compressor 11 determined by the controller 9 is corrected. May be used (corresponding to claim 4).

【0052】c.上記aに加え、冷媒水熱交換器2の冷
媒通路21の出口側の出口側冷媒圧力を検出する出口側
冷媒圧力検出手段を設け、出口側冷媒圧力が高いほど制
御器9が決定したコンプレッサの回転数が低くなる様に
補正する構成にしても良い(請求項5に対応)。
C. In addition to the above a, an outlet side refrigerant pressure detecting means for detecting the outlet side refrigerant pressure on the outlet side of the refrigerant passage 21 of the refrigerant water heat exchanger 2 is provided, and the higher the outlet side refrigerant pressure is, the higher the outlet side refrigerant pressure is determined. The configuration may be such that the number of revolutions is corrected to be low (corresponding to claim 5).

【0053】d.上記a、bにおいて、各給水温度毎
に、冷媒蒸発器4に入る冷媒の温度と、冷媒圧力との関
係を予め計測して冷媒圧力マップを作っておき、給水温
度と冷媒蒸発器4に入る冷媒の温度とから冷媒圧力を推
定する構成に変更しても良い。
D. In the above a and b, the relationship between the temperature of the refrigerant entering the refrigerant evaporator 4 and the refrigerant pressure is measured in advance for each supply water temperature to create a refrigerant pressure map, and the supply water temperature and the refrigerant evaporator 4 are entered. You may change into the structure which estimates a refrigerant pressure from the temperature of a refrigerant.

【0054】e.コンプレッサの体積効率が一定として
冷媒流量を見積もったが、コンプレッサ回転数、冷媒の
高低圧圧力(または、これが推定できる吐出・吸入温
度)によって体積効率の変化分を考慮しても良い。
E. Although the refrigerant flow rate is estimated assuming that the volumetric efficiency of the compressor is constant, the amount of change in the volumetric efficiency may be taken into consideration depending on the compressor rotation speed and the high / low pressure of the refrigerant (or the discharge / suction temperature which can be estimated).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る給湯装置の構成図で
ある。
FIG. 1 is a configuration diagram of a hot water supply device according to a first embodiment of the present invention.

【図2】その給湯装置の作動を示すフローチャートであ
る。
FIG. 2 is a flowchart showing an operation of the hot water supply device.

【図3】その給湯装置で用いるコンプレッサ回転数決定
グラフである。
FIG. 3 is a compressor rotation speed determination graph used in the hot water supply apparatus.

【図4】その給湯装置の作動をモリエル線図で示すグラ
フである。
FIG. 4 is a graph showing the operation of the hot water supply apparatus in a Mollier diagram.

【図5】本発明の第2実施例に係る給湯装置の構成図で
ある。
FIG. 5 is a configuration diagram of a hot water supply device according to a second embodiment of the present invention.

【図6】その給湯装置の作動を示すフローチャートであ
る。
FIG. 6 is a flowchart showing an operation of the hot water supply device.

【図7】その給湯装置で用いるコンプレッサ回転数決定
グラフである。
FIG. 7 is a compressor rotation speed determination graph used in the hot water supply apparatus.

【図8】本発明の第3実施例に係る給湯装置の構成図で
ある。
FIG. 8 is a configuration diagram of a hot water supply device according to a third embodiment of the present invention.

【図9】その給湯装置の作動を示すフローチャートであ
る。
FIG. 9 is a flowchart showing an operation of the hot water supply device.

【図10】その給湯装置の作動をモリエル線図で示すグ
ラフである。
FIG. 10 is a graph showing the operation of the hot water supply apparatus in a Mollier diagram.

【図11】その給湯装置で用いるコンプレッサ回転数仮
決定グラフである。
FIG. 11 is a compressor rotation speed provisional determination graph used in the hot water supply apparatus.

【図12】仮決定したコンプレッサ回転数を補正してコ
ンプレッサ回転数を決定するための、給水温度(又は冷
媒温度)- 回転数補正率グラフである。
FIG. 12 is a feedwater temperature (or refrigerant temperature) -rotation speed correction rate graph for correcting the temporarily determined compressor rotation speed to determine the compressor rotation speed.

【符号の説明】[Explanation of symbols]

A、B、C 給湯装置 1 冷媒回路 2 冷媒水熱交換器 3 膨張弁 4 冷媒蒸発器 5 循環ポンプ 6 給湯回路 9 制御器 11 コンプレッサ(冷媒圧縮機) 12 冷媒配管 21 冷媒通路 22 湯水通路 61 貯湯タンク 62 湯水配管 91 沸き上げ温度センサ(沸き上げ温度検出手段) 93 吸入側冷媒温度センサ(冷媒状態検出手段) 94 吐出側冷媒温度センサ(高圧側冷媒圧力検出手
段) 95 冷媒温度センサ(出口側冷媒圧力検出手段) 97 外気温センサ(外気温検出手段) 98 流量計(流量検出手段)
A, B, C Hot water supply device 1 Refrigerant circuit 2 Refrigerant water heat exchanger 3 Expansion valve 4 Refrigerant evaporator 5 Circulation pump 6 Hot water supply circuit 9 Controller 11 Compressor (refrigerant compressor) 12 Refrigerant pipe 21 Refrigerant passage 22 Hot water / water passage 61 Hot water storage Tank 62 Hot and cold water pipe 91 Boiling temperature sensor (boiling temperature detecting means) 93 Suction side refrigerant temperature sensor (refrigerant state detecting means) 94 Discharge side refrigerant temperature sensor (high pressure side refrigerant pressure detecting means) 95 Refrigerant temperature sensor (outlet side refrigerant) Pressure detection means) 97 Outside air temperature sensor (outside air temperature detection means) 98 Flow meter (flow rate detection means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 30/02 F25B 30/02 J (72)発明者 榊原 久介 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 小早川 智明 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 草刈 和俊 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 斉川 路之 神奈川県横須賀市長坂2− 6− 1 財 団法人電力中央研究所 横須賀研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F25B 30/02 F25B 30/02 J (72) Inventor Kusuke Sakakibara 1-chome, Showa-cho, Kariya city, Aichi prefecture Stock company DENSO (72) Inventor Tomoaki Kobayakawa 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company inside (72) Inventor Kazutoshi Kusari 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company Incorporated (72) Inventor Michiyuki Saikawa 2-6-1, Nagasaka, Yokosuka City, Kanagawa Electric Power Central Research Institute Yokosuka Research Institute

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮する冷媒圧縮機、冷媒水熱交
換器の冷媒通路、膨張弁、および冷媒蒸発器を冷媒配管
で環状に接続した冷媒回路と、 前記冷媒水熱交換器の湯水通路、貯湯側から湯を貯湯し
ていく貯湯タンク、および循環ポンプを湯水配管で環状
に接続した給湯回路と、 前記冷媒圧縮機、前記膨張弁、前記循環ポンプを制御す
る制御器とを備え、該制御器が前記冷媒圧縮機および前
記循環ポンプを作動させて、前記冷媒通路を通過する高
温の冷媒により前記湯水通路を通過する湯水を加熱する
ヒートポンプ運転を行う給湯装置であって、 外気温度を検出する外気温検出手段と、目標加熱能力を
算出する目標加熱能力算出手段とを設け、前記外気温度
と前記目標加熱能力とに基づいて前記制御器が前記冷媒
圧縮機の能力を決定することを特徴とする給湯装置。
1. A refrigerant circuit for connecting a refrigerant compressor for compressing a refrigerant, a refrigerant passage of a refrigerant water heat exchanger, an expansion valve, and a refrigerant evaporator in an annular shape with a refrigerant pipe, and a hot water passage of the refrigerant water heat exchanger. A hot water storage tank for storing hot water from the hot water storage side; and a hot water supply circuit in which a circulation pump is annularly connected by hot and cold water pipes; and a controller that controls the refrigerant compressor, the expansion valve, and the circulation pump, A hot water supply apparatus that performs a heat pump operation in which a controller operates the refrigerant compressor and the circulation pump to heat hot water passing through the hot water passage by a high temperature refrigerant passing through the refrigerant passage, and detects an outside air temperature. And a target heating capacity calculating means for calculating a target heating capacity, and the controller determines the capacity of the refrigerant compressor based on the outside air temperature and the target heating capacity. Hot water supply device.
【請求項2】 冷媒を圧縮する冷媒圧縮機、冷媒水熱交
換器の冷媒通路、膨張弁、および冷媒蒸発器を冷媒配管
で環状に接続した冷媒回路と、 前記冷媒水熱交換器の湯水通路、貯湯側から湯を貯湯し
ていく貯湯タンク、および循環ポンプを湯水配管で環状
に接続した給湯回路と、 前記冷媒圧縮機、前記膨張弁、前記循環ポンプを制御す
る制御器とを備え、該制御器が前記冷媒圧縮機および前
記循環ポンプを作動させて、前記冷媒通路を通過する高
温の冷媒により前記湯水通路を通過する湯水を加熱する
ヒートポンプ運転を行う給湯装置であって、 前記冷媒圧縮機の吸入側の冷媒温度または冷媒圧力を検
出する冷媒状態検出手段と、目標加熱能力を算出する目
標加熱能力算出手段とを設け、前記冷媒圧縮機の吸入側
の冷媒温度または冷媒圧力と、前記目標加熱能力とに基
づいて前記制御器が前記冷媒圧縮機の能力を決定するこ
とを特徴とする給湯装置。
2. A refrigerant circuit for connecting a refrigerant compressor for compressing a refrigerant, a refrigerant passage of a refrigerant water heat exchanger, an expansion valve, and a refrigerant evaporator in an annular shape with a refrigerant pipe, and a hot water passage of the refrigerant water heat exchanger. A hot water storage tank for storing hot water from the hot water storage side; and a hot water supply circuit in which a circulation pump is annularly connected by hot and cold water pipes; and a controller that controls the refrigerant compressor, the expansion valve, and the circulation pump, A hot water supply device in which a controller operates the refrigerant compressor and the circulation pump to perform heat pump operation of heating hot water passing through the hot water passage by a high temperature refrigerant passing through the refrigerant passage, wherein the refrigerant compressor A refrigerant state detecting means for detecting the refrigerant temperature or the refrigerant pressure on the suction side of the, and a target heating capacity calculating means for calculating the target heating capacity, and the refrigerant temperature or the refrigerant pressure on the suction side of the refrigerant compressor, The water heater according to claim 1, wherein the controller determines the capacity of the refrigerant compressor based on the target heating capacity.
【請求項3】 沸き上げ温度を検出する沸き上げ温度検
出手段を設け、前記制御器が決定した前記冷媒圧縮機の
能力を、沸き上げ温度が高いほど低くなる様に補正する
ことを特徴とする請求項1または請求項2記載の給湯装
置。
3. A boiling temperature detecting means for detecting a boiling temperature is provided, and the capacity of the refrigerant compressor determined by the controller is corrected so as to become lower as the boiling temperature becomes higher. The hot water supply device according to claim 1 or 2.
【請求項4】 前記冷媒圧縮機の吐出側の高圧冷媒圧力
を検出する高圧側冷媒圧力検出手段を設け、前記高圧冷
媒圧力が高いほど前記制御器が決定した前記冷媒圧縮機
の能力が低くなる様に補正することを特徴とする請求項
1または請求項2記載の給湯装置。
4. A high-pressure-side refrigerant pressure detection means for detecting a high-pressure refrigerant pressure on the discharge side of the refrigerant compressor is provided, and the higher the high-pressure refrigerant pressure, the lower the capacity of the refrigerant compressor determined by the controller. The hot water supply apparatus according to claim 1 or 2, wherein the hot water supply apparatus is corrected as described above.
【請求項5】 前記冷媒水熱交換器の前記冷媒通路の出
口側の出口側冷媒圧力を検出する出口側冷媒圧力検出手
段を設け、前記出口側冷媒圧力が高いほど前記制御器が
決定した前記冷媒圧縮機の能力が低くなる様に補正する
ことを特徴とする請求項1または請求項2記載の給湯装
置。
5. An outlet side refrigerant pressure detecting means for detecting an outlet side refrigerant pressure on the outlet side of the refrigerant passage of the refrigerant water heat exchanger is provided, and the controller determines as the outlet side refrigerant pressure increases. The hot water supply apparatus according to claim 1 or 2, wherein correction is performed so that the capacity of the refrigerant compressor becomes low.
【請求項6】 前記冷媒圧縮機の吐出側の前記高圧冷媒
圧力は冷媒の臨界点を越える圧力であることを特徴とす
る請求項1乃至請求項5の何れかに記載の給湯装置。
6. The water heater according to claim 1, wherein the high pressure refrigerant pressure on the discharge side of the refrigerant compressor is a pressure exceeding a critical point of the refrigerant.
【請求項7】 前記制御器は、前記冷媒水熱交換器の前
記冷媒通路の出口側の出口側冷媒温度と、給水温度との
差に基づいて前記冷媒圧縮機の吐出側の前記高圧冷媒圧
力を制御することを特徴とする請求項6記載の給湯装
置。
7. The high pressure refrigerant pressure on the discharge side of the refrigerant compressor is based on a difference between an outlet side refrigerant temperature on an outlet side of the refrigerant passage of the refrigerant water heat exchanger and a feed water temperature. The hot water supply device according to claim 6, wherein the hot water supply device is controlled.
【請求項8】 前記給湯回路の前記湯水配管を流れる湯
の量を検出する流量検出手段を設け、前記制御器は、前
記流量検出手段が検出する湯水流量と、給水温度と、沸
き上げ温度とに基づいて前記目標加熱能力を算出するこ
とを特徴とする請求項1乃至請求項7の何れかに記載の
給湯装置。
8. A flow rate detecting means for detecting the amount of hot water flowing through the hot water supply pipe of the hot water supply circuit is provided, and the controller has a hot water flow rate detected by the flow rate detecting means, a water supply temperature, and a boiling temperature. The hot water supply apparatus according to any one of claims 1 to 7, wherein the target heating capacity is calculated based on the above.
JP2001339648A 2001-11-05 2001-11-05 Water heater Expired - Fee Related JP3737414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339648A JP3737414B2 (en) 2001-11-05 2001-11-05 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339648A JP3737414B2 (en) 2001-11-05 2001-11-05 Water heater

Publications (2)

Publication Number Publication Date
JP2003139419A true JP2003139419A (en) 2003-05-14
JP3737414B2 JP3737414B2 (en) 2006-01-18

Family

ID=19153970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339648A Expired - Fee Related JP3737414B2 (en) 2001-11-05 2001-11-05 Water heater

Country Status (1)

Country Link
JP (1) JP3737414B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010214A (en) * 2005-06-30 2007-01-18 Denso Corp Heat pump type water heater
JP2007327725A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Heat pump type water heater
FR2926353A1 (en) * 2008-01-15 2009-07-17 Aldes Aeraulique Sa INSTALLATION OF PRODUCTION OF HOT SANITARY WATER.
JP2009236403A (en) * 2008-03-27 2009-10-15 Denso Corp Geothermal use heat pump device
JP2010025494A (en) * 2008-07-23 2010-02-04 Sanden Corp Heat pump type hot water supply device
EP2196745A1 (en) * 2007-11-30 2010-06-16 Mitsubishi Electric Corporation Refrigeration cycle device
JP2010169350A (en) * 2009-01-26 2010-08-05 Mitsubishi Electric Corp Heat pump type water heater
JP2011202867A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Hot water supply device
WO2013111579A1 (en) * 2012-01-25 2013-08-01 ダイヤモンド電機株式会社 Compressor control device for cooling device
KR101436250B1 (en) 2012-04-20 2014-08-29 린나이코리아 주식회사 Heat pump hot water supplier
JP2016050751A (en) * 2014-09-02 2016-04-11 株式会社デンソー Heat pump type water heater
JPWO2015045116A1 (en) * 2013-09-27 2017-03-02 三菱電機株式会社 Refrigeration cycle equipment
JP2018004130A (en) * 2016-06-29 2018-01-11 三菱電機株式会社 Hot water heat source machine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010214A (en) * 2005-06-30 2007-01-18 Denso Corp Heat pump type water heater
JP2007327725A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Heat pump type water heater
EP2647928A3 (en) * 2007-11-30 2015-08-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP2196745A4 (en) * 2007-11-30 2013-02-13 Mitsubishi Electric Corp Refrigeration cycle device
EP2647925A3 (en) * 2007-11-30 2015-08-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP2647927A3 (en) * 2007-11-30 2015-07-29 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP2647926A3 (en) * 2007-11-30 2015-07-29 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP2196745A1 (en) * 2007-11-30 2010-06-16 Mitsubishi Electric Corporation Refrigeration cycle device
FR2926353A1 (en) * 2008-01-15 2009-07-17 Aldes Aeraulique Sa INSTALLATION OF PRODUCTION OF HOT SANITARY WATER.
WO2009092951A2 (en) * 2008-01-15 2009-07-30 Aldes Aeraulique Plant for producing sanitary hot water
WO2009092951A3 (en) * 2008-01-15 2009-09-17 Aldes Aeraulique Plant for producing sanitary hot water
JP2009236403A (en) * 2008-03-27 2009-10-15 Denso Corp Geothermal use heat pump device
JP2010025494A (en) * 2008-07-23 2010-02-04 Sanden Corp Heat pump type hot water supply device
JP2010169350A (en) * 2009-01-26 2010-08-05 Mitsubishi Electric Corp Heat pump type water heater
JP2011202867A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Hot water supply device
WO2013111579A1 (en) * 2012-01-25 2013-08-01 ダイヤモンド電機株式会社 Compressor control device for cooling device
KR101436250B1 (en) 2012-04-20 2014-08-29 린나이코리아 주식회사 Heat pump hot water supplier
JPWO2015045116A1 (en) * 2013-09-27 2017-03-02 三菱電機株式会社 Refrigeration cycle equipment
JP2016050751A (en) * 2014-09-02 2016-04-11 株式会社デンソー Heat pump type water heater
JP2018004130A (en) * 2016-06-29 2018-01-11 三菱電機株式会社 Hot water heat source machine

Also Published As

Publication number Publication date
JP3737414B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP2002013808A (en) Heat pump type warm water apparatus
JP2003139419A (en) Hot water supply system
JP3915770B2 (en) Heat pump water heater
JP2003139392A (en) Water heater
JP2010243111A (en) Heat pump type water heater
JP3901192B2 (en) Heat pump water heater
JP5003542B2 (en) Refrigeration cycle equipment
JP6749471B2 (en) Air conditioner
JP2009092258A (en) Refrigerating cycle device
US11739950B2 (en) Hot water supply apparatus
JP2003035454A (en) Heat pump hot water supply apparatus
JP6137016B2 (en) Heat pump water heater and control method of heat pump water heater
JP3800497B2 (en) Water heater
KR20110117974A (en) Heat pump type speed heating apparatus
JP4074422B2 (en) Air conditioner and its control method
JP2007040555A (en) Heat pump type water heater
JP4251785B2 (en) Heat pump water heater
JP5703849B2 (en) Heat pump type water heater
JP5772665B2 (en) Heat pump type water heater
WO2019202709A1 (en) Heat pump type hot water supply device
JP2006266592A (en) Heat pump water heater
JP4063276B2 (en) Heat pump type water heater
JP2002081771A (en) Heat pump
JP6913785B2 (en) Hot water supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees