JP2003138435A - Method for producing flameproofed fiber - Google Patents

Method for producing flameproofed fiber

Info

Publication number
JP2003138435A
JP2003138435A JP2001336301A JP2001336301A JP2003138435A JP 2003138435 A JP2003138435 A JP 2003138435A JP 2001336301 A JP2001336301 A JP 2001336301A JP 2001336301 A JP2001336301 A JP 2001336301A JP 2003138435 A JP2003138435 A JP 2003138435A
Authority
JP
Japan
Prior art keywords
fiber
flame
treatment
density
flameproofing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001336301A
Other languages
Japanese (ja)
Inventor
Hidekazu Yoshikawa
秀和 吉川
Taro Oyama
太郎 尾山
Shinichi Muto
進一 武藤
Toshitsugu Matsuki
寿嗣 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2001336301A priority Critical patent/JP2003138435A/en
Publication of JP2003138435A publication Critical patent/JP2003138435A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a flameproofed fiber which is a raw material for a carbon fiber having high strength and high modulus of elasticity or the stabilized flameproofed fiber as a heat insulating material or a heat-resistant material without single fiber breakage. SOLUTION: This method for producing the flameproofed fiber comprises carrying out a flameproofing treatment of an acrylic precursor fiber for the carbon fiber at a draw ratio within the range of >=1.00 until the density of the fiber reaches 1.30 g/cm<3> in an oxidizing atmosphere and then conducting the flameproofing treatment at a draw ratio within the range of 1.001-1.012 after the density of the fiber reaches >=1.30 g/cm<3> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度炭素繊維の
中間原料、又は断熱材、耐熱保護材としての耐炎化繊維
の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a flameproof fiber as an intermediate raw material for high-strength carbon fiber, or as a heat insulating material or heat resistant protective material.

【0002】[0002]

【従来の技術】アクリロニトリル系繊維を原料として高
性能の炭素繊維が製造されることは従来より知られてお
り、この炭素繊維は航空機を始めスポーツ用品まで広い
範囲で使用されている。とりわけ、高強度・高弾性の炭
素繊維は宇宙航空用途に使用されており、更なる高性能
化が求められている。
2. Description of the Related Art It has been conventionally known that high-performance carbon fiber is produced from acrylonitrile fiber as a raw material, and this carbon fiber is used in a wide range from aircraft to sports equipment. In particular, high-strength, high-elasticity carbon fibers are used for aerospace applications, and higher performance is required.

【0003】アクリロニトリル系前駆体繊維を用いて炭
素繊維を製造する方法としては、前駆体繊維を200〜
260℃の酸化性雰囲気下で延伸又は収縮を行いながら
酸化処理(耐炎化処理)を行った後、260℃以上、又
は1000℃以上の不活性ガス雰囲気中で炭素化して製
造する方法が知られている。
As a method for producing a carbon fiber using an acrylonitrile-based precursor fiber, 200 to 200
A method is known in which an oxidation treatment (flame-proofing treatment) is performed while stretching or shrinking is performed in an oxidizing atmosphere of 260 ° C., and then carbonization is performed in an inert gas atmosphere of 260 ° C. or more, or 1000 ° C. or more, to manufacture. ing.

【0004】とりわけ耐炎化処理工程における繊維の処
理方法は、炭素繊維の強度発現に大きく影響を及ぼし、
これまでに多くの検討が行われてきた。
In particular, the method of treating the fibers in the flameproofing treatment step greatly affects the strength development of the carbon fibers,
Many studies have been conducted so far.

【0005】特公昭63−28132号公報には、耐炎
化伸長率を−10〜10%(延伸倍率0.9〜1.1)
の範囲とし、繊維密度が1.30〜1.42g/cm3
である耐炎化処理糸を炭素化することにより高強度炭素
繊維が得られることが開示されている。しかし、この耐
炎化処理方法では、長時間を要する耐炎化処理工程全て
において収縮若しくは延伸をさせており、強度発現に最
適な緊縮を施すことは行われてない。
Japanese Examined Patent Publication No. 63-28132 discloses a flameproof elongation ratio of -10 to 10% (stretching ratio of 0.9 to 1.1).
And the fiber density is 1.30 to 1.42 g / cm 3
It is disclosed that high-strength carbon fibers can be obtained by carbonizing the flame-resistant treated yarn. However, in this flameproofing treatment method, shrinkage or stretching is performed in all of the flameproofing treatment steps that require a long time, and thus the optimum tightening for strength development is not performed.

【0006】特公平3−23649号公報には、繊維密
度が1.22g/cm3に達するまで3%以上の伸長率
(1.03以上の延伸倍率)を与え、以後の収縮を実質
的に抑制して耐炎化処理を行い、続いて炭素化すること
により高強度の炭素繊維が得られることが開示されてい
る。
Japanese Examined Patent Publication (Kokoku) No. 3-23649 gives a stretching rate of 3% or more (stretching ratio of 1.03 or more) until the fiber density reaches 1.22 g / cm 3 , and the subsequent shrinkage is substantially achieved. It is disclosed that a carbon fiber having high strength can be obtained by suppressing the flameproofing treatment and then carbonizing.

【0007】特公平3−23650号公報には、繊維密
度が1.22g/cm3に達するまで3%以上の伸長率
(1.03以上の延伸倍率)で耐炎化処理を行った後、
更に1%以上の伸長率(1.01以上の延伸倍率)で延
伸処理を行うことによりストランド強度460kgf/
mm2以上の炭素繊維が得られることが開示されてい
る。
In Japanese Patent Publication No. 23650/1993, after a flameproofing treatment is performed at an elongation rate of 3% or more (drawing ratio of 1.03 or more) until the fiber density reaches 1.22 g / cm 3 ,
Strand strength is 460 kgf / by stretching at a stretch ratio of 1% or more (stretch ratio of 1.01 or more).
It is disclosed that carbon fibers of mm 2 or more can be obtained.

【0008】これら特公平3−23649号公報、特公
平3−23650号公報の方法によれば、従来の方法に
よるもののなかでは、高強度の炭素繊維が得られる。し
かし、繊維密度が1.22g/cm3以上になった時点
以後の延伸持続の耐炎化処理工程においては単糸切れ等
を多く発生し、安定した耐炎化繊維、炭素繊維の生産が
損なわれる。
According to the methods disclosed in Japanese Patent Publication Nos. 3-23649 and 3-23650, high-strength carbon fibers can be obtained among the conventional methods. However, in the flame-proofing process of continuous drawing after the time when the fiber density becomes 1.22 g / cm 3 or more, single yarn breakages often occur, and stable production of flame-proofed fibers and carbon fibers is impaired.

【0009】[0009]

【発明が解決しようとする課題】本発明者は、上記問題
を解決すべく鋭意検討した結果、所定の繊維密度におい
て所定の延伸倍率で耐炎化処理することにより、単糸切
れ等が無くなり、安定した耐炎化繊維の生産ができ、且
つこの耐炎化繊維を炭素化して得られる炭素繊維は高強
度、高弾性率であることを知得し、本発明を完成するに
至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made earnest studies to solve the above-mentioned problems, and as a result, flame-resistant treatment with a predetermined draw ratio at a predetermined fiber density eliminates single yarn breakage, etc. It was found that the above-mentioned flame-resistant fiber can be produced, and that the carbon fiber obtained by carbonizing the flame-resistant fiber has high strength and high elastic modulus, and has completed the present invention.

【0010】従って、本発明の目的とするところは、上
記問題を解決した、高強度、高弾性率の炭素繊維の中間
原料としての耐炎化繊維、又は断熱材、耐熱保護材とし
ての耐炎化繊維の製造法を提供することにある。
Therefore, it is an object of the present invention to solve the above problems by using flame resistant fiber as an intermediate raw material for carbon fiber having high strength and high elastic modulus, or as heat insulating material or heat resistant protective material. To provide a manufacturing method of.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成する本
発明は、以下に記載するものである。
The present invention which achieves the above-mentioned object is described below.

【0012】〔1〕 炭素繊維用アクリル系前駆体繊維
を酸化性雰囲気下において、繊維の密度が1.30g/
cm3になるまでは延伸倍率を1.00以上の範囲で耐
炎化処理し、繊維の密度が1.30g/cm3以上にな
った後は延伸倍率を1.001〜1.012の範囲で耐
炎化処理することを特徴とする耐炎化繊維の製造法。
[1] Acrylic precursor fiber for carbon fiber is used in an oxidizing atmosphere to have a fiber density of 1.30 g /
The fiber is subjected to flameproofing treatment at a draw ratio of 1.00 or more until it reaches cm 3, and the draw ratio of 1.001 to 1.012 after the fiber density becomes 1.30 g / cm 3 or more. A method for producing a flameproof fiber, characterized by performing a flameproof treatment.

【0013】〔2〕 炭素繊維用アクリル系前駆体繊維
を酸化性雰囲気下において、繊維の密度が1.22g/
cm3になるまでは延伸倍率を1.03〜1.08の範
囲で耐炎化処理し、繊維の密度が1.30g/cm3
上になった後は延伸倍率を1.001〜1.012の範
囲で耐炎化処理することを特徴とする耐炎化繊維の製造
法。
[2] The acrylic precursor fiber for carbon fiber has a fiber density of 1.22 g / in an oxidizing atmosphere.
The stretch ratio is 1.03 to 1.08 in order to reach the cm 3 , and the stretch ratio is 1.001 to 1.012 after the fiber density becomes 1.30 g / cm 3 or more. A method for producing a flameproof fiber, characterized by performing a flameproofing treatment within the range.

【0014】〔3〕 炭素繊維用アクリル系前駆体繊維
を酸化性雰囲気下において、繊維の密度が1.22g/
cm3になるまでは延伸倍率を1.03〜1.08の範
囲で耐炎化処理し、繊維の密度が1.22〜1.30g
/cm3の間では延伸倍率を1.0で耐炎化処理し、繊
維の密度が1.30g/cm3以上になった後は延伸倍
率を1.001〜1.012の範囲で耐炎化処理するこ
とを特徴とする耐炎化繊維の製造法。
[3] The acrylic precursor fiber for carbon fiber has a fiber density of 1.22 g / in an oxidizing atmosphere.
Stretching ratio of 1.03 to 1.08 is applied until it reaches cm 3 , and the fiber density is 1.22 to 1.30 g.
/ Cm 3 the flame-proof treatment with a draw ratio of 1.0, and after the fiber density becomes 1.30 g / cm 3 or more, the flame-proof process with a draw ratio of 1.001 to 1.012. A method for producing a flameproof fiber, which comprises:

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0016】本発明の耐炎化繊維の原料であるアクリル
系前駆体繊維は、例えばアクリロニトリルを95質量%
以上含有する単量体を重合した単独重合体又は共重合体
を含む紡糸溶液を、湿式又は乾湿式紡糸法において紡糸
・水洗・乾燥・延伸等の処理を行うことによって得るこ
とができる。共重合する単量体としては、アクリル酸メ
チル、イタコン酸、メタクリル酸メチル、アクリル酸等
が好ましい。
The acrylic precursor fiber which is a raw material of the flameproof fiber of the present invention contains, for example, 95% by mass of acrylonitrile.
It can be obtained by subjecting a spinning solution containing a homopolymer or a copolymer obtained by polymerizing the above-mentioned monomers to a treatment such as spinning, washing with water, drying and stretching in a wet or dry-wet spinning method. As the monomer to be copolymerized, methyl acrylate, itaconic acid, methyl methacrylate, acrylic acid and the like are preferable.

【0017】このようにして得られるアクリル系前駆体
繊維を、本発明の耐炎化繊維の製造法に従って耐炎化し
て耐炎化繊維を得ることができる。この耐炎化繊維を炭
素化することによって高強度の炭素繊維を得ることがで
きる。
The acrylic precursor fiber thus obtained can be flame-resistant according to the method for producing a flame-resistant fiber of the present invention to obtain a flame-resistant fiber. By carbonizing the flame resistant fiber, a high strength carbon fiber can be obtained.

【0018】本発明の耐炎化繊維の製造法における耐炎
化処理は、処理雰囲気と処理温度については通常の処理
方法に従って加熱空気中200〜260℃の温度範囲内
で処理することができる。
The flameproofing treatment in the method for producing a flameproofed fiber of the present invention can be carried out in a temperature range of 200 to 260 ° C. in heated air according to a usual treatment method and treatment temperature.

【0019】但し、本発明の耐炎化繊維の製造法におけ
る耐炎化処理過程では、繊維の密度が1.30g/cm
3になるまでは延伸倍率1.00以上、好ましくは1.
03〜1.08の範囲で耐炎化処理して、繊維の密度が
1.30g/cm3以上になった後は延伸倍率1.00
1〜1.012、好ましくは1.003〜1.008の
範囲で耐炎化処理することを必要とする。
However, in the flameproofing process in the flameproofing fiber manufacturing method of the present invention, the fiber density is 1.30 g / cm 3.
Until 3 draw ratio 1.00 or more, preferably 1.
After the flameproofing treatment in the range of 03 to 1.08 and the fiber density becomes 1.30 g / cm 3 or more, the draw ratio is 1.00.
It is necessary to perform the flameproofing treatment in the range of 1 to 1.012, preferably 1.003 to 1.008.

【0020】耐炎化処理過程では、延伸処理しなければ
アクリル系前駆体繊維は、処理温度の上昇と共に収縮す
る。そこで、延伸応力を調節して延伸処理することによ
り延伸倍率を調節することができる。延伸倍率1.00
とは、繊維に延伸応力を与えているが、収縮と延伸との
バランスがとれ延伸前と延伸後との長さが同一であるこ
とを示す。
In the flameproofing treatment process, the acrylic precursor fiber contracts as the treatment temperature increases unless it is stretched. Therefore, the stretching ratio can be adjusted by adjusting the stretching stress and performing the stretching treatment. Draw ratio 1.00
Indicates that, although stretching stress is applied to the fiber, contraction and stretching are balanced and the lengths before stretching and after stretching are the same.

【0021】上記延伸倍率の範囲で耐炎化処理して得ら
れる耐炎化繊維は、配向度(広角X線17°)が向上
し、且つこの耐炎化繊維を炭素化して得られる炭素繊維
の強度が高くなる。また、耐炎化繊維が前駆体繊維を撚
って得られたストランドを上記延伸倍率の条件で耐炎化
処理したものである場合、このストランドを炭素化して
得られる炭素繊維ストランドも高強度である。
The flame-resistant fiber obtained by the flame-proofing treatment in the range of the above-mentioned draw ratio has an improved degree of orientation (wide-angle X-ray 17 °) and the strength of the carbon fiber obtained by carbonizing the flame-proofed fiber. Get higher Further, in the case where the flame-resistant fiber is a strand obtained by twisting the precursor fiber and subjected to flame-proofing treatment under the conditions of the above draw ratio, the carbon fiber strand obtained by carbonizing this strand also has high strength.

【0022】なお、繊維の密度が1.30g/cm3
なるまでの延伸倍率を1.00以上の範囲で耐炎化処理
して得られる耐炎化繊維を炭素化して得られる炭素繊維
は、上記延伸倍率を1.00未満の範囲で耐炎化処理し
て得られる耐炎化繊維を炭素化して得られる炭素繊維と
比較して強度が高いことを特徴とする。
The carbon fiber obtained by carbonizing the flame-resistant fiber obtained by the flame-proofing treatment at a draw ratio of 1.00 or more until the fiber density becomes 1.30 g / cm 3 is the above-mentioned carbon fiber. It is characterized in that it has a higher strength than the carbon fiber obtained by carbonizing the flame-resistant fiber obtained by the flame-proof treatment in the range of the draw ratio of less than 1.00.

【0023】耐炎化処理過程において、繊維密度が1.
30g/cm3未満の時点では、耐炎化繊維の構造が未
熟なため、延伸処理の程度によっては、強度アップの効
果が無いばかりか、単糸切れ等を増やす原因となるの
で、所定の条件から外れて延伸処理を行うことは強度向
上のために好ましくない。
In the flameproofing process, the fiber density is 1.
At a time of less than 30 g / cm 3 , the structure of the flame-resistant fiber is immature, and depending on the degree of the drawing treatment, not only the effect of increasing the strength but also the increase of single yarn breakage or the like is caused. It is not preferable to carry out the stretching treatment to remove it from the standpoint of improving the strength.

【0024】具体的には、繊維密度が1.30g/cm
3未満の時点では、繊維密度が1.22g/cm3になる
までは延伸倍率1.03〜1.08の範囲で耐炎化処理
することが好ましい。更に、繊維密度が1.22〜1.
30g/cm3の間は延伸倍率1.0で耐炎化処理する
ことが特に好ましい。
Specifically, the fiber density is 1.30 g / cm.
As of less than 3, it is preferable that the fiber density is until 1.22 g / cm 3 treating flame-resistant in a range of draw ratio from 1.03 to 1.08. Furthermore, the fiber density is 1.22-1.
It is particularly preferable to perform the flameproofing treatment at a draw ratio of 1.0 between 30 g / cm 3 .

【0025】耐炎化処理過程において、繊維密度が1.
30g/cm3以上の時点では、延伸倍率が1.001
未満であると、延伸効果が少なく、耐炎化繊維の配向度
(広角X線17°)の向上が困難であり、耐炎化繊維を
炭素化して得られる炭素繊維の強度も低いので好ましく
ない。また、延伸倍率が1.012を超えると、単糸切
れが多く発生し、安定した生産を行うことができなくな
るので好ましくない。
In the flameproofing process, the fiber density is 1.
At a time of 30 g / cm 3 or more, the draw ratio is 1.001.
When it is less than 1, the stretching effect is small, it is difficult to improve the degree of orientation of the flameproof fiber (wide-angle X-ray 17 °), and the strength of the carbon fiber obtained by carbonizing the flameproof fiber is low, which is not preferable. Further, if the draw ratio exceeds 1.012, single yarn breakage often occurs and stable production cannot be performed, which is not preferable.

【0026】耐炎化繊維を炭素化して得られる炭素繊維
の強度を更に高めるには、耐炎化繊維の密度を1.42
g/cm3以下にすることが好ましく、1.38g/c
3以下にすることが更に好ましい。耐炎化繊維の密度
が1.42g/cm3を超える場合は、炭素化工程での
延伸性が低下し、高強度の炭素繊維を得ることが困難に
なるので好ましくない。
To further increase the strength of the carbon fiber obtained by carbonizing the flameproof fiber, the density of the flameproof fiber is 1.42.
g / cm 3 or less is preferable, 1.38 g / c
It is more preferable that it is not more than m 3 . When the density of the flameproof fiber exceeds 1.42 g / cm 3 , the drawability in the carbonization step is deteriorated, and it becomes difficult to obtain a high-strength carbon fiber, which is not preferable.

【0027】耐炎化繊維を炭素化して炭素繊維を得る場
合、不活性ガス雰囲気下において炉内温度分布300〜
2000℃、好ましくは1000〜1800℃を有する
炭素化炉内に耐炎化繊維を通過させることにより処理す
ることができる。
When carbonizing the flameproof fiber to obtain carbon fiber, the temperature distribution in the furnace is 300 to 300 in an inert gas atmosphere.
It can be treated by passing the flameproofed fibers through a carbonization furnace having a temperature of 2000 ° C, preferably 1000-1800 ° C.

【0028】このようにして得られる炭素繊維は高強度
であり、本発明の耐炎化繊維を炭素化することにより、
なし得るものである。
The carbon fiber thus obtained has a high strength, and by carbonizing the flame-resistant fiber of the present invention,
It can be done.

【0029】[0029]

【実施例】本発明を以下の実施例及び比較例により具体
的に説明する。また、以下の実施例及び比較例の条件に
より耐炎化繊維及び炭素繊維を作製し、得られた耐炎化
繊維及び炭素繊維の諸物性値を、以下の方法により測定
した。
EXAMPLES The present invention will be specifically described by the following examples and comparative examples. Further, flame resistant fibers and carbon fibers were produced under the conditions of the following examples and comparative examples, and various physical properties of the obtained flame resistant fibers and carbon fibers were measured by the following methods.

【0030】配向度:リガク製X線回折装置RINT1
200L、日立製コンピュータ2050/32を使用
し、広角X線回折測定での2θ=17°における配向度
を半価幅から求めた。
Orientation degree: Rigaku X-ray diffractometer RINT1
The degree of orientation at 2θ = 17 ° in wide-angle X-ray diffraction measurement was determined from the half-value width using a 200 L Hitachi computer 2050/32.

【0031】密度:液置換法(JIS R 7601)に
よりアセトン中にて脱気処理し測定した。
Density: Measured by degassing in acetone by the liquid replacement method (JIS R 7601).

【0032】繊維性能:炭素繊維ストランド強度、弾性
率はJIS R 7601により測定した。
Fiber performance: Carbon fiber strand strength and elastic modulus were measured according to JIS R7601.

【0033】実施例1 アクリロニトリル95質量%、アクリル酸メチル4質量
%、及びイタコン酸1質量%を共重合させたアクリル繊
維を含有する紡糸原液を湿式紡糸し、水洗・乾燥・延伸
・オイリングして0.65dの前駆体繊維を得た。
Example 1 A spinning dope containing acrylic fibers copolymerized with 95% by weight of acrylonitrile, 4% by weight of methyl acrylate and 1% by weight of itaconic acid was wet-spun, washed with water, dried, drawn and oiled. 0.65d precursor fiber was obtained.

【0034】この前駆体繊維を炉内温度分布230〜2
50℃の熱風循環式耐炎化炉に導入し、耐炎化処理し
た。
This precursor fiber is used for the temperature distribution in the furnace 230-2.
It was introduced into a hot air circulation type flameproofing furnace at 50 ° C. and subjected to flameproofing treatment.

【0035】表1に示すように、耐炎化処理工程では、
繊維密度が1.16g/cm3の時点から延伸処理を開
始し、繊維密度が1.22g/cm3に達するまでは延
伸倍率1.05で耐炎化処理し、繊維密度が1.22〜
1.30g/cm3の間は延伸倍率を1.00にして
(実質的には延伸を行わず)耐炎化処理し、繊維密度が
1.30g/cm3に達した後は延伸倍率1.003で
耐炎化処理して耐炎化繊維を得た。得られた耐炎化繊維
の密度は1.33g/cm3であり、配向度は79.1
%であった。
As shown in Table 1, in the flameproofing process,
The stretching treatment is started from the time when the fiber density is 1.16 g / cm 3 , and the fiber density is 1.22 to 1.22 g / cm 3 , and the fiber density is 1.22 to 1.22 g / cm 3.
During the period of 1.30 g / cm 3 , the stretch ratio was set to 1.00 (substantially no stretching was performed) for flameproofing, and after the fiber density reached 1.30 g / cm 3 , the stretch ratio was 1. Flame-resistant treatment was performed with 003 to obtain flame-resistant fibers. The obtained flameproofed fiber has a density of 1.33 g / cm 3 and an orientation degree of 79.1.
%Met.

【0036】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において炭素化処理を行い、表1に示す物性値の炭素
繊維を得た。
Next, the obtained flame-resistant fiber was carbonized in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere to obtain carbon fibers having physical properties shown in Table 1. .

【0037】実施例2 実施例1で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.30g/cm3に達した後の延伸倍
率を1.007にして耐炎化処理した以外は、実施例1
と同様に耐炎化処理を行い、表1に示すように、繊維密
度1.34g/cm3、配向度79.3%の耐炎化繊維
を得た。
Example 2 The precursor fiber obtained in Example 1 was subjected to flameproofing treatment with a draw ratio of 1.007 after the fiber density reached 1.30 g / cm 3 in the flameproofing treatment step. Example 1
Flame-proofing treatment was carried out in the same manner as in 1. to obtain flame-proofing fibers having a fiber density of 1.34 g / cm 3 and an orientation degree of 79.3% as shown in Table 1.

【0038】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例1と同様に炭素化処理を行い、表1に
示す物性値の炭素繊維を得た。
Next, the obtained flame-resistant fiber was subjected to carbonization treatment in the same manner as in Example 1 in a carbonization furnace having a furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 1 were obtained. Of carbon fiber was obtained.

【0039】実施例3 実施例1で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.16g/cm3の時点から延伸処理
を開始し、繊維密度が1.22g/cm3に達するまで
の延伸倍率を1.03にして耐炎化処理した以外は、実
施例1と同様に耐炎化処理を行い、表1に示すように、
繊維密度1.34g/cm3、配向度78.9%の耐炎
化繊維を得た。
Example 3 The precursor fiber obtained in Example 1 was subjected to a stretching treatment at a fiber density of 1.16 g / cm 3 in the flameproofing treatment step to obtain a fiber density of 1.22 g / cm 3. The flame resistance treatment was performed in the same manner as in Example 1 except that the stretching ratio until reaching 1.03 was 1.03 and the flame resistance treatment was performed.
A flameproof fiber having a fiber density of 1.34 g / cm 3 and an orientation degree of 78.9% was obtained.

【0040】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例1と同様に炭素化処理を行い、表1に
示す物性値の炭素繊維を得た。
Next, the obtained flame-resistant fiber was subjected to carbonization treatment in the same manner as in Example 1 in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 1 were obtained. Of carbon fiber was obtained.

【0041】実施例4 実施例1で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.16g/cm3の時点から延伸処理
を開始し、繊維密度が1.22g/cm3に達するまで
の延伸倍率を1.08にして耐炎化処理した以外は、実
施例1と同様に耐炎化処理を行い、表1に示すように、
繊維密度1.33g/cm3、配向度79.2%の耐炎
化繊維を得た。
Example 4 The precursor fiber obtained in Example 1 was stretched at a fiber density of 1.16 g / cm 3 in the flameproofing treatment step to obtain a fiber density of 1.22 g / cm 3. The flame resistance treatment was performed in the same manner as in Example 1 except that the stretching ratio was increased to 1.08 and flame resistance treatment was performed.
A flameproof fiber having a fiber density of 1.33 g / cm 3 and an orientation degree of 79.2% was obtained.

【0042】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例1と同様に炭素化処理を行い、表1に
示す物性値の炭素繊維を得た。
Next, the obtained flame-resistant fiber was subjected to carbonization treatment in the same manner as in Example 1 in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 1 were obtained. Of carbon fiber was obtained.

【0043】比較例1 実施例1で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.30g/cm3に達した後の延伸倍
率を1.000にして(実質的には延伸を行わず)耐炎
化処理した以外は、実施例1と同様に耐炎化処理を行
い、表1に示すように、繊維密度1.34g/cm3
配向度78.7%の耐炎化繊維を得た。
Comparative Example 1 The precursor fiber obtained in Example 1 was set to have a draw ratio of 1.000 (substantially when the fiber density reached 1.30 g / cm 3 in the flameproofing treatment step. Flame resistance treatment was performed in the same manner as in Example 1 except that the flame resistance treatment was performed (without stretching), and as shown in Table 1, the fiber density was 1.34 g / cm 3 .
A flameproof fiber having an orientation degree of 78.7% was obtained.

【0044】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例1と同様に炭素化処理を行い、表1に
示す物性値の炭素繊維を得た。しかし、表1に示すよう
に、得られた炭素繊維はストランド強度が低いものであ
った。
Next, the obtained flame-resistant fiber was subjected to carbonization treatment in the same manner as in Example 1 in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and physical property values shown in Table 1 were obtained. Of carbon fiber was obtained. However, as shown in Table 1, the obtained carbon fibers had low strand strength.

【0045】比較例2 実施例1で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.30g/cm3に達した後の延伸倍
率を1.013にして耐炎化処理した以外は、実施例1
と同様に耐炎化処理を行い、表1に示すように、繊維密
度1.32g/cm3、配向度79.0%の耐炎化繊維
を得た。しかし、得られた耐炎化繊維は単糸切れが多い
ものであった。
Comparative Example 2 The precursor fiber obtained in Example 1 was subjected to flameproofing treatment with a draw ratio of 1.013 after the fiber density reached 1.30 g / cm 3 in the flameproofing treatment step. Example 1
A flameproofing treatment was performed in the same manner as in 1. to obtain a flameproofing fiber having a fiber density of 1.32 g / cm 3 and an orientation degree of 79.0% as shown in Table 1. However, the obtained flame-resistant fibers had many single yarn breakages.

【0046】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例1と同様に炭素化処理を行い、表1に
示す物性値の炭素繊維を得た。しかし、表1に示すよう
に、得られた炭素繊維はストランド強度、及びストラン
ド弾性率が低いものであった。
Then, the obtained flame-resistant fiber was subjected to carbonization treatment in the same manner as in Example 1 in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 1 were obtained. Of carbon fiber was obtained. However, as shown in Table 1, the obtained carbon fiber had low strand strength and strand elastic modulus.

【0047】比較例3 実施例1で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.22〜1.30g/cm3の間は延
伸倍率を1.01にして耐炎化処理した以外は、実施例
1と同様に耐炎化処理を行い、表1に示すように、繊維
密度1.33g/cm3、配向度79.2%の耐炎化繊
維を得た。しかし、得られた耐炎化繊維は単糸切れが多
いものであった。
Comparative Example 3 The precursor fiber obtained in Example 1 was subjected to a flameproofing treatment by setting the draw ratio to 1.01 while the fiber density was 1.22 to 1.30 g / cm 3 in the flameproofing treatment step. Other than the above, the flameproofing treatment was performed in the same manner as in Example 1 to obtain a flameproofing fiber having a fiber density of 1.33 g / cm 3 and an orientation degree of 79.2% as shown in Table 1. However, the obtained flame-resistant fibers had many single yarn breakages.

【0048】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例1と同様に炭素化処理を行い、表1に
示す物性値の炭素繊維を得た。しかし、表1に示すよう
に、得られた炭素繊維はストランド強度、及びストラン
ド弾性率が低いものであった。
Then, the obtained flame-resistant fiber was subjected to carbonization treatment in the same manner as in Example 1 in a carbonization furnace having a furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 1 were obtained. Of carbon fiber was obtained. However, as shown in Table 1, the obtained carbon fiber had low strand strength and strand elastic modulus.

【0049】[0049]

【表1】 [Table 1]

【0050】実施例5 アクリロニトリル95質量%、アクリル酸メチル4質量
%、及びイタコン酸1質量%を共重合させたアクリル繊
維を含有する紡糸原液を湿式紡糸し、水洗・乾燥・延伸
・オイリングして0.50dの前駆体繊維を得た。
Example 5 A spinning dope containing acrylic fibers copolymerized with 95% by weight of acrylonitrile, 4% by weight of methyl acrylate and 1% by weight of itaconic acid was wet-spun, washed with water, dried, drawn and oiled. 0.50d precursor fiber was obtained.

【0051】この前駆体繊維を炉内温度分布230〜2
50℃の熱風循環式耐炎化炉に導入し、耐炎化処理し
た。
This precursor fiber is used for in-furnace temperature distribution 230 to 2
It was introduced into a hot air circulation type flameproofing furnace at 50 ° C. and subjected to flameproofing treatment.

【0052】表2に示すように、耐炎化処理工程では、
繊維密度が1.16g/cm3の時点から延伸処理を開
始し、繊維密度が1.22g/cm3に達するまでは延
伸倍率1.05で耐炎化処理し、繊維密度が1.22〜
1.30g/cm3の間は延伸倍率を1.00にして
(実質的には延伸を行わず)耐炎化処理し、繊維密度が
1.30g/cm3に達した後は延伸倍率1.003で
耐炎化処理して耐炎化繊維を得た。得られた耐炎化繊維
の密度は1.34g/cm3であり、配向度は79.2
%であった。
As shown in Table 2, in the flameproofing process,
The stretching treatment is started from the time when the fiber density is 1.16 g / cm 3 , and the fiber density is 1.22 to 1.22 g / cm 3 , and the fiber density is 1.22 to 1.22 g / cm 3.
During the period of 1.30 g / cm 3 , the stretch ratio was set to 1.00 (substantially no stretching was performed) for flameproofing, and after the fiber density reached 1.30 g / cm 3 , the stretch ratio was 1. Flame-resistant treatment was performed with 003 to obtain flame-resistant fibers. The obtained flameproofed fiber has a density of 1.34 g / cm 3 and an orientation degree of 79.2.
%Met.

【0053】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において炭素化処理を行い、表2に示す物性値の炭素
繊維を得た。
Next, the obtained flame-resistant fiber was subjected to carbonization treatment in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere to obtain carbon fibers having physical properties shown in Table 2. .

【0054】実施例6 実施例5で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.30g/cm3に達した後の延伸倍
率を1.007にして耐炎化処理した以外は、実施例5
と同様に耐炎化処理を行い、表2に示すように、繊維密
度1.33g/cm3、配向度79.3%の耐炎化繊維
を得た。
Example 6 The precursor fiber obtained in Example 5 was subjected to a flameproofing treatment with a draw ratio of 1.007 after the fiber density reached 1.30 g / cm 3 in the flameproofing treatment step. Example 5
A flameproofing treatment was carried out in the same manner as in, and as shown in Table 2, flameproofing fibers having a fiber density of 1.33 g / cm 3 and an orientation degree of 79.3% were obtained.

【0055】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例5と同様に炭素化処理を行い、表2に
示す物性値の炭素繊維を得た。
Next, the obtained flame-resistant fiber was subjected to carbonization treatment in the same manner as in Example 5 in a carbonization furnace having a furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 2 were obtained. Of carbon fiber was obtained.

【0056】実施例7 実施例5で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.16g/cm3の時点から延伸処理
を開始し、繊維密度が1.22g/cm3に達するまで
の延伸倍率を1.03にして耐炎化処理した以外は、実
施例5と同様に耐炎化処理を行い、表2に示すように、
繊維密度1.34g/cm3、配向度79.0%の耐炎
化繊維を得た。
Example 7 The precursor fiber obtained in Example 5 was stretched at a fiber density of 1.16 g / cm 3 in the flameproofing treatment step to give a fiber density of 1.22 g / cm 3. The flame resistance treatment was carried out in the same manner as in Example 5 except that the stretching ratio was increased to 1.03 and flame resistance treatment was performed.
A flameproof fiber having a fiber density of 1.34 g / cm 3 and an orientation degree of 79.0% was obtained.

【0057】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例5と同様に炭素化処理を行い、表2に
示す物性値の炭素繊維を得た。
Then, the obtained flame-resistant fiber was subjected to carbonization treatment in the same manner as in Example 5 in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 2 were obtained. Of carbon fiber was obtained.

【0058】実施例8 実施例5で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.16g/cm3の時点から延伸処理
を開始し、繊維密度が1.22g/cm3に達するまで
の延伸倍率を1.08にして耐炎化処理した以外は、実
施例5と同様に耐炎化処理を行い、表2に示すように、
繊維密度1.33g/cm3、配向度79.2%の耐炎
化繊維を得た。
Example 8 The precursor fiber obtained in Example 5 was stretched at a fiber density of 1.16 g / cm 3 in the flameproofing treatment step, and the fiber density was 1.22 g / cm 3. The flame resistance treatment was performed in the same manner as in Example 5 except that the stretching ratio until reaching 1.08 was 1.08 and the flame resistance treatment was performed.
A flameproof fiber having a fiber density of 1.33 g / cm 3 and an orientation degree of 79.2% was obtained.

【0059】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例5と同様に炭素化処理を行い、表2に
示す物性値の炭素繊維を得た。
Then, the obtained flameproofed fiber was subjected to carbonization treatment in the same manner as in Example 5 in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 2 were obtained. Of carbon fiber was obtained.

【0060】比較例4 実施例5で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.30g/cm3に達した後の延伸倍
率を1.000にして(延伸を行わず)耐炎化処理した
以外は、実施例5と同様に耐炎化処理を行い、表2に示
すように、繊維密度1.35g/cm3、配向度78.
7%の耐炎化繊維を得た。
Comparative Example 4 The precursor fiber obtained in Example 5 was stretched at a draw ratio of 1.000 after the fiber density reached 1.30 g / cm 3 in the flameproofing treatment step (without stretching. ) A flameproofing treatment was performed in the same manner as in Example 5 except that the flameproofing treatment was performed, and as shown in Table 2, the fiber density was 1.35 g / cm 3 , the degree of orientation was 78.
7% flame-resistant fiber was obtained.

【0061】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例5と同様に炭素化処理を行い、表2に
示す物性値の炭素繊維を得た。しかし、表2に示すよう
に、得られた炭素繊維はストランド強度が低いものであ
った。
Then, the obtained flame-resistant fiber was subjected to carbonization treatment in the same manner as in Example 5 in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 2 were obtained. Of carbon fiber was obtained. However, as shown in Table 2, the obtained carbon fibers had low strand strength.

【0062】比較例5 実施例5で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.30g/cm3に達した後の延伸倍
率を1.013にして耐炎化処理した以外は、実施例5
と同様に耐炎化処理を行い、表2に示すように、繊維密
度1.31g/cm3、配向度79.2%の耐炎化繊維
を得た。しかし、得られた耐炎化繊維は単糸切れが多い
ものであった。
Comparative Example 5 The precursor fiber obtained in Example 5 was subjected to a flameproofing treatment with a draw ratio of 1.013 after the fiber density reached 1.30 g / cm 3 in the flameproofing treatment step. Example 5
A flameproofing treatment was carried out in the same manner as in, and as shown in Table 2, flameproofing fibers having a fiber density of 1.31 g / cm 3 and an orientation degree of 79.2% were obtained. However, the obtained flame-resistant fibers had many single yarn breakages.

【0063】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例5と同様に炭素化処理を行い、表2に
示す物性値の炭素繊維を得た。しかし、表2に示すよう
に、得られた炭素繊維はストランド強度、及びストラン
ド弾性率が低いものであった。
Then, the obtained flameproof fiber was subjected to carbonization treatment in the same manner as in Example 5 in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 2 were obtained. Of carbon fiber was obtained. However, as shown in Table 2, the obtained carbon fibers had low strand strength and strand elastic modulus.

【0064】比較例6 実施例5で得られた前駆体繊維を、耐炎化処理工程にお
いて繊維密度が1.22〜1.30g/cm3の間は延
伸倍率を1.01にして耐炎化処理した以外は、実施例
5と同様に耐炎化処理を行い、表2に示すように、繊維
密度1.32g/cm3、配向度79.2%の耐炎化繊
維を得た。しかし、得られた耐炎化繊維は単糸切れが多
いものであった。
Comparative Example 6 The precursor fiber obtained in Example 5 was subjected to a flameproofing treatment while the fiber density was 1.22 to 1.30 g / cm 3 with a draw ratio of 1.01 in the flameproofing process. Other than the above, the flameproofing treatment was performed in the same manner as in Example 5, and as shown in Table 2, flameproofing fibers having a fiber density of 1.32 g / cm 3 and an orientation degree of 79.2% were obtained. However, the obtained flame-resistant fibers had many single yarn breakages.

【0065】次いで、得られた耐炎化繊維は、不活性ガ
ス雰囲気下、炉内温度分布300〜1600℃の炭素化
炉において実施例5と同様に炭素化処理を行い、表2に
示す物性値の炭素繊維を得た。しかし、表2に示すよう
に、得られた炭素繊維はストランド強度、及びストラン
ド弾性率が低いものであった。
Then, the obtained flameproofed fiber was subjected to carbonization treatment in the same manner as in Example 5 in a carbonization furnace having an in-furnace temperature distribution of 300 to 1600 ° C. under an inert gas atmosphere, and the physical property values shown in Table 2 were obtained. Of carbon fiber was obtained. However, as shown in Table 2, the obtained carbon fibers had low strand strength and strand elastic modulus.

【0066】[0066]

【表2】 [Table 2]

【0067】[0067]

【発明の効果】本発明においては、実施例に示した如
く、炭素繊維用アクリル系前駆体繊維を酸化性雰囲気下
において、繊維の密度が1.30g/cm3になるまで
は延伸倍率を1.00以上の範囲で耐炎化処理し、繊維
の密度が1.30g/cm3以上になった後は延伸倍率
を1.001〜1.012の範囲で耐炎化処理して耐炎
化繊維の製造しているので、単糸切れ等が無く、安定し
た耐炎化繊維の生産ができる。また、この耐炎化繊維を
炭素化する事により、高強度、高弾性率の炭素繊維を得
ることができる。
In the present invention, as shown in the examples, the stretching ratio of the acrylic precursor fiber for carbon fiber is 1 in an oxidizing atmosphere until the fiber density becomes 1.30 g / cm 3. After the flameproofing treatment in the range of 0.000 or more and the fiber density becomes 1.30 g / cm 3 or more, the flameproofing treatment is performed in the range of 1.001 to 1.012 to produce the flameproofing fiber. As a result, there is no single yarn breakage and stable production of flame-resistant fibers can be achieved. Further, by carbonizing the flame resistant fiber, it is possible to obtain a carbon fiber having high strength and high elastic modulus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 進一 静岡県駿東郡長泉町上土狩234 東邦テナ ックス株式会社内 (72)発明者 松木 寿嗣 静岡県駿東郡長泉町上土狩234 東邦テナ ックス株式会社内 Fターム(参考) 4L037 CS02 CS03 FA01 FA08 FA12 PA55 PC09 PC10 PC11 PS02 PS12 PS17 UA07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinichi Muto             Toho Tena 234 Uechikari, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture             X Co., Ltd. (72) Inventor, Jutsugu Matsuki             Toho Tena 234 Uechikari, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture             X Co., Ltd. F-term (reference) 4L037 CS02 CS03 FA01 FA08 FA12                       PA55 PC09 PC10 PC11 PS02                       PS12 PS17 UA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維用アクリル系前駆体繊維を酸化
性雰囲気下において、繊維の密度が1.30g/cm3
になるまでは延伸倍率を1.00以上の範囲で耐炎化処
理し、繊維の密度が1.30g/cm3以上になった後
は延伸倍率を1.001〜1.012の範囲で耐炎化処
理することを特徴とする耐炎化繊維の製造法。
1. An acrylic precursor fiber for carbon fiber, in an oxidizing atmosphere, has a fiber density of 1.30 g / cm 3.
Until the fiber density reaches 1.30 g / cm 3 or more, and then the draw ratio becomes 1.001 to 1.012. A method for producing a flameproof fiber, which comprises treating.
【請求項2】 炭素繊維用アクリル系前駆体繊維を酸化
性雰囲気下において、繊維の密度が1.22g/cm3
になるまでは延伸倍率を1.03〜1.08の範囲で耐
炎化処理し、繊維の密度が1.30g/cm3以上にな
った後は延伸倍率を1.001〜1.012の範囲で耐
炎化処理することを特徴とする耐炎化繊維の製造法。
2. The acrylic precursor fiber for carbon fiber has a fiber density of 1.22 g / cm 3 in an oxidizing atmosphere.
Until it reaches a draw ratio of 1.03 to 1.08, and after the fiber has a density of 1.30 g / cm 3 or more, a draw ratio of 1.001 to 1.012. A method for producing a flame-resistant fiber, which comprises subjecting the fiber to a flame-resistant treatment.
【請求項3】 炭素繊維用アクリル系前駆体繊維を酸化
性雰囲気下において、繊維の密度が1.22g/cm3
になるまでは延伸倍率を1.03〜1.08の範囲で耐
炎化処理し、繊維の密度が1.22〜1.30g/cm
3の間では延伸倍率を1.0で耐炎化処理し、繊維の密
度が1.30g/cm3以上になった後は延伸倍率を
1.001〜1.012の範囲で耐炎化処理することを
特徴とする耐炎化繊維の製造法。
3. The acrylic precursor fiber for carbon fiber has a fiber density of 1.22 g / cm 3 in an oxidizing atmosphere.
Until it reaches a draw ratio of 1.03 to 1.08, the fiber density is 1.22 to 1.30 g / cm.
Between 3 and 1, the flame-proof treatment is performed at a draw ratio of 1.0, and after the fiber density becomes 1.30 g / cm 3 or more, the flame-proof treatment is performed at a draw ratio of 1.001 to 1.012. A method for producing a flame-resistant fiber characterized by:
JP2001336301A 2001-11-01 2001-11-01 Method for producing flameproofed fiber Pending JP2003138435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336301A JP2003138435A (en) 2001-11-01 2001-11-01 Method for producing flameproofed fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336301A JP2003138435A (en) 2001-11-01 2001-11-01 Method for producing flameproofed fiber

Publications (1)

Publication Number Publication Date
JP2003138435A true JP2003138435A (en) 2003-05-14

Family

ID=19151149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336301A Pending JP2003138435A (en) 2001-11-01 2001-11-01 Method for producing flameproofed fiber

Country Status (1)

Country Link
JP (1) JP2003138435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104604A (en) * 2004-10-04 2006-04-20 Toho Tenax Co Ltd Method for producing flameproofed fiber and carbon fiber
WO2009084390A1 (en) 2007-12-30 2009-07-09 Toho Tenax Co., Ltd. Processes for producing flameproof fiber and carbon fiber
KR101148569B1 (en) 2009-12-31 2012-05-23 주식회사 효성 Method for manufacturing carbon fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104604A (en) * 2004-10-04 2006-04-20 Toho Tenax Co Ltd Method for producing flameproofed fiber and carbon fiber
WO2009084390A1 (en) 2007-12-30 2009-07-09 Toho Tenax Co., Ltd. Processes for producing flameproof fiber and carbon fiber
US8236273B2 (en) 2007-12-30 2012-08-07 Toho Tenax Co., Ltd. Method of producing pre-oxidation fiber and carbon fiber
JP5324472B2 (en) * 2007-12-30 2013-10-23 東邦テナックス株式会社 Flame-resistant fiber and carbon fiber manufacturing method
KR101148569B1 (en) 2009-12-31 2012-05-23 주식회사 효성 Method for manufacturing carbon fiber

Similar Documents

Publication Publication Date Title
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
KR870000533B1 (en) Carbon fiber&#39;s making method
JP4662450B2 (en) Carbon fiber manufacturing method
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
JP2003138435A (en) Method for producing flameproofed fiber
JP4088500B2 (en) Carbon fiber manufacturing method
JP3002549B2 (en) Manufacturing method of graphite fiber
JPS58144128A (en) Preparation of carbon fiber having high performance
JP2000199183A (en) Acrylonitrile fiber for producing carbon fiber
JP4271019B2 (en) Carbon fiber manufacturing method
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP4565978B2 (en) Carbon fiber manufacturing method
JP2003138434A (en) Method for producing flameproofed fiber
JP2010111972A (en) Carbon fiber and method for producing the same
JP2004197278A (en) Method for producing carbon fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JPS61119719A (en) Production of carbon fiber of high strength
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPS58214535A (en) Production of acrylic type carbon fiber
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
JP2012117161A (en) Method for manufacturing carbon fiber bundle
JP3002698B2 (en) Manufacturing method of graphite fiber
JP4919410B2 (en) Carbon fiber manufacturing method
JP2004107836A (en) Method for producing carbon fiber
JP2001192937A (en) Method of producing carbon fiber